Internet Engineering Task Force (IETF)                 R. Moskowitz, Ed.
Request for Comments: 7401                                HTT Consulting
Obsoletes: 5201                                                  T. Heer
Category: Standards Track              Hirschmann Automation and Control
ISSN: 2070-1721                                                P. Jokela
                                           Ericsson Research NomadicLab
                                                           T. Henderson
                                               University of Washington
                                                             April 2015


               Host Identity Protocol Version 2 (HIPv2)

Abstract

  This document specifies the details of the Host Identity Protocol
  (HIP).  HIP allows consenting hosts to securely establish and
  maintain shared IP-layer state, allowing separation of the identifier
  and locator roles of IP addresses, thereby enabling continuity of
  communications across IP address changes.  HIP is based on a Diffie-
  Hellman key exchange, using public key identifiers from a new Host
  Identity namespace for mutual peer authentication.  The protocol is
  designed to be resistant to denial-of-service (DoS) and man-in-the-
  middle (MitM) attacks.  When used together with another suitable
  security protocol, such as the Encapsulating Security Payload (ESP),
  it provides integrity protection and optional encryption for upper-
  layer protocols, such as TCP and UDP.

  This document obsoletes RFC 5201 and addresses the concerns raised by
  the IESG, particularly that of crypto agility.  It also incorporates
  lessons learned from the implementations of RFC 5201.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7401.






Moskowitz, et al.            Standards Track                    [Page 1]

RFC 7401                          HIPv2                       April 2015


Copyright Notice

  Copyright (c) 2015 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1. Introduction ....................................................5
     1.1. A New Namespace and Identifiers ............................6
     1.2. The HIP Base Exchange (BEX) ................................6
     1.3. Memo Structure .............................................7
  2. Terms and Definitions ...........................................7
     2.1. Requirements Terminology ...................................7
     2.2. Notation ...................................................8
     2.3. Definitions ................................................8
  3. Host Identity (HI) and Its Structure ............................9
     3.1. Host Identity Tag (HIT) ...................................10
     3.2. Generating a HIT from an HI ...............................11
  4. Protocol Overview ..............................................12
     4.1. Creating a HIP Association ................................12
          4.1.1. HIP Puzzle Mechanism ...............................14
          4.1.2. Puzzle Exchange ....................................15
          4.1.3. Authenticated Diffie-Hellman Protocol with
                 DH Group Negotiation ...............................17
          4.1.4. HIP Replay Protection ..............................18
          4.1.5. Refusing a HIP Base Exchange .......................19
          4.1.6. Aborting a HIP Base Exchange .......................20
          4.1.7. HIP Downgrade Protection ...........................20
          4.1.8. HIP Opportunistic Mode .............................21
     4.2. Updating a HIP Association ................................24
     4.3. Error Processing ..........................................24
     4.4. HIP State Machine .........................................25
          4.4.1. State Machine Terminology ..........................26
          4.4.2. HIP States .........................................27
          4.4.3. HIP State Processes ................................28
          4.4.4. Simplified HIP State Diagram .......................35





Moskowitz, et al.            Standards Track                    [Page 2]

RFC 7401                          HIPv2                       April 2015


     4.5. User Data Considerations ..................................37
          4.5.1. TCP and UDP Pseudo Header Computation for
                 User Data ..........................................37
          4.5.2. Sending Data on HIP Packets ........................37
          4.5.3. Transport Formats ..................................37
          4.5.4. Reboot, Timeout, and Restart of HIP ................37
     4.6. Certificate Distribution ..................................38
  5. Packet Formats .................................................38
     5.1. Payload Format ............................................38
          5.1.1. Checksum ...........................................40
          5.1.2. HIP Controls .......................................40
          5.1.3. HIP Fragmentation Support ..........................40
     5.2. HIP Parameters ............................................41
          5.2.1. TLV Format .........................................44
          5.2.2. Defining New Parameters ............................46
          5.2.3. R1_COUNTER .........................................47
          5.2.4. PUZZLE .............................................48
          5.2.5. SOLUTION ...........................................49
          5.2.6. DH_GROUP_LIST ......................................50
          5.2.7. DIFFIE_HELLMAN .....................................51
          5.2.8. HIP_CIPHER .........................................52
          5.2.9. HOST_ID ............................................54
          5.2.10. HIT_SUITE_LIST ....................................56
          5.2.11. TRANSPORT_FORMAT_LIST .............................58
          5.2.12. HIP_MAC ...........................................59
          5.2.13. HIP_MAC_2 .........................................59
          5.2.14. HIP_SIGNATURE .....................................60
          5.2.15. HIP_SIGNATURE_2 ...................................61
          5.2.16. SEQ ...............................................61
          5.2.17. ACK ...............................................62
          5.2.18. ENCRYPTED .........................................62
          5.2.19. NOTIFICATION ......................................64
          5.2.20. ECHO_REQUEST_SIGNED ...............................67
          5.2.21. ECHO_REQUEST_UNSIGNED .............................68
          5.2.22. ECHO_RESPONSE_SIGNED ..............................69
          5.2.23. ECHO_RESPONSE_UNSIGNED ............................69
     5.3. HIP Packets ...............................................70
          5.3.1. I1 - the HIP Initiator Packet ......................71
          5.3.2. R1 - the HIP Responder Packet ......................72
          5.3.3. I2 - the Second HIP Initiator Packet ...............75
          5.3.4. R2 - the Second HIP Responder Packet ...............76
          5.3.5. UPDATE - the HIP Update Packet .....................77
          5.3.6. NOTIFY - the HIP Notify Packet .....................78
          5.3.7. CLOSE - the HIP Association Closing Packet .........78
          5.3.8. CLOSE_ACK - the HIP Closing Acknowledgment Packet ..79






Moskowitz, et al.            Standards Track                    [Page 3]

RFC 7401                          HIPv2                       April 2015


     5.4. ICMP Messages .............................................79
          5.4.1. Invalid Version ....................................79
          5.4.2. Other Problems with the HIP Header and
                 Packet Structure ...................................80
          5.4.3. Invalid Puzzle Solution ............................80
          5.4.4. Non-existing HIP Association .......................80
  6. Packet Processing ..............................................80
     6.1. Processing Outgoing Application Data ......................81
     6.2. Processing Incoming Application Data ......................82
     6.3. Solving the Puzzle ........................................83
     6.4. HIP_MAC and SIGNATURE Calculation and Verification ........84
          6.4.1. HMAC Calculation ...................................84
          6.4.2. Signature Calculation ..............................87
     6.5. HIP KEYMAT Generation .....................................89
     6.6. Initiation of a HIP Base Exchange .........................90
          6.6.1. Sending Multiple I1 Packets in Parallel ............91
          6.6.2. Processing Incoming ICMP Protocol
                 Unreachable Messages ...............................92
     6.7. Processing of Incoming I1 Packets .........................92
          6.7.1. R1 Management ......................................94
          6.7.2. Handling of Malformed Messages .....................94
     6.8. Processing of Incoming R1 Packets .........................94
          6.8.1. Handling of Malformed Messages .....................97
     6.9. Processing of Incoming I2 Packets .........................97
          6.9.1. Handling of Malformed Messages ....................100
     6.10. Processing of Incoming R2 Packets .......................101
     6.11. Sending UPDATE Packets ..................................101
     6.12. Receiving UPDATE Packets ................................102
          6.12.1. Handling a SEQ Parameter in a Received
                  UPDATE Message ...................................103
          6.12.2. Handling an ACK Parameter in a Received
                  UPDATE Packet ....................................104
     6.13. Processing of NOTIFY Packets ............................104
     6.14. Processing of CLOSE Packets .............................105
     6.15. Processing of CLOSE_ACK Packets .........................105
     6.16. Handling State Loss .....................................105
  7. HIP Policies ..................................................106
  8. Security Considerations .......................................106
  9. IANA Considerations ...........................................109
  10. Differences from RFC 5201 ....................................113
  11. References ...................................................117
     11.1. Normative References ....................................117
     11.2. Informative References ..................................119
  Appendix A. Using Responder Puzzles ..............................122
  Appendix B. Generating a Public Key Encoding from an HI ..........123






Moskowitz, et al.            Standards Track                    [Page 4]

RFC 7401                          HIPv2                       April 2015


  Appendix C. Example Checksums for HIP Packets ....................123
    C.1. IPv6 HIP Example (I1 Packet) ..............................124
    C.2. IPv4 HIP Packet (I1 Packet) ...............................124
    C.3. TCP Segment ...............................................125
  Appendix D. ECDH and ECDSA 160-Bit Groups ........................125
  Appendix E. HIT Suites and HIT Generation ........................125
  Acknowledgments ..................................................127
  Authors' Addresses ...............................................128

1.  Introduction

  This document specifies the details of the Host Identity Protocol
  (HIP).  A high-level description of the protocol and the underlying
  architectural thinking is available in the separate HIP architecture
  description [HIP-ARCH].  Briefly, the HIP architecture proposes an
  alternative to the dual use of IP addresses as "locators" (routing
  labels) and "identifiers" (endpoint, or host, identifiers).  In HIP,
  public cryptographic keys, of a public/private key pair, are used as
  host identifiers, to which higher-layer protocols are bound instead
  of an IP address.  By using public keys (and their representations)
  as host identifiers, dynamic changes to IP address sets can be
  directly authenticated between hosts, and if desired, strong
  authentication between hosts at the TCP/IP stack level can be
  obtained.

  This memo specifies the base HIP protocol ("base exchange") used
  between hosts to establish an IP-layer communications context, called
  a HIP association, prior to communications.  It also defines a packet
  format and procedures for updating and terminating an active HIP
  association.  Other elements of the HIP architecture are specified in
  other documents, such as:

  o  "Using the Encapsulating Security Payload (ESP) Transport Format
     with the Host Identity Protocol (HIP)" [RFC7402]: how to use the
     Encapsulating Security Payload (ESP) for integrity protection and
     optional encryption

  o  "Host Mobility with the Host Identity Protocol" [HIP-HOST-MOB]:
     how to support host mobility in HIP

  o  "Host Identity Protocol (HIP) Domain Name System (DNS) Extension"
     [HIP-DNS-EXT]: how to extend DNS to contain Host Identity
     information

  o  "Host Identity Protocol (HIP) Rendezvous Extension"
     [HIP-REND-EXT]: using a rendezvous mechanism to contact mobile HIP
     hosts




Moskowitz, et al.            Standards Track                    [Page 5]

RFC 7401                          HIPv2                       April 2015


  Since the HIP base exchange was first developed, there have been a
  few advances in cryptography and attacks against cryptographic
  systems.  As a result, all cryptographic protocols need to be agile.
  That is, the ability to switch from one cryptographic primitive to
  another should be a part of such protocols.  It is important to
  support a reasonable set of mainstream algorithms to cater to
  different use cases and allow moving away from algorithms that are
  later discovered to be vulnerable.  This update to the base exchange
  includes this needed cryptographic agility while addressing the
  downgrade attacks that such flexibility introduces.  In addition,
  Elliptic Curve support via Elliptic Curve DSA (ECDSA) and Elliptic
  Curve Diffie-Hellman (ECDH) has been added.

1.1.  A New Namespace and Identifiers

  The Host Identity Protocol introduces a new namespace, the Host
  Identity namespace.  Some ramifications of this new namespace are
  explained in the HIP architecture description [HIP-ARCH].

  There are two main representations of the Host Identity, the full
  Host Identity (HI) and the Host Identity Tag (HIT).  The HI is a
  public key and directly represents the Identity of a host.  Since
  there are different public key algorithms that can be used with
  different key lengths, the HI, as such, is unsuitable for use as a
  packet identifier, or as an index into the various state-related
  implementation structures needed to support HIP.  Consequently, a
  hash of the HI, the Host Identity Tag (HIT), is used as the
  operational representation.  The HIT is 128 bits long and is used
  in the HIP headers and to index the corresponding state in the
  end hosts.  The HIT has an important security property in that it
  is self-certifying (see Section 3).

1.2.  The HIP Base Exchange (BEX)

  The HIP base exchange is a two-party cryptographic protocol used to
  establish communications context between hosts.  The base exchange is
  a SIGMA-compliant [KRA03] four-packet exchange.  The first party is
  called the Initiator and the second party the Responder.  The
  protocol exchanges Diffie-Hellman [DIF76] keys in the 2nd and 3rd
  packets, and authenticates the parties in the 3rd and 4th packets.
  The four-packet design helps to make HIP resistant to DoS attacks.
  It allows the Responder to stay stateless until the IP address and
  the cryptographic puzzle are verified.  The Responder starts the
  puzzle exchange in the 2nd packet, with the Initiator completing it
  in the 3rd packet before the Responder stores any state from the
  exchange.





Moskowitz, et al.            Standards Track                    [Page 6]

RFC 7401                          HIPv2                       April 2015


  The exchange can use the Diffie-Hellman output to encrypt the Host
  Identity of the Initiator in the 3rd packet (although Aura, et al.
  [AUR05] note that such operation may interfere with packet-inspecting
  middleboxes), or the Host Identity may instead be sent unencrypted.
  The Responder's Host Identity is not protected.  It should be noted,
  however, that both the Initiator's and the Responder's HITs are
  transported as such (in cleartext) in the packets, allowing an
  eavesdropper with a priori knowledge about the parties to identify
  them by their HITs.  Hence, encrypting the HI of any party does not
  provide privacy against such an attacker.

  Data packets start to flow after the 4th packet.  The 3rd and 4th HIP
  packets may carry a data payload in the future.  However, the details
  of this may be defined later.

  An existing HIP association can be updated using the update mechanism
  defined in this document, and when the association is no longer
  needed, it can be closed using the defined closing mechanism.

  Finally, HIP is designed as an end-to-end authentication and key
  establishment protocol, to be used with Encapsulating Security
  Payload (ESP) [RFC7402] and other end-to-end security protocols.  The
  base protocol does not cover all the fine-grained policy control
  found in Internet Key Exchange (IKE) [RFC7296] that allows IKE to
  support complex gateway policies.  Thus, HIP is not a complete
  replacement for IKE.

1.3.  Memo Structure

  The rest of this memo is structured as follows.  Section 2 defines
  the central keywords, notation, and terms used throughout the rest of
  the document.  Section 3 defines the structure of the Host Identity
  and its various representations.  Section 4 gives an overview of the
  HIP base exchange protocol.  Sections 5 and 6 define the detailed
  packet formats and rules for packet processing.  Finally, Sections 7,
  8, and 9 discuss policy, security, and IANA considerations,
  respectively.

2.  Terms and Definitions

2.1.  Requirements Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [RFC2119].






Moskowitz, et al.            Standards Track                    [Page 7]

RFC 7401                          HIPv2                       April 2015


2.2.  Notation

  [x]    indicates that x is optional.

  {x}    indicates that x is encrypted.

  X(y)   indicates that y is a parameter of X.

  <x>i   indicates that x exists i times.

  -->    signifies "Initiator to Responder" communication (requests).

  <--    signifies "Responder to Initiator" communication (replies).

  |      signifies concatenation of information (e.g., X | Y is the
         concatenation of X with Y).

  Ltrunc (H(x), #K)
         denotes the lowest-order #K bits of the result of the
         hash function H on the input x.

2.3.  Definitions

  HIP base exchange (BEX):  The handshake for establishing a new HIP
     association.

  Host Identity (HI):  The public key of the signature algorithm that
     represents the identity of the host.  In HIP, a host proves its
     identity by creating a signature with the private key belonging to
     its HI (cf. Section 3).

  Host Identity Tag (HIT):  A shorthand for the HI in IPv6 format.  It
     is generated by hashing the HI (cf. Section 3.1).

  HIT Suite:  A HIT Suite groups all cryptographic algorithms that are
     required to generate and use an HI and its HIT.  In particular,
     these algorithms are 1) the public key signature algorithm, 2) the
     hash function, and 3) the truncation (cf. Appendix E).

  HIP association:  The shared state between two peers after completion
     of the BEX.

  HIP packet:  A control packet carrying a HIP packet header relating
     to the establishment, maintenance, or termination of the HIP
     association.

  Initiator:  The host that initiates the BEX.  This role is typically
     forgotten once the BEX is completed.



Moskowitz, et al.            Standards Track                    [Page 8]

RFC 7401                          HIPv2                       April 2015


  Responder:  The host that responds to the Initiator in the BEX.  This
     role is typically forgotten once the BEX is completed.

  Responder's HIT hash algorithm (RHASH):  The hash algorithm used for
     various hash calculations in this document.  The algorithm is the
     same as is used to generate the Responder's HIT.  The RHASH is the
     hash function defined by the HIT Suite of the Responder's HIT
     (cf. Section 5.2.10).

  Length of the Responder's HIT hash algorithm (RHASH_len):  The
     natural output length of RHASH in bits.

  Signed data:  Data that is signed is protected by a digital signature
     that was created by the sender of the data by using the private
     key of its HI.

  KDF:  The Key Derivation Function (KDF) is used for deriving the
     symmetric keys from the Diffie-Hellman key exchange.

  KEYMAT:  The keying material derived from the Diffie-Hellman key
     exchange by using the KDF.  Symmetric keys for encryption and
     integrity protection of HIP packets and encrypted user data
     packets are drawn from this keying material.

3.  Host Identity (HI) and Its Structure

  In this section, the properties of the Host Identity and Host
  Identity Tag are discussed, and the exact format for them is defined.
  In HIP, the public key of an asymmetric key pair is used as the Host
  Identity (HI).  Correspondingly, the host itself is defined as the
  entity that holds the private key of the key pair.  See the HIP
  architecture specification [HIP-ARCH] for more details on the
  difference between an identity and the corresponding identifier.

  HIP implementations MUST support the Rivest Shamir Adleman [RSA]
  public key algorithm and the Elliptic Curve Digital Signature
  Algorithm (ECDSA) for generating the HI as defined in Section 5.2.9.
  Additional algorithms MAY be supported.

  A hashed encoding of the HI, the Host Identity Tag (HIT), is used in
  protocols to represent the Host Identity.  The HIT is 128 bits long
  and has the following three key properties: i) it is the same length
  as an IPv6 address and can be used in fixed address-sized fields in
  APIs and protocols; ii) it is self-certifying (i.e., given a HIT, it
  is computationally hard to find a Host Identity key that matches the
  HIT); and iii) the probability of a HIT collision between two hosts





Moskowitz, et al.            Standards Track                    [Page 9]

RFC 7401                          HIPv2                       April 2015


  is very low; hence, it is infeasible for an attacker to find a
  collision with a HIT that is in use.  For details on the security
  properties of the HIT, see [HIP-ARCH].

  The structure of the HIT is defined in [RFC7343].  The HIT is an
  Overlay Routable Cryptographic Hash Identifier (ORCHID) and consists
  of three parts: first, an IANA-assigned prefix to distinguish it from
  other IPv6 addresses; second, a four-bit encoding of the algorithms
  that were used for generating the HI and the hashed representation of
  HI; third, a 96-bit hashed representation of the Host Identity.  The
  encoding of the ORCHID generation algorithm and the exact algorithm
  for generating the hashed representation are specified in Appendix E
  and [RFC7343].

  Carrying HIs and HITs in the header of user data packets would
  increase the overhead of packets.  Thus, it is not expected that they
  are carried in every packet, but other methods are used to map the
  data packets to the corresponding HIs.  In some cases, this makes it
  possible to use HIP without any additional headers in the user data
  packets.  For example, if ESP is used to protect data traffic, the
  Security Parameter Index (SPI) carried in the ESP header can be used
  to map the encrypted data packet to the correct HIP association.

3.1.  Host Identity Tag (HIT)

  The Host Identity Tag is a 128-bit value -- a hashed encoding of the
  Host Identifier.  There are two advantages of using a hashed encoding
  over the actual variable-sized Host Identity public key in protocols.
  First, the fixed length of the HIT keeps packet sizes manageable and
  eases protocol coding.  Second, it presents a consistent format for
  the protocol, independent of the underlying identity technology
  in use.

  RFC 7343 [RFC7343] specifies 128-bit hash-based identifiers, called
  ORCHIDs.  Their prefix, allocated from the IPv6 address block, is
  defined in [RFC7343].  The Host Identity Tag is one type of ORCHID.

  This document extends the original, experimental HIP specification
  [RFC5201] with measures to support crypto agility.  One of these
  measures allows different hash functions for creating a HIT.  HIT
  Suites group the sets of algorithms that are required to generate and
  use a particular HIT.  The Suites are encoded in HIT Suite IDs.
  These HIT Suite IDs are transmitted in the ORCHID Generation
  Algorithm (OGA) field in the ORCHID.  With the HIT Suite ID in the
  OGA ID field, a host can tell, from another host's HIT, whether it
  supports the necessary hash and signature algorithms to establish a
  HIP association with that host.




Moskowitz, et al.            Standards Track                   [Page 10]

RFC 7401                          HIPv2                       April 2015


3.2.  Generating a HIT from an HI

  The HIT MUST be generated according to the ORCHID generation method
  described in [RFC7343] using a context ID value of 0xF0EF F02F BFF4
  3D0F E793 0C3C 6E61 74EA (this tag value has been generated randomly
  by the editor of this specification), and an input that encodes the
  Host Identity field (see Section 5.2.9) present in a HIP payload
  packet.  The set of hash function, signature algorithm, and the
  algorithm used for generating the HIT from the HI depends on the HIT
  Suite (see Section 5.2.10) and is indicated by the four bits of the
  OGA ID field in the ORCHID.  Currently, truncated SHA-1, truncated
  SHA-384, and truncated SHA-256 [FIPS.180-4.2012] are defined as
  hashes for generating a HIT.

  For identities that are either RSA, Digital Signature Algorithm (DSA)
  [FIPS.186-4.2013], or Elliptic Curve DSA (ECDSA) public keys, the
  ORCHID input consists of the public key encoding as specified for the
  Host Identity field of the HOST_ID parameter (see Section 5.2.9).
  This document defines four algorithm profiles: RSA, DSA, ECDSA, and
  ECDSA_LOW.  The ECDSA_LOW profile is meant for devices with low
  computational capabilities.  Hence, one of the following applies:

     The RSA public key is encoded as defined in [RFC3110], Section 2,
     taking the exponent length (e_len), exponent (e), and modulus (n)
     fields concatenated.  The length (n_len) of the modulus (n) can be
     determined from the total HI Length and the preceding HI fields
     including the exponent (e).  Thus, the data that serves as input
     for the HIT generation has the same length as the HI.  The fields
     MUST be encoded in network byte order, as defined in [RFC3110].

     The DSA public key is encoded as defined in [RFC2536], Section 2,
     taking the fields T, Q, P, G, and Y, concatenated as input.  Thus,
     the data to be hashed is 1 + 20 + 3 * 64 + 3 * 8 * T octets long,
     where T is the size parameter as defined in [RFC2536].  The size
     parameter T, affecting the field lengths, MUST be selected as the
     minimum value that is long enough to accommodate P, G, and Y.  The
     fields MUST be encoded in network byte order, as defined in
     [RFC2536].

     The ECDSA public keys are encoded as defined in Sections 4.2 and 6
     of [RFC6090].

  In Appendix B, the public key encoding process is illustrated using
  pseudo-code.







Moskowitz, et al.            Standards Track                   [Page 11]

RFC 7401                          HIPv2                       April 2015


4.  Protocol Overview

  This section is a simplified overview of the HIP protocol operation,
  and does not contain all the details of the packet formats or the
  packet processing steps.  Sections 5 and 6 describe in more detail
  the packet formats and packet processing steps, respectively, and are
  normative in case of any conflicts with this section.

  The protocol number 139 has been assigned by IANA to the Host
  Identity Protocol.

  The HIP payload (Section 5.1) header could be carried in every IP
  datagram.  However, since HIP headers are relatively large
  (40 bytes), it is desirable to 'compress' the HIP header so that the
  HIP header only occurs in control packets used to establish or change
  HIP association state.  The actual method for header 'compression'
  and for matching data packets with existing HIP associations (if any)
  is defined in separate documents, describing transport formats and
  methods.  All HIP implementations MUST implement, at minimum, the ESP
  transport format for HIP [RFC7402].

4.1.  Creating a HIP Association

  By definition, the system initiating a HIP base exchange is the
  Initiator, and the peer is the Responder.  This distinction is
  typically forgotten once the base exchange completes, and either
  party can become the Initiator in future communications.

  The HIP base exchange serves to manage the establishment of state
  between an Initiator and a Responder.  The first packet, I1,
  initiates the exchange, and the last three packets, R1, I2, and R2,
  constitute an authenticated Diffie-Hellman [DIF76] key exchange for
  session-key generation.  In the first two packets, the hosts agree on
  a set of cryptographic identifiers and algorithms that are then used
  in and after the exchange.  During the Diffie-Hellman key exchange, a
  piece of keying material is generated.  The HIP association keys are
  drawn from this keying material by using a Key Derivation Function
  (KDF).  If other cryptographic keys are needed, e.g., to be used with
  ESP, they are expected to be drawn from the same keying material by
  using the KDF.

  The Initiator first sends a trigger packet, I1, to the Responder.
  The packet contains the HIT of the Initiator and possibly the HIT of
  the Responder, if it is known.  Moreover, the I1 packet initializes
  the negotiation of the Diffie-Hellman group that is used for
  generating the keying material.  Therefore, the I1 packet contains a
  list of Diffie-Hellman Group IDs supported by the Initiator.  Note
  that in some cases it may be possible to replace this trigger packet



Moskowitz, et al.            Standards Track                   [Page 12]

RFC 7401                          HIPv2                       April 2015


  with some other form of a trigger, in which case the protocol starts
  with the Responder sending the R1 packet.  In such cases, another
  mechanism to convey the Initiator's supported DH groups (e.g., by
  using a default group) must be specified.

  The second packet, R1, starts the actual authenticated Diffie-Hellman
  exchange.  It contains a puzzle -- a cryptographic challenge that the
  Initiator must solve before continuing the exchange.  The level of
  difficulty of the puzzle can be adjusted based on the level of trust
  with the Initiator, the current load, or other factors.  In addition,
  the R1 contains the Responder's Diffie-Hellman parameter and lists of
  cryptographic algorithms supported by the Responder.  Based on these
  lists, the Initiator can continue, abort, or restart the base
  exchange with a different selection of cryptographic algorithms.
  Also, the R1 packet contains a signature that covers selected parts
  of the message.  Some fields are left outside the signature to
  support pre-created R1s.

  In the I2 packet, the Initiator MUST display the solution to the
  received puzzle.  Without a correct solution, the I2 message is
  discarded.  The I2 packet also contains a Diffie-Hellman parameter
  that carries needed information for the Responder.  The I2 packet is
  signed by the Initiator.

  The R2 packet acknowledges the receipt of the I2 packet and completes
  the base exchange.  The packet is signed by the Responder.

























Moskowitz, et al.            Standards Track                   [Page 13]

RFC 7401                          HIPv2                       April 2015


  The base exchange is illustrated below in Figure 1.  The term "key"
  refers to the Host Identity public key, and "sig" represents a
  signature using such a key.  The packets contain other parameters not
  shown in this figure.

