Internet Engineering Task Force (IETF)                        T. Kivinen
Request for Comments: 7427                                 INSIDE Secure
Updates: 7296                                                  J. Snyder
Category: Standards Track                                       Opus One
ISSN: 2070-1721                                             January 2015


Signature Authentication in the Internet Key Exchange Version 2 (IKEv2)

Abstract

  The Internet Key Exchange Version 2 (IKEv2) protocol has limited
  support for the Elliptic Curve Digital Signature Algorithm (ECDSA).
  The current version only includes support for three Elliptic Curve
  groups, and there is a fixed hash algorithm tied to each group.  This
  document generalizes IKEv2 signature support to allow any signature
  method supported by PKIX and also adds signature hash algorithm
  negotiation.  This is a generic mechanism and is not limited to
  ECDSA; it can also be used with other signature algorithms.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7427.

Copyright Notice

  Copyright (c) 2015 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.



Kivinen & Snyder             Standards Track                    [Page 1]

RFC 7427            Signature Authentication in IKEv2       January 2015


Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
  2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   4
  3.  Authentication Payload  . . . . . . . . . . . . . . . . . . .   4
  4.  Hash Algorithm Notification . . . . . . . . . . . . . . . . .   6
  5.  Selecting the Public Key Algorithm  . . . . . . . . . . . . .   7
  6.  Security Considerations . . . . . . . . . . . . . . . . . . .   8
  7.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   9
  8.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  10
    8.1.  Normative References  . . . . . . . . . . . . . . . . . .  10
    8.2.  Informative References  . . . . . . . . . . . . . . . . .  10
  Appendix A.  Commonly Used ASN.1 Objects  . . . . . . . . . . . .  12
    A.1.  PKCS#1 1.5 RSA Encryption . . . . . . . . . . . . . . . .  12
      A.1.1.  sha1WithRSAEncryption . . . . . . . . . . . . . . . .  12
      A.1.2.  sha256WithRSAEncryption . . . . . . . . . . . . . . .  12
      A.1.3.  sha384WithRSAEncryption . . . . . . . . . . . . . . .  13
      A.1.4.  sha512WithRSAEncryption . . . . . . . . . . . . . . .  13
    A.2.  DSA . . . . . . . . . . . . . . . . . . . . . . . . . . .  13
      A.2.1.  dsa-with-sha1 . . . . . . . . . . . . . . . . . . . .  13
      A.2.2.  dsa-with-sha256 . . . . . . . . . . . . . . . . . . .  14
    A.3.  ECDSA . . . . . . . . . . . . . . . . . . . . . . . . . .  14
      A.3.1.  ecdsa-with-sha1 . . . . . . . . . . . . . . . . . . .  14
      A.3.2.  ecdsa-with-sha256 . . . . . . . . . . . . . . . . . .  14
      A.3.3.  ecdsa-with-sha384 . . . . . . . . . . . . . . . . . .  15
      A.3.4.  ecdsa-with-sha512 . . . . . . . . . . . . . . . . . .  15
    A.4.  RSASSA-PSS  . . . . . . . . . . . . . . . . . . . . . . .  15
      A.4.1.  RSASSA-PSS with Empty Parameters  . . . . . . . . . .  15
      A.4.2.  RSASSA-PSS with Default Parameters  . . . . . . . . .  16
      A.4.3.  RSASSA-PSS with SHA-256 . . . . . . . . . . . . . . .  17
  Appendix B.  IKEv2 Payload Example  . . . . . . . . . . . . . . .  17
    B.1.  sha1WithRSAEncryption . . . . . . . . . . . . . . . . . .  17
  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .  18
  Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  18

1.  Introduction

  This document adds a new IKEv2 [RFC7296] authentication method to
  support signature methods in a more general way.  The current
  signature-based authentication methods in IKEv2 are per algorithm,
  i.e., there is one for RSA digital signatures, one for DSS digital
  signatures (using SHA-1), and three for different ECDSA curves, each
  tied to exactly one hash algorithm.  This design is cumbersome when
  more signature algorithms, hash algorithms, and elliptic curves need
  to be supported:






Kivinen & Snyder             Standards Track                    [Page 2]

RFC 7427            Signature Authentication in IKEv2       January 2015


  o  In IKEv2, authentication using RSA digital signatures calls for
     padding based on RSASSA-PKCS1-v1_5, although the newer RSASSA-PSS
     padding method is now recommended.  (See Section 5 of "Additional
     Algorithms and Identifiers for RSA Cryptography for use in PKIX
     Profile" [RFC4055].)