     Initiator                              Responder

                  I1: DH list
                -------------------------->
                                            select precomputed R1
                  R1: puzzle, DH, key, sig
                <-------------------------
  check sig                                 remain stateless
  solve puzzle
                I2: solution, DH, {key}, sig
                -------------------------->
  compute DH                                check puzzle
                                            check sig
                          R2: sig
                <--------------------------
  check sig                                 compute DH

                                Figure 1

4.1.1.  HIP Puzzle Mechanism

  The purpose of the HIP puzzle mechanism is to protect the Responder
  from a number of denial-of-service threats.  It allows the Responder
  to delay state creation until receiving the I2 packet.  Furthermore,
  the puzzle allows the Responder to use a fairly cheap calculation to
  check that the Initiator is "sincere" in the sense that it has
  churned enough CPU cycles in solving the puzzle.

  The puzzle allows a Responder implementation to completely delay
  association-specific state creation until a valid I2 packet is
  received.  An I2 packet without a valid puzzle solution can be
  rejected immediately once the Responder has checked the solution.
  The solution can be checked by computing only one hash function, and
  invalid solutions can be rejected before state is created, and before
  CPU-intensive public-key signature verification and Diffie-Hellman
  key generation are performed.  By varying the difficulty of the
  puzzle, the Responder can frustrate CPU- or memory-targeted DoS
  attacks.

  The Responder can remain stateless and drop most spoofed I2 packets
  because puzzle calculation is based on the Initiator's Host Identity
  Tag.  The idea is that the Responder has a (perhaps varying) number
  of pre-calculated R1 packets, and it selects one of these based on



Moskowitz, et al.            Standards Track                   [Page 14]

RFC 7401                          HIPv2                       April 2015


  the information carried in the I1 packet.  When the Responder then
  later receives the I2 packet, it can verify that the puzzle has been
  solved using the Initiator's HIT.  This makes it impractical for the
  attacker to first exchange one I1/R1 packet, and then generate a
  large number of spoofed I2 packets that seemingly come from different
  HITs.  This method does not protect the Responder from an attacker
  that uses fixed HITs, though.  Against such an attacker, a viable
  approach may be to create a piece of local state, and remember that
  the puzzle check has previously failed.  See Appendix A for one
  possible implementation.  Responder implementations SHOULD include
  sufficient randomness in the puzzle values so that algorithmic
  complexity attacks become impossible [CRO03].

  The Responder can set the puzzle difficulty for the Initiator, based
  on its level of trust of the Initiator.  Because the puzzle is not
  included in the signature calculation, the Responder can use
  pre-calculated R1 packets and include the puzzle just before sending
  the R1 to the Initiator.  The Responder SHOULD use heuristics to
  determine when it is under a denial-of-service attack, and set the
  puzzle difficulty value #K appropriately, as explained later.

4.1.2.  Puzzle Exchange

  The Responder starts the puzzle exchange when it receives an I1
  packet.  The Responder supplies a random number #I, and requires the
  Initiator to find a number #J.  To select a proper #J, the Initiator
  must create the concatenation of #I, the HITs of the parties, and #J,
  and calculate a hash over this concatenation using the RHASH
  algorithm.  The lowest-order #K bits of the result MUST be zeros.
  The value #K sets the difficulty of the puzzle.

  To generate a proper number #J, the Initiator will have to generate a
  number of #Js until one produces the hash target of zeros.  The
  Initiator SHOULD give up after exceeding the puzzle Lifetime in the
  PUZZLE parameter (as described in Section 5.2.4).  The Responder
  needs to re-create the concatenation of #I, the HITs, and the
  provided #J, and compute the hash once to prove that the Initiator
  completed its assigned task.

  To prevent precomputation attacks, the Responder MUST select the
  number #I in such a way that the Initiator cannot guess it.
  Furthermore, the construction MUST allow the Responder to verify that
  the value #I was indeed selected by it and not by the Initiator.  See
  Appendix A for an example on how to implement this.

  Using the Opaque data field in the PUZZLE (see Section 5.2.4) in an
  ECHO_REQUEST_SIGNED (see Section 5.2.20) or in an
  ECHO_REQUEST_UNSIGNED parameter (see Section 5.2.21), the Responder



Moskowitz, et al.            Standards Track                   [Page 15]

RFC 7401                          HIPv2                       April 2015


  can include some data in R1 that the Initiator MUST copy unmodified
  in the corresponding I2 packet.  The Responder can use the opaque
  data to transfer a piece of local state information to the Initiator
  and back -- for example, to recognize that the I2 is a response to a
  previously sent R1.  The Responder can generate the opaque data in
  various ways, e.g., using encryption or hashing with some secret, the
  sent #I, and possibly using other related data.  With the same
  secret, the received #I (from the I2 packet), and the other related
  data (if any), the Responder can verify that it has itself sent the
  #I to the Initiator.  The Responder MUST periodically change such a
  secret.

  It is RECOMMENDED that the Responder generates new secrets for the
  puzzle and new R1s once every few minutes.  Furthermore, it is
  RECOMMENDED that the Responder is able to verify a valid puzzle
  solution at least Lifetime seconds after the puzzle secret has been
  deprecated.  This time value guarantees that the puzzle is valid for
  at least Lifetime and at most 2 * Lifetime seconds.  This limits the
  usability that an old, solved puzzle has to an attacker.  Moreover,
  it avoids problems with the validity of puzzles if the lifetime is
  relatively short compared to the network delay and the time for
  solving the puzzle.

  The puzzle value #I and the solution #J are inputs for deriving the
  keying material from the Diffie-Hellman key exchange (see
  Section 6.5).  Therefore, to ensure that the derived keying material
  differs, a Responder SHOULD NOT use the same puzzle #I with the same
  DH keys for the same Initiator twice.  Such uniqueness can be
  achieved, for example, by using a counter as an additional input for
  generating #I.  This counter can be increased for each processed I1
  packet.  The state of the counter can be transmitted in the Opaque
  data field in the PUZZLE (see Section 5.2.4), in an
  ECHO_REQUEST_SIGNED parameter (see Section 5.2.20), or in an
  ECHO_REQUEST_UNSIGNED parameter (see Section 5.2.21) without the need
  to establish state.

  NOTE: The protocol developers explicitly considered whether R1 should
  include a timestamp in order to protect the Initiator from replay
  attacks.  The decision was to NOT include a timestamp, to avoid
  problems with global time synchronization.

  NOTE: The protocol developers explicitly considered whether a memory-
  bound function should be used for the puzzle instead of a CPU-bound
  function.  The decision was to not use memory-bound functions.







Moskowitz, et al.            Standards Track                   [Page 16]

RFC 7401                          HIPv2                       April 2015


4.1.3.  Authenticated Diffie-Hellman Protocol with DH Group Negotiation

  The packets R1, I2, and R2 implement a standard authenticated
  Diffie-Hellman exchange.  The Responder sends one of its public
  Diffie-Hellman keys and its public authentication key, i.e., its Host
  Identity, in R1.  The signature in the R1 packet allows the Initiator
  to verify that the R1 has been once generated by the Responder.
  However, since the R1 is precomputed and therefore does not cover
  association-specific information in the I1 packet, it does not
  protect against replay attacks.

  Before the actual authenticated Diffie-Hellman exchange, the
  Initiator expresses its preference regarding its choice of the DH
  groups in the I1 packet.  The preference is expressed as a sorted
  list of DH Group IDs.  The I1 packet is not protected by a signature.
  Therefore, this list is sent in an unauthenticated way to avoid
  costly computations for processing the I1 packet at the Responder
  side.  Based on the preferences of the Initiator, the Responder sends
  an R1 packet containing its most suitable public DH value.  The
  Responder also attaches a list of its own preferences to the R1 to
  convey the basis for the DH group selection to the Initiator.  This
  list is carried in the signed part of the R1 packet.  If the choice
  of the DH group value in the R1 does not match the preferences of the
  Initiator and the Responder, the Initiator can detect that the list
  of DH Group IDs in the I1 was manipulated (see below for details).

  If none of the DH Group IDs in the I1 packet are supported by the
  Responder, the Responder selects the DH group most suitable for it,
  regardless of the Initiator's preference.  It then sends the R1
  containing this DH group and its list of supported DH Group IDs to
  the Initiator.

  When the Initiator receives an R1, it receives one of the Responder's
  public Diffie-Hellman values and the list of DH Group IDs supported
  by the Responder.  This list is covered by the signature in the R1
  packet to avoid forgery.  The Initiator compares the Group ID of the
  public DH value in the R1 packet to the list of supported DH Group
  IDs in the R1 packets and to its own preferences expressed in the
  list of supported DH Group IDs.  The Initiator continues the BEX only
  if the Group ID of the public DH value of the Responder is the most
  preferred of the IDs supported by both the Initiator and Responder.
  Otherwise, the communication is subject to a downgrade attack, and
  the Initiator MUST either restart the base exchange with a new I1
  packet or abort the base exchange.  If the Responder's choice of the
  DH group is not supported by the Initiator, the Initiator MAY abort
  the handshake or send a new I1 packet with a different list of
  supported DH groups.  However, the Initiator MUST verify the




Moskowitz, et al.            Standards Track                   [Page 17]

RFC 7401                          HIPv2                       April 2015


  signature of the R1 packet before restarting or aborting the
  handshake.  It MUST silently ignore the R1 packet if the signature is
  not valid.

  If the preferences regarding the DH Group ID match, the Initiator
  computes the Diffie-Hellman session key (Kij).  The Initiator creates
  a HIP association using keying material from the session key (see
  Section 6.5) and may use the HIP association to encrypt its public
  authentication key, i.e., the Host Identity.  The resulting I2 packet
  contains the Initiator's Diffie-Hellman key and its (optionally
  encrypted) public authentication key.  The signature of the I2
  message covers all parameters of the signed parameter ranges (see
  Section 5.2) in the packet without exceptions, as in the R1.

  The Responder extracts the Initiator's Diffie-Hellman public key from
  the I2 packet, computes the Diffie-Hellman session key, creates a
  corresponding HIP association, and decrypts the Initiator's public
  authentication key.  It can then verify the signature using the
  authentication key.

  The final message, R2, completes the BEX and protects the Initiator
  against replay attacks, because the Responder uses the shared key
  from the Diffie-Hellman exchange to create a Hashed Message
  Authentication Code (HMAC) and also uses the private key of its Host
  Identity to sign the packet contents.

4.1.4.  HIP Replay Protection

  HIP includes the following mechanisms to protect against malicious
  packet replays.  Responders are protected against replays of I1
  packets by virtue of the stateless response to I1 packets with
  pre-signed R1 messages.  Initiators are protected against R1 replays
  by a monotonically increasing "R1 generation counter" included in
  the R1.  Responders are protected against replays of forged I2
  packets by the puzzle mechanism (see Section 4.1.1 above), and
  optional use of opaque data.  Hosts are protected against replays of
  R2 packets and UPDATEs by use of a less expensive HMAC verification
  preceding the HIP signature verification.

  The R1 generation counter is a monotonically increasing 64-bit
  counter that may be initialized to any value.  The scope of the
  counter MAY be system-wide, but there SHOULD be a separate counter
  for each Host Identity, if there is more than one local Host
  Identity.  The value of this counter SHOULD be preserved across
  system reboots and invocations of the HIP base exchange.  This
  counter indicates the current generation of puzzles.  Implementations
  MUST accept puzzles from the current generation and MAY accept
  puzzles from earlier generations.  A system's local counter MUST be



Moskowitz, et al.            Standards Track                   [Page 18]

RFC 7401                          HIPv2                       April 2015


  incremented at least as often as every time old R1s cease to be
  valid.  The local counter SHOULD never be decremented; otherwise, the
  host exposes its peers to the replay of previously generated, higher-
  numbered R1s.

  A host may receive more than one R1, either due to sending multiple
  I1 packets (see Section 6.6.1) or due to a replay of an old R1.  When
  sending multiple I1 packets to the same host, an Initiator SHOULD
  wait for a small amount of time (a reasonable time may be
  2 * expected RTT) after the first R1 reception to allow possibly
  multiple R1s to arrive, and it SHOULD respond to an R1 among the set
  with the largest R1 generation counter.  If an Initiator is
  processing an R1 or has already sent an I2 packet (still waiting for
  the R2 packet) and it receives another R1 with a larger R1 generation
  counter, it MAY elect to restart R1 processing with the fresher R1,
  as if it were the first R1 to arrive.

  The R1 generation counter may roll over or may become reset.  It is
  important for an Initiator to be robust to the loss of state about
  the R1 generation counter of a peer or to a reset of the peer's
  counter.  It is recommended that, when choosing between multiple R1s,
  the Initiator prefer to use the R1 that corresponds to the current R1
  generation counter, but that if it is unable to make progress with
  that R1, the Initiator may try the other R1s, beginning with the R1
  packet with the highest counter.

4.1.5.  Refusing a HIP Base Exchange

  A HIP-aware host may choose not to accept a HIP base exchange.  If
  the host's policy is to only be an Initiator and policy allows the
  establishment of a HIP association with the original Initiator, it
  should begin its own HIP base exchange.  A host MAY choose to have
  such a policy since only the privacy of the Initiator's HI is
  protected in the exchange.  It should be noted that such behavior can
  introduce the risk of a race condition if each host's policy is to
  only be an Initiator, at which point the HIP base exchange will fail.

  If the host's policy does not permit it to enter into a HIP exchange
  with the Initiator, it should send an ICMP 'Destination Unreachable,
  Administratively Prohibited' message.  A more complex HIP packet is
  not used here as it actually opens up more potential DoS attacks than
  a simple ICMP message.  A HIP NOTIFY message is not used because no
  HIP association exists between the two hosts at that time.








Moskowitz, et al.            Standards Track                   [Page 19]

RFC 7401                          HIPv2                       April 2015


4.1.6.  Aborting a HIP Base Exchange

  Two HIP hosts may encounter situations in which they cannot complete
  a HIP base exchange because of insufficient support for cryptographic
  algorithms, in particular the HIT Suites and DH groups.  After
  receiving the R1 packet, the Initiator can determine whether the
  Responder supports the required cryptographic operations to
  successfully establish a HIP association.  The Initiator can abort
  the BEX silently after receiving an R1 packet that indicates an
  unsupported set of algorithms.  The specific conditions are described
  below.

  The R1 packet contains a signed list of HIT Suite IDs as supported by
  the Responder.  Therefore, the Initiator can determine whether its
  source HIT is supported by the Responder.  If the HIT Suite ID of the
  Initiator's HIT is not contained in the list of HIT Suites in the R1,
  the Initiator MAY abort the handshake silently or MAY restart the
  handshake with a new I1 packet that contains a source HIT supported
  by the Responder.

  During the handshake, the Initiator and the Responder agree on a
  single DH group.  The Responder selects the DH group and its DH
  public value in the R1 based on the list of DH Group IDs in the I1
  packet.  If the Responder supports none of the DH groups requested by
  the Initiator, the Responder selects an arbitrary DH and replies with
  an R1 containing its list of supported DH Group IDs.  In such a case,
  the Initiator receives an R1 packet containing the DH public value
  for an unrequested DH group and also the Responder's DH group list in
  the signed part of the R1 packet.  At this point, the Initiator MAY
  abort the handshake or MAY restart the handshake by sending a new I1
  packet containing a selection of DH Group IDs that is supported by
  the Responder.

4.1.7.  HIP Downgrade Protection

  In a downgrade attack, an attacker attempts to unnoticeably
  manipulate the packets of an Initiator and/or a Responder to
  influence the result of the cryptographic negotiations in the BEX in
  its favor.  As a result, the victims select weaker cryptographic
  algorithms than they would otherwise have selected without the
  attacker's interference.  Downgrade attacks can only be successful if
  they remain undetected by the victims and the victims falsely assume
  a secure communication channel.

  In HIP, almost all packet parameters related to cryptographic
  negotiations are covered by signatures.  These parameters cannot be
  directly manipulated in a downgrade attack without invalidating the
  signature.  However, signed packets can be subject to replay attacks.



Moskowitz, et al.            Standards Track                   [Page 20]

RFC 7401                          HIPv2                       April 2015


  In such a replay attack, the attacker could use an old BEX packet
  with an outdated and weak selection of cryptographic algorithms and
  replay it instead of a more recent packet with a collection of
  stronger cryptographic algorithms.  Signed packets that could be
  subject to this replay attack are the R1 and I2 packet.  However,
  replayed R1 and I2 packets cannot be used to successfully establish a
  HIP BEX because these packets also contain the public DH values of
  the Initiator and the Responder.  Old DH values from replayed packets
  lead to invalid keying material and mismatching shared secrets
  because the attacker is unable to derive valid keying material from
  the DH public keys in the R1 and cannot generate a valid HMAC and
  signature for a replayed I2.

  In contrast to the first version of HIP [RFC5201], version 2 of HIP
  as defined in this document begins the negotiation of the DH groups
  already in the first BEX packet, the I1.  The I1 packet is, by
  intention, not protected by a signature, to avoid CPU-intensive
  cryptographic operations processing floods of I1 packets targeted at
  the Responder.  Hence, the list of DH Group IDs in the I1 packet is
  vulnerable to forgery and manipulation.  To thwart an unnoticed
  manipulation of the I1 packet, the Responder chooses the DH group
  deterministically and includes its own list of DH Group IDs in the
  signed part of the R1 packet.  The Initiator can detect an attempted
  downgrade attack by comparing the list of DH Group IDs in the R1
  packet to its own preferences in the I1 packet.  If the choice of the
  DH group in the R1 packet does not equal the best match of the two
  lists (the highest-priority DH ID of the Responder that is present in
  the Initiator's DH list), the Initiator can conclude that its list in
  the I1 packet was altered by an attacker.  In this case, the
  Initiator can restart or abort the BEX.  As mentioned before, the
  detection of the downgrade attack is sufficient to prevent it.

4.1.8.  HIP Opportunistic Mode

  It is possible to initiate a HIP BEX even if the Responder's HI (and
  HIT) is unknown.  In this case, the initial I1 packet contains all
  zeros as the destination HIT.  This kind of connection setup is
  called opportunistic mode.

  The Responder may have multiple HITs due to multiple supported HIT
  Suites.  Since the Responder's HIT Suite in the opportunistic mode is
  not determined by the destination HIT of the I1 packet, the Responder
  can freely select a HIT of any HIT Suite.  The complete set of HIT
  Suites supported by the Initiator is not known to the Responder.
  Therefore, the Responder SHOULD select its HIT from the same HIT
  Suite as the Initiator's HIT (indicated by the HIT Suite information
  in the OGA ID field of the Initiator's HIT) because this HIT Suite is
  obviously supported by the Initiator.  If the Responder selects a



Moskowitz, et al.            Standards Track                   [Page 21]

RFC 7401                          HIPv2                       April 2015


  different HIT that is not supported by the Initiator, the Initiator
  MAY restart the BEX with an I1 packet with a source HIT that is
  contained in the list of the Responder's HIT Suites in the R1 packet.

  Note that the Initiator cannot verify the signature of the R1 packet
  if the Responder's HIT Suite is not supported.  Therefore, the
  Initiator MUST treat R1 packets with unsupported Responder HITs as
  potentially forged and MUST NOT use any parameters from the
  unverified R1 besides the HIT_SUITE_LIST.  Moreover, an Initiator
  that uses an unverified HIT_SUITE_LIST from an R1 packet to determine
  a possible source HIT MUST verify that the HIT_SUITE_LIST in the
  first unverified R1 packet matches the HIT_SUITE_LIST in the second
  R1 packet for which the Initiator supports the signature algorithm.
  The Initiator MUST restart the BEX with a new I1 packet for which the
  algorithm was mentioned in the verifiable R1 if the two lists do not
  match.  This procedure is necessary to mitigate downgrade attacks.

  There are both security and API issues involved with the
  opportunistic mode.  These issues are described in the remainder of
  this section.

  Given that the Responder's HI is not known by the Initiator, there
  must be suitable API calls that allow the Initiator to request,
  directly or indirectly, that the underlying system initiates the HIP
  base exchange solely based on locators.  The Responder's HI will be
  tentatively available in the R1 packet, and in an authenticated form
  once the R2 packet has been received and verified.  Hence, the
  Responder's HIT could be communicated to the application via new API
  mechanisms.  However, with a backwards-compatible API the application
  sees only the locators used for the initial contact.  Depending on
  the desired semantics of the API, this can raise the following
  issues:

  o  The actual locators may later change if an UPDATE message is used,
     even if from the API perspective the association still appears to
     be between two specific locators.  However, the locator update is
     still secure, and the association is still between the same nodes.

  o  Different associations between the same two locators may result in
     connections to different nodes, if the implementation no longer
     remembers which identifier the peer had in an earlier association.
     This is possible when the peer's locator has changed for
     legitimate reasons or when an attacker pretends to be a node that
     has the peer's locator.  Therefore, when using opportunistic mode,
     HIP implementations MUST NOT place any expectation that the peer's
     HI returned in the R1 message matches any HI previously seen from
     that address.




Moskowitz, et al.            Standards Track                   [Page 22]

RFC 7401                          HIPv2                       April 2015


     If the HIP implementation and application do not have the same
     understanding of what constitutes an association, this may even
     happen within the same association.  For instance, an
     implementation may not know when HIP state can be purged for
     UDP-based applications.

  In addition, the following security considerations apply.  The
  generation counter mechanism will be less efficient in protecting
  against replays of the R1 packet, given that the Responder can choose
  a replay that uses an arbitrary HI, not just the one given in the I1
  packet.

  More importantly, the opportunistic exchange is vulnerable to
  man-in-the-middle attacks, because the Initiator does not have any
  public key information about the peer.  To assess the impacts of this
  vulnerability, we compare it to vulnerabilities in current,
  non-HIP-capable communications.

  An attacker on the path between the two peers can insert itself as a
  man-in-the-middle by providing its own identifier to the Initiator
  and then initiating another HIP association towards the Responder.
  For this to be possible, the Initiator must employ opportunistic
  mode, and the Responder must be configured to accept a connection
  from any HIP-enabled node.

  An attacker outside the path will be unable to do so, given that it
  cannot respond to the messages in the base exchange.

  These security properties are characteristic also of communications
  in the current Internet.  A client contacting a server without
  employing end-to-end security may find itself talking to the server
  via a man-in-the-middle, assuming again that the server is willing to
  talk to anyone.

  If end-to-end security is in place, then the worst that can happen in
  both the opportunistic HIP and non-HIP (normal IP) cases is denial-
  of-service; an entity on the path can disrupt communications, but
  will be unable to successfully insert itself as a man-in-the-middle.

  However, once the opportunistic exchange has successfully completed,
  HIP provides confidentiality and integrity protection for the
  communications, and can securely change the locators of the
  endpoints.

  As a result, opportunistic mode in HIP offers a "better than nothing"
  security model.  Initially, a base exchange authenticated in the
  opportunistic mode involves a leap of faith subject to man-in-the-
  middle attacks, but subsequent datagrams related to the same HIP



Moskowitz, et al.            Standards Track                   [Page 23]

RFC 7401                          HIPv2                       April 2015


  association cannot be compromised by a new man-in-the-middle attack.
  Further, if the man-in-the-middle moves away from the path of the
  active association, the attack would be exposed after the fact.
  Thus, it can be stated that opportunistic mode in HIP is at least as
  secure as unprotected IP-based communications.

4.2.  Updating a HIP Association

  A HIP association between two hosts may need to be updated over time.
  Examples include the need to rekey expiring security associations,
  add new security associations, or change IP addresses associated with
  hosts.  The UPDATE packet is used for those and other similar
  purposes.  This document only specifies the UPDATE packet format and
  basic processing rules, with mandatory parameters.  The actual usage
  is defined in separate specifications.

  HIP provides a general-purpose UPDATE packet, which can carry
  multiple HIP parameters, for updating the HIP state between two
  peers.  The UPDATE mechanism has the following properties:

     UPDATE messages carry a monotonically increasing sequence number
     and are explicitly acknowledged by the peer.  Lost UPDATEs or
     acknowledgments may be recovered via retransmission.  Multiple
     UPDATE messages may be outstanding under certain circumstances.

     UPDATE is protected by both HIP_MAC and HIP_SIGNATURE parameters,
     since processing UPDATE signatures alone is a potential DoS attack
     against intermediate systems.

     UPDATE packets are explicitly acknowledged by the use of an
     acknowledgment parameter that echoes an individual sequence number
     received from the peer.  A single UPDATE packet may contain both a
     sequence number and one or more acknowledgment numbers (i.e.,
     piggybacked acknowledgment(s) for the peer's UPDATE).

  The UPDATE packet is defined in Section 5.3.5.

4.3.  Error Processing

  HIP error processing behavior depends on whether or not there exists
  an active HIP association.  In general, if a HIP association exists
  between the sender and receiver of a packet causing an error
  condition, the receiver SHOULD respond with a NOTIFY packet.  On the
  other hand, if there are no existing HIP associations between the
  sender and receiver, or the receiver cannot reasonably determine the
  identity of the sender, the receiver MAY respond with a suitable ICMP
  message; see Section 5.4 for more details.




Moskowitz, et al.            Standards Track                   [Page 24]

RFC 7401                          HIPv2                       April 2015


  The HIP protocol and state machine are designed to recover from one
  of the parties crashing and losing its state.  The following
  scenarios describe the main use cases covered by the design.

     No prior state between the two systems.

        The system with data to send is the Initiator.  The process
        follows the standard four-packet base exchange, establishing
        the HIP association.

     The system with data to send has no state with the receiver, but
     the receiver has a residual HIP association.

        The system with data to send is the Initiator.  The Initiator
        acts as in no prior state, sending an I1 packet and receiving
        an R1 packet.  When the Responder receives a valid I2 packet,
        the old association is 'discovered' and deleted, and the new
        association is established.

     The system with data to send has a HIP association, but the
     receiver does not.

        The system sends data on the outbound user data security
        association.  The receiver 'detects' the situation when it
        receives a user data packet that it cannot match to any HIP
        association.  The receiving host MUST discard this packet.

        The receiving host SHOULD send an ICMP packet, with the type
        Parameter Problem, to inform the sender that the HIP
        association does not exist (see Section 5.4), and it MAY
        initiate a new HIP BEX.  However, responding with these
        optional mechanisms is implementation or policy dependent.  If
        the sending application doesn't expect a response, the system
        could possibly send a large number of packets in this state, so
        for this reason, the sending of one or more ICMP packets is
        RECOMMENDED.  However, any such responses MUST be rate-limited
        to prevent abuse (see Section 5.4).

4.4.  HIP State Machine

  HIP itself has little state.  In the HIP base exchange, there is an
  Initiator and a Responder.  Once the security associations (SAs) are
  established, this distinction is lost.  If the HIP state needs to be
  re-established, the controlling parameters are which peer still has
  state and which has a datagram to send to its peer.  The following
  state machine attempts to capture these processes.





Moskowitz, et al.            Standards Track                   [Page 25]

RFC 7401                          HIPv2                       April 2015


  The state machine is symmetric and is presented in a single system
  view, representing either an Initiator or a Responder.  The state
  machine is not a full representation of the processing logic.
  Additional processing rules are presented in the packet definitions.
  Hence, both are needed to completely implement HIP.

  This document extends the state machine as defined in [RFC5201] and
  introduces a restart option to allow for the negotiation of
  cryptographic algorithms.  The extension to the previous state
  machine in [RFC5201] is a transition from state I1-SENT back again to
  I1-SENT; namely, the restart option.  An Initiator is required to
  restart the HIP base exchange if the Responder does not support the
  HIT Suite of the Initiator.  In this case, the Initiator restarts the
  HIP base exchange by sending a new I1 packet with a source HIT
  supported by the Responder.

  Implementors must understand that the state machine, as described
  here, is informational.  Specific implementations are free to
  implement the actual processing logic differently.  Section 6
  describes the packet processing rules in more detail.  This state
  machine focuses on the HIP I1, R1, I2, and R2 packets only.  New
  states and state transitions may be introduced by mechanisms in other
  specifications (such as mobility and multihoming).

4.4.1.  State Machine Terminology

  Unused Association Lifetime (UAL):  Implementation-specific time for
     which, if no packet is sent or received for this time interval, a
     host MAY begin to tear down an active HIP association.

  Maximum Segment Lifetime (MSL):  Maximum time that a HIP packet is
     expected to spend in the network.  A default value of 2 minutes
     has been borrowed from [RFC0793] because it is a prevailing
     assumption for packet lifetimes.

  Exchange Complete (EC):  Time that the host spends at the R2-SENT
     state before it moves to the ESTABLISHED state.  The time is n *
     I2 retransmission timeout, where n is about I2_RETRIES_MAX.

  Receive ANYOTHER:  Any received packet for which no state transitions
     or processing rules are defined for a given state.










Moskowitz, et al.            Standards Track                   [Page 26]

RFC 7401                          HIPv2                       April 2015


4.4.2.  HIP States

  +---------------------+---------------------------------------------+
  | State               | Explanation                                 |
  +---------------------+---------------------------------------------+
  | UNASSOCIATED        | State machine start                         |
  |                     |                                             |
  | I1-SENT             | Initiating base exchange                    |
  |                     |                                             |
  | I2-SENT             | Waiting to complete base exchange           |
  |                     |                                             |
  | R2-SENT             | Waiting to complete base exchange           |
  |                     |                                             |
  | ESTABLISHED         | HIP association established                 |
  |                     |                                             |
  | CLOSING             | HIP association closing, no data can be     |
  |                     | sent                                        |
  |                     |                                             |
  | CLOSED              | HIP association closed, no data can be sent |
  |                     |                                             |
  | E-FAILED            | HIP base exchange failed                    |
  +---------------------+---------------------------------------------+

                           Table 1: HIP States



























Moskowitz, et al.            Standards Track                   [Page 27]

RFC 7401                          HIPv2                       April 2015


4.4.3.  HIP State Processes

  System behavior in state UNASSOCIATED, Table 2.

  +----------------------------+--------------------------------------+
  | Trigger                    | Action                               |
  +----------------------------+--------------------------------------+
  | User data to send,         | Send I1 and go to I1-SENT            |
  | requiring a new HIP        |                                      |
  | association                |                                      |
  |                            |                                      |
  | Receive I1                 | Send R1 and stay at UNASSOCIATED     |
  |                            |                                      |
  | Receive I2, process        | If successful, send R2 and go to     |
  |                            | R2-SENT                              |
  |                            |                                      |
  |                            | If fail, stay at UNASSOCIATED        |
  |                            |                                      |
  | Receive user data for an   | Optionally send ICMP as defined in   |
  | unknown HIP association    | Section 5.4 and stay at UNASSOCIATED |
  |                            |                                      |
  | Receive CLOSE              | Optionally send ICMP Parameter       |
  |                            | Problem and stay at UNASSOCIATED     |
  |                            |                                      |
  | Receive ANYOTHER           | Drop and stay at UNASSOCIATED        |
  +----------------------------+--------------------------------------+

                   Table 2: UNASSOCIATED - Start State























Moskowitz, et al.            Standards Track                   [Page 28]

RFC 7401                          HIPv2                       April 2015


  System behavior in state I1-SENT, Table 3.

  +---------------------+---------------------------------------------+
  | Trigger             | Action                                      |
  +---------------------+---------------------------------------------+
  | Receive I1 from     | If the local HIT is smaller than the peer   |
  | Responder           | HIT, drop I1 and stay at I1-SENT (see       |
  |                     | Section 6.5 for HIT comparison)             |
  |                     |                                             |
  |                     | If the local HIT is greater than the peer   |
  |                     | HIT, send R1 and stay at I1-SENT            |
  |                     |                                             |
  | Receive I2, process | If successful, send R2 and go to R2-SENT    |
  |                     |                                             |
  |                     | If fail, stay at I1-SENT                    |
  |                     |                                             |
  | Receive R1, process | If the HIT Suite of the local HIT is not    |
  |                     | supported by the peer, select supported     |
  |                     | local HIT, send I1, and stay at I1-SENT     |
  |                     |                                             |
  |                     | If successful, send I2 and go to I2-SENT    |
  |                     |                                             |
  |                     | If fail, stay at I1-SENT                    |
  |                     |                                             |
  | Receive ANYOTHER    | Drop and stay at I1-SENT                    |
  |                     |                                             |
  | Timeout             | Increment trial counter                     |
  |                     |                                             |
  |                     | If counter is less than I1_RETRIES_MAX,     |
  |                     | send I1 and stay at I1-SENT                 |
  |                     |                                             |
  |                     | If counter is greater than I1_RETRIES_MAX,  |
  |                     | go to E-FAILED                              |
  +---------------------+---------------------------------------------+

           Table 3: I1-SENT - Initiating the HIP Base Exchange















Moskowitz, et al.            Standards Track                   [Page 29]

RFC 7401                          HIPv2                       April 2015


  System behavior in state I2-SENT, Table 4.

  +---------------------+---------------------------------------------+
  | Trigger             | Action                                      |
  +---------------------+---------------------------------------------+
  | Receive I1          | Send R1 and stay at I2-SENT                 |
  |                     |                                             |
  | Receive R1, process | If successful, send I2 and stay at I2-SENT  |
  |                     |                                             |
  |                     | If fail, stay at I2-SENT                    |
  |                     |                                             |
  | Receive I2, process | If successful and local HIT is smaller than |
  |                     | the peer HIT, drop I2 and stay at I2-SENT   |
  |                     |                                             |
  |                     | If successful and local HIT is greater than |
  |                     | the peer HIT, send R2 and go to R2-SENT     |
  |                     |                                             |
  |                     | If fail, stay at I2-SENT                    |
  |                     |                                             |
  | Receive R2, process | If successful, go to ESTABLISHED            |
  |                     |                                             |
  |                     | If fail, stay at I2-SENT                    |
  |                     |                                             |
  | Receive CLOSE,      | If successful, send CLOSE_ACK and go to     |
  | process             | CLOSED                                      |
  |                     |                                             |
  |                     | If fail, stay at I2-SENT                    |
  |                     |                                             |
  | Receive ANYOTHER    | Drop and stay at I2-SENT                    |
  |                     |                                             |
  | Timeout             | Increment trial counter                     |
  |                     |                                             |
  |                     | If counter is less than I2_RETRIES_MAX,     |
  |                     | send I2 and stay at I2-SENT                 |
  |                     |                                             |
  |                     | If counter is greater than I2_RETRIES_MAX,  |
  |                     | go to E-FAILED                              |
  +---------------------+---------------------------------------------+

       Table 4: I2-SENT - Waiting to Finish the HIP Base Exchange











Moskowitz, et al.            Standards Track                   [Page 30]

RFC 7401                          HIPv2                       April 2015


  System behavior in state R2-SENT, Table 5.

  +------------------------+------------------------------------------+
  | Trigger                | Action                                   |
  +------------------------+------------------------------------------+
  | Receive I1             | Send R1 and stay at R2-SENT              |
  |                        |                                          |
  | Receive I2, process    | If successful, send R2 and stay at       |
  |                        | R2-SENT                                  |
  |                        |                                          |
  |                        | If fail, stay at R2-SENT                 |
  |                        |                                          |
  | Receive R1             | Drop and stay at R2-SENT                 |
  |                        |                                          |
  | Receive R2             | Drop and stay at R2-SENT                 |
  |                        |                                          |
  | Receive data or UPDATE | Move to ESTABLISHED                      |
  |                        |                                          |
  | Exchange Complete      | Move to ESTABLISHED                      |
  | Timeout                |                                          |
  |                        |                                          |
  | Receive CLOSE, process | If successful, send CLOSE_ACK and go to  |
  |                        | CLOSED                                   |
  |                        |                                          |
  |                        | If fail, stay at ESTABLISHED             |
  |                        |                                          |
  | Receive CLOSE_ACK      | Drop and stay at R2-SENT                 |
  |                        |                                          |
  | Receive NOTIFY         | Process and stay at R2-SENT              |
  +------------------------+------------------------------------------+

                Table 5: R2-SENT - Waiting to Finish HIP



















Moskowitz, et al.            Standards Track                   [Page 31]

RFC 7401                          HIPv2                       April 2015


  System behavior in state ESTABLISHED, Table 6.

  +---------------------+---------------------------------------------+
  | Trigger             | Action                                      |
  +---------------------+---------------------------------------------+
  | Receive I1          | Send R1 and stay at ESTABLISHED             |
  |                     |                                             |
  | Receive I2          | Process with puzzle and possible Opaque     |
  |                     | data verification                           |
  |                     |                                             |
  |                     | If successful, send R2, drop old HIP        |
  |                     | association, establish a new HIP            |
  |                     | association, and go to R2-SENT              |
  |                     |                                             |
  |                     | If fail, stay at ESTABLISHED                |
  |                     |                                             |
  | Receive R1          | Drop and stay at ESTABLISHED                |
  |                     |                                             |
  | Receive R2          | Drop and stay at ESTABLISHED                |
  |                     |                                             |
  | Receive user data   | Process and stay at ESTABLISHED             |
  | for HIP association |                                             |
  |                     |                                             |
  | No packet           | Send CLOSE and go to CLOSING                |
  | sent/received       |                                             |
  | during UAL minutes  |                                             |
  |                     |                                             |
  | Receive UPDATE      | Process and stay at ESTABLISHED             |
  |                     |                                             |
  | Receive CLOSE,      | If successful, send CLOSE_ACK and go to     |
  | process             | CLOSED                                      |
  |                     |                                             |
  |                     | If fail, stay at ESTABLISHED                |
  |                     |                                             |
  | Receive CLOSE_ACK   | Drop and stay at ESTABLISHED                |
  |                     |                                             |
  | Receive NOTIFY      | Process and stay at ESTABLISHED             |
  +---------------------+---------------------------------------------+

           Table 6: ESTABLISHED - HIP Association Established











Moskowitz, et al.            Standards Track                   [Page 32]

RFC 7401                          HIPv2                       April 2015


  System behavior in state CLOSING, Table 7.

  +----------------------------+--------------------------------------+
  | Trigger                    | Action                               |
  +----------------------------+--------------------------------------+
  | User data to send,         | Send I1 and go to I1-SENT            |
  | requires the creation of   |                                      |
  | another incarnation of the |                                      |
  | HIP association            |                                      |
  |                            |                                      |
  | Receive I1                 | Send R1 and stay at CLOSING          |
  |                            |                                      |
  | Receive I2, process        | If successful, send R2 and go to     |
  |                            | R2-SENT                              |
  |                            |                                      |
  |                            | If fail, stay at CLOSING             |
  |                            |                                      |
  | Receive R1, process        | If successful, send I2 and go to     |
  |                            | I2-SENT                              |
  |                            |                                      |
  |                            | If fail, stay at CLOSING             |
  |                            |                                      |
  | Receive CLOSE, process     | If successful, send CLOSE_ACK,       |
  |                            | discard state, and go to CLOSED      |
  |                            |                                      |
  |                            | If fail, stay at CLOSING             |
  |                            |                                      |
  | Receive CLOSE_ACK, process | If successful, discard state and go  |
  |                            | to UNASSOCIATED                      |
  |                            |                                      |
  |                            | If fail, stay at CLOSING             |
  |                            |                                      |
  | Receive ANYOTHER           | Drop and stay at CLOSING             |
  |                            |                                      |
  | Timeout                    | Increment timeout sum and reset      |
  |                            | timer.  If timeout sum is less than  |
  |                            | UAL+MSL minutes, retransmit CLOSE    |
  |                            | and stay at CLOSING.                 |
  |                            |                                      |
  |                            | If timeout sum is greater than       |
  |                            | UAL+MSL minutes, go to UNASSOCIATED  |
  +----------------------------+--------------------------------------+

  Table 7: CLOSING - HIP Association Has Not Been Used for UAL Minutes







Moskowitz, et al.            Standards Track                   [Page 33]

RFC 7401                          HIPv2                       April 2015


  System behavior in state CLOSED, Table 8.

  +----------------------------------------+--------------------------+
  | Trigger                                | Action                   |
  +----------------------------------------+--------------------------+
  | Datagram to send, requires the         | Send I1 and stay at      |
  | creation of another incarnation of the | CLOSED                   |
  | HIP association                        |                          |
  |                                        |                          |
  | Receive I1                             | Send R1 and stay at      |
  |                                        | CLOSED                   |
  |                                        |                          |
  | Receive I2, process                    | If successful, send R2   |
  |                                        | and go to R2-SENT        |
  |                                        |                          |
  |                                        | If fail, stay at CLOSED  |
  |                                        |                          |
  | Receive R1, process                    | If successful, send I2   |
  |                                        | and go to I2-SENT        |
  |                                        |                          |
  |                                        | If fail, stay at CLOSED  |
  |                                        |                          |
  | Receive CLOSE, process                 | If successful, send      |
  |                                        | CLOSE_ACK and stay at    |
  |                                        | CLOSED                   |
  |                                        |                          |
  |                                        | If fail, stay at CLOSED  |
  |                                        |                          |
  | Receive CLOSE_ACK, process             | If successful, discard   |
  |                                        | state and go to          |
  |                                        | UNASSOCIATED             |
  |                                        |                          |
  |                                        | If fail, stay at CLOSED  |
  |                                        |                          |
  | Receive ANYOTHER                       | Drop and stay at CLOSED  |
  |                                        |                          |
  | Timeout (UAL+2MSL)                     | Discard state and go to  |
  |                                        | UNASSOCIATED             |
  +----------------------------------------+--------------------------+

   Table 8: CLOSED - CLOSE_ACK Sent, Resending CLOSE_ACK if Necessary










Moskowitz, et al.            Standards Track                   [Page 34]

RFC 7401                          HIPv2                       April 2015


  System behavior in state E-FAILED, Table 9.

  +-------------------------+-----------------------------------------+
  | Trigger                 | Action                                  |
  +-------------------------+-----------------------------------------+
  | Wait for                | Go to UNASSOCIATED.  Renegotiation is   |
  | implementation-specific | possible after moving to UNASSOCIATED   |
  | time                    | state.                                  |
  +-------------------------+-----------------------------------------+

    Table 9: E-FAILED - HIP Failed to Establish Association with Peer

4.4.4.  Simplified HIP State Diagram

  The following diagram (Figure 2) shows the major state transitions.
  Transitions based on received packets implicitly assume that the
  packets are successfully authenticated or processed.


































Moskowitz, et al.            Standards Track                   [Page 35]

RFC 7401                          HIPv2                       April 2015


                              +--+       +----------------------------+
             recv I1, send R1 |  |       |                            |
                              |  v       v                            |
                            +--------------+  recv I2, send R2        |
           +----------------| UNASSOCIATED |----------------+         |
  datagram |  +--+          +--------------+                |         |
  to send, |  |  | Alg. not supported,                      |         |
   send I1 |  |  | send I1                                  |         |
    .      v  |  v                                          |         |
    .   +---------+  recv I2, send R2                       |         |
  +---->| I1-SENT |--------------------------------------+  |         |
  |     +---------+            +----------------------+  |  |         |
  |          | recv R2,        | recv I2, send R2     |  |  |         |
  |          v send I2         |                      v  v  v         |
  |       +---------+          |                    +---------+       |
  |  +--->| I2-SENT |----------+     +--------------| R2-SENT |<---+  |
  |  |    +---------+                |              +---------+    |  |
  |  |          |  |recv R2          |        data or|             |  |
  |  |recv R1,  |  |                 |     EC timeout|             |  |
  |  |send I2   +--|-----------------+               |  receive I2,|  |
  |  |          |  |       +-------------+           |      send R2|  |
  |  |          |  +------>| ESTABLISHED |<----------+             |  |
  |  |          |          +-------------+                         |  |
  |  |          |            |  |  |      receive I2, send R2      |  |
  |  |          +------------+  |  +-------------------------------+  |
  |  |          |               +-----------+                      |  |
  |  |          |    no packet sent/received|    +---+             |  |
  |  |          |    for UAL min, send CLOSE|    |   |timeout      |  |
  |  |          |                           v    v   |(UAL+MSL)    |  |
  |  |          |                        +---------+ |retransmit   |  |
  +--|----------|------------------------| CLOSING |-+CLOSE        |  |
     |          |                        +---------+               |  |
     |          |                         | |   | |                |  |
     +----------|-------------------------+ |   | +----------------+  |
     |          |               +-----------+   +------------------|--+
     |          |               |recv CLOSE,      recv CLOSE_ACK   |  |
     |          +-------------+ |send CLOSE_ACK   or timeout       |  |
     |     recv CLOSE,        | |                 (UAL+MSL)        |  |
     |     send CLOSE_ACK     v v                                  |  |
     |                     +--------+  receive I2, send R2         |  |
     +---------------------| CLOSED |------------------------------+  |
                           +--------+                                 |
                            ^ |  |                                    |
  recv CLOSE, send CLOSE_ACK| |  |              timeout (UAL+2MSL)    |
                            +-+  +------------------------------------+

                                Figure 2




Moskowitz, et al.            Standards Track                   [Page 36]

RFC 7401                          HIPv2                       April 2015


4.5.  User Data Considerations

4.5.1.  TCP and UDP Pseudo Header Computation for User Data

  When computing TCP and UDP checksums on user data packets that flow
  through sockets bound to HITs, the IPv6 pseudo header format
  [RFC2460] MUST be used, even if the actual addresses in the header of
  the packet are IPv4 addresses.  Additionally, the HITs MUST be used
  in place of the IPv6 addresses in the IPv6 pseudo header.  Note that
  the pseudo header for actual HIP payloads is computed differently;
  see Section 5.1.1.

4.5.2.  Sending Data on HIP Packets

  Other documents may define how to include user data in various HIP
  packets.  However, currently the HIP header is a terminal header, and
  not followed by any other headers.

4.5.3.  Transport Formats

  The actual data transmission format, used for user data after the HIP
  base exchange, is not defined in this document.  Such transport
  formats and methods are described in separate specifications.  All
  HIP implementations MUST implement, at minimum, the ESP transport
  format for HIP [RFC7402].  The transport format to be chosen is
  negotiated in the base exchange.  The Responder expresses its
  preference regarding the transport format in the
  TRANSPORT_FORMAT_LIST in the R1 packet, and the Initiator selects one
  transport format and adds the respective HIP parameter to the I2
  packet.

4.5.4.  Reboot, Timeout, and Restart of HIP

  Simulating a loss of state is a potential DoS attack.  The following
  process has been crafted to manage state recovery without presenting
  a DoS opportunity.

  If a host reboots or the HIP association times out, it has lost its
  HIP state.  If the host that lost state has a datagram to send to the
  peer, it simply restarts the HIP base exchange.  After the base
  exchange has completed, the Initiator can create a new payload
  association and start sending data.  The peer does not reset its
  state until it receives a valid I2 packet.

  If a system receives a user data packet that cannot be matched to any
  existing HIP association, it is possible that it has lost the state
  and its peer has not.  It MAY send an ICMP packet with the Parameter
  Problem type, and with the Pointer pointing to the referred



Moskowitz, et al.            Standards Track                   [Page 37]

RFC 7401                          HIPv2                       April 2015


  HIP-related association information.  Reacting to such traffic
  depends on the implementation and the environment where the
  implementation is used.

  If the host that apparently has lost its state decides to restart the
  HIP base exchange, it sends an I1 packet to the peer.  After the base
  exchange has been completed successfully, the Initiator can create a
  new HIP association, and the peer drops its old payload associations
  and creates a new one.

4.6.  Certificate Distribution

  This document does not define how to use certificates or how to
  transfer them between hosts.  These functions are expected to be
  defined in a future specification, as was done for HIP version 1 (see
  [RFC6253]).  A parameter type value, meant to be used for carrying
  certificates, is reserved, though: CERT, Type 768; see Section 5.2.

5.  Packet Formats

5.1.  Payload Format

  All HIP packets start with a fixed header.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Next Header   | Header Length |0| Packet Type |Version| RES.|1|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |          Checksum             |           Controls            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                Sender's Host Identity Tag (HIT)               |
  |                                                               |
  |                                                               |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               Receiver's Host Identity Tag (HIT)              |
  |                                                               |
  |                                                               |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  /                        HIP Parameters                         /
  /                                                               /
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+





Moskowitz, et al.            Standards Track                   [Page 38]

RFC 7401                          HIPv2                       April 2015


  The HIP header is logically an IPv6 extension header.  However, this
  document does not describe processing for Next Header values other
  than decimal 59, IPPROTO_NONE, the IPv6 'no next header' value.
  Future documents MAY define behavior for other values.  However,
  current implementations MUST ignore trailing data if an unimplemented
  Next Header value is received.

  The Header Length field contains the combined length of the HIP
  Header and HIP parameters in 8-byte units, excluding the first
  8 bytes.  Since all HIP headers MUST contain the sender's and
  receiver's HIT fields, the minimum value for this field is 4, and
  conversely, the maximum length of the HIP Parameters field is
  (255 * 8) - 32 = 2008 bytes (see Section 5.1.3 regarding HIP
  fragmentation).  Note: this sets an additional limit for sizes of
  parameters included in the Parameters field, independent of the
  individual parameter maximum lengths.

  The Packet Type indicates the HIP packet type.  The individual packet
  types are defined in the relevant sections.  If a HIP host receives a
  HIP packet that contains an unrecognized packet type, it MUST drop
  the packet.

  The HIP Version field is four bits.  The version defined in this
  document is 2.  The version number is expected to be incremented only
  if there are incompatible changes to the protocol.  Most extensions
  can be handled by defining new packet types, new parameter types, or
  new Controls (see Section 5.1.2).

  The following three bits are reserved for future use.  They MUST be
  zero when sent, and they MUST be ignored when handling a received
  packet.

  The two fixed bits in the header are reserved for SHIM6 compatibility
  [RFC5533], Section 5.3.  For implementations adhering (only) to this
  specification, they MUST be set as shown when sending and MUST be
  ignored when receiving.  This is to ensure optimal forward
  compatibility.  Note that for implementations that implement other
  compatible specifications in addition to this specification, the
  corresponding rules may well be different.  For example, an
  implementation that implements both this specification and the SHIM6
  protocol may need to check these bits in order to determine how to
  handle the packet.

  The HIT fields are always 128 bits (16 bytes) long.







Moskowitz, et al.            Standards Track                   [Page 39]

RFC 7401                          HIPv2                       April 2015


5.1.1.  Checksum

  Since the checksum covers the source and destination addresses in the
  IP header, it MUST be recomputed on HIP-aware NAT devices.

  If IPv6 is used to carry the HIP packet, the pseudo header [RFC2460]
  contains the source and destination IPv6 addresses, HIP packet length
  in the pseudo header Length field, a zero field, and the HIP protocol
  number (see Section 5.1) in the Next Header field.  The Length field
  is in bytes and can be calculated from the HIP Header Length field:

  (HIP Header Length + 1) * 8.

  In case of using IPv4, the IPv4 UDP pseudo header format [RFC0768] is
  used.  In the pseudo header, the source and destination addresses are
  those used in the IP header, the zero field is obviously zero, the
  protocol is the HIP protocol number (see Section 4), and the length
  is calculated as in the IPv6 case.

5.1.2.  HIP Controls

  The HIP Controls field conveys information about the structure of the
  packet and capabilities of the host.

  The following fields have been defined:

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    | | | | | | | | | | | | | | | |A|
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  A - Anonymous:  If this is set, the sender's HI in this packet is
     anonymous, i.e., one not listed in a directory.  Anonymous HIs
     SHOULD NOT be stored.  This control is set in packets using
     anonymous sender HIs.  The peer receiving an anonymous HI in an R1
     or I2 may choose to refuse it.

  The rest of the fields are reserved for future use, and MUST be set
  to zero in sent packets and MUST be ignored in received packets.

5.1.3.  HIP Fragmentation Support

  A HIP implementation MUST support IP fragmentation/reassembly.
  Fragment reassembly MUST be implemented in both IPv4 and IPv6, but
  fragment generation is REQUIRED to be implemented in IPv4 (IPv4
  stacks and networks will usually do this by default) and RECOMMENDED
  to be implemented in IPv6.  In IPv6 networks, the minimum MTU is
  larger, 1280 bytes, than in IPv4 networks.  The larger MTU size is
  usually sufficient for most HIP packets, and therefore fragment



Moskowitz, et al.            Standards Track                   [Page 40]

RFC 7401                          HIPv2                       April 2015


  generation may not be needed.  If it is expected that a host will
  send HIP packets that are larger than the minimum IPv6 MTU, the
  implementation MUST implement fragment generation even for IPv6.

  In IPv4 networks, HIP packets may encounter low MTUs along their
  routed path.  Since basic HIP, as defined in this document, does not
  provide a mechanism to use multiple IP datagrams for a single HIP
  packet, support for path MTU discovery does not bring any value to
  HIP in IPv4 networks.  HIP-aware NAT devices SHOULD perform IPv4
  reassembly/fragmentation for HIP packets.

  All HIP implementations have to be careful while employing a
  reassembly algorithm so that the algorithm is sufficiently resistant
  to DoS attacks.

  Certificate chains can cause the packet to be fragmented, and
  fragmentation can open implementations to denial-of-service attacks
  [KAU03].  "Hash and URL" schemes as defined in [RFC6253] for HIP
  version 1 may be used to avoid fragmentation and mitigate resulting
  DoS attacks.

5.2.  HIP Parameters

  The HIP parameters carry information that is necessary for
  establishing and maintaining a HIP association.  For example, the
  peer's public keys as well as the signaling for negotiating ciphers
  and payload handling are encapsulated in HIP parameters.  Additional
  information, meaningful for end hosts or middleboxes, may also be
  included in HIP parameters.  The specification of the HIP parameters
  and their mapping to HIP packets and packet types is flexible to
  allow HIP extensions to define new parameters and new protocol
  behavior.

  In HIP packets, HIP parameters are ordered according to their numeric
  type number and encoded in TLV format.
















Moskowitz, et al.            Standards Track                   [Page 41]

RFC 7401                          HIPv2                       April 2015


  The following parameter types are currently defined.