  o  With ECDSA and the Digital Signature Standard (DSS), there is no
     way to extract the hash algorithm from the signature.  Thus, for
     each new hash function to be supported with ECDSA or DSA, new
     authentication methods would be needed.  Support for new hash
     functions is particularly needed for DSS, because the current
     restriction to SHA-1 limits its security, meaning there is no
     point of using long keys with SHA-1.

  o  The tying of ECDSA authentication methods to particular elliptic
     curve groups requires definition of additional methods for each
     new group.  The combination of new ECDSA groups and hash functions
     will cause the number of required authentication methods to become
     unmanageable.  Furthermore, the restriction of ECDSA
     authentication to a specific group is inconsistent with the
     approach taken with DSS.

  With the selection of SHA-3, it might be possible that a signature
  method can be used with either SHA-3 or SHA-2.  This means that a new
  mechanism for negotiating the hash algorithm for a signature
  algorithm is needed.

  This document specifies two things:

  1.  A new authentication method that includes enough information
      inside the Authentication payload data so the signature hash
      algorithm can be extracted (see Section 3).

  2.  A method to indicate supported signature hash algorithms (see
      Section 4).  This allows the peer to know which hash algorithms
      are supported by the other end and use one of them (provided one
      is allowed by policy).  There is no requirement to actually
      negotiate one common hash algorithm, as different hash algorithms
      can be used in different directions if needed.

  The new digital signature method is flexible enough to include all
  current signature methods (RSA, DSA, ECDSA, RSASSA-PSS, etc.) and add
  new methods (ECGDSA, ElGamal, etc.) in the future.  To support this
  flexibility, the signature algorithm is specified in the same way
  that PKIX [RFC5280] specifies the signature of the Digital
  Certificate, by placing a simple ASN.1 object before the actual
  signature data.  This ASN.1 object contains an OID specifying the
  algorithm and associated parameters.  When an IKEv2 implementation



Kivinen & Snyder             Standards Track                    [Page 3]

RFC 7427            Signature Authentication in IKEv2       January 2015


  supports a fixed set of signature methods with commonly used
  parameters, it is acceptable for the implementation to treat the
  ASN.1 object as a binary blob that can be compared against the fixed
  set of known values.  IKEv2 implementations can also parse the ASN.1
  and extract the signature algorithm and associated parameters.

2.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

3.  Authentication Payload

  This document specifies a new "Digital Signature" authentication
  method.  This method can be used with any type of signature.  As the
  authentication methods are not negotiated in IKEv2, the peer is only
  allowed to use this authentication method if the Notify payload of
  type SIGNATURE_HASH_ALGORITHMS has been sent and received by each
  peer.

  In this authentication method, the Authentication Data field inside
  the Authentication payload does not just include the signature value,
  as do other existing IKEv2 Authentication payloads.  Instead, the
  signature value is prefixed with an ASN.1 object indicating the
  algorithm used to generate the signature.  The ASN.1 object contains
  the algorithm identification OID, which identifies both the signature
  algorithm and the hash used when calculating the signature.  In
  addition to the OID, the ASN.1 object can contain optional parameters
  that might be needed for algorithms such as RSASSA-PSS (see
  Section 8.1 of [RFC3447]).

  To make implementations easier, the ASN.1 object is prefixed by the
  8-bit length field.  This length field allows simple implementations
  to know the length of the ASN.1 object without the need to parse it,
  so they can use it as a binary blob to be compared against known
  signature algorithm ASN.1 objects.  Thus, simple implementations may
  not need to be able to parse or generate ASN.1 objects.  See
  Appendix A for commonly used ASN.1 objects.

  The ASN.1 used here is the same ASN.1 used in the AlgorithmIdentifier
  of PKIX (see Section 4.1.1.2 of [RFC5280]), encoded using
  distinguished encoding rules (DER) [CCITT.X690.2002].  The algorithm
  OID inside the ASN.1 specifies the signature algorithm and the hash
  function, both of which are needed for signature verification.