  +------------------------+-------+-----------+----------------------+
  | TLV                    | Type  | Length    | Data                 |
  +------------------------+-------+-----------+----------------------+
  | R1_COUNTER             | 129   | 12        | Puzzle generation    |
  |                        |       |           | counter              |
  |                        |       |           |                      |
  | PUZZLE                 | 257   | 12        | #K and Random #I     |
  |                        |       |           |                      |
  | SOLUTION               | 321   | 20        | #K, Random #I and    |
  |                        |       |           | puzzle solution #J   |
  |                        |       |           |                      |
  | SEQ                    | 385   | 4         | UPDATE packet ID     |
  |                        |       |           | number               |
  |                        |       |           |                      |
  | ACK                    | 449   | variable  | UPDATE packet ID     |
  |                        |       |           | number               |
  |                        |       |           |                      |
  | DH_GROUP_LIST          | 511   | variable  | Ordered list of DH   |
  |                        |       |           | Group IDs supported  |
  |                        |       |           | by a host            |
  |                        |       |           |                      |
  | DIFFIE_HELLMAN         | 513   | variable  | public key           |
  |                        |       |           |                      |
  | HIP_CIPHER             | 579   | variable  | List of HIP          |
  |                        |       |           | encryption           |
  |                        |       |           | algorithms           |
  |                        |       |           |                      |
  | ENCRYPTED              | 641   | variable  | Encrypted part of a  |
  |                        |       |           | HIP packet           |
  |                        |       |           |                      |
  | HOST_ID                | 705   | variable  | Host Identity with   |
  |                        |       |           | Fully Qualified      |
  |                        |       |           | Domain Name (FQDN)   |
  |                        |       |           | or Network Access    |
  |                        |       |           | Identifier (NAI)     |
  |                        |       |           |                      |
  | HIT_SUITE_LIST         | 715   | variable  | Ordered list of the  |
  |                        |       |           | HIT Suites supported |
  |                        |       |           | by the Responder     |
  |                        |       |           |                      |
  | CERT                   | 768   | variable  | HI Certificate; used |
  |                        |       |           | to transfer          |
  |                        |       |           | certificates.        |
  |                        |       |           | Specified in a       |
  |                        |       |           | separate document.   |
  |                        |       |           |                      |



Moskowitz, et al.            Standards Track                   [Page 42]

RFC 7401                          HIPv2                       April 2015


  | NOTIFICATION           | 832   | variable  | Informational data   |
  |                        |       |           |                      |
  | ECHO_REQUEST_SIGNED    | 897   | variable  | Opaque data to be    |
  |                        |       |           | echoed back; signed  |
  |                        |       |           |                      |
  | ECHO_RESPONSE_SIGNED   | 961   | variable  | Opaque data echoed   |
  |                        |       |           | back by request;     |
  |                        |       |           | signed               |
  |                        |       |           |                      |
  | TRANSPORT_FORMAT_LIST  | 2049  | Ordered   | variable             |
  |                        |       | list of   |                      |
  |                        |       | preferred |                      |
  |                        |       | HIP       |                      |
  |                        |       | transport |                      |
  |                        |       | type      |                      |
  |                        |       | numbers   |                      |
  |                        |       |           |                      |
  | HIP_MAC                | 61505 | variable  | HMAC-based message   |
  |                        |       |           | authentication code, |
  |                        |       |           | with key material    |
  |                        |       |           | from KEYMAT          |
  |                        |       |           |                      |
  | HIP_MAC_2              | 61569 | variable  | HMAC-based message   |
  |                        |       |           | authentication code, |
  |                        |       |           | with key material    |
  |                        |       |           | from KEYMAT.  Unlike |
  |                        |       |           | HIP_MAC, the HOST_ID |
  |                        |       |           | parameter is         |
  |                        |       |           | included in          |
  |                        |       |           | HIP_MAC_2            |
  |                        |       |           | calculation.         |
  |                        |       |           |                      |
  | HIP_SIGNATURE_2        | 61633 | variable  | Signature used in R1 |
  |                        |       |           | packet               |
  |                        |       |           |                      |
  | HIP_SIGNATURE          | 61697 | variable  | Signature of the     |
  |                        |       |           | packet               |
  |                        |       |           |                      |
  | ECHO_REQUEST_UNSIGNED  | 63661 | variable  | Opaque data to be    |
  |                        |       |           | echoed back; after   |
  |                        |       |           | signature            |
  |                        |       |           |                      |
  | ECHO_RESPONSE_UNSIGNED | 63425 | variable  | Opaque data echoed   |
  |                        |       |           | back by request;     |
  |                        |       |           | after signature      |
  +------------------------+-------+-----------+----------------------+





Moskowitz, et al.            Standards Track                   [Page 43]

RFC 7401                          HIPv2                       April 2015


  As the ordering (from lowest to highest) of HIP parameters is
  strictly enforced (see Section 5.2.1), the parameter type values for
  existing parameters have been spaced to allow for future protocol
  extensions.

  The following parameter type number ranges are defined.

  +---------------+---------------------------------------------------+
  | Type Range    | Purpose                                           |
  +---------------+---------------------------------------------------+
  | 0 -  1023     | Handshake                                         |
  |               |                                                   |
  | 1024 -   2047 | Reserved                                          |
  |               |                                                   |
  | 2048 -   4095 | Parameters related to HIP transport formats       |
  |               |                                                   |
  | 4096 -   8191 | Signed parameters allocated through specification |
  |               | documents                                         |
  |               |                                                   |
  | 8192 -  32767 | Reserved                                          |
  |               |                                                   |
  | 32768 - 49151 | Reserved for Private Use.  Signed parameters.     |
  |               |                                                   |
  | 49152 - 61439 | Reserved                                          |
  |               |                                                   |
  | 61440 - 62463 | Signatures and (signed) MACs                      |
  |               |                                                   |
  | 62464 - 63487 | Parameters that are neither signed nor MACed      |
  |               |                                                   |
  | 63488 - 64511 | Rendezvous and relaying                           |
  |               |                                                   |
  | 64512 - 65023 | Parameters that are neither signed nor MACed      |
  |               |                                                   |
  | 65024 - 65535 | Reserved                                          |
  +---------------+---------------------------------------------------+

  The process for defining new parameters is described in Section 5.2.2
  of this document.

  The range between 32768 (2^15) and 49151 (2^15 + 2^14) is Reserved
  for Private Use.  Types from this range SHOULD be selected in a
  random fashion to reduce the probability of collisions.

5.2.1.  TLV Format

  The TLV-encoded parameters are described in the following
  subsections.  The Type field value also describes the order of these
  fields in the packet.  The parameters MUST be included in the packet



Moskowitz, et al.            Standards Track                   [Page 44]

RFC 7401                          HIPv2                       April 2015


  so that their types form an increasing order.  If multiple parameters
  with the same type number are in one packet, the parameters with the
  same type MUST be consecutive in the packet.  If the order does not
  follow this rule, the packet is considered to be malformed and it
  MUST be discarded.

  Parameters using type values from 2048 up to 4095 are related to
  transport formats.  Currently, one transport format is defined: the
  ESP transport format [RFC7402].

  All of the encoded TLV parameters have a length (that includes the
  Type and Length fields), which is a multiple of 8 bytes.  When
  needed, padding MUST be added to the end of the parameter so that the
  total length is a multiple of 8 bytes.  This rule ensures proper
  alignment of data.  Any added padding bytes MUST be zeroed by the
  sender, and their values SHOULD NOT be checked by the receiver.

  The Length field indicates the length of the Contents field (in
  bytes).  Consequently, the total length of the TLV parameter
  (including Type, Length, Contents, and Padding) is related to the
  Length field according to the following formula:

  Total Length = 11 + Length - (Length + 3) % 8;

  where % is the modulo operator.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |             Type            |C|             Length            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    /                          Contents                             /
    /                                               +-+-+-+-+-+-+-+-+
    |                                               |    Padding    |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Type         Type code for the parameter.  16 bits long, C-bit
                 being part of the Type code.
    C            Critical.  One if this parameter is critical and
                 MUST be recognized by the recipient, zero otherwise.
                 The C-bit is considered to be a part of the Type
                 field.  Consequently, critical parameters are always
                 odd, and non-critical ones have an even value.
    Length       Length of the Contents, in bytes, excluding Type,
                 Length, and Padding
    Contents     Parameter specific, defined by Type
    Padding      Padding, 0-7 bytes, added if needed



Moskowitz, et al.            Standards Track                   [Page 45]

RFC 7401                          HIPv2                       April 2015


  Critical parameters (indicated by the odd type number value) MUST be
  recognized by the recipient.  If a recipient encounters a critical
  parameter that it does not recognize, it MUST NOT process the packet
  any further.  It MAY send an ICMP or NOTIFY, as defined in
  Section 4.3.

  Non-critical parameters MAY be safely ignored.  If a recipient
  encounters a non-critical parameter that it does not recognize, it
  SHOULD proceed as if the parameter was not present in the received
  packet.

5.2.2.  Defining New Parameters

  Future specifications may define new parameters as needed.  When
  defining new parameters, care must be taken to ensure that the
  parameter type values are appropriate and leave suitable space for
  other future extensions.  One must remember that the parameters MUST
  always be arranged in numerically increasing order by Type code,
  thereby limiting the order of parameters (see Section 5.2.1).

  The following rules MUST be followed when defining new parameters.

  1.  The low-order bit C of the Type code is used to distinguish
      between critical and non-critical parameters.  Hence, even
      parameter type numbers indicate non-critical parameters while odd
      parameter type numbers indicate critical parameters.

  2.  A new parameter MAY be critical only if an old implementation
      that ignored it would cause security problems.  In general, new
      parameters SHOULD be defined as non-critical, and expect a reply
      from the recipient.

  3.  If a system implements a new critical parameter, it MUST provide
      the ability to set the associated feature off, such that the
      critical parameter is not sent at all.  The configuration option
      MUST be well documented.  Implementations operating in a mode
      adhering to this specification MUST disable the sending of new
      critical parameters by default.  In other words, the management
      interface MUST allow vanilla standards-only mode as a default
      configuration setting, and MAY allow new critical payloads to be
      configured on (and off).

  4.  See Section 9 for allocation rules regarding Type codes.








Moskowitz, et al.            Standards Track                   [Page 46]

RFC 7401                          HIPv2                       April 2015


5.2.3.  R1_COUNTER

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |             Type              |             Length            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                       Reserved, 4 bytes                       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                R1 generation counter, 8 bytes                 |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Type           129
    Length         12
    R1 generation
      counter      The current generation of valid puzzles

  The R1_COUNTER parameter contains a 64-bit unsigned integer in
  network byte order, indicating the current generation of valid
  puzzles.  The sender SHOULD increment this counter periodically.  It
  is RECOMMENDED that the counter value is incremented at least as
  often as old PUZZLE values are deprecated so that SOLUTIONs to them
  are no longer accepted.

  Support for the R1_COUNTER parameter is mandatory, although its
  inclusion in the R1 packet is optional.  It SHOULD be included in the
  R1 (in which case it is covered by the signature), and if present in
  the R1, it MUST be echoed (including the Reserved field verbatim) by
  the Initiator in the I2 packet.





















Moskowitz, et al.            Standards Track                   [Page 47]

RFC 7401                          HIPv2                       April 2015


5.2.4.  PUZZLE

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |             Type              |             Length            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  #K, 1 byte   |    Lifetime   |        Opaque, 2 bytes        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                      Random #I, RHASH_len / 8 bytes           |
    /                                                               /
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Type           257
    Length         4 + RHASH_len / 8
    #K             #K is the number of verified bits
    Lifetime       puzzle lifetime 2^(value - 32) seconds
    Opaque         data set by the Responder, indexing the puzzle
    Random #I      random number of size RHASH_len bits

  Random #I is represented as an n-bit integer (where n is RHASH_len),
  and #K and Lifetime as 8-bit integers, all in network byte order.

  The PUZZLE parameter contains the puzzle difficulty #K and an n-bit
  random integer #I.  The Puzzle Lifetime indicates the time during
  which the puzzle solution is valid, and sets a time limit that should
  not be exceeded by the Initiator while it attempts to solve the
  puzzle.  The lifetime is indicated as a power of 2 using the formula
  2^(Lifetime - 32) seconds.  A puzzle MAY be augmented with an
  ECHO_REQUEST_SIGNED or an ECHO_REQUEST_UNSIGNED parameter included in
  the R1; the contents of the echo request are then echoed back in the
  ECHO_RESPONSE_SIGNED or in the ECHO_RESPONSE_UNSIGNED parameter,
  allowing the Responder to use the included information as a part of
  its puzzle processing.

  The Opaque and Random #I fields are not covered by the
  HIP_SIGNATURE_2 parameter.














Moskowitz, et al.            Standards Track                   [Page 48]

RFC 7401                          HIPv2                       April 2015


5.2.5.  SOLUTION

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |             Type              |             Length            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  #K, 1 byte   |   Reserved    |        Opaque, 2 bytes        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                      Random #I, n bytes                       |
    /                                                               /
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |            Puzzle solution #J, RHASH_len / 8 bytes            |
    /                                                               /
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Type                321
    Length              4 + RHASH_len / 4
    #K                  #K is the number of verified bits
    Reserved            zero when sent, ignored when received
    Opaque              copied unmodified from the received PUZZLE
                        parameter
    Random #I           random number of size RHASH_len bits
    Puzzle solution #J  random number of size RHASH_len bits

  Random #I and Random #J are represented as n-bit unsigned integers
  (where n is RHASH_len), and #K as an 8-bit unsigned integer, all in
  network byte order.

  The SOLUTION parameter contains a solution to a puzzle.  It also
  echoes back the random difficulty #K, the Opaque field, and the
  puzzle integer #I.



















Moskowitz, et al.            Standards Track                   [Page 49]

RFC 7401                          HIPv2                       April 2015


5.2.6.  DH_GROUP_LIST

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |             Type              |             Length            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    | DH GROUP ID #1| DH GROUP ID #2| DH GROUP ID #3| DH GROUP ID #4|
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    | DH GROUP ID #n|                Padding                        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Type           511
    Length         number of DH Group IDs
    DH GROUP ID    identifies a DH GROUP ID supported by the host.
                   The list of IDs is ordered by preference of the
                   host.  The possible DH Group IDs are defined
                   in the DIFFIE_HELLMAN parameter.  Each DH
                   Group ID is one octet long.

  The DH_GROUP_LIST parameter contains the list of supported DH Group
  IDs of a host.  The Initiator sends the DH_GROUP_LIST in the I1
  packet, and the Responder sends its own list in the signed part of
  the R1 packet.  The DH Group IDs in the DH_GROUP_LIST are listed in
  the order of their preference of the host sending the list.  DH Group
  IDs that are listed first are preferred over the DH Group IDs listed
  later.  The information in the DH_GROUP_LIST allows the Responder to
  select the DH group preferred by itself and supported by the
  Initiator.  Based on the DH_GROUP_LIST in the R1 packet, the
  Initiator can determine if the Responder has selected the best
  possible choice based on the Initiator's and Responder's preferences.
  If the Responder's choice differs from the best choice, the Initiator
  can conclude that there was an attempted downgrade attack (see
  Section 4.1.7).

  When selecting the DH group for the DIFFIE_HELLMAN parameter in the
  R1 packet, the Responder MUST select the first DH Group ID in its
  DH_GROUP_LIST in the R1 packet that is compatible with one of the
  Suite IDs in the Initiator's DH_GROUP_LIST in the I1 packet.  The
  Responder MUST NOT select any other DH Group ID that is contained in
  both lists, because then a downgrade attack cannot be detected.

  In general, hosts SHOULD prefer stronger groups over weaker ones if
  the computation overhead is not prohibitively high for the intended
  application.






Moskowitz, et al.            Standards Track                   [Page 50]

RFC 7401                          HIPv2                       April 2015


5.2.7.  DIFFIE_HELLMAN

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |             Type              |             Length            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |   Group ID    |      Public Value Length      | Public Value  /
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    /                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    /                               |            Padding            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Type           513
    Length         length in octets, excluding Type, Length, and
                   Padding
    Group ID       identifies values for p and g as well as the KDF
    Public Value   length of the following Public Value in octets
      Length
    Public Value   the sender's public Diffie-Hellman key

  A single DIFFIE_HELLMAN parameter may be included in selected HIP
  packets based on the DH Group ID selected (Section 5.2.6).  The
  following Group IDs have been defined; values are assigned by this
  document:

   Group                              KDF              Value

   Reserved                                            0
   DEPRECATED                                          1
   DEPRECATED                                          2
   1536-bit MODP group  [RFC3526]     HKDF [RFC5869]   3
   3072-bit MODP group  [RFC3526]     HKDF [RFC5869]   4
   DEPRECATED                                          5
   DEPRECATED                                          6
   NIST P-256 [RFC5903]               HKDF [RFC5869]   7
   NIST P-384 [RFC5903]               HKDF [RFC5869]   8
   NIST P-521 [RFC5903]               HKDF [RFC5869]   9
   SECP160R1  [SECG]                  HKDF [RFC5869]  10
   2048-bit MODP group  [RFC3526]     HKDF [RFC5869]  11

  The MODP Diffie-Hellman groups are defined in [RFC3526].  ECDH
  groups 7-9 are defined in [RFC5903] and [RFC6090].  ECDH group 10
  is covered in Appendix D.  Any ECDH used with HIP MUST have a
  co-factor of 1.





Moskowitz, et al.            Standards Track                   [Page 51]

RFC 7401                          HIPv2                       April 2015


  The Group ID also defines the key derivation function that is to be
  used for deriving the symmetric keys for the HMAC and symmetric
  encryption from the keying material from the Diffie-Hellman key
  exchange (see Section 6.5).

  A HIP implementation MUST implement Group ID 3.  The 160-bit
  SECP160R1 group can be used when lower security is enough (e.g., web
  surfing) and when the equipment is not powerful enough (e.g., some
  PDAs).  Implementations SHOULD implement Group IDs 4 and 8.

  To avoid unnecessary failures during the base exchange, the rest of
  the groups SHOULD be implemented in hosts where resources are
  adequate.

5.2.8.  HIP_CIPHER

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |             Type              |             Length            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |          Cipher ID #1         |          Cipher ID #2         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |          Cipher ID #n         |             Padding           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Type           579
    Length         length in octets, excluding Type, Length, and
                   Padding
    Cipher ID      identifies the cipher algorithm to be used for
                   encrypting the contents of the ENCRYPTED parameter




















Moskowitz, et al.            Standards Track                   [Page 52]

RFC 7401                          HIPv2                       April 2015


  The following Cipher IDs are defined:

       Suite ID           Value

       RESERVED           0
       NULL-ENCRYPT       1     ([RFC2410])
       AES-128-CBC        2     ([RFC3602])
       RESERVED           3     (unused value)
       AES-256-CBC        4     ([RFC3602])

  The sender of a HIP_CIPHER parameter MUST make sure that there are no
  more than six (6) Cipher IDs in one HIP_CIPHER parameter.

  Conversely, a recipient MUST be prepared to handle received transport
  parameters that contain more than six Cipher IDs by accepting the
  first six Cipher IDs and dropping the rest.  The limited number of
  Cipher IDs sets the maximum size of the HIP_CIPHER parameter.  As the
  default configuration, the HIP_CIPHER parameter MUST contain at least
  one of the mandatory Cipher IDs.  There MAY be a configuration option
  that allows the administrator to override this default.

  The Responder lists supported and desired Cipher IDs in order of
  preference in the R1, up to the maximum of six Cipher IDs.  The
  Initiator MUST choose only one of the corresponding Cipher IDs.  This
  Cipher ID will be used for generating the ENCRYPTED parameter.

  Mandatory implementation: AES-128-CBC.  Implementors SHOULD support
  NULL-ENCRYPT for testing/debugging purposes but MUST NOT offer or
  accept this value unless explicitly configured for testing/debugging
  of HIP.





















Moskowitz, et al.            Standards Track                   [Page 53]

RFC 7401                          HIPv2                       April 2015


5.2.9.  HOST_ID

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |             Type              |             Length            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |          HI Length            |DI-Type|      DI Length        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |          Algorithm            |         Host Identity         /
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    /                               |       Domain Identifier       /
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    /                                               |    Padding    |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Type               705
    Length             length in octets, excluding Type, Length, and
                       Padding
    HI Length          length of the Host Identity in octets
    DI-Type            type of the following Domain Identifier field
    DI Length          length of the Domain Identifier field in octets
    Algorithm          index to the employed algorithm
    Host Identity      actual Host Identity
    Domain Identifier  the identifier of the sender

  The following DI-Types have been defined:

        Type                    Value

        none included           0
        FQDN                    1
        NAI                     2

        FQDN            Fully Qualified Domain Name, in binary format
        NAI             Network Access Identifier

  The format for the FQDN is defined in RFC 1035 [RFC1035],
  Section 3.1.  The format for the NAI is defined in [RFC4282].

  A host MAY optionally associate the Host Identity with a single
  Domain Identifier in the HOST_ID parameter.  If there is no Domain
  Identifier, i.e., the DI-Type field is zero, the DI Length field is
  set to zero as well.







Moskowitz, et al.            Standards Track                   [Page 54]

RFC 7401                          HIPv2                       April 2015


  The following HI Algorithms have been defined:

       Algorithm profiles   Values

       RESERVED             0
       DSA                  3 [FIPS.186-4.2013]  (RECOMMENDED)
       RSA                  5 [RFC3447]          (REQUIRED)
       ECDSA                7 [RFC4754]          (REQUIRED)
       ECDSA_LOW            9 [SECG]             (RECOMMENDED)

  For DSA, RSA, and ECDSA key types, profiles containing at least
  112 bits of security strength (as defined by [NIST.800-131A.2011])
  should be used.  For RSA signature padding, the Probabilistic
  Signature Scheme (PSS) method of padding [RFC3447] MUST be used.

  The Host Identity is derived from the DNSKEY format for RSA and DSA.
  For these, the Public Key field of the RDATA part from RFC 4034
  [RFC4034] is used.  For Elliptic Curve Cryptography (ECC), we
  distinguish two different profiles: ECDSA and ECDSA_LOW.  ECC
  contains curves approved by NIST and defined in RFC 4754 [RFC4754].
  ECDSA_LOW is defined for devices with low computational capabilities
  and uses shorter curves from the Standards for Efficient Cryptography
  Group [SECG].  Any ECDSA used with HIP MUST have a co-factor of 1.

  For ECDSA and ECDSA_LOW, Host Identities are represented by the
  following fields:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |          ECC Curve            |                               /
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    /                         Public Key                            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    ECC Curve     Curve label
    Public Key    Represented in octet-string format [RFC6090]

  For hosts that implement ECDSA as the algorithm, the following ECC
  curves are required:

       Algorithm    Curve            Values

       ECDSA        RESERVED         0
       ECDSA        NIST P-256       1 [RFC4754]
       ECDSA        NIST P-384       2 [RFC4754]





Moskowitz, et al.            Standards Track                   [Page 55]

RFC 7401                          HIPv2                       April 2015


  For hosts that implement the ECDSA_LOW algorithm profile, the
  following curve is required:

       Algorithm    Curve            Values

       ECDSA_LOW    RESERVED         0
       ECDSA_LOW    SECP160R1        1 [SECG]

5.2.10.  HIT_SUITE_LIST

  The HIT_SUITE_LIST parameter contains a list of the supported HIT
  Suite IDs of the Responder.  The Responder sends the HIT_SUITE_LIST
  in the signed part of the R1 packet.  Based on the HIT_SUITE_LIST,
  the Initiator can determine which source HIT Suite IDs are supported
  by the Responder.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |             Type              |             Length            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |     ID #1     |     ID #2     |     ID #3     |     ID #4     |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |     ID #n     |                Padding                        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Type           715
    Length         number of HIT Suite IDs
    ID             identifies a HIT Suite ID supported by the host.
                   The list of IDs is ordered by preference of the
                   host.  Each HIT Suite ID is one octet long.  The
                   four higher-order bits of the ID field correspond
                   to the HIT Suite ID in the ORCHID OGA ID field.  The
                   four lower-order bits are reserved and set to 0
                   by the sender.  The reception of an ID with the
                   four lower-order bits not set to 0 SHOULD be
                   considered as an error that MAY result in a
                   NOTIFICATION of type UNSUPPORTED_HIT_SUITE.

  The HIT Suite ID indexes a HIT Suite.  HIT Suites are composed of
  signature algorithms as defined in Section 5.2.9, and hash functions.

  The ID field in the HIT_SUITE_LIST is defined as an eight-bit field,
  as opposed to the four-bit HIT Suite ID and OGA ID field in the
  ORCHID.  This difference is a measure to accommodate larger HIT Suite
  IDs if the 16 available values prove insufficient.  In that case, one
  of the 16 values, zero, will be used to indicate that four additional
  bits of the ORCHID will be used to encode the HIT Suite ID.  Hence,



Moskowitz, et al.            Standards Track                   [Page 56]

RFC 7401                          HIPv2                       April 2015


  the current four-bit HIT Suite IDs only use the four higher-order
  bits in the ID field.  Future documents may define the use of the
  four lower-order bits in the ID field.

  The following HIT Suite IDs are defined, and the relationship between
  the four-bit ID value used in the OGA ID field and the eight-bit
  encoding within the HIT_SUITE_LIST ID field is clarified:

       HIT Suite       Four-bit ID    Eight-bit encoding

       RESERVED            0             0x00
       RSA,DSA/SHA-256     1             0x10           (REQUIRED)
       ECDSA/SHA-384       2             0x20           (RECOMMENDED)
       ECDSA_LOW/SHA-1     3             0x30           (RECOMMENDED)

  The following table provides more detail on the above HIT Suite
  combinations.  The input for each generation algorithm is the
  encoding of the HI as defined in Section 3.2.  The output is 96 bits
  long and is directly used in the ORCHID.

  +-------+----------+--------------+------------+--------------------+
  | Index | Hash     | HMAC         | Signature  | Description        |
  |       | function |              | algorithm  |                    |
  |       |          |              | family     |                    |
  +-------+----------+--------------+------------+--------------------+
  |     0 |          |              |            | Reserved           |
  |       |          |              |            |                    |
  |     1 | SHA-256  | HMAC-SHA-256 | RSA, DSA   | RSA or DSA HI      |
  |       |          |              |            | hashed with        |
  |       |          |              |            | SHA-256, truncated |
  |       |          |              |            | to 96 bits         |
  |       |          |              |            |                    |
  |     2 | SHA-384  | HMAC-SHA-384 | ECDSA      | ECDSA HI hashed    |
  |       |          |              |            | with SHA-384,      |
  |       |          |              |            | truncated to 96    |
  |       |          |              |            | bits               |
  |       |          |              |            |                    |
  |     3 | SHA-1    | HMAC-SHA-1   | ECDSA_LOW  | ECDSA_LOW HI       |
  |       |          |              |            | hashed with SHA-1, |
  |       |          |              |            | truncated to 96    |
  |       |          |              |            | bits               |
  +-------+----------+--------------+------------+--------------------+

                          Table 10: HIT Suites







Moskowitz, et al.            Standards Track                   [Page 57]

RFC 7401                          HIPv2                       April 2015


  The hash of the Responder as defined in the HIT Suite determines the
  HMAC to be used for the RHASH function.  The HMACs currently defined
  here are HMAC-SHA-256 [RFC4868], HMAC-SHA-384 [RFC4868], and
  HMAC-SHA-1 [RFC2404].

5.2.11.  TRANSPORT_FORMAT_LIST

  The TRANSPORT_FORMAT_LIST parameter contains a list of the supported
  HIP transport formats (TFs) of the Responder.  The Responder sends
  the TRANSPORT_FORMAT_LIST in the signed part of the R1 packet.  Based
  on the TRANSPORT_FORMAT_LIST, the Initiator chooses one suitable
  transport format and includes the respective HIP transport format
  parameter in its response packet.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |             Type              |             Length            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |          TF type #1           |           TF type #2          /
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    /          TF type #n           |             Padding           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Type           2049
    Length         2x number of TF types
    TF Type        identifies a transport format (TF) type supported
                   by the host.  The TF type numbers correspond to
                   the HIP parameter type numbers of the respective
                   transport format parameters.  The list of TF types
                   is ordered by preference of the sender.

  The TF type numbers index the respective HIP parameters for the
  transport formats in the type number range between 2050 and 4095.
  The parameters and their use are defined in separate documents.
  Currently, the only transport format defined is IPsec ESP [RFC7402].

  For each listed TF type, the sender of the TRANSPORT_FORMAT_LIST
  parameter MUST include the respective transport format parameter in
  the HIP packet.  The receiver MUST ignore the TF type in the
  TRANSPORT_FORMAT_LIST if no matching transport format parameter is
  present in the packet.









Moskowitz, et al.            Standards Track                   [Page 58]

RFC 7401                          HIPv2                       April 2015


5.2.12.  HIP_MAC

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |             Type              |             Length            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    |                             HMAC                              |
    /                                                               /
    /                               +-------------------------------+
    |                               |            Padding            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Type           61505
    Length         length in octets, excluding Type, Length, and
                   Padding
    HMAC           HMAC computed over the HIP packet, excluding the
                   HIP_MAC parameter and any following parameters,
                   such as HIP_SIGNATURE, HIP_SIGNATURE_2,
                   ECHO_REQUEST_UNSIGNED, or ECHO_RESPONSE_UNSIGNED.
                   The Checksum field MUST be set to zero, and the
                   HIP header length in the HIP common header MUST be
                   calculated not to cover any excluded parameters
                   when the HMAC is calculated.  The size of the
                   HMAC is the natural size of the hash computation
                   output depending on the used hash function.

  The HMAC uses RHASH as the hash algorithm.  The calculation and
  verification process is presented in Section 6.4.1.

5.2.13.  HIP_MAC_2

  HIP_MAC_2 is a MAC of the packet and the HI of the sender in the form
  of a HOST_ID parameter when that parameter is not actually included
  in the packet.  The parameter structure is the same as the structure
  shown in Section 5.2.12.  The fields are as follows:

    Type           61569
    Length         length in octets, excluding Type, Length, and
                   Padding
    HMAC           HMAC computed over the HIP packet, excluding the
                   HIP_MAC_2 parameter and any following parameters
                   such as HIP_SIGNATURE, HIP_SIGNATURE_2,
                   ECHO_REQUEST_UNSIGNED, or ECHO_RESPONSE_UNSIGNED,
                   and including an additional sender's HOST_ID
                   parameter during the HMAC calculation.  The
                   Checksum field MUST be set to zero, and the HIP



Moskowitz, et al.            Standards Track                   [Page 59]

RFC 7401                          HIPv2                       April 2015


                   header length in the HIP common header MUST be
                   calculated not to cover any excluded parameters
                   when the HMAC is calculated.  The size of the
                   HMAC is the natural size of the hash computation
                   output depending on the used hash function.

  The HMAC uses RHASH as the hash algorithm.  The calculation and
  verification process is presented in Section 6.4.1.

5.2.14.  HIP_SIGNATURE

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |             Type              |             Length            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |    SIG alg                    |            Signature          /
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    /                               |             Padding           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Type           61697
    Length         length in octets, excluding Type, Length, and
                   Padding
    SIG alg        signature algorithm
    Signature      the signature is calculated over the HIP packet,
                   excluding the HIP_SIGNATURE parameter and any
                   parameters that follow the HIP_SIGNATURE
                   parameter.  When the signature is calculated, the
                   Checksum field MUST be set to zero, and the HIP
                   header length in the HIP common header MUST be
                   calculated only up to the beginning of the
                   HIP_SIGNATURE parameter.

  The signature algorithms are defined in Section 5.2.9.  The signature
  in the Signature field is encoded using the method depending on the
  signature algorithm (e.g., according to [RFC3110] in the case of RSA/
  SHA-1, [RFC5702] in the case of RSA/SHA-256, [RFC2536] in the case of
  DSA, or [RFC6090] in the case of ECDSA).

  HIP_SIGNATURE calculation and verification follow the process defined
  in Section 6.4.2.









Moskowitz, et al.            Standards Track                   [Page 60]

RFC 7401                          HIPv2                       April 2015


5.2.15.  HIP_SIGNATURE_2

  HIP_SIGNATURE_2 excludes the variable parameters in the R1 packet to
  allow R1 pre-creation.  The parameter structure is the same as the
  structure shown in Section 5.2.14.  The fields are as follows:

    Type           61633
    Length         length in octets, excluding Type, Length, and
                   Padding
    SIG alg        signature algorithm
    Signature      Within the R1 packet that contains the
                   HIP_SIGNATURE_2 parameter, the Initiator's HIT, the
                   Checksum field, and the Opaque and Random #I fields
                   in the PUZZLE parameter MUST be set to zero while
                   computing the HIP_SIGNATURE_2 signature.  Further,
                   the HIP packet length in the HIP header MUST be
                   adjusted as if the HIP_SIGNATURE_2 was not in the
                   packet during the signature calculation, i.e., the
                   HIP packet length points to the beginning of
                   the HIP_SIGNATURE_2 parameter during signing and
                   verification.

  Zeroing the Initiator's HIT makes it possible to create R1 packets
  beforehand, to minimize the effects of possible DoS attacks.  Zeroing
  the Random #I and Opaque fields within the PUZZLE parameter allows
  these fields to be populated dynamically on precomputed R1s.

  Signature calculation and verification follow the process defined in
  Section 6.4.2.

5.2.16.  SEQ

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |             Type              |             Length            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                            Update ID                          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Type            385
    Length          4
    Update ID       32-bit sequence number

  The Update ID is an unsigned number in network byte order,
  initialized by a host to zero upon moving to ESTABLISHED state.  The
  Update ID has scope within a single HIP association, and not across




Moskowitz, et al.            Standards Track                   [Page 61]

RFC 7401                          HIPv2                       April 2015


  multiple associations or multiple hosts.  The Update ID is
  incremented by one before each new UPDATE that is sent by the host;
  the first UPDATE packet originated by a host has an Update ID of 0.

5.2.17.  ACK

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |             Type              |             Length            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                       peer Update ID 1                        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    /                       peer Update ID n                        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Type             449
    Length           length in octets, excluding Type and Length
    peer Update ID   32-bit sequence number corresponding to the
                     Update ID being ACKed

  The ACK parameter includes one or more Update IDs that have been
  received from the peer.  The number of peer Update IDs can be
  inferred from the length by dividing it by 4.

5.2.18.  ENCRYPTED

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |             Type              |             Length            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                           Reserved                            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                              IV                               /
    /                                                               /
    /                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               /
    /                        Encrypted data                         /
    /                                                               /
    /                               +-------------------------------+
    /                               |            Padding            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Type           641
    Length         length in octets, excluding Type, Length, and
                   Padding
    Reserved       zero when sent, ignored when received



Moskowitz, et al.            Standards Track                   [Page 62]

RFC 7401                          HIPv2                       April 2015


    IV             Initialization vector, if needed, otherwise
                   nonexistent.  The length of the IV is inferred from
                   the HIP_CIPHER.
    Encrypted      The data is encrypted using the encryption algorithm
      data         defined in the HIP_CIPHER parameter.

  The ENCRYPTED parameter encapsulates other parameters, the encrypted
  data, which holds one or more HIP parameters in block encrypted form.

  Consequently, the first fields in the encapsulated parameter(s) are
  Type and Length of the first such parameter, allowing the contents to
  be easily parsed after decryption.

  The field labeled "Encrypted data" consists of the output of one or
  more HIP parameters concatenated together that have been passed
  through an encryption algorithm.  Each of these inner parameters is
  padded according to the rules of Section 5.2.1 for padding individual
  parameters.  As a result, the concatenated parameters will be a block
  of data that is 8-byte aligned.

  Some encryption algorithms require that the data to be encrypted must
  be a multiple of the cipher algorithm block size.  In this case, the
  above block of data MUST include additional padding, as specified by
  the encryption algorithm.  The size of the extra padding is selected
  so that the length of the unencrypted data block is a multiple of the
  cipher block size.  The encryption algorithm may specify padding
  bytes other than zero; for example, AES [FIPS.197.2001] uses the
  PKCS5 padding scheme (see Section 6.1.1 of [RFC2898]) where the
  remaining n bytes to fill the block each have the value of n.  This
  yields an "unencrypted data" block that is transformed to an
  "encrypted data" block by the cipher suite.  This extra padding added
  to the set of parameters to satisfy the cipher block alignment rules
  is not counted in HIP TLV Length fields, and this extra padding
  should be removed by the cipher suite upon decryption.

  Note that the length of the cipher suite output may be smaller or
  larger than the length of the set of parameters to be encrypted,
  since the encryption process may compress the data or add additional
  padding to the data.

  Once this encryption process is completed, the Encrypted data field
  is ready for inclusion in the parameter.  If necessary, additional
  Padding for 8-byte alignment is then added according to the rules of
  Section 5.2.1.







Moskowitz, et al.            Standards Track                   [Page 63]

RFC 7401                          HIPv2                       April 2015


5.2.19.  NOTIFICATION

  The NOTIFICATION parameter is used to transmit informational data,
  such as error conditions and state transitions, to a HIP peer.  A
  NOTIFICATION parameter may appear in NOTIFY packets.  The use of the
  NOTIFICATION parameter in other packet types is for further study.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |             Type              |             Length            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |          Reserved             |      Notify Message Type      |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               /
    /                   Notification Data                           /
    /                                               +---------------+
    /                                               |     Padding   |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Type             832
    Length           length in octets, excluding Type, Length, and
                     Padding
    Reserved         zero when sent, ignored when received
    Notify Message   specifies the type of notification
      Type
    Notification     informational or error data transmitted in
      Data           addition to the Notify Message Type.  Values
                     for this field are type specific (see below).

  Notification information can be error messages specifying why a HIP
  Security Association could not be established.  It can also be status
  data that a HIP implementation wishes to communicate with a peer
  process.  The table below lists the notification messages and their
  Notify Message Types.  HIP packets MAY contain multiple NOTIFICATION
  parameters if several problems exist or several independent pieces of
  information must be transmitted.

  To avoid certain types of attacks, a Responder SHOULD avoid sending a
  NOTIFICATION to any host with which it has not successfully verified
  a puzzle solution.

  Notify Message Types in the range 0-16383 are intended for reporting
  errors, and those in the range 16384-65535 are for other status
  information.  An implementation that receives a NOTIFY packet with a
  Notify Message Type that indicates an error in response to a request





Moskowitz, et al.            Standards Track                   [Page 64]

RFC 7401                          HIPv2                       April 2015


  packet (e.g., I1, I2, UPDATE) SHOULD assume that the corresponding
  request has failed entirely.  Unrecognized error types MUST be
  ignored, except that they SHOULD be logged.

  As currently defined, Notify Message Type values 1-10 are used for
  informing about errors in packet structures, and values 11-20 for
  informing about problems in parameters.

  Notification Data in NOTIFICATION parameters where the Notify Message
  Type is in the status range MUST be ignored if not recognized.

    Notify Message Types - Errors             Value
    -----------------------------             -----

    UNSUPPORTED_CRITICAL_PARAMETER_TYPE        1

      Sent if the parameter type has the "critical" bit set and the
      parameter type is not recognized.  Notification Data contains the
      two-octet parameter type.

    INVALID_SYNTAX                             7

      Indicates that the HIP message received was invalid because some
      type, length, or value was out of range or because the request
      was otherwise malformed.  To avoid a denial-of-service
      attack using forged messages, this status may only be returned
      for packets whose HIP_MAC (if present) and SIGNATURE have been
      verified.  This status MUST be sent in response to any error not
      covered by one of the other status types and SHOULD NOT contain
      details, to avoid leaking information to someone probing a node.
      To aid debugging, more detailed error information SHOULD be
      written to a console or log.

    NO_DH_PROPOSAL_CHOSEN                     14

      None of the proposed Group IDs were acceptable.

    INVALID_DH_CHOSEN                         15

      The DH Group ID field does not correspond to one offered
      by the Responder.

    NO_HIP_PROPOSAL_CHOSEN                    16

      None of the proposed HIT Suites or HIP Encryption Algorithms were
      acceptable.





Moskowitz, et al.            Standards Track                   [Page 65]

RFC 7401                          HIPv2                       April 2015


    INVALID_HIP_CIPHER_CHOSEN                 17

      The HIP_CIPHER Crypto ID does not correspond to one offered by
      the Responder.

    UNSUPPORTED_HIT_SUITE                     20

      Sent in response to an I1 or R1 packet for which the HIT Suite
      is not supported.

    AUTHENTICATION_FAILED                     24

      Sent in response to a HIP signature failure, except when
      the signature verification fails in a NOTIFY message.

    CHECKSUM_FAILED                           26

      Sent in response to a HIP checksum failure.

    HIP_MAC_FAILED                            28

      Sent in response to a HIP HMAC failure.

    ENCRYPTION_FAILED                         32

      The Responder could not successfully decrypt the
      ENCRYPTED parameter.

    INVALID_HIT                               40

      Sent in response to a failure to validate the peer's
      HIT from the corresponding HI.

    BLOCKED_BY_POLICY                         42

      The Responder is unwilling to set up an association
      for some policy reason (e.g., the received HIT is NULL
      and the policy does not allow opportunistic mode).

    RESPONDER_BUSY_PLEASE_RETRY               44

      The Responder is unwilling to set up an association, as it is
      suffering under some kind of overload and has chosen to shed load
      by rejecting the Initiator's request.  The Initiator may retry;
      however, the Initiator MUST find another (different) puzzle
      solution for any such retries.  Note that the Initiator may need
      to obtain a new puzzle with a new I1/R1 exchange.




Moskowitz, et al.            Standards Track                   [Page 66]

RFC 7401                          HIPv2                       April 2015


    Notify Message Types - Status            Value
    -----------------------------            -----

    I2_ACKNOWLEDGEMENT                       16384

      The Responder has an I2 packet from the Initiator but had to
      queue the I2 packet for processing.  The puzzle was correctly
      solved, and the Responder is willing to set up an association but
      currently has a number of I2 packets in the processing queue.
      The R2 packet is sent after the I2 packet was processed.

5.2.20.  ECHO_REQUEST_SIGNED

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |             Type              |             Length            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                 Opaque data (variable length)                 |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Type          897
    Length        length of the opaque data in octets
    Opaque data   opaque data, supposed to be meaningful only to
                  the node that sends ECHO_REQUEST_SIGNED and
                  receives a corresponding ECHO_RESPONSE_SIGNED or
                  ECHO_RESPONSE_UNSIGNED

  The ECHO_REQUEST_SIGNED parameter contains an opaque blob of data
  that the sender wants to get echoed back in the corresponding reply
  packet.

  The ECHO_REQUEST_SIGNED and corresponding echo response parameters
  MAY be used for any purpose where a node wants to carry some state in
  a request packet and get it back in a response packet.  The
  ECHO_REQUEST_SIGNED is covered by the HIP_MAC and SIGNATURE.  A HIP
  packet can contain only one ECHO_REQUEST_SIGNED parameter and MAY
  contain multiple ECHO_REQUEST_UNSIGNED parameters.  The
  ECHO_REQUEST_SIGNED parameter MUST be responded to with an
  ECHO_RESPONSE_SIGNED.











Moskowitz, et al.            Standards Track                   [Page 67]

RFC 7401                          HIPv2                       April 2015


5.2.21.  ECHO_REQUEST_UNSIGNED

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |             Type              |             Length            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                 Opaque data (variable length)                 |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Type          63661
    Length        length of the opaque data in octets
    Opaque data   opaque data, supposed to be meaningful only to
                  the node that sends ECHO_REQUEST_UNSIGNED and
                  receives a corresponding ECHO_RESPONSE_UNSIGNED

  The ECHO_REQUEST_UNSIGNED parameter contains an opaque blob of data
  that the sender wants to get echoed back in the corresponding reply
  packet.

  The ECHO_REQUEST_UNSIGNED and corresponding echo response parameters
  MAY be used for any purpose where a node wants to carry some state in
  a request packet and get it back in a response packet.  The
  ECHO_REQUEST_UNSIGNED is not covered by the HIP_MAC and SIGNATURE.  A
  HIP packet can contain one or more ECHO_REQUEST_UNSIGNED parameters.
  It is possible that middleboxes add ECHO_REQUEST_UNSIGNED parameters
  in HIP packets passing by.  The creator of the ECHO_REQUEST_UNSIGNED
  (end host or middlebox) has to create the Opaque field so that it can
  later identify and remove the corresponding ECHO_RESPONSE_UNSIGNED
  parameter.

  The ECHO_REQUEST_UNSIGNED parameter MUST be responded to with an
  ECHO_RESPONSE_UNSIGNED parameter.


















Moskowitz, et al.            Standards Track                   [Page 68]

RFC 7401                          HIPv2                       April 2015


5.2.22.  ECHO_RESPONSE_SIGNED

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |             Type              |             Length            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                 Opaque data (variable length)                 |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Type          961
    Length        length of the opaque data in octets
    Opaque data   opaque data, copied unmodified from the
                  ECHO_REQUEST_SIGNED or ECHO_REQUEST_UNSIGNED
                  parameter that triggered this response

  The ECHO_RESPONSE_SIGNED parameter contains an opaque blob of data
  that the sender of the ECHO_REQUEST_SIGNED wants to get echoed back.
  The opaque data is copied unmodified from the ECHO_REQUEST_SIGNED
  parameter.

  The ECHO_REQUEST_SIGNED and ECHO_RESPONSE_SIGNED parameters MAY be
  used for any purpose where a node wants to carry some state in a
  request packet and get it back in a response packet.  The
  ECHO_RESPONSE_SIGNED is covered by the HIP_MAC and SIGNATURE.

5.2.23.  ECHO_RESPONSE_UNSIGNED

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |             Type              |             Length            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                 Opaque data (variable length)                 |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Type          63425
    Length        length of the opaque data in octets
    Opaque data   opaque data, copied unmodified from the
                  ECHO_REQUEST_SIGNED or ECHO_REQUEST_UNSIGNED
                  parameter that triggered this response

  The ECHO_RESPONSE_UNSIGNED parameter contains an opaque blob of data
  that the sender of the ECHO_REQUEST_SIGNED or ECHO_REQUEST_UNSIGNED
  wants to get echoed back.  The opaque data is copied unmodified from
  the corresponding echo request parameter.





Moskowitz, et al.            Standards Track                   [Page 69]

RFC 7401                          HIPv2                       April 2015


  The echo request and ECHO_RESPONSE_UNSIGNED parameters MAY be used
  for any purpose where a node wants to carry some state in a request
  packet and get it back in a response packet.  The
  ECHO_RESPONSE_UNSIGNED is not covered by the HIP_MAC and SIGNATURE.

5.3.  HIP Packets

  There are eight basic HIP packets (see Table 11).  Four are for the
  HIP base exchange, one is for updating, one is for sending
  notifications, and two are for closing a HIP association.  Support
  for the NOTIFY packet type is optional, but support for all other HIP
  packet types listed below is mandatory.

  +------------------+------------------------------------------------+
  |   Packet type    | Packet name                                    |
  +------------------+------------------------------------------------+
  |        1         | I1 - the HIP Initiator Packet                  |
  |                  |                                                |
  |        2         | R1 - the HIP Responder Packet                  |
  |                  |                                                |
  |        3         | I2 - the Second HIP Initiator Packet           |
  |                  |                                                |
  |        4         | R2 - the Second HIP Responder Packet           |
  |                  |                                                |
  |        16        | UPDATE - the HIP Update Packet                 |
  |                  |                                                |
  |        17        | NOTIFY - the HIP Notify Packet                 |
  |                  |                                                |
  |        18        | CLOSE - the HIP Association Closing Packet     |
  |                  |                                                |
  |        19        | CLOSE_ACK - the HIP Closing Acknowledgment     |
  |                  | Packet                                         |
  +------------------+------------------------------------------------+

              Table 11: HIP Packets and Packet Type Values

  Packets consist of the fixed header as described in Section 5.1,
  followed by the parameters.  The parameter part, in turn, consists of
  zero or more TLV-coded parameters.

  In addition to the base packets, other packet types may be defined
  later in separate specifications.  For example, support for mobility
  and multihoming is not included in this specification.

  See "Notation" (Section 2.2) for the notation used in the operations.






Moskowitz, et al.            Standards Track                   [Page 70]

RFC 7401                          HIPv2                       April 2015


  In the future, an optional upper-layer payload MAY follow the HIP
  header.  The Next Header field in the header indicates if there is
  additional data following the HIP header.  The HIP packet, however,
  MUST NOT be fragmented into multiple extension headers by setting the
  Next Header field in a HIP header to the HIP protocol number.  This
  limits the size of the possible additional data in the packet.

5.3.1.  I1 - the HIP Initiator Packet

  The HIP header values for the I1 packet:

    Header:
      Packet Type = 1
      SRC HIT = Initiator's HIT
      DST HIT = Responder's HIT, or NULL

    IP ( HIP ( DH_GROUP_LIST ) )

  The I1 packet contains the fixed HIP header and the Initiator's
  DH_GROUP_LIST.

  Valid control bits: None

  The Initiator receives the Responder's HIT from either a DNS lookup
  of the Responder's FQDN (see [HIP-DNS-EXT]), some other repository,
  or a local table.  If the Initiator does not know the Responder's
  HIT, it may attempt to use opportunistic mode by using NULL (all
  zeros) as the Responder's HIT.  See also "HIP Opportunistic Mode"
  (Section 4.1.8).

  Since the I1 packet is so easy to spoof even if it were signed, no
  attempt is made to add to its generation or processing cost.

  The Initiator includes a DH_GROUP_LIST parameter in the I1 packet to
  inform the Responder of its preferred DH Group IDs.  Note that the
  DH_GROUP_LIST in the I1 packet is not protected by a signature.

  Implementations MUST be able to handle a storm of received I1
  packets, discarding those with common content that arrive within a
  small time delta.











Moskowitz, et al.            Standards Track                   [Page 71]

RFC 7401                          HIPv2                       April 2015


5.3.2.  R1 - the HIP Responder Packet

  The HIP header values for the R1 packet:

    Header:
      Packet Type = 2
      SRC HIT = Responder's HIT
      DST HIT = Initiator's HIT

    IP ( HIP ( [ R1_COUNTER, ]
               PUZZLE,
               DIFFIE_HELLMAN,
               HIP_CIPHER,
               HOST_ID,
               HIT_SUITE_LIST,
               DH_GROUP_LIST,
               [ ECHO_REQUEST_SIGNED, ]
               TRANSPORT_FORMAT_LIST,
               HIP_SIGNATURE_2 )
               <, ECHO_REQUEST_UNSIGNED >i)

  Valid control bits: A

  If the Responder's HI is an anonymous one, the A control MUST be set.

  The Initiator's HIT MUST match the one received in the I1 packet if
  the R1 is a response to an I1.  If the Responder has multiple HIs,
  the Responder's HIT used MUST match the Initiator's request.  If the
  Initiator used opportunistic mode, the Responder may select freely
  among its HIs.  See also "HIP Opportunistic Mode" (Section 4.1.8).

  The R1 packet generation counter is used to determine the currently
  valid generation of puzzles.  The value is increased periodically,
  and it is RECOMMENDED that it is increased at least as often as
  solutions to old puzzles are no longer accepted.

  The puzzle contains a Random #I and the difficulty #K.  The
  difficulty #K indicates the number of lower-order bits, in the puzzle
  hash result, that must be zeros; see Section 4.1.2.  The Random #I is
  not covered by the signature and must be zeroed during the signature
  calculation, allowing the sender to select and set the #I into a
  precomputed R1 packet just prior to sending it to the peer.

  The Responder selects the DIFFIE_HELLMAN Group ID and Public Value
  based on the Initiator's preference expressed in the DH_GROUP_LIST
  parameter in the I1 packet.  The Responder sends back its own
  preference based on which it chose the DH public value as




Moskowitz, et al.            Standards Track                   [Page 72]

RFC 7401                          HIPv2                       April 2015


  DH_GROUP_LIST.  This allows the Initiator to determine whether its
  own DH_GROUP_LIST in the sent I1 packet was manipulated by an
  attacker.

  The Diffie-Hellman public value is ephemeral, and values SHOULD NOT
  be reused across different HIP associations.  Once the Responder has
  received a valid response to an R1 packet, that Diffie-Hellman value
  SHOULD be deprecated.  It is possible that the Responder has sent the
  same Diffie-Hellman value to different hosts simultaneously in
  corresponding R1 packets, and those responses should also be
  accepted.  However, as a defense against I1 packet storms, an
  implementation MAY propose, and reuse unless avoidable, the same
  Diffie-Hellman value for a period of time -- for example, 15 minutes.
  By using a small number of different puzzles for a given
  Diffie-Hellman value, the R1 packets can be precomputed and delivered
  as quickly as I1 packets arrive.  A scavenger process should clean up
  unused Diffie-Hellman values and puzzles.

  Reusing Diffie-Hellman public values opens up the potential security
  risk of more than one Initiator ending up with the same keying
  material (due to faulty random number generators).  Also, more than
  one Initiator using the same Responder public key half may lead to
  potentially easier cryptographic attacks and to imperfect forward
  security.

  However, these risks involved in reusing the same public value are
  statistical; that is, the authors are not aware of any mechanism that
  would allow manipulation of the protocol so that the risk of the
  reuse of any given Responder Diffie-Hellman public key would differ
  from the base probability.  Consequently, it is RECOMMENDED that
  Responders avoid reusing the same DH key with multiple Initiators,
  but because the risk is considered statistical and not known to be
  manipulable, the implementations MAY reuse a key in order to ease
  resource-constrained implementations and to increase the probability
  of successful communication with legitimate clients even under an I1
  packet storm.  In particular, when it is too expensive to generate
  enough precomputed R1 packets to supply each potential Initiator with
  a different DH key, the Responder MAY send the same DH key to several
  Initiators, thereby creating the possibility of multiple legitimate
  Initiators ending up using the same Responder-side public key.
  However, as soon as the Responder knows that it will use a particular
  DH key, it SHOULD stop offering it.  This design is aimed to allow
  resource-constrained Responders to offer services under I1 packet
  storms and to simultaneously make the probability of DH key reuse
  both statistical and as low as possible.






Moskowitz, et al.            Standards Track                   [Page 73]

RFC 7401                          HIPv2                       April 2015


  If the Responder uses the same DH key pair for multiple handshakes,
  it must take care to avoid small subgroup attacks [RFC2785].  To
  avoid these attacks, when receiving the I2 message, the Responder
  SHOULD validate the Initiator's DH public key as described in
  [RFC2785], Section 3.1.  If the validation fails, the Responder MUST
  NOT generate a DH shared key and MUST silently abort the HIP BEX.

  The HIP_CIPHER parameter contains the encryption algorithms supported
  by the Responder to encrypt the contents of the ENCRYPTED parameter,
  in the order of preference.  All implementations MUST support AES
  [RFC3602].

  The HIT_SUITE_LIST parameter is an ordered list of the Responder's
  preferred and supported HIT Suites.  The list allows the Initiator to
  determine whether its own source HIT matches any suite supported by
  the Responder.

  The ECHO_REQUEST_SIGNED and ECHO_REQUEST_UNSIGNED parameters contain
  data that the sender wants to receive unmodified in the corresponding
  response packet in the ECHO_RESPONSE_SIGNED or ECHO_RESPONSE_UNSIGNED
  parameter.  The R1 packet may contain zero or more
  ECHO_REQUEST_UNSIGNED parameters as described in Section 5.2.21.

  The TRANSPORT_FORMAT_LIST parameter is an ordered list of the
  Responder's preferred and supported transport format types.  The list
  allows the Initiator and the Responder to agree on a common type for
  payload protection.  This parameter is described in Section 5.2.11.