  Currently, only the RSASSA-PSS signature algorithm uses the optional
  parameters.  For other signature algorithms, the parameters are



Kivinen & Snyder             Standards Track                    [Page 4]

RFC 7427            Signature Authentication in IKEv2       January 2015


  either NULL or missing.  Note that for some algorithms there are two
  possible ASN.1 encodings, one with optional parameters included but
  set to NULL and the other where the optional parameters are omitted.
  These dual encodings exist because of the way those algorithms are
  specified.  When encoding the ASN.1, implementations SHOULD use the
  preferred format called for by the algorithm specification.  If the
  algorithm specification says "preferredPresent", then the parameters
  object needs to be present, although it will be NULL if no parameters
  are specified.  If the algorithm specification says
  "preferredAbsent", then the entire optional parameters object is
  missing.

  The Authentication payload is defined in IKEv2 as follows:

                          1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Next Payload  |C|  RESERVED   |         Payload Length        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Auth Method   |                RESERVED                       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     ~                      Authentication Data                      ~
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 1: Authentication Payload Format

  o  Auth Method (1 octet) - Specifies the method of authentication
     used.

     Mechanism                              Value
     -----------------------------------------------------------------
     Digital Signature                      14

     Computed as specified in Section 2.15 of [RFC7296] using a private
     key associated with the public key sent in the Certificate payload
     and using one of the hash algorithms sent by the other end in the
     Notify payload of type SIGNATURE_HASH_ALGORITHMS.  If both ends
     send and receive SIGNATURE_HASH_ALGORITHMS Notify payloads, and
     signature authentication is to be used, then the authentication
     method specified in this Authentication payload MUST be used.  The
     format of the Authentication Data field is different from other
     Authentication methods and is specified below.

  o  Authentication Data (variable length) - See Section 2.15 of
     [RFC7296].  For "Digital Signature" format, the Authentication
     Data is formatted as follows:



Kivinen & Snyder             Standards Track                    [Page 5]

RFC 7427            Signature Authentication in IKEv2       January 2015


                          1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | ASN.1 Length  | AlgorithmIdentifier ASN.1 object              |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     ~        AlgorithmIdentifier ASN.1 object continuing            ~
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     ~                         Signature Value                       ~
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                  Figure 2: Authentication Data Format

     *  ASN.1 Length (1 octet) - This field contains the length of the
        ASN.1-encoded AlgorithmIdentifier object.

     *  Algorithm Identifier (variable length) - This field contains
        the AlgorithmIdentifier ASN.1 object.

     *  Signature Value (variable length) - This field contains the
        actual signature value.

     There is no padding between the ASN.1 object and the signature
     value.  For hash truncation, the method specified in ANSI
     X9.62:2005 [X9.62] MUST be used.

4.  Hash Algorithm Notification

  The supported hash algorithms that can be used for the signature
  algorithms are indicated with a Notify payload of type
  SIGNATURE_HASH_ALGORITHMS sent inside the IKE_SA_INIT exchange.

  This notification also implicitly indicates support of the new
  "Digital Signature" algorithm method, as well as the list of hash
  functions supported by the sending peer.

  Both ends send their list of supported hash algorithms.  When
  calculating the digital signature, a peer MUST pick one algorithm
  sent by the other peer.  Note that different algorithms can be used
  in different directions.  The algorithm OID indicating the selected
  hash algorithm (and signature algorithm) used when calculating the
  signature is sent inside the Authentication Data field of the
  Authentication payload (with Auth Method of "Digital Signature" as
  defined above).




Kivinen & Snyder             Standards Track                    [Page 6]

RFC 7427            Signature Authentication in IKEv2       January 2015


                          1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Next Payload  |C|  RESERVED   |         Payload Length        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Protocol ID  |   SPI Size    |      Notify Message Type      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     ~                Security Parameter Index (SPI)                 ~
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     ~                       Notification Data                       ~
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                     Figure 3: Notify Payload Format

  The Notify payload format is defined in Section 3.10 of [RFC7296].
  When a Notify payload of type SIGNATURE_HASH_ALGORITHMS is sent, the
  Protocol ID field is set to 0, the SPI Size is set to 0, and the
  Notify Message Type is set to 16431.

  The Notification Data field contains the list of 16-bit hash
  algorithm identifiers from the Hash Algorithm Identifiers of IANA's
  "Internet Key Exchange Version 2 (IKEv2) Parameters" registry.  There
  is no padding between the hash algorithm identifiers.