  The signature is calculated over the whole HIP packet as described in
  Section 5.2.15.  This allows the Responder to use precomputed R1s.
  The Initiator SHOULD validate this signature.  It MUST check that the
  Responder's HI matches with the one expected, if any.



















Moskowitz, et al.            Standards Track                   [Page 74]

RFC 7401                          HIPv2                       April 2015


5.3.3.  I2 - the Second HIP Initiator Packet

  The HIP header values for the I2 packet:

    Header:
      Packet Type = 3
      SRC HIT = Initiator's HIT
      DST HIT = Responder's HIT

    IP ( HIP ( [R1_COUNTER,]
               SOLUTION,
               DIFFIE_HELLMAN,
               HIP_CIPHER,
               ENCRYPTED { HOST_ID } or HOST_ID,
               [ ECHO_RESPONSE_SIGNED, ]
               TRANSPORT_FORMAT_LIST,
               HIP_MAC,
               HIP_SIGNATURE
               <, ECHO_RESPONSE_UNSIGNED>i ) )

  Valid control bits: A

  The HITs used MUST match the ones used in the R1.

  If the Initiator's HI is an anonymous one, the A control bit MUST
  be set.

  If present in the I1 packet, the Initiator MUST include an unmodified
  copy of the R1_COUNTER parameter received in the corresponding R1
  packet into the I2 packet.

  The Solution contains the Random #I from R1 and the computed #J.  The
  low-order #K bits of the RHASH( #I | ... | #J ) MUST be zero.

  The Diffie-Hellman value is ephemeral.  If precomputed, a scavenger
  process should clean up unused Diffie-Hellman values.  The Responder
  MAY reuse Diffie-Hellman values under some conditions as specified in
  Section 5.3.2.

  The HIP_CIPHER contains the single encryption suite selected by the
  Initiator, that it uses to encrypt the ENCRYPTED parameters.  The
  chosen cipher MUST correspond to one of the ciphers offered by the
  Responder in the R1.  All implementations MUST support AES [RFC3602].

  The Initiator's HI MAY be encrypted using the HIP_CIPHER encryption
  algorithm.  The keying material is derived from the Diffie-Hellman
  exchange as defined in Section 6.5.




Moskowitz, et al.            Standards Track                   [Page 75]

RFC 7401                          HIPv2                       April 2015


  The ECHO_RESPONSE_SIGNED and ECHO_RESPONSE_UNSIGNED contain the
  unmodified opaque data copied from the corresponding echo request
  parameter(s).

  The TRANSPORT_FORMAT_LIST contains the single transport format type
  selected by the Initiator.  The chosen type MUST correspond to one of
  the types offered by the Responder in the R1.  Currently, the only
  transport format defined is the ESP transport format ([RFC7402]).

  The HMAC value in the HIP_MAC parameter is calculated over the whole
  HIP packet, excluding any parameters after the HIP_MAC, as described
  in Section 6.4.1.  The Responder MUST validate the HIP_MAC.

  The signature is calculated over the whole HIP packet, excluding any
  parameters after the HIP_SIGNATURE, as described in Section 5.2.14.
  The Responder MUST validate this signature.  The Responder uses the
  HI in the packet or an HI acquired by some other means for verifying
  the signature.

5.3.4.  R2 - the Second HIP Responder Packet

  The HIP header values for the R2 packet:

    Header:
      Packet Type = 4
      SRC HIT = Responder's HIT
      DST HIT = Initiator's HIT

    IP ( HIP ( HIP_MAC_2, HIP_SIGNATURE ) )

  Valid control bits: None

  The HIP_MAC_2 is calculated over the whole HIP packet, with the
  Responder's HOST_ID parameter concatenated with the HIP packet.  The
  HOST_ID parameter is removed after the HMAC calculation.  The
  procedure is described in Section 6.4.1.

  The signature is calculated over the whole HIP packet.

  The Initiator MUST validate both the HIP_MAC and the signature.











Moskowitz, et al.            Standards Track                   [Page 76]

RFC 7401                          HIPv2                       April 2015


5.3.5.  UPDATE - the HIP Update Packet

  The HIP header values for the UPDATE packet:

    Header:
      Packet Type = 16
      SRC HIT = Sender's HIT
      DST HIT = Recipient's HIT

    IP ( HIP ( [SEQ, ACK, ] HIP_MAC, HIP_SIGNATURE ) )

  Valid control bits: None

  The UPDATE packet contains mandatory HIP_MAC and HIP_SIGNATURE
  parameters, and other optional parameters.

  The UPDATE packet contains zero or one SEQ parameter.  The presence
  of a SEQ parameter indicates that the receiver MUST acknowledge the
  UPDATE.  An UPDATE that does not contain a SEQ but only an ACK
  parameter is simply an acknowledgment of a previous UPDATE and itself
  MUST NOT be acknowledged by a separate ACK parameter.  Such UPDATE
  packets containing only an ACK parameter do not require processing in
  relative order to other UPDATE packets.  An UPDATE packet without
  either a SEQ or an ACK parameter is invalid; such unacknowledged
  updates MUST instead use a NOTIFY packet.

  An UPDATE packet contains zero or one ACK parameter.  The ACK
  parameter echoes the SEQ sequence number of the UPDATE packet being
  ACKed.  A host MAY choose to acknowledge more than one UPDATE packet
  at a time; e.g., the ACK parameter may contain the last two SEQ
  values received, for resilience against packet loss.  ACK values are
  not cumulative; each received unique SEQ value requires at least one
  corresponding ACK value in reply.  Received ACK parameters that are
  redundant are ignored.  Hosts MUST implement the processing of ACK
  parameters with multiple SEQ sequence numbers even if they do not
  implement sending ACK parameters with multiple SEQ sequence numbers.

  The UPDATE packet may contain both a SEQ and an ACK parameter.  In
  this case, the ACK parameter is being piggybacked on an outgoing
  UPDATE.  In general, UPDATEs carrying SEQ SHOULD be ACKed upon
  completion of the processing of the UPDATE.  A host MAY choose to
  hold the UPDATE carrying an ACK parameter for a short period of time
  to allow for the possibility of piggybacking the ACK parameter, in a
  manner similar to TCP delayed acknowledgments.







Moskowitz, et al.            Standards Track                   [Page 77]

RFC 7401                          HIPv2                       April 2015


  A sender MAY choose to forego reliable transmission of a particular
  UPDATE (e.g., it becomes overcome by events).  The semantics are such
  that the receiver MUST acknowledge the UPDATE, but the sender MAY
  choose to not care about receiving the ACK parameter.

  UPDATEs MAY be retransmitted without incrementing SEQ.  If the same
  subset of parameters is included in multiple UPDATEs with different
  SEQs, the host MUST ensure that the receiver's processing of the
  parameters multiple times will not result in a protocol error.

5.3.6.  NOTIFY - the HIP Notify Packet

  The NOTIFY packet MAY be used to provide information to a peer.
  Typically, NOTIFY is used to indicate some type of protocol error or
  negotiation failure.  NOTIFY packets are unacknowledged.  The
  receiver can handle the packet only as informational, and SHOULD NOT
  change its HIP state (see Section 4.4.2) based purely on a received
  NOTIFY packet.

  The HIP header values for the NOTIFY packet:

    Header:
      Packet Type = 17
      SRC HIT = Sender's HIT
      DST HIT = Recipient's HIT, or zero if unknown

    IP ( HIP (<NOTIFICATION>i, [HOST_ID, ] HIP_SIGNATURE) )

  Valid control bits: None

  The NOTIFY packet is used to carry one or more NOTIFICATION
  parameters.

5.3.7.  CLOSE - the HIP Association Closing Packet

  The HIP header values for the CLOSE packet:

    Header:
      Packet Type = 18
      SRC HIT = Sender's HIT
      DST HIT = Recipient's HIT

    IP ( HIP ( ECHO_REQUEST_SIGNED, HIP_MAC, HIP_SIGNATURE ) )

  Valid control bits: None






Moskowitz, et al.            Standards Track                   [Page 78]

RFC 7401                          HIPv2                       April 2015


  The sender MUST include an ECHO_REQUEST_SIGNED used to validate
  CLOSE_ACK received in response, and both a HIP_MAC and a signature
  (calculated over the whole HIP packet).

  The receiver peer MUST reply with a CLOSE_ACK containing an
  ECHO_RESPONSE_SIGNED corresponding to the received
  ECHO_REQUEST_SIGNED.

5.3.8.  CLOSE_ACK - the HIP Closing Acknowledgment Packet

  The HIP header values for the CLOSE_ACK packet:

    Header:
      Packet Type = 19
      SRC HIT = Sender's HIT
      DST HIT = Recipient's HIT

    IP ( HIP ( ECHO_RESPONSE_SIGNED, HIP_MAC, HIP_SIGNATURE ) )

  Valid control bits: None

  The sender MUST include both an HMAC and signature (calculated over
  the whole HIP packet).

  The receiver peer MUST validate the ECHO_RESPONSE_SIGNED and validate
  both the HIP_MAC and the signature if the receiver has state for a
  HIP association.

5.4.  ICMP Messages

  When a HIP implementation detects a problem with an incoming packet,
  and it either cannot determine the identity of the sender of the
  packet or does not have any existing HIP association with the sender
  of the packet, it MAY respond with an ICMP packet.  Any such replies
  MUST be rate-limited as described in [RFC4443].  In most cases, the
  ICMP packet has the Parameter Problem type (12 for ICMPv4, 4 for
  ICMPv6), with the Pointer pointing to the field that caused the ICMP
  message to be generated.

5.4.1.  Invalid Version

  If a HIP implementation receives a HIP packet that has an
  unrecognized HIP version number, it SHOULD respond, rate-limited,
  with an ICMP packet with type Parameter Problem, with the Pointer
  pointing to the Version/RES. byte in the HIP header.






Moskowitz, et al.            Standards Track                   [Page 79]

RFC 7401                          HIPv2                       April 2015


5.4.2.  Other Problems with the HIP Header and Packet Structure

  If a HIP implementation receives a HIP packet that has other
  unrecoverable problems in the header or packet format, it MAY
  respond, rate-limited, with an ICMP packet with type Parameter
  Problem, with the Pointer pointing to the field that failed to pass
  the format checks.  However, an implementation MUST NOT send an ICMP
  message if the checksum fails; instead, it MUST silently drop the
  packet.

5.4.3.  Invalid Puzzle Solution

  If a HIP implementation receives an I2 packet that has an invalid
  puzzle solution, the behavior depends on the underlying version of
  IP.  If IPv6 is used, the implementation SHOULD respond with an ICMP
  packet with type Parameter Problem, with the Pointer pointing to the
  beginning of the Puzzle solution #J field in the SOLUTION payload in
  the HIP message.

  If IPv4 is used, the implementation MAY respond with an ICMP packet
  with the type Parameter Problem, copying enough bytes from the I2
  message so that the SOLUTION parameter fits into the ICMP message,
  with the Pointer pointing to the beginning of the Puzzle solution #J
  field, as in the IPv6 case.  Note, however, that the resulting ICMPv4
  message exceeds the typical ICMPv4 message size as defined in
  [RFC0792].

5.4.4.  Non-existing HIP Association

  If a HIP implementation receives a CLOSE or UPDATE packet, or any
  other packet whose handling requires an existing association, that
  has either a Receiver or Sender HIT that does not match with any
  existing HIP association, the implementation MAY respond, rate-
  limited, with an ICMP packet with the type Parameter Problem.  The
  Pointer of the ICMP Parameter Problem packet is set pointing to the
  beginning of the first HIT that does not match.

  A host MUST NOT reply with such an ICMP if it receives any of the
  following messages: I1, R2, I2, R2, and NOTIFY packet.  When
  introducing new packet types, a specification SHOULD define the
  appropriate rules for sending or not sending this kind of ICMP reply.

6.  Packet Processing

  Each host is assumed to have a single HIP implementation that manages
  the host's HIP associations and handles requests for new ones.  Each
  HIP association is governed by a conceptual state machine, with
  states defined above in Section 4.4.  The HIP implementation can



Moskowitz, et al.            Standards Track                   [Page 80]

RFC 7401                          HIPv2                       April 2015


  simultaneously maintain HIP associations with more than one host.
  Furthermore, the HIP implementation may have more than one active HIP
  association with another host; in this case, HIP associations are
  distinguished by their respective HITs.  It is not possible to have
  more than one HIP association between any given pair of HITs.
  Consequently, the only way for two hosts to have more than one
  parallel association is to use different HITs, at least at one end.

  The processing of packets depends on the state of the HIP
  association(s) with respect to the authenticated or apparent
  originator of the packet.  A HIP implementation determines whether it
  has an active association with the originator of the packet based on
  the HITs.  In the case of user data carried in a specific transport
  format, the transport format document specifies how the incoming
  packets are matched with the active associations.

6.1.  Processing Outgoing Application Data

  In a HIP host, an application can send application-level data using
  an identifier specified via the underlying API.  The API can be a
  backwards-compatible API (see [RFC5338]), using identifiers that look
  similar to IP addresses, or a completely new API, providing enhanced
  services related to Host Identities.  Depending on the HIP
  implementation, the identifier provided to the application may be
  different; for example, it can be a HIT or an IP address.

  The exact format and method for transferring the user data from the
  source HIP host to the destination HIP host are defined in the
  corresponding transport format document.  The actual data is
  transferred in the network using the appropriate source and
  destination IP addresses.

  In this document, conceptual processing rules are defined only for
  the base case where both hosts have only single usable IP addresses;
  the multi-address multihoming case is specified separately.

  The following conceptual algorithm describes the steps that are
  required for handling outgoing datagrams destined to a HIT.

  1.  If the datagram has a specified source address, it MUST be a HIT.
      If it is not, the implementation MAY replace the source address
      with a HIT.  Otherwise, it MUST drop the packet.

  2.  If the datagram has an unspecified source address, the
      implementation MUST choose a suitable source HIT for the
      datagram.  Selecting the source HIT is subject to local policy.





Moskowitz, et al.            Standards Track                   [Page 81]

RFC 7401                          HIPv2                       April 2015


  3.  If there is no active HIP association with the given <source,
      destination> HIT pair, one MUST be created by running the base
      exchange.  While waiting for the base exchange to complete, the
      implementation SHOULD queue at least one user data packet per HIP
      association to be formed, and it MAY queue more than one.

  4.  Once there is an active HIP association for the given <source,
      destination> HIT pair, the outgoing datagram is passed to
      transport handling.  The possible transport formats are defined
      in separate documents, of which the ESP transport format for HIP
      is mandatory for all HIP implementations.

  5.  Before sending the packet, the HITs in the datagram are replaced
      with suitable IP addresses.  For IPv6, the rules defined in
      [RFC6724] SHOULD be followed.  Note that this HIT-to-IP-address
      conversion step MAY also be performed at some other point in the
      stack, e.g., before wrapping the packet into the output format.

6.2.  Processing Incoming Application Data

  The following conceptual algorithm describes the incoming datagram
  handling when HITs are used at the receiving host as application-
  level identifiers.  More detailed steps for processing packets are
  defined in corresponding transport format documents.

  1.  The incoming datagram is mapped to an existing HIP association,
      typically using some information from the packet.  For example,
      such mapping may be based on the ESP Security Parameter Index
      (SPI).

  2.  The specific transport format is unwrapped, in a way depending on
      the transport format, yielding a packet that looks like a
      standard (unencrypted) IP packet.  If possible, this step SHOULD
      also verify that the packet was indeed (once) sent by the remote
      HIP host, as identified by the HIP association.

      Depending on the used transport mode, the verification method can
      vary.  While the HI (as well as the HIT) is used as the higher-
      layer identifier, the verification method has to verify that the
      data packet was sent by the correct node identity and that the
      actual identity maps to this particular HIT.  When using the ESP
      transport format [RFC7402], the verification is done using the
      SPI value in the data packet to find the corresponding SA with
      associated HIT and key, and decrypting the packet with that
      associated key.






Moskowitz, et al.            Standards Track                   [Page 82]

RFC 7401                          HIPv2                       April 2015


  3.  The IP addresses in the datagram are replaced with the HITs
      associated with the HIP association.  Note that this IP-address-
      to-HIT conversion step MAY also be performed at some other point
      in the stack.

  4.  The datagram is delivered to the upper layer (e.g., UDP or TCP).
      When demultiplexing the datagram, the right upper-layer socket is
      selected based on the HITs.

6.3.  Solving the Puzzle

  This subsection describes the details for solving the puzzle.

  In the R1 packet, the values #I and #K are sent in network byte
  order.  Similarly, in the I2 packet, the values #I and #J are sent in
  network byte order.  The hash is created by concatenating, in network
  byte order, the following data, in the following order and using the
  RHASH algorithm:

     n-bit random value #I (where n is RHASH_len), in network byte
     order, as appearing in the R1 and I2 packets.

     128-bit Initiator's HIT, in network byte order, as appearing in
     the HIP Payload in the R1 and I2 packets.

     128-bit Responder's HIT, in network byte order, as appearing in
     the HIP Payload in the R1 and I2 packets.

     n-bit random value #J (where n is RHASH_len), in network byte
     order, as appearing in the I2 packet.

  In a valid response puzzle, the #K low-order bits of the resulting
  RHASH digest MUST be zero.

  Notes:

       i) The length of the data to be hashed is variable, depending on
          the output length of the Responder's hash function RHASH.

      ii) All the data in the hash input MUST be in network byte order.

     iii) The orderings of the Initiator's and Responder's HITs are
          different in the R1 and I2 packets; see Section 5.1.  Care
          must be taken to copy the values in the right order to the
          hash input.

      iv) For a puzzle #I, there may exist multiple valid puzzle
          solutions #J.



Moskowitz, et al.            Standards Track                   [Page 83]

RFC 7401                          HIPv2                       April 2015


  The following procedure describes the processing steps involved,
  assuming that the Responder chooses to precompute the R1 packets:

  Precomputation by the Responder:
     Sets up the puzzle difficulty #K.
     Creates a signed R1 and caches it.

  Responder:
     Selects a suitable cached R1.
     Generates a random number #I.
     Sends #I and #K in an R1.
     Saves #I and #K for a delta time.

  Initiator:
     Generates repeated attempts to solve the puzzle until a matching
     #J is found:
     Ltrunc( RHASH( #I | HIT-I | HIT-R | #J ), #K ) == 0
     Sends #I and #J in an I2.

  Responder:
     Verifies that the received #I is a saved one.
     Finds the right #K based on #I.
     Computes V := Ltrunc( RHASH( #I | HIT-I | HIT-R | #J ), #K )
     Rejects if V != 0
     Accepts if V == 0

6.4.  HIP_MAC and SIGNATURE Calculation and Verification

  The following subsections define the actions for processing HIP_MAC,
  HIP_MAC_2, HIP_SIGNATURE, and HIP_SIGNATURE_2 parameters.  The
  HIP_MAC_2 parameter is contained in the R2 packet.  The
  HIP_SIGNATURE_2 parameter is contained in the R1 packet.  The
  HIP_SIGNATURE and HIP_MAC parameters are contained in other HIP
  packets.

6.4.1.  HMAC Calculation

  The HMAC uses RHASH as the underlying hash function.  The type of
  RHASH depends on the HIT Suite of the Responder.  Hence, HMAC-SHA-256
  [RFC4868] is used for HIT Suite RSA/DSA/SHA-256, HMAC-SHA-1 [RFC2404]
  is used for HIT Suite ECDSA_LOW/SHA-1, and HMAC-SHA-384 [RFC4868] is
  used for HIT Suite ECDSA/SHA-384.

  The following process applies both to the HIP_MAC and HIP_MAC_2
  parameters.  When processing HIP_MAC_2, the difference is that the
  HIP_MAC calculation includes a pseudo HOST_ID field containing the
  Responder's information as sent in the R1 packet earlier.




Moskowitz, et al.            Standards Track                   [Page 84]

RFC 7401                          HIPv2                       April 2015


  Both the Initiator and the Responder should take some care when
  verifying or calculating the HIP_MAC_2.  Specifically, the Initiator
  has to preserve the HOST_ID exactly as it was received in the R1
  packet until it receives the HIP_MAC_2 in the R2 packet.

  The scope of the calculation for HIP_MAC is as follows:

  HMAC: { HIP header | [ Parameters ] }

  where Parameters include all of the packet's HIP parameters with type
  values ranging from 1 to (HIP_MAC's type value - 1), and excluding
  those parameters with type values greater than or equal to HIP_MAC's
  type value.

  During HIP_MAC calculation, the following apply:

  o  In the HIP header, the Checksum field is set to zero.

  o  In the HIP header, the Header Length field value is calculated to
     the beginning of the HIP_MAC parameter.

  Parameter order is described in Section 5.2.1.

  The scope of the calculation for HIP_MAC_2 is as follows:

  HIP_MAC_2: { HIP header | [ Parameters ] | HOST_ID }

  where Parameters include all of the packet's HIP parameters with type
  values from 1 to (HIP_MAC_2's type value - 1), and excluding those
  parameters with type values greater than or equal to HIP_MAC_2's type
  value.

  During HIP_MAC_2 calculation, the following apply:

  o  In the HIP header, the Checksum field is set to zero.

  o  In the HIP header, the Header Length field value is calculated to
     the beginning of the HIP_MAC_2 parameter and increased by the
     length of the concatenated HOST_ID parameter length (including the
     Type and Length fields).

  o  The HOST_ID parameter is exactly in the form it was received in
     the R1 packet from the Responder.

  Parameter order is described in Section 5.2.1, except that the
  HOST_ID parameter in this calculation is added to the end.





Moskowitz, et al.            Standards Track                   [Page 85]

RFC 7401                          HIPv2                       April 2015


  The HIP_MAC parameter is defined in Section 5.2.12 and the HIP_MAC_2
  parameter in Section 5.2.13.  The HMAC calculation and verification
  process (the process applies both to HIP_MAC and HIP_MAC_2, except
  where HIP_MAC_2 is mentioned separately) is as follows:

  Packet sender:

  1.  Create the HIP packet, without the HIP_MAC, HIP_SIGNATURE,
      HIP_SIGNATURE_2, or any other parameter with greater type value
      than the HIP_MAC parameter has.

  2.  In case of HIP_MAC_2 calculation, add a HOST_ID (Responder)
      parameter to the end of the packet.

  3.  Calculate the Header Length field in the HIP header, including
      the added HOST_ID parameter in case of HIP_MAC_2.

  4.  Compute the HMAC using either the HIP-gl or HIP-lg integrity key
      retrieved from KEYMAT as defined in Section 6.5.

  5.  In case of HIP_MAC_2, remove the HOST_ID parameter from the
      packet.

  6.  Add the HIP_MAC parameter to the packet and any parameter with
      greater type value than the HIP_MAC's (HIP_MAC_2's) that may
      follow, including possible HIP_SIGNATURE or HIP_SIGNATURE_2
      parameters.

  7.  Recalculate the Length field in the HIP header.

  Packet receiver:

  1.  Verify the HIP Header Length field.

  2.  Remove the HIP_MAC or HIP_MAC_2 parameter, as well as all other
      parameters that follow it with greater type value including
      possible HIP_SIGNATURE or HIP_SIGNATURE_2 fields, saving the
      contents if they are needed later.

  3.  In case of HIP_MAC_2, build and add a HOST_ID parameter (with
      Responder information) to the packet.  The HOST_ID parameter
      should be identical to the one previously received from the
      Responder.

  4.  Recalculate the HIP packet length in the HIP header and clear the
      Checksum field (set it to all zeros).  In case of HIP_MAC_2, the
      length is calculated with the added HOST_ID parameter.




Moskowitz, et al.            Standards Track                   [Page 86]

RFC 7401                          HIPv2                       April 2015


  5.  Compute the HMAC using either the HIP-gl or HIP-lg integrity key
      as defined in Section 6.5 and verify it against the received
      HMAC.

  6.  Set the Checksum and Header Length fields in the HIP header to
      original values.  Note that the Checksum and Length fields
      contain incorrect values after this step.

  7.  In case of HIP_MAC_2, remove the HOST_ID parameter from the
      packet before further processing.

6.4.2.  Signature Calculation

  The following process applies both to the HIP_SIGNATURE and
  HIP_SIGNATURE_2 parameters.  When processing the HIP_SIGNATURE_2
  parameter, the only difference is that instead of the HIP_SIGNATURE
  parameter, the HIP_SIGNATURE_2 parameter is used, and the Initiator's
  HIT and PUZZLE Opaque and Random #I fields are cleared (set to all
  zeros) before computing the signature.  The HIP_SIGNATURE parameter
  is defined in Section 5.2.14 and the HIP_SIGNATURE_2 parameter in
  Section 5.2.15.

  The scope of the calculation for HIP_SIGNATURE and HIP_SIGNATURE_2 is
  as follows:

  HIP_SIGNATURE: { HIP header | [ Parameters ] }

  where Parameters include all of the packet's HIP parameters with type
  values from 1 to (HIP_SIGNATURE's type value - 1).

  During signature calculation, the following apply:

  o  In the HIP header, the Checksum field is set to zero.

  o  In the HIP header, the Header Length field value is calculated to
     the beginning of the HIP_SIGNATURE parameter.

  Parameter order is described in Section 5.2.1.

  HIP_SIGNATURE_2: { HIP header | [ Parameters ] }

  where Parameters include all of the packet's HIP parameters with type
  values ranging from 1 to (HIP_SIGNATURE_2's type value - 1).








Moskowitz, et al.            Standards Track                   [Page 87]

RFC 7401                          HIPv2                       April 2015


  During signature calculation, the following apply:

  o  In the HIP header, both the Checksum and the Receiver's HIT fields
     are set to zero.

  o  In the HIP header, the Header Length field value is calculated to
     the beginning of the HIP_SIGNATURE_2 parameter.

  o  The PUZZLE parameter's Opaque and Random #I fields are set to
     zero.

  Parameter order is described in Section 5.2.1.

  The signature calculation and verification process (the process
  applies both to HIP_SIGNATURE and HIP_SIGNATURE_2, except in the case
  where HIP_SIGNATURE_2 is separately mentioned) is as follows:

  Packet sender:

  1.  Create the HIP packet without the HIP_SIGNATURE parameter or any
      other parameters that follow the HIP_SIGNATURE parameter.

  2.  Calculate the Length field and zero the Checksum field in the HIP
      header.  In case of HIP_SIGNATURE_2, set the Initiator's HIT
      field in the HIP header as well as the PUZZLE parameter's Opaque
      and Random #I fields to zero.

  3.  Compute the signature using the private key corresponding to the
      Host Identifier (public key).

  4.  Add the HIP_SIGNATURE parameter to the packet.

  5.  Add any parameters that follow the HIP_SIGNATURE parameter.

  6.  Recalculate the Length field in the HIP header, and calculate the
      Checksum field.

  Packet receiver:

  1.  Verify the HIP Header Length field and checksum.

  2.  Save the contents of the HIP_SIGNATURE parameter and any other
      parameters following the HIP_SIGNATURE parameter, and remove them
      from the packet.







Moskowitz, et al.            Standards Track                   [Page 88]

RFC 7401                          HIPv2                       April 2015


  3.  Recalculate the HIP packet Length in the HIP header and clear the
      Checksum field (set it to all zeros).  In case of
      HIP_SIGNATURE_2, set the Initiator's HIT field in the HIP header
      as well as the PUZZLE parameter's Opaque and Random #I fields
      to zero.