5.  Selecting the Public Key Algorithm

  This specification does not provide a way for the peers to indicate
  the public/private key pair types they have.  This raises the
  question of how the responder selects a public/private key pair type
  that the initiator supports.  This information can be found by
  several methods.

  One method to signal the key the initiator wants the responder to use
  is to indicate that in the IDr (Identification - Responder) payload
  of the IKE_AUTH request sent by the initiator.  In this case, the
  initiator indicates that it wants the responder to use a particular
  public/private key pair by sending an IDr payload that indicates that
  information.  In this case, the responder has different identities
  configured, with each of those identities associated to a public/
  private key or key type.

  Another method to ascertain the key the initiator wants the responder
  to use is through a Certificate Request payload sent by the
  initiator.  For example, the initiator could indicate in the



Kivinen & Snyder             Standards Track                    [Page 7]

RFC 7427            Signature Authentication in IKEv2       January 2015


  Certificate Request payload that it trusts a certificate authority
  certificate signed by an ECDSA key.  This indication implies that the
  initiator can process ECDSA signatures, which means that the
  responder can safely use ECDSA keys when authenticating.

  A third method is for the responder to check the key type used by the
  initiator and use the same key type that the initiator used.  This
  method does not work if the initiator is using shared secret or
  Extensible Authentication Protocol (EAP) authentication (i.e., is not
  using public keys).  If the initiator is using public key
  authentication, this method is the best way for the responder to
  ascertain the type of key the initiator supports.

  If the initiator uses a public key type that the responder does not
  support, the responder replies with a Notify message with error type
  AUTHENTICATION_FAILED.  If the initiator has multiple different keys,
  it may try a different key (and perhaps a different key type) until
  it finds a key that the other end accepts.  The initiator can also
  use the Certificate Request payload sent by the responder to help
  decide which public key should be tried.  In normal cases, when the
  initiator has multiple public keys, out-of-band configuration is used
  to select a public key for each connection.

6.  Security Considerations

  Tables 2 and 3 of the "Recommendations for Key Management"
  [NIST800-57] give recommendations for how to select suitable hash
  functions for the signature.

  This new digital signature method does not tie the Elliptic Curve to
  a specific hash function, which was done in the old IKEv2 ECDSA
  methods.  This means it is possible to mix different security levels.
  For example, it is possible to use a 512-bit Elliptic Curve with
  SHA1.  This means that the security of the authentication method is
  the security of the weakest component (signature algorithm, hash
  algorithm, or curve).  This complicates the security analysis of the
  system.

  IKEv2 peers have a series of policy databases (see Section 4.4 of
  [RFC4301]) that define which security algorithms and methods should
  be used during establishment of security associations.  To help end
  users select the desired security levels for communications protected
  by IPsec, implementers may wish to provide a mechanism in the IKE
  policy databases to limit the mixing of security levels or to
  restrict combinations of protocols.

  Security downgrade attacks, where more secure methods are deleted or
  modified from a payload by a man-in-the-middle to force lower levels



Kivinen & Snyder             Standards Track                    [Page 8]

RFC 7427            Signature Authentication in IKEv2       January 2015


  of security, are not a significant concern in IKEv2 Authentication
  payloads, as discussed in this RFC.  This is because a modified AUTH
  payload will be detected when the peer computes a signature over the
  IKE messages.

  One specific class of downgrade attacks requires selection of
  catastrophically weak ciphers.  In this type of attack, the man-in-
  the-middle attacker is able to "break" the cryptography in real time.
  This type of downgrade attack should be blocked by policy regarding
  cipher algorithm selection, as discussed above.

  The hash algorithm registry does not include MD5 as a supported hash
  algorithm, as it is not considered safe enough for signature use
  [WY05].

  The current IKEv2 protocol uses RSASSA-PKCS1-v1_5, which has known
  security vulnerabilities [KA08] [ME01] and does not allow using newer
  padding methods such as RSASSA-PSS.  The new method described in this
  RFC allows the use of other padding methods.

  The current IKEv2 protocol only allows use of normal DSA with SHA-1,
  which means the security of the authentication is limited to the
  security of SHA-1.  This new method allows using longer keys and
  longer hashes with DSA.

7.  IANA Considerations

  This document creates a new IANA registry for IKEv2 Hash Algorithms.
  Changes and additions to this registry are by Expert Review
  [RFC5226].