  4.  Compute the signature and verify it against the received
      signature using the packet sender's Host Identity (public key).

  5.  Restore the original packet by adding removed parameters (in
      step 2) and resetting the values that were set to zero (in
      step 3).

  The verification can use either the HI received from a HIP packet;
  the HI retrieved from a DNS query, if the FQDN has been received in
  the HOST_ID parameter; or an HI received by some other means.

6.5.  HIP KEYMAT Generation

  HIP keying material is derived from the Diffie-Hellman session key,
  Kij, produced during the HIP base exchange (see Section 4.1.3).  The
  Initiator has Kij during the creation of the I2 packet, and the
  Responder has Kij once it receives the I2 packet.  This is why I2 can
  already contain encrypted information.

  The KEYMAT is derived by feeding Kij into the key derivation function
  defined by the DH Group ID.  Currently, the only key derivation
  function defined in this document is the Hash-based Key Derivation
  Function (HKDF) [RFC5869] using the RHASH hash function.  Other
  documents may define new DH Group IDs and corresponding key
  distribution functions.

  In the following, we provide the details for deriving the keying
  material using HKDF.

  where

  info    = sort(HIT-I | HIT-R)
  salt    =  #I | #J

  Sort(HIT-I | HIT-R) is defined as the network byte order
  concatenation of the two HITs, with the smaller HIT preceding the
  larger HIT, resulting from the numeric comparison of the two HITs
  interpreted as positive (unsigned) 128-bit integers in network byte
  order.  The #I and #J values are from the puzzle and its solution
  that were exchanged in R1 and I2 messages when this HIP association
  was set up.  Both hosts have to store #I and #J values for the HIP
  association for future use.



Moskowitz, et al.            Standards Track                   [Page 89]

RFC 7401                          HIPv2                       April 2015


  The initial keys are drawn sequentially in the order that is
  determined by the numeric comparison of the two HITs, with the
  comparison method described in the previous paragraph.  HOST_g
  denotes the host with the greater HIT value, and HOST_l the host with
  the lower HIT value.

  The drawing order for the four initial keys is as follows:

     HIP-gl encryption key for HOST_g's ENCRYPTED parameter

     HIP-gl integrity (HMAC) key for HOST_g's outgoing HIP packets

     HIP-lg encryption key for HOST_l's ENCRYPTED parameter

     HIP-lg integrity (HMAC) key for HOST_l's outgoing HIP packets

  The number of bits drawn for a given algorithm is the "natural" size
  of the keys.  For the mandatory algorithms, the following sizes
  apply:

     AES       128 or 256 bits

     SHA-1     160 bits

     SHA-256   256 bits

     SHA-384   384 bits

     NULL      0 bits

  If other key sizes are used, they MUST be treated as different
  encryption algorithms and defined separately.

6.6.  Initiation of a HIP Base Exchange

  An implementation may originate a HIP base exchange to another host
  based on a local policy decision, usually triggered by an application
  datagram, in much the same way that an IPsec IKE key exchange can
  dynamically create a Security Association.  Alternatively, a system
  may initiate a HIP exchange if it has rebooted or timed out, or
  otherwise lost its HIP state, as described in Section 4.5.4.

  The implementation prepares an I1 packet and sends it to the IP
  address that corresponds to the peer host.  The IP address of the
  peer host may be obtained via conventional mechanisms, such as DNS
  lookup.  The I1 packet contents are specified in Section 5.3.1.  The





Moskowitz, et al.            Standards Track                   [Page 90]

RFC 7401                          HIPv2                       April 2015


  selection of which source or destination Host Identity to use, if an
  Initiator or Responder has more than one to choose from, is typically
  a policy decision.

  The following steps define the conceptual processing rules for
  initiating a HIP base exchange:

  1.  The Initiator receives one or more of the Responder's HITs and
      one or more addresses from either a DNS lookup of the Responder's
      FQDN, some other repository, or a local database.  If the
      Initiator does not know the Responder's HIT, it may attempt
      opportunistic mode by using NULL (all zeros) as the Responder's
      HIT (see also "HIP Opportunistic Mode" (Section 4.1.8)).  If the
      Initiator can choose from multiple Responder HITs, it selects a
      HIT for which the Initiator supports the HIT Suite.

  2.  The Initiator sends an I1 packet to one of the Responder's
      addresses.  The selection of which address to use is a local
      policy decision.

  3.  The Initiator includes the DH_GROUP_LIST in the I1 packet.  The
      selection and order of DH Group IDs in the DH_GROUP_LIST MUST be
      stored by the Initiator, because this list is needed for later R1
      processing.  In most cases, the preferences regarding the DH
      groups will be static, so no per-association storage is
      necessary.

  4.  Upon sending an I1 packet, the sender transitions to state
      I1-SENT and starts a timer for which the timeout value SHOULD be
      larger than the worst-case anticipated RTT.  The sender SHOULD
      also increment the trial counter associated with the I1.

  5.  Upon timeout, the sender SHOULD retransmit the I1 packet and
      restart the timer, up to a maximum of I1_RETRIES_MAX tries.

6.6.1.  Sending Multiple I1 Packets in Parallel

  For the sake of minimizing the association establishment latency, an
  implementation MAY send the same I1 packet to more than one of the
  Responder's addresses.  However, it MUST NOT send to more than three
  (3) Responder addresses in parallel.  Furthermore, upon timeout, the
  implementation MUST refrain from sending the same I1 packet to
  multiple addresses.  That is, if it retries to initialize the
  connection after a timeout, it MUST NOT send the I1 packet to more
  than one destination address.  These limitations are placed in order
  to avoid congestion of the network, and potential DoS attacks that





Moskowitz, et al.            Standards Track                   [Page 91]

RFC 7401                          HIPv2                       April 2015


  might occur, e.g., because someone's claim to have hundreds or
  thousands of addresses could generate a huge number of I1 packets
  from the Initiator.

  As the Responder is not guaranteed to distinguish the duplicate I1
  packets it receives at several of its addresses (because it avoids
  storing states when it answers back an R1 packet), the Initiator may
  receive several duplicate R1 packets.

  The Initiator SHOULD then select the initial preferred destination
  address using the source address of the selected received R1, and use
  the preferred address as a source address for the I2 packet.
  Processing rules for received R1s are discussed in Section 6.8.

6.6.2.  Processing Incoming ICMP Protocol Unreachable Messages

  A host may receive an ICMP 'Destination Protocol Unreachable' message
  as a response to sending a HIP I1 packet.  Such a packet may be an
  indication that the peer does not support HIP, or it may be an
  attempt to launch an attack by making the Initiator believe that the
  Responder does not support HIP.

  When a system receives an ICMP 'Destination Protocol Unreachable'
  message while it is waiting for an R1 packet, it MUST NOT terminate
  waiting.  It MAY continue as if it had not received the ICMP message,
  and send a few more I1 packets.  Alternatively, it MAY take the ICMP
  message as a hint that the peer most probably does not support HIP,
  and return to state UNASSOCIATED earlier than otherwise.  However, at
  minimum, it MUST continue waiting for an R1 packet for a reasonable
  time before returning to UNASSOCIATED.

6.7.  Processing of Incoming I1 Packets

  An implementation SHOULD reply to an I1 with an R1 packet, unless the
  implementation is unable or unwilling to set up a HIP association.
  If the implementation is unable to set up a HIP association, the host
  SHOULD send an 'ICMP Destination Protocol Unreachable,
  Administratively Prohibited' message to the I1 packet source IP
  address.  If the implementation is unwilling to set up a HIP
  association, the host MAY ignore the I1 packet.  This latter case may
  occur during a DoS attack such as an I1 packet flood.

  The implementation SHOULD be able to handle a storm of received I1
  packets, discarding those with common content that arrive within a
  small time delta.






Moskowitz, et al.            Standards Track                   [Page 92]

RFC 7401                          HIPv2                       April 2015


  A spoofed I1 packet can result in an R1 attack on a system.  An R1
  packet sender MUST have a mechanism to rate-limit R1 packets sent to
  an address.

  It is RECOMMENDED that the HIP state machine does not transition upon
  sending an R1 packet.

  The following steps define the conceptual processing rules for
  responding to an I1 packet:

  1.  The Responder MUST check that the Responder's HIT in the received
      I1 packet is either one of its own HITs or NULL.  Otherwise, it
      must drop the packet.

  2.  If the Responder is in ESTABLISHED state, the Responder MAY
      respond to this with an R1 packet, prepare to drop an existing
      HIP security association with the peer, and stay at ESTABLISHED
      state.

  3.  If the Responder is in I1-SENT state, it MUST make a comparison
      between the sender's HIT and its own (i.e., the receiver's) HIT.
      If the sender's HIT is greater than its own HIT, it should drop
      the I1 packet and stay at I1-SENT.  If the sender's HIT is
      smaller than its own HIT, it SHOULD send the R1 packet and stay
      at I1-SENT.  The HIT comparison is performed as defined in
      Section 6.5.

  4.  If the implementation chooses to respond to the I1 packet with an
      R1 packet, it creates a new R1 or selects a precomputed R1
      according to the format described in Section 5.3.2.  It creates
      or chooses an R1 that contains its most preferred DH public value
      that is also contained in the DH_GROUP_LIST in the I1 packet.  If
      no suitable DH Group ID was contained in the DH_GROUP_LIST in the
      I1 packet, it sends an R1 with any suitable DH public key.

  5.  If the received Responder's HIT in the I1 is NULL, the Responder
      selects a HIT with the same HIT Suite as the Initiator's HIT.  If
      this HIT Suite is not supported by the Responder, it SHOULD
      select a REQUIRED HIT Suite from Section 5.2.10, which is
      currently RSA/DSA/SHA-256.  Other than that, selecting the HIT is
      a local policy matter.










Moskowitz, et al.            Standards Track                   [Page 93]

RFC 7401                          HIPv2                       April 2015


  6.  The Responder expresses its supported HIP transport formats in
      the TRANSPORT_FORMAT_LIST as described in Section 5.2.11.  The
      Responder MUST provide at least one payload transport format
      type.

  7.  The Responder sends the R1 packet to the source IP address of the
      I1 packet.

6.7.1.  R1 Management

  All compliant implementations MUST be able to produce R1 packets;
  even if a device is configured by policy to only initiate
  associations, it must be able to process I1s in cases of recovery
  from loss of state or key exhaustion.  An R1 packet MAY be
  precomputed.  An R1 packet MAY be reused for a short time period,
  denoted here as "Delta T", which is implementation dependent, and
  SHOULD be deprecated and not used once a valid response I2 packet has
  been received from an Initiator.  During an I1 message storm, an R1
  packet MAY be reused beyond the normal Delta T.  R1 information MUST
  NOT be discarded until a time period "Delta S" (again, implementation
  dependent) after the R1 packet is no longer being offered.  Delta S
  is the assumed maximum time needed for the last I2 packet in response
  to the R1 packet to arrive back at the Responder.

  Implementations that support multiple DH groups MAY precompute R1
  packets for each supported group so that incoming I1 packets with
  different DH Group IDs in the DH_GROUP_LIST can be served quickly.

  An implementation MAY keep state about received I1 packets and match
  the received I2 packets against the state, as discussed in
  Section 4.1.1.

6.7.2.  Handling of Malformed Messages

  If an implementation receives a malformed I1 packet, it SHOULD NOT
  respond with a NOTIFY message, as such a practice could open up a
  potential denial-of-service threat.  Instead, it MAY respond with an
  ICMP packet, as defined in Section 5.4.

6.8.  Processing of Incoming R1 Packets

  A system receiving an R1 packet MUST first check to see if it has
  sent an I1 packet to the originator of the R1 packet (i.e., it is in
  state I1-SENT).  If so, it SHOULD process the R1 as described below,
  send an I2 packet, and transition to state I2-SENT, setting a timer
  to protect the I2 packet.  If the system is in state I2-SENT, it MAY
  respond to the R1 packet if the R1 packet has a larger R1 generation
  counter; if so, it should drop its state due to processing the



Moskowitz, et al.            Standards Track                   [Page 94]

RFC 7401                          HIPv2                       April 2015


  previous R1 packet and start over from state I1-SENT.  If the system
  is in any other state with respect to that host, the system SHOULD
  silently drop the R1 packet.

  When sending multiple I1 packets, an Initiator SHOULD wait for a
  small amount of time after the first R1 reception to allow possibly
  multiple R1 packets to arrive, and it SHOULD respond to an R1 packet
  among the set with the largest R1 generation counter.

  The following steps define the conceptual processing rules for
  responding to an R1 packet:

  1.   A system receiving an R1 MUST first check to see if it has sent
       an I1 packet to the originator of the R1 packet (i.e., it has a
       HIP association that is in state I1-SENT and that is associated
       with the HITs in the R1).  Unless the I1 packet was sent in
       opportunistic mode (see Section 4.1.8), the IP addresses in the
       received R1 packet SHOULD be ignored by the R1 processing and,
       when looking up the right HIP association, the received R1
       packet SHOULD be matched against the associations using only the
       HITs.  If a match exists, the system should process the R1
       packet as described below.

  2.   Otherwise, if the system is in any state other than I1-SENT or
       I2-SENT with respect to the HITs included in the R1 packet, it
       SHOULD silently drop the R1 packet and remain in the current
       state.

  3.   If the HIP association state is I1-SENT or I2-SENT, the received
       Initiator's HIT MUST correspond to the HIT used in the original
       I1.  Also, the Responder's HIT MUST correspond to the one used
       in the I1, unless the I1 packet contained a NULL HIT.

  4.   The system SHOULD validate the R1 signature before applying
       further packet processing, according to Section 5.2.15.

  5.   If the HIP association state is I1-SENT, and multiple valid R1
       packets are present, the system MUST select from among the R1
       packets with the largest R1 generation counter.

  6.   The system MUST check that the Initiator's HIT Suite is
       contained in the HIT_SUITE_LIST parameter in the R1 packet
       (i.e., the Initiator's HIT Suite is supported by the Responder).
       If the HIT Suite is supported by the Responder, the system
       proceeds normally.  Otherwise, the system MAY stay in state
       I1-SENT and restart the BEX by sending a new I1 packet with an
       Initiator HIT that is supported by the Responder and hence is
       contained in the HIT_SUITE_LIST in the R1 packet.  The system



Moskowitz, et al.            Standards Track                   [Page 95]

RFC 7401                          HIPv2                       April 2015


       MAY abort the BEX if no suitable source HIT is available.  The
       system SHOULD wait for an acceptable time span to allow further
       R1 packets with higher R1 generation counters or different HIT
       and HIT Suites to arrive before restarting or aborting the BEX.

  7.   The system MUST check that the DH Group ID in the DIFFIE_HELLMAN
       parameter in the R1 matches the first DH Group ID in the
       Responder's DH_GROUP_LIST in the R1 packet, and also that this
       Group ID corresponds to a value that was included in the
       Initiator's DH_GROUP_LIST in the I1 packet.  If the DH Group ID
       of the DIFFIE_HELLMAN parameter does not express the Responder's
       best choice, the Initiator can conclude that the DH_GROUP_LIST
       in the I1 packet was adversely modified.  In such a case, the
       Initiator MAY send a new I1 packet; however, it SHOULD NOT
       change its preference in the DH_GROUP_LIST in the new I1 packet.
       Alternatively, the Initiator MAY abort the HIP base exchange.

  8.   If the HIP association state is I2-SENT, the system MAY re-enter
       state I1-SENT and process the received R1 packet if it has a
       larger R1 generation counter than the R1 packet responded to
       previously.

  9.   The R1 packet may have the A-bit set -- in this case, the system
       MAY choose to refuse it by dropping the R1 packet and returning
       to state UNASSOCIATED.  The system SHOULD consider dropping the
       R1 packet only if it used a NULL HIT in the I1 packet.  If the
       A-bit is set, the Responder's HIT is anonymous and SHOULD NOT be
       stored permanently.

  10.  The system SHOULD attempt to validate the HIT against the
       received Host Identity by using the received Host Identity to
       construct a HIT and verify that it matches the Sender's HIT.

  11.  The system MUST store the received R1 generation counter for
       future reference.

  12.  The system attempts to solve the puzzle in the R1 packet.  The
       system MUST terminate the search after exceeding the remaining
       lifetime of the puzzle.  If the puzzle is not successfully
       solved, the implementation MAY either resend the I1 packet
       within the retry bounds or abandon the HIP base exchange.

  13.  The system computes standard Diffie-Hellman keying material
       according to the public value and Group ID provided in the
       DIFFIE_HELLMAN parameter.  The Diffie-Hellman keying material
       Kij is used for key extraction as specified in Section 6.5.





Moskowitz, et al.            Standards Track                   [Page 96]

RFC 7401                          HIPv2                       April 2015


  14.  The system selects the HIP_CIPHER ID from the choices presented
       in the R1 packet and uses the selected values subsequently when
       generating and using encryption keys, and when sending the I2
       packet.  If the proposed alternatives are not acceptable to the
       system, it may either resend an I1 within the retry bounds or
       abandon the HIP base exchange.

  15.  The system chooses one suitable transport format from the
       TRANSPORT_FORMAT_LIST and includes the respective transport
       format parameter in the subsequent I2 packet.

  16.  The system initializes the remaining variables in the associated
       state, including Update ID counters.

  17.  The system prepares and sends an I2 packet, as described in
       Section 5.3.3.

  18.  The system SHOULD start a timer whose timeout value SHOULD be
       larger than the worst-case anticipated RTT, and MUST increment a
       trial counter associated with the I2 packet.  The sender SHOULD
       retransmit the I2 packet upon a timeout and restart the timer,
       up to a maximum of I2_RETRIES_MAX tries.

  19.  If the system is in state I1-SENT, it SHALL transition to state
       I2-SENT.  If the system is in any other state, it remains in the
       current state.

6.8.1.  Handling of Malformed Messages

  If an implementation receives a malformed R1 message, it MUST
  silently drop the packet.  Sending a NOTIFY or ICMP would not help,
  as the sender of the R1 packet typically doesn't have any state.  An
  implementation SHOULD wait for some more time for a possibly well-
  formed R1, after which it MAY try again by sending a new I1 packet.

6.9.  Processing of Incoming I2 Packets

  Upon receipt of an I2 packet, the system MAY perform initial checks
  to determine whether the I2 packet corresponds to a recent R1 packet
  that has been sent out, if the Responder keeps such state.  For
  example, the sender could check whether the I2 packet is from an
  address or HIT for which the Responder has recently received an I1.
  The R1 packet may have had opaque data included that was echoed back
  in the I2 packet.  If the I2 packet is considered to be suspect, it
  MAY be silently discarded by the system.






Moskowitz, et al.            Standards Track                   [Page 97]

RFC 7401                          HIPv2                       April 2015


  Otherwise, the HIP implementation SHOULD process the I2 packet.  This
  includes validation of the puzzle solution, generating the
  Diffie-Hellman key, possibly decrypting the Initiator's Host
  Identity, verifying the signature, creating state, and finally
  sending an R2 packet.

  The following steps define the conceptual processing rules for
  responding to an I2 packet:

  1.   The system MAY perform checks to verify that the I2 packet
       corresponds to a recently sent R1 packet.  Such checks are
       implementation dependent.  See Appendix A for a description of
       an example implementation.

  2.   The system MUST check that the Responder's HIT corresponds to
       one of its own HITs and MUST drop the packet otherwise.

  3.   The system MUST further check that the Initiator's HIT Suite is
       supported.  The Responder SHOULD silently drop I2 packets with
       unsupported Initiator HITs.

  4.   If the system's state machine is in the R2-SENT state, the
       system MAY check to see if the newly received I2 packet is
       similar to the one that triggered moving to R2-SENT.  If so, it
       MAY retransmit a previously sent R2 packet and reset the R2-SENT
       timer, and the state machine stays in R2-SENT.

  5.   If the system's state machine is in the I2-SENT state, the
       system MUST make a comparison between its local and sender's
       HITs (similar to the comparison method described in
       Section 6.5).  If the local HIT is smaller than the sender's
       HIT, it should drop the I2 packet, use the peer Diffie-Hellman
       key and nonce #I from the R1 packet received earlier, and get
       the local Diffie-Hellman key and nonce #J from the I2 packet
       sent to the peer earlier.  Otherwise, the system should process
       the received I2 packet and drop any previously derived
       Diffie-Hellman keying material Kij it might have formed upon
       sending the I2 packet previously.  The peer Diffie-Hellman key
       and the nonce #J are taken from the I2 packet that just arrived.
       The local Diffie-Hellman key and the nonce #I are the ones that
       were sent earlier in the R1 packet.

  6.   If the system's state machine is in the I1-SENT state, and the
       HITs in the I2 packet match those used in the previously sent I1
       packet, the system uses this received I2 packet as the basis for
       the HIP association it was trying to form, and stops
       retransmitting I1 packets (provided that the I2 packet passes
       the additional checks below).



Moskowitz, et al.            Standards Track                   [Page 98]

RFC 7401                          HIPv2                       April 2015


  7.   If the system's state machine is in any state other than
       R2-SENT, the system SHOULD check that the echoed R1 generation
       counter in the I2 packet is within the acceptable range if the
       counter is included.  Implementations MUST accept puzzles from
       the current generation and MAY accept puzzles from earlier
       generations.  If the generation counter in the newly received I2
       packet is outside the accepted range, the I2 packet is stale
       (and perhaps replayed) and SHOULD be dropped.

  8.   The system MUST validate the solution to the puzzle by computing
       the hash described in Section 5.3.3 using the same RHASH
       algorithm.

  9.   The I2 packet MUST have a single value in the HIP_CIPHER
       parameter, which MUST match one of the values offered to the
       Initiator in the R1 packet.

  10.  The system must derive Diffie-Hellman keying material Kij based
       on the public value and Group ID in the DIFFIE_HELLMAN
       parameter.  This key is used to derive the HIP association keys,
       as described in Section 6.5.  If the Diffie-Hellman Group ID is
       unsupported, the I2 packet is silently dropped.

  11.  The encrypted HOST_ID is decrypted by the Initiator's encryption
       key defined in Section 6.5.  If the decrypted data is not a
       HOST_ID parameter, the I2 packet is silently dropped.

  12.  The implementation SHOULD also verify that the Initiator's HIT
       in the I2 packet corresponds to the Host Identity sent in the I2
       packet.  (Note: some middleboxes may not be able to make this
       verification.)

  13.  The system MUST process the TRANSPORT_FORMAT_LIST parameter.
       Other documents specifying transport formats (e.g., [RFC7402])
       contain specifications for handling any specific transport
       selected.

  14.  The system MUST verify the HIP_MAC according to the procedures
       in Section 5.2.12.

  15.  The system MUST verify the HIP_SIGNATURE according to
       Sections 5.2.14 and 5.3.3.

  16.  If the checks above are valid, then the system proceeds with
       further I2 processing; otherwise, it discards the I2 and its
       state machine remains in the same state.





Moskowitz, et al.            Standards Track                   [Page 99]

RFC 7401                          HIPv2                       April 2015


  17.  The I2 packet may have the A-bit set -- in this case, the system
       MAY choose to refuse it by dropping the I2 and the state machine
       returns to state UNASSOCIATED.  If the A-bit is set, the
       Initiator's HIT is anonymous and should not be stored
       permanently.

  18.  The system initializes the remaining variables in the associated
       state, including Update ID counters.

  19.  Upon successful processing of an I2 message when the system's
       state machine is in state UNASSOCIATED, I1-SENT, I2-SENT, or
       R2-SENT, an R2 packet is sent and the system's state machine
       transitions to state R2-SENT.

  20.  Upon successful processing of an I2 packet when the system's
       state machine is in state ESTABLISHED, the old HIP association
       is dropped and a new one is installed, an R2 packet is sent, and
       the system's state machine transitions to R2-SENT.

  21.  Upon the system's state machine transitioning to R2-SENT, the
       system starts a timer.  The state machine transitions to
       ESTABLISHED if some data has been received on the incoming HIP
       association, or an UPDATE packet has been received (or some
       other packet that indicates that the peer system's state machine
       has moved to ESTABLISHED).  If the timer expires (allowing for a
       maximal amount of retransmissions of I2 packets), the state
       machine transitions to ESTABLISHED.

6.9.1.  Handling of Malformed Messages

  If an implementation receives a malformed I2 message, the behavior
  SHOULD depend on how many checks the message has already passed.  If
  the puzzle solution in the message has already been checked, the
  implementation SHOULD report the error by responding with a NOTIFY
  packet.  Otherwise, the implementation MAY respond with an ICMP
  message as defined in Section 5.4.















Moskowitz, et al.            Standards Track                  [Page 100]

RFC 7401                          HIPv2                       April 2015


6.10.  Processing of Incoming R2 Packets

  An R2 packet received in state UNASSOCIATED, I1-SENT, or ESTABLISHED
  results in the R2 packet being dropped and the state machine staying
  in the same state.  If an R2 packet is received in state I2-SENT, it
  MUST be processed.

  The following steps define the conceptual processing rules for an
  incoming R2 packet:

  1.  If the system is in any state other than I2-SENT, the R2 packet
      is silently dropped.

  2.  The system MUST verify that the HITs in use correspond to the
      HITs that were received in the R1 packet that caused the
      transition to the I1-SENT state.

  3.  The system MUST verify the HIP_MAC_2 according to the procedures
      in Section 5.2.13.

  4.  The system MUST verify the HIP signature according to the
      procedures in Section 5.2.14.

  5.  If any of the checks above fail, there is a high probability of
      an ongoing man-in-the-middle or other security attack.  The
      system SHOULD act accordingly, based on its local policy.

  6.  Upon successful processing of the R2 packet, the state machine
      transitions to state ESTABLISHED.

6.11.  Sending UPDATE Packets

  A host sends an UPDATE packet when it intends to update some
  information related to a HIP association.  There are a number of
  possible scenarios when this can occur, e.g., mobility management and
  rekeying of an existing ESP Security Association.  The following
  paragraphs define the conceptual rules for sending an UPDATE packet
  to the peer.  Additional steps can be defined in other documents
  where the UPDATE packet is used.

  The sequence of UPDATE messages is indicated by their SEQ parameter.
  Before sending an UPDATE message, the system first determines whether
  there are any outstanding UPDATE messages that may conflict with the
  new UPDATE message under consideration.  When multiple UPDATEs are
  outstanding (not yet acknowledged), the sender must assume that such
  UPDATEs may be processed in an arbitrary order by the receiver.
  Therefore, any new UPDATEs that depend on a previous outstanding
  UPDATE being successfully received and acknowledged MUST be postponed



Moskowitz, et al.            Standards Track                  [Page 101]

RFC 7401                          HIPv2                       April 2015


  until reception of the necessary ACK(s) occurs.  One way to prevent
  any conflicts is to only allow one outstanding UPDATE at a time.
  However, allowing multiple UPDATEs may improve the performance of
  mobility and multihoming protocols.

  The following steps define the conceptual processing rules for
  sending UPDATE packets:

  1.  The first UPDATE packet is sent with an Update ID of zero.
      Otherwise, the system increments its own Update ID value by one
      before continuing the steps below.

  2.  The system creates an UPDATE packet that contains a SEQ parameter
      with the current value of the Update ID.  The UPDATE packet MAY
      also include zero or more ACKs of the peer's Update ID(s) from
      previously received UPDATE SEQ parameter(s).

  3.  The system sends the created UPDATE packet and starts an UPDATE
      timer.  The default value for the timer is 2 * RTT estimate.  If
      multiple UPDATEs are outstanding, multiple timers are in effect.