  The initial values of this registry are:

  Hash Algorithm                       Value
  --------------                       -----
  RESERVED                             0
  SHA1                                 1
  SHA2-256                             2
  SHA2-384                             3
  SHA2-512                             4

  MD5 is not included in the hash algorithm list, as it is not
  considered safe enough for signature hash uses.

  Values 5-1023 are Unassigned.  Values 1024-65535 are reserved for
  Private Use among mutually consenting parties.





Kivinen & Snyder             Standards Track                    [Page 9]

RFC 7427            Signature Authentication in IKEv2       January 2015


  This specification also adds a new value for
  SIGNATURE_HASH_ALGORITHMS (16431) to the "IKEv2 Notify Message Types
  - Status Types" registry and adds a new value for Digital Signature
  (14) to the "IKEv2 Authentication Method" registry.

8.  References

8.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997,
             <http://www.rfc-editor.org/info/rfc2119>.

  [RFC5280]  Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
             Housley, R., and W. Polk, "Internet X.509 Public Key
             Infrastructure Certificate and Certificate Revocation List
             (CRL) Profile", RFC 5280, May 2008,
             <http://www.rfc-editor.org/info/rfc5280>.

  [RFC7296]  Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
             Kivinen, "Internet Key Exchange Protocol Version 2
             (IKEv2)", RFC 7296, October 2014,
             <http://www.rfc-editor.org/info/rfc7296>.

8.2.  Informative References

  [CCITT.X690.2002]
             International Telephone and Telegraph Consultative
             Committee, "ASN.1 encoding rules: Specification of basic
             encoding Rules (BER), Canonical encoding rules (CER) and
             Distinguished encoding rules (DER)", CCITT Recommendation
             X.690, July 2002.

  [KA08]     Kuehn, U., Pyshkin, A., Tews, E., and R. Weinmann,
             "Variants of Bleichenbacher's Low-Exponent Attack on
             PKCS#1 RSA Signatures", Proceedings of Sicherheit 2008,
             pp.97-109, 2008.

  [ME01]     Menezes, A., "Evaluation of Security Level of
             Cryptography: RSA-OAEP, RSA-PSS, RSA Signature", December
             2001.

  [NIST800-57]
             Barker, E., Barker, W., Burr, W., Polk, W., and M. Smid,
             "Recommendation for Key Management - Part 1: General
             (Revised)", NIST Special Publication 800-57, March 2007.





Kivinen & Snyder             Standards Track                   [Page 10]

RFC 7427            Signature Authentication in IKEv2       January 2015


  [RFC3279]  Bassham, L., Polk, W., and R. Housley, "Algorithms and
             Identifiers for the Internet X.509 Public Key
             Infrastructure Certificate and Certificate Revocation List
             (CRL) Profile", RFC 3279, April 2002,
             <http://www.rfc-editor.org/info/rfc3279>.

  [RFC3447]  Jonsson, J. and B. Kaliski, "Public-Key Cryptography
             Standards (PKCS) #1: RSA Cryptography Specifications
             Version 2.1", RFC 3447, February 2003,
             <http://www.rfc-editor.org/info/rfc3447>.

  [RFC4055]  Schaad, J., Kaliski, B., and R. Housley, "Additional
             Algorithms and Identifiers for RSA Cryptography for use in
             the Internet X.509 Public Key Infrastructure Certificate
             and Certificate Revocation List (CRL) Profile", RFC 4055,
             June 2005, <http://www.rfc-editor.org/info/rfc4055>.

  [RFC4301]  Kent, S. and K. Seo, "Security Architecture for the
             Internet Protocol", RFC 4301, December 2005,
             <http://www.rfc-editor.org/info/rfc4301>.

  [RFC5226]  Narten, T. and H. Alvestrand, "Guidelines for Writing an
             IANA Considerations Section in RFCs)", BCP 26, RFC 5226,
             May 2008, <http://www.rfc-editor.org/info/rfc5226>.

  [RFC5480]  Turner, S., Brown, D., Yiu, K., Housley, R., and T. Polk,
             "Elliptic Curve Cryptography Subject Public Key
             Information", RFC 5480, March 2009,
             <http://www.rfc-editor.org/info/rfc5480>.

  [RFC5758]  Dang, Q., Santesson, S., Moriarty, K., Brown, D., and T.
             Polk, "Internet X.509 Public Key Infrastructure:
             Additional Algorithms and Identifiers for DSA and ECDSA",
             RFC 5758, January 2010,
             <http://www.rfc-editor.org/info/rfc5758>.

  [RFC5912]  Hoffman, P. and J. Schaad, "New ASN.1 Modules for the
             Public Key Infrastructure Using X.509 (PKIX)", RFC 5912,
             June 2010, <http://www.rfc-editor.org/info/rfc5912>.

  [WY05]     Wang, X. and H. Yu, "How to break MD5 and other hash
             functions", Proceedings of EuroCrypt 2005, Lecture Notes
             in Computer Science Vol. 3494, 2005.

  [X9.62]    American National Standards Institute, "Public Key
             Cryptography for the Financial Services Industry: The
             Elliptic Curve Digital Signature Algorithm (ECDSA)", ANSI
             X9.62, November 2005.



Kivinen & Snyder             Standards Track                   [Page 11]

RFC 7427            Signature Authentication in IKEv2       January 2015


Appendix A.  Commonly Used ASN.1 Objects

  This section lists commonly used ASN.1 objects in binary form.  This
  section is not normative, and these values should only be used as
  examples.  If the ASN.1 object listed in Appendix A and the ASN.1
  object specified by the algorithm differ, then the algorithm
  specification must be used.  These values are taken from "New ASN.1
  Modules for the Public Key Infrastructure Using X.509 (PKIX)"
  [RFC5912].

A.1.  PKCS#1 1.5 RSA Encryption

  The algorithm identifiers here include several different ASN.1
  objects with different hash algorithms.  This document only includes
  the commonly used ones, i.e., the ones using SHA-1 or SHA-2 as the
  hash function.  Some other algorithms (such as MD2 and MD5) are not
  safe enough to be used as signature hash algorithms and are omitted.
  The IANA registry does not have code points for these other
  algorithms with RSA Encryption.  Note that there are no optional
  parameters in any of these algorithm identifiers, but all included
  here need NULL optional parameters present in the ASN.1.

  See "Algorithms and Identifiers for PKIX Profile" [RFC3279] and
  "Additional Algorithms and Identifiers for RSA Cryptography for use
  in the Internet X.509 Public Key Infrastructure Certificate and
  Certificate Revocation List (CRL) Profile" [RFC4055] for more
  information.

A.1.1.  sha1WithRSAEncryption

  sha1WithRSAEncryption OBJECT IDENTIFIER ::= { iso(1) member-body(2)
  us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 5 }

  Parameters are required, and they must be NULL.

  Name = sha1WithRSAEncryption, oid = 1.2.840.113549.1.1.5
  Length = 15
  0000: 300d 0609 2a86 4886 f70d 0101 0505 00

A.1.2.  sha256WithRSAEncryption

  sha256WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 11 }

  Parameters are required, and they must be NULL.

  Name = sha256WithRSAEncryption, oid = 1.2.840.113549.1.1.11
  Length = 15
  0000: 300d 0609 2a86 4886 f70d 0101 0b05 00



Kivinen & Snyder             Standards Track                   [Page 12]

RFC 7427            Signature Authentication in IKEv2       January 2015


A.1.3.  sha384WithRSAEncryption

  sha384WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 12 }

  Parameters are required, and they must be NULL.

  Name = sha384WithRSAEncryption, oid = 1.2.840.113549.1.1.12
  Length = 15
  0000: 300d 0609 2a86 4886 f70d 0101 0c05 00

A.1.4.  sha512WithRSAEncryption

  sha512WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 13 }

  Parameters are required, and they must be NULL.

  Name = sha512WithRSAEncryption, oid = 1.2.840.113549.1.1.13
  Length = 15
  0000: 300d 0609 2a86 4886 f70d 0101 0d05 00

A.2.  DSA

  With DSA algorithms, optional parameters are always omitted.  Only
  algorithm combinations for DSA that are listed in the IANA registry
  are included.

  See "Algorithms and Identifiers for PKIX Profile" [RFC3279] and "PKIX
  Additional Algorithms and Identifiers for DSA and ECDSA" [RFC5758]
  for more information.

A.2.1.  dsa-with-sha1

  dsa-with-sha1 OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
  x9-57(10040) x9algorithm(4) 3 }

  Parameters are absent.

  Name = dsa-with-sha1, oid = 1.2.840.10040.4.3
  Length = 11
  0000: 3009 0607 2a86 48ce 3804 03











Kivinen & Snyder             Standards Track                   [Page 13]

RFC 7427            Signature Authentication in IKEv2       January 2015


A.2.2.  dsa-with-sha256

  dsa-with-sha256 OBJECT IDENTIFIER ::= { joint-iso-ccitt(2)
  country(16) us(840) organization(1) gov(101) csor(3) algorithms(4)
  id-dsa-with-sha2(3) 2 }

  Parameters are absent.

  Name = dsa-with-sha256, oid = 2.16.840.1.101.3.4.3.2
  Length = 13
  0000: 300b 0609 6086 4801 6503 0403 02

A.3.  ECDSA

  With ECDSA algorithms, the optional parameters are always omitted.
  Only algorithm combinations for the ECDSA listed in the IANA registry
  are included.

  See "Elliptic Curve Cryptography Subject Public Key Information"
  [RFC5480], "Algorithms and Identifiers for PKIX Profile" [RFC3279],
  and "PKIX Additional Algorithms and Identifiers for DSA and ECDSA"
  [RFC5758] for more information.

A.3.1.  ecdsa-with-sha1

  ecdsa-with-SHA1 OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
  ansi-X9-62(10045) signatures(4) 1 }

  Parameters are absent.

  Name = ecdsa-with-sha1, oid = 1.2.840.10045.4.1
  Length = 11
  0000: 3009 0607 2a86 48ce 3d04 01

A.3.2.  ecdsa-with-sha256

  ecdsa-with-SHA256 OBJECT IDENTIFIER ::= { iso(1) member-body(2)
  us(840) ansi-X9-62(10045) signatures(4) ecdsa-with-SHA2(3) 2 }

  Parameters are absent.

  Name = ecdsa-with-sha256, oid = 1.2.840.10045.4.3.2
  Length = 12
  0000: 300a 0608 2a86 48ce 3d04 0302







Kivinen & Snyder             Standards Track                   [Page 14]

RFC 7427            Signature Authentication in IKEv2       January 2015


A.3.3.  ecdsa-with-sha384

  ecdsa-with-SHA384 OBJECT IDENTIFIER ::= { iso(1) member-body(2)
  us(840) ansi-X9-62(10045) signatures(4) ecdsa-with-SHA2(3) 3 }

  Parameters are absent.

  Name = ecdsa-with-sha384, oid = 1.2.840.10045.4.3.3
  Length = 12
  0000: 300a 0608 2a86 48ce 3d04 0303

A.3.4.  ecdsa-with-sha512

  ecdsa-with-SHA512 OBJECT IDENTIFIER ::= { iso(1) member-body(2)
  us(840) ansi-X9-62(10045) signatures(4) ecdsa-with-SHA2(3) 4 }

  Parameters are absent.

  Name = ecdsa-with-sha512, oid = 1.2.840.10045.4.3.4
  Length = 12
  0000: 300a 0608 2a86 48ce 3d04 0304

A.4.  RSASSA-PSS

  With RSASSA-PSS, the algorithm object identifier must always be
  id-RSASSA-PSS, and the hash function and padding parameters are
  conveyed in the parameters (which are not optional in this case).
  See Additional RSA Algorithms and Identifiers [RFC4055] for more
  information.

A.4.1.  RSASSA-PSS with Empty Parameters

  id-RSASSA-PSS OBJECT IDENTIFIER ::= { pkcs-1 10 }

  Parameters are empty, but the ASN.1 part of the sequence must be
  present.  This means default parameters are used.

  0000 : SEQUENCE
  0002 :   OBJECT IDENTIFIER  RSASSA-PSS (1.2.840.113549.1.1.10)
  000d :   SEQUENCE

  Length = 15
  0000: 300d 0609 2a86 4886 f70d 0101 0a30 00








Kivinen & Snyder             Standards Track                   [Page 15]

RFC 7427            Signature Authentication in IKEv2       January 2015


A.4.2.  RSASSA-PSS with Default Parameters

  id-RSASSA-PSS OBJECT IDENTIFIER ::= { pkcs-1 10 }

  Here the parameters are present and contain the default parameters,
  i.e., hashAlgorithm of SHA-1, maskGenAlgorithm of mgf1SHA1,
  saltLength of 20, and trailerField of 1.

  0000 : SEQUENCE
  0002 :   OBJECT IDENTIFIER  RSASSA-PSS (1.2.840.113549.1.1.10)
  000d :   SEQUENCE
  000f :     CONTEXT 0
  0011 :       SEQUENCE
  0013 :         OBJECT IDENTIFIER  id-sha1 (1.3.14.3.2.26)
  001a :         NULL
  001c :     CONTEXT 1
  001e :       SEQUENCE
  0020 :         OBJECT IDENTIFIER  1.2.840.113549.1.1.8
  002b :         SEQUENCE
  002d :           OBJECT IDENTIFIER  id-sha1 (1.3.14.3.2.26)
  0034 :           NULL
  0036 :     CONTEXT 2
  0038 :       INTEGER   0x14 (5 bits)
  003b :     CONTEXT 3
  003d :       INTEGER   0x1 (1 bits)

  Name = RSASSA-PSS with default parameters,
         oid = 1.2.840.113549.1.1.10
  Length = 64
  0000: 303e 0609 2a86 4886 f70d 0101 0a30 31a0
  0010: 0b30 0906 052b 0e03 021a 0500 a118 3016
  0020: 0609 2a86 4886 f70d 0101 0830 0906 052b
  0030: 0e03 021a 0500 a203 0201 14a3 0302 0101


















Kivinen & Snyder             Standards Track                   [Page 16]

RFC 7427            Signature Authentication in IKEv2       January 2015


A.4.3.  RSASSA-PSS with SHA-256

  id-RSASSA-PSS OBJECT IDENTIFIER ::= { pkcs-1 10 }

  Here the parameters are present and contain hashAlgorithm of SHA-256,
  maskGenAlgorithm of SHA-256, saltLength of 32, and trailerField of 1.

  0000 : SEQUENCE
  0002 :   OBJECT IDENTIFIER  RSASSA-PSS (1.2.840.113549.1.1.10)
  000d :   SEQUENCE
  000f :     CONTEXT 0
  0011 :       SEQUENCE
  0013 :         OBJECT IDENTIFIER  id-sha256 (2.16.840.1.101.3.4.2.1)
  001e :         NULL
  0020 :     CONTEXT 1
  0022 :       SEQUENCE
  0024 :         OBJECT IDENTIFIER  1.2.840.113549.1.1.8
  002f :         SEQUENCE
  0031 :           OBJECT IDENTIFIER id-sha256 (2.16.840.1.101.3.4.2.1)
  003c :           NULL
  003e :     CONTEXT 2
  0040 :       INTEGER   0x20 (6 bits)
  0043 :     CONTEXT 3
  0045 :       INTEGER   0x1 (1 bits)

  Name = RSASSA-PSS with sha-256, oid = 1.2.840.113549.1.1.10
  Length = 72
  0000: 3046 0609 2a86 4886 f70d 0101 0a30 39a0
  0010: 0f30 0d06 0960 8648 0165 0304 0201 0500
  0020: a11c 301a 0609 2a86 4886 f70d 0101 0830
  0030: 0d06 0960 8648 0165 0304 0201 0500 a203
  0040: 0201 20a3 0302 0101

Appendix B.  IKEv2 Payload Example

B.1.  sha1WithRSAEncryption

  The IKEv2 AUTH payload would start like this:

  00000000: NN00 00LL 0e00 0000 0f30 0d06 092a 8648
  00000010: 86f7 0d01 0105 0500 ....

  Where the NN will be the next payload type (i.e., the value depends
  on the next payload after this Authentication payload), the LL will
  be the length of this payload, and after the sha1WithRSAEncryption
  ASN.1 block (15 bytes) there will be the actual signature, which is
  omitted here.




Kivinen & Snyder             Standards Track                   [Page 17]

RFC 7427            Signature Authentication in IKEv2       January 2015


Acknowledgements

  Most of this work was based on the work done in the IPsecME design
  team for the ECDSA.  The design team members were: Dan Harkins,
  Johannes Merkle, Tero Kivinen, David McGrew, and Yoav Nir.

Authors' Addresses

  Tero Kivinen
  INSIDE Secure
  Eerikinkatu 28
  Helsinki  FI-00180
  Finland

  EMail: [email protected]


  Joel Snyder
  Opus One
  1404 East Lind Road
  Tucson, AZ  85719

  Phone: +1 520 324 0494
  EMail: [email protected]



























Kivinen & Snyder             Standards Track                   [Page 18]