  4.  If the UPDATE timer expires, the UPDATE is resent.  The UPDATE
      can be resent UPDATE_RETRY_MAX times.  The UPDATE timer SHOULD be
      exponentially backed off for subsequent retransmissions.  If no
      acknowledgment is received from the peer after UPDATE_RETRY_MAX
      times, the HIP association is considered to be broken and the
      state machine SHOULD move from state ESTABLISHED to state CLOSING
      as depicted in Section 4.4.4.  The UPDATE timer is cancelled upon
      receiving an ACK from the peer that acknowledges receipt of the
      UPDATE.

6.12.  Receiving UPDATE Packets

  When a system receives an UPDATE packet, its processing depends on
  the state of the HIP association and the presence and values of the
  SEQ and ACK parameters.  Typically, an UPDATE message also carries
  optional parameters whose handling is defined in separate documents.

  For each association, a host stores the peer's next expected
  in-sequence Update ID ("peer Update ID").  Initially, this value is
  zero.  Update ID comparisons of "less than" and "greater than" are
  performed with respect to a circular sequence number space.  Hence, a
  wraparound after 2^32 updates has to be expected and MUST be handled
  accordingly.

  The sender MAY send multiple outstanding UPDATE messages.  These
  messages are processed in the order in which they are received at the
  receiver (i.e., no resequencing is performed).  When processing



Moskowitz, et al.            Standards Track                  [Page 102]

RFC 7401                          HIPv2                       April 2015


  UPDATEs out of order, the receiver MUST keep track of which UPDATEs
  were previously processed, so that duplicates or retransmissions are
  ACKed and not reprocessed.  A receiver MAY choose to define a receive
  window of Update IDs that it is willing to process at any given time,
  and discard received UPDATEs falling outside of that window.

  The following steps define the conceptual processing rules for
  receiving UPDATE packets:

  1.  If there is no corresponding HIP association, the implementation
      MAY reply with an ICMP Parameter Problem, as specified in
      Section 5.4.4.

  2.  If the association is in the ESTABLISHED state and the SEQ (but
      not ACK) parameter is present, the UPDATE is processed and
      replied to as described in Section 6.12.1.

  3.  If the association is in the ESTABLISHED state and the ACK (but
      not SEQ) parameter is present, the UPDATE is processed as
      described in Section 6.12.2.

  4.  If the association is in the ESTABLISHED state and there are both
      an ACK and SEQ in the UPDATE, the ACK is first processed as
      described in Section 6.12.2, and then the rest of the UPDATE is
      processed as described in Section 6.12.1.

6.12.1.  Handling a SEQ Parameter in a Received UPDATE Message

  The following steps define the conceptual processing rules for
  handling a SEQ parameter in a received UPDATE packet:

  1.  If the Update ID in the received SEQ is not the next in the
      sequence of Update IDs and is greater than the receiver's window
      for new UPDATEs, the packet MUST be dropped.

  2.  If the Update ID in the received SEQ corresponds to an UPDATE
      that has recently been processed, the packet is treated as a
      retransmission.  The HIP_MAC verification (next step) MUST NOT be
      skipped.  (A byte-by-byte comparison of the received packet and a
      stored packet would be acceptable, though.)  It is recommended
      that a host caches UPDATE packets sent with ACKs to avoid the
      cost of generating a new ACK packet to respond to a replayed
      UPDATE.  The system MUST acknowledge, again, such (apparent)
      UPDATE message retransmissions but SHOULD also consider rate-
      limiting such retransmission responses to guard against replay
      attacks.





Moskowitz, et al.            Standards Track                  [Page 103]

RFC 7401                          HIPv2                       April 2015


  3.  The system MUST verify the HIP_MAC in the UPDATE packet.  If the
      verification fails, the packet MUST be dropped.

  4.  The system MAY verify the SIGNATURE in the UPDATE packet.  If the
      verification fails, the packet SHOULD be dropped and an error
      message logged.

  5.  If a new SEQ parameter is being processed, the parameters in the
      UPDATE are then processed.  The system MUST record the Update ID
      in the received SEQ parameter, for replay protection.

  6.  An UPDATE acknowledgment packet with the ACK parameter is
      prepared and sent to the peer.  This ACK parameter MAY be
      included in a separate UPDATE or piggybacked in an UPDATE with
      the SEQ parameter, as described in Section 5.3.5.  The ACK
      parameter MAY acknowledge more than one of the peer's Update IDs.

6.12.2.  Handling an ACK Parameter in a Received UPDATE Packet

  The following steps define the conceptual processing rules for
  handling an ACK parameter in a received UPDATE packet:

  1.  The sequence number reported in the ACK must match with an UPDATE
      packet sent earlier that has not already been acknowledged.  If
      no match is found or if the ACK does not acknowledge a new
      UPDATE, then either the packet MUST be dropped if no SEQ
      parameter is present, or the processing steps in Section 6.12.1
      are followed.

  2.  The system MUST verify the HIP_MAC in the UPDATE packet.  If the
      verification fails, the packet MUST be dropped.

  3.  The system MAY verify the SIGNATURE in the UPDATE packet.  If the
      verification fails, the packet SHOULD be dropped and an error
      message logged.

  4.  The corresponding UPDATE timer is stopped (see Section 6.11) so
      that the now-acknowledged UPDATE is no longer retransmitted.  If
      multiple UPDATEs are acknowledged, multiple timers are stopped.

6.13.  Processing of NOTIFY Packets

  Processing of NOTIFY packets is OPTIONAL.  If processed, any errors
  in a received NOTIFICATION parameter SHOULD be logged.  Received
  errors MUST be considered only as informational, and the receiver
  SHOULD NOT change its HIP state (see Section 4.4.2) purely based on
  the received NOTIFY message.




Moskowitz, et al.            Standards Track                  [Page 104]

RFC 7401                          HIPv2                       April 2015


6.14.  Processing of CLOSE Packets

  When the host receives a CLOSE message, it responds with a CLOSE_ACK
  message and moves to the CLOSED state.  (The authenticity of the
  CLOSE message is verified using both HIP_MAC and SIGNATURE.)  This
  processing applies whether or not the HIP association state is
  CLOSING, in order to handle simultaneous CLOSE messages from both
  ends that cross in flight.

  The HIP association is not discarded before the host moves to the
  UNASSOCIATED state.

  Once the closing process has started, any new need to send data
  packets triggers the creation and establishment of a new HIP
  association, starting with sending an I1 packet.

  If there is no corresponding HIP association, the CLOSE packet is
  dropped.

6.15.  Processing of CLOSE_ACK Packets

  When a host receives a CLOSE_ACK message, it verifies that it is in
  the CLOSING or CLOSED state and that the CLOSE_ACK was in response to
  the CLOSE.  A host can map CLOSE_ACK messages to CLOSE messages by
  comparing the value of ECHO_REQUEST_SIGNED (in the CLOSE packet) to
  the value of ECHO_RESPONSE_SIGNED (in the CLOSE_ACK packet).

  The CLOSE_ACK contains the HIP_MAC and the SIGNATURE parameters for
  verification.  The state is discarded when the state changes to
  UNASSOCIATED and, after that, the host MAY respond with an ICMP
  Parameter Problem to an incoming CLOSE message (see Section 5.4.4).

6.16.  Handling State Loss

  In the case of a system crash and unanticipated state loss, the
  system SHOULD delete the corresponding HIP state, including the
  keying material.  That is, the state SHOULD NOT be stored in
  long-term storage.  If the implementation does drop the state
  (as RECOMMENDED), it MUST also drop the peer's R1 generation counter
  value, unless a local policy explicitly defines that the value of
  that particular host is stored.  An implementation MUST NOT store a
  peer's R1 generation counters by default, but storing R1 generation
  counter values, if done, MUST be configured by explicit HITs.








Moskowitz, et al.            Standards Track                  [Page 105]

RFC 7401                          HIPv2                       April 2015


7.  HIP Policies

  There are a number of variables that will influence the HIP base
  exchanges that each host must support.  All HIP implementations MUST
  support more than one simultaneous HI, at least one of which SHOULD
  be reserved for anonymous usage.  Although anonymous HIs will be
  rarely used as Responders' HIs, they will be common for Initiators.
  Support for more than two HIs is RECOMMENDED.

  Initiators MAY use a different HI for different Responders to provide
  basic privacy.  Whether such private HIs are used repeatedly with the
  same Responder, and how long these HIs are used, are decided by local
  policy and depend on the privacy requirements of the Initiator.

  The value of #K used in the HIP R1 must be chosen with care.  Values
  of #K that are too high will exclude clients with weak CPUs because
  these devices cannot solve the puzzle within a reasonable amount of
  time.  #K should only be raised if a Responder is under high load,
  i.e., it cannot process all incoming HIP handshakes any more.  If a
  Responder is not under high load, #K SHOULD be 0.

  Responders that only respond to selected Initiators require an Access
  Control List (ACL), representing for which hosts they accept HIP base
  exchanges, and the preferred transport format and local lifetimes.
  Wildcarding SHOULD be supported for such ACLs, and also for
  Responders that offer public or anonymous services.

8.  Security Considerations

  HIP is designed to provide secure authentication of hosts.  HIP also
  attempts to limit the exposure of the host to various denial-of-
  service and man-in-the-middle (MitM) attacks.  In doing so, HIP
  itself is subject to its own DoS and MitM attacks that potentially
  could be more damaging to a host's ability to conduct business as
  usual.

  Denial-of-service attacks often take advantage of asymmetries in the
  cost of starting an association.  One example of such asymmetry is
  the need of a Responder to store local state while a malicious
  Initiator can stay stateless.  HIP makes no attempt to increase the
  cost of the start of state at the Initiator, but makes an effort to
  reduce the cost for the Responder.  This is accomplished by having
  the Responder start the 3-way exchange instead of the Initiator,
  making the HIP exchange 4 packets long.  In doing this, the first
  packet from the Responder, R1, becomes a 'stock' packet that the
  Responder MAY use many times, until some Initiator has provided a
  valid response to such an R1 packet.  During an I1 packet storm, the
  host may reuse the same DH value also, even if some Initiator has



Moskowitz, et al.            Standards Track                  [Page 106]

RFC 7401                          HIPv2                       April 2015


  provided a valid response using that particular DH value.  However,
  such behavior is discouraged and should be avoided.  Using the same
  Diffie-Hellman values and random puzzle #I value has some risks.
  This risk needs to be balanced against a potential storm of HIP I1
  packets.

  This shifting of the start of state cost to the Initiator in creating
  the I2 HIP packet presents another DoS attack.  The attacker can
  spoof the I1 packet, and the Responder sends out the R1 HIP packet.
  This could conceivably tie up the 'Initiator' with evaluating the R1
  HIP packet, and creating the I2 packet.  The defense against this
  attack is to simply ignore any R1 packet where a corresponding I1
  packet was not sent (as defined in Section 6.8, step 1).

  The R1 packet is considerably larger than the I1 packet.  This
  asymmetry can be exploited in a reflection attack.  A malicious
  attacker could spoof the IP address of a victim and send a flood of
  I1 messages to a powerful Responder.  For each small I1 packet, the
  Responder would send a larger R1 packet to the victim.  The
  difference in packet sizes can further amplify a flooding attack
  against the victim.  To avoid such reflection attacks, the Responder
  SHOULD rate-limit the sending of R1 packets in general or SHOULD
  rate-limit the sending of R1 packets to a specific IP address.

  Floods of forged I2 packets form a second kind of DoS attack.  Once
  the attacking Initiator has solved the puzzle, it can send packets
  with spoofed IP source addresses with either an invalid HIP signature
  or invalid encrypted HIP payload (in the ENCRYPTED parameter).  This
  would take resources in the Responder's part to reach the point to
  discover that the I2 packet cannot be completely processed.  The
  defense against this attack is that after N bad I2 packets with the
  same puzzle solution, the Responder would discard any I2 packets that
  contain the given solution.  This will shut down the attack.  The
  attacker would have to request another R1 packet and use that to
  launch a new attack.  The Responder could increase the value of #K
  while under attack.  Keeping a list of solutions from malformed
  packets requires that the Responder keeps state for these malformed
  I2 packets.  This state has to be kept until the R1 counter is
  increased.  As malformed packets are generally filtered by their
  checksum before signature verification, only solutions in packets
  that are forged to pass the checksum and puzzle are put into the
  blacklist.  In addition, a valid puzzle is required before a new list
  entry is created.  Hence, attackers that intend to flood the
  blacklist must solve puzzles first.







Moskowitz, et al.            Standards Track                  [Page 107]

RFC 7401                          HIPv2                       April 2015


  A third form of DoS attack is emulating the restart of state after a
  reboot of one of the peers.  A restarting host would send an I1
  packet to the peers, which would respond with an R1 packet even if it
  were in the ESTABLISHED state.  If the I1 packet were spoofed, the
  resulting R1 packet would be received unexpectedly by the spoofed
  host and would be dropped, as in the first case above.

  A fourth form of DoS attack is emulating the closing of the HIP
  association.  HIP relies on timers and a CLOSE/CLOSE_ACK handshake to
  explicitly signal the end of a HIP association.  Because both CLOSE
  and CLOSE_ACK messages contain a HIP_MAC, an outsider cannot close a
  connection.  The presence of an additional SIGNATURE allows
  middleboxes to inspect these messages and discard the associated
  state (e.g., for firewalling, SPI-based NATing, etc.).  However, the
  optional behavior of replying to CLOSE with an ICMP Parameter Problem
  packet (as described in Section 5.4.4) might allow an attacker
  spoofing the source IP address to send CLOSE messages to launch
  reflection attacks.

  A fifth form of DoS attack is replaying R1s to cause the Initiator to
  solve stale puzzles and become out of synchronization with the
  Responder.  The R1 generation counter is a monotonically increasing
  counter designed to protect against this attack, as described in
  Section 4.1.4.

  Man-in-the-middle attacks are difficult to defend against, without
  third-party authentication.  A skillful MitM could easily handle all
  parts of HIP, but HIP indirectly provides the following protection
  from a MitM attack.  If the Responder's HI is retrieved from a signed
  DNS zone, a certificate, or through some other secure means, the
  Initiator can use this to validate the R1 HIP packet.

  Likewise, if the Initiator's HI is in a secure DNS zone, a trusted
  certificate, or otherwise securely available, the Responder can
  retrieve the HI (after having got the I2 HIP packet) and verify that
  the HI indeed can be trusted.

  The HIP "opportunistic mode" concept has been introduced in this
  document, but this document does not specify what the semantics of
  such a connection setup are for applications.  There are certain
  concerns with opportunistic mode, as discussed in Section 4.1.8.

  NOTIFY messages are used only for informational purposes, and they
  are unacknowledged.  A HIP implementation cannot rely solely on the
  information received in a NOTIFY message because the packet may have
  been replayed.  An implementation SHOULD NOT change any state
  information purely based on a received NOTIFY message.




Moskowitz, et al.            Standards Track                  [Page 108]

RFC 7401                          HIPv2                       April 2015


  Since not all hosts will ever support HIP, ICMP 'Destination Protocol
  Unreachable' messages are to be expected and may be used for a DoS
  attack.  Against an Initiator, the attack would look like the
  Responder does not support HIP, but shortly after receiving the ICMP
  message, the Initiator would receive a valid R1 HIP packet.  Thus, to
  protect against this attack, an Initiator SHOULD NOT react to an ICMP
  message until a reasonable delta time to get the real Responder's R1
  HIP packet.  A similar attack against the Responder is more involved.
  Normally, if an I1 message received by a Responder was a bogus one
  sent by an attacker, the Responder may receive an ICMP message from
  the IP address the R1 message was sent to.  However, a sophisticated
  attacker can try to take advantage of such behavior and try to break
  up the HIP base exchange by sending such an ICMP message to the
  Responder before the Initiator has a chance to send a valid I2
  message.  Hence, the Responder SHOULD NOT act on such an ICMP
  message.  Especially, it SHOULD NOT remove any minimal state created
  when it sent the R1 HIP packet (if it did create one), but wait for
  either a valid I2 HIP packet or the natural timeout (that is, if R1
  packets are tracked at all).  Likewise, the Initiator SHOULD ignore
  any ICMP message while waiting for an R2 HIP packet, and SHOULD
  delete any pending state only after a natural timeout.

9.  IANA Considerations

  IANA has reserved protocol number 139 for the Host Identity Protocol
  and included it in the "IPv6 Extension Header Types" registry
  [RFC7045] and the "Assigned Internet Protocol Numbers" registry.  The
  reference in both of these registries has been updated from [RFC5201]
  to this specification.

  The reference to the 128-bit value under the CGA Message Type
  namespace [RFC3972] of "0xF0EF F02F BFF4 3D0F E793 0C3C 6E61 74EA"
  has been changed from [RFC5201] to this specification.

  The following changes to the "Host Identity Protocol (HIP)
  Parameters" have been made.  In many cases, the changes involved
  updating the reference from [RFC5201] to this specification, but
  there are some differences as outlined below.  Allocation terminology
  is defined in [RFC5226]; any existing references to "IETF Consensus"
  can be replaced with "IETF Review" as per [RFC5226].











Moskowitz, et al.            Standards Track                  [Page 109]

RFC 7401                          HIPv2                       April 2015


  HIP Version

     This document adds the value "2" to the existing registry.  The
     value of "1" has been left with a reference to [RFC5201].

  Packet Type

     The 7-bit Packet Type field in a HIP protocol packet describes the
     type of a HIP protocol message.  It is defined in Section 5.1.
     All existing values referring to [RFC5201] have been updated to
     refer to this specification.  Other values have been left
     unchanged.

  HIT Suite ID

     This specification creates a new registry for "HIT Suite ID".
     This is different than the existing registry for "Suite ID", which
     can be left unmodified for version 1 of the protocol ([RFC5201]).
     The registry has been closed to new registrations.

     The four-bit HIT Suite ID uses the OGA ID field in the ORCHID to
     express the type of the HIT.  This document defines three HIT
     Suites (see Section 5.2.10).

     The HIT Suite ID is also carried in the four higher-order bits of
     the ID field in the HIT_SUITE_LIST parameter.  The four
     lower-order bits are reserved for future extensions of the HIT
     Suite ID space beyond 16 values.

     For the time being, the HIT Suite uses only four bits because
     these bits have to be carried in the HIT.  Using more bits for the
     HIT Suite ID reduces the cryptographic strength of the HIT.  HIT
     Suite IDs must be allocated carefully to avoid namespace
     exhaustion.  Moreover, deprecated IDs should be reused after an
     appropriate time span.  If 15 Suite IDs (the zero value is
     initially reserved) prove to be insufficient and more HIT Suite
     IDs are needed concurrently, more bits can be used for the HIT
     Suite ID by using one HIT Suite ID (0) to indicate that more bits
     should be used.  The HIT_SUITE_LIST parameter already supports
     8-bit HIT Suite IDs, should longer IDs be needed.  However,
     RFC 7343 [RFC7343] does not presently support such an extension.
     We suggest trying the rollover approach described in Appendix E
     first.  Possible extensions of the HIT Suite ID space to
     accommodate eight bits and new HIT Suite IDs are defined through
     IETF Review.






Moskowitz, et al.            Standards Track                  [Page 110]

RFC 7401                          HIPv2                       April 2015


     Requests to register reused values should include a note that the
     value is being reused after a deprecation period, to ensure
     appropriate IETF review and approval.

  Parameter Type

     The 16-bit Type field in a HIP parameter describes the type of the
     parameter.  It is defined in Section 5.2.1.  The current values
     are defined in Sections 5.2.3 through 5.2.23.  The existing
     "Parameter Types" registry has been updated as follows.

     A new value (129) for R1_COUNTER has been introduced, with a
     reference to this specification, and the existing value (128) for
     R1_COUNTER has been left in place with a reference to [RFC5201].
     This documents the change in value that has occurred in version 2
     of this protocol.  For clarity, the name for the value 128 has
     been changed from "R1_COUNTER" to "R1_Counter (v1 only)".

     A new value (579) for a new Parameter Type HIP_CIPHER has been
     added, with reference to this specification.  This Parameter Type
     functionally replaces the HIP_TRANSFORM Parameter Type
     (value 577), which has been left in the table with the existing
     reference to [RFC5201].  For clarity, the name for the
     value 577 has been changed from "HIP_TRANSFORM" to
     "HIP_TRANSFORM (v1 only)".

     A new value (715) for a new Parameter Type HIT_SUITE_LIST has been
     added, with reference to this specification.

     A new value (2049) for a new Parameter Type TRANSPORT_FORMAT_LIST
     has been added, with reference to this specification.

     The name of the HMAC Parameter Type (value 61505) has been changed
     to HIP_MAC.  The name of the HMAC_2 Parameter Type (value 61569)
     has been changed to HIP_MAC_2.  The reference has been changed to
     this specification.

     All other Parameter Types that reference [RFC5201] have been
     updated to refer to this specification, and Parameter Types that
     reference other RFCs are unchanged.

     The Type codes 32768 through 49151 (not 49141: a value corrected
     from a previous version of this table) have been Reserved for
     Private Use.  Implementors SHOULD select types in a random fashion
     from this range, thereby reducing the probability of collisions.
     A method employing genuine randomness (such as flipping a coin)
     SHOULD be used.




Moskowitz, et al.            Standards Track                  [Page 111]

RFC 7401                          HIPv2                       April 2015


     Where the existing ranges once stated "First Come First Served
     with Specification Required", this has been changed to
     "Specification Required".

  Group ID

     The eight-bit Group ID values appear in the DIFFIE_HELLMAN
     parameter and the DH_GROUP_LIST parameter and are defined in
     Section 5.2.7.  This registry has been updated based on the new
     values specified in Section 5.2.7; values noted as being
     DEPRECATED can be left in the table with reference to [RFC5201].
     New values are assigned through IETF Review.

  HIP Cipher ID

     The 16-bit Cipher ID values in a HIP_CIPHER parameter are defined
     in Section 5.2.8.  This is a new registry.  New values from either
     the reserved or unassigned space are assigned through IETF Review.

  DI-Type

     The four-bit DI-Type values in a HOST_ID parameter are defined in
     Section 5.2.9.  New values are assigned through IETF Review.  All
     existing values referring to [RFC5201] have been updated to refer
     to this specification.

  HI Algorithm

     The 16-bit Algorithm values in a HOST_ID parameter are defined in
     Section 5.2.9.  This is a new registry.  New values from either
     the reserved or unassigned space are assigned through IETF Review.

  ECC Curve Label

     When the HI Algorithm values in a HOST_ID parameter are defined to
     the values of either "ECDSA" or "ECDSA_LOW", a new registry is
     needed to maintain the values for the ECC Curve Label as defined
     in Section 5.2.9.  This might be handled by specifying two
     algorithm-specific subregistries named "ECDSA Curve Label" and
     "ECDSA_LOW Curve Label".  New values are to be assigned through
     IETF Review.










Moskowitz, et al.            Standards Track                  [Page 112]

RFC 7401                          HIPv2                       April 2015


  Notify Message Type

     The 16-bit Notify Message Type values in a NOTIFICATION parameter
     are defined in Section 5.2.19.

     Notify Message Type values 1-10 are used for informing about
     errors in packet structures, values 11-20 for informing about
     problems in parameters containing cryptographic related material,
     and values 21-30 for informing about problems in authentication or
     packet integrity verification.  Parameter numbers above 30 can be
     used for informing about other types of errors or events.

     The existing registration procedures have been updated as follows.
     The range from 1-50 can remain as "IETF Review".  The range from
     51-8191 has been marked as "Specification Required".  Values
     8192-16383 remain as "Reserved for Private Use".  Values
     16384-40959 have been marked as "Specification Required".  Values
     40960-65535 remain as "Reserved for Private Use".

     The following updates to the values have been made to the existing
     registry.  All existing values referring to [RFC5201] have been
     updated to refer to this specification.

     INVALID_HIP_TRANSFORM_CHOSEN has been renamed to
     INVALID_HIP_CIPHER_CHOSEN with the same value (17).

     A new value of 20 for the type UNSUPPORTED_HIT_SUITE has been
     added.

     HMAC_FAILED has been renamed to HIP_MAC_FAILED with the same
     value (28).

     SERVER_BUSY_PLEASE_RETRY has been renamed to
     RESPONDER_BUSY_PLEASE_RETRY with the same value (44).

10.  Differences from RFC 5201

  This section summarizes the technical changes made from [RFC5201].
  This section is informational, intended to help implementors of the
  previous protocol version.  If any text in this section contradicts
  text in other portions of this specification, the text found outside
  of this section should be considered normative.

  This document specifies the HIP Version 2 protocol, which is not
  interoperable with the HIP Version 1 protocol specified in [RFC5201].
  The main technical changes are the inclusion of additional
  cryptographic agility features, and an update of the mandatory and
  optional algorithms, including Elliptic Curve support via the



Moskowitz, et al.            Standards Track                  [Page 113]

RFC 7401                          HIPv2                       April 2015


  Elliptic Curve DSA (ECDSA) and Elliptic Curve Diffie-Hellman (ECDH)
  algorithms.  The mandatory cryptographic algorithm implementations
  have been updated, such as replacing HMAC-SHA-1 with HMAC-SHA-256 and
  the RSA/SHA-1 signature algorithm with RSASSA-PSS, and adding ECDSA
  to RSA as mandatory public key types.  This version of HIP is also
  aligned with the ORCHID revision [RFC7343].

  The following changes have been made to the protocol operation.

  o  Section 4.1.3 describes the new process for Diffie-Hellman group
     negotiation, an aspect of cryptographic agility.  The Initiator
     may express a preference for the choice of a DH group in the I1
     packet and may suggest multiple possible choices.  The Responder
     replies with a preference based on local policy and the options
     provided by the Initiator.  The Initiator may restart the base
     exchange if the option chosen by the Responder is unsuitable
     (unsupported algorithms).

  o  Another aspect of cryptographic agility that has been added is the
     ability to use different cryptographic hash functions to generate
     the HIT.  The Responder's HIT hash algorithm (RHASH) terminology
     was introduced to support this.  In addition, HIT Suites have been
     introduced to group the set of cryptographic algorithms used
     together for public key signature, hash function, and hash
     truncation.  The use of HIT Suites constrains the combinatorial
     possibilities of algorithm selection for different functions.  HIT
     Suite IDs are related to the ORCHID OGA ID field ([RFC7343]).

  o  The puzzle mechanism has been slightly changed, in that the #I
     parameter depends on the HIT hash function (RHASH) selected, and
     the specification now advises against reusing the same #I value to
     the same Initiator; more details are provided in Sections 4.1.2
     and 5.2.4).

  o  Section 4.1.4 was extended to cover details about R1 generation
     counter rollover or reset.

  o  Section 4.1.6 was added to describe procedures for aborting a HIP
     base exchange.

  o  Section 4.1.7 provides guidance on avoiding downgrade attacks on
     the cryptographic algorithms.

  o  Section 4.1.8 on opportunistic mode has been updated to account
     for cryptographic agility by adding HIT selection procedures.






Moskowitz, et al.            Standards Track                  [Page 114]

RFC 7401                          HIPv2                       April 2015


  o  The HIP KEYMAT generation has been updated as described in
     Section 6.5 to make the key derivation function a negotiable
     aspect of the protocol.

  o  Packet processing for the I1, R1, and I2 packets has been updated
     to account for new parameter processing.

  o  This specification adds a requirement that hosts MUST support
     processing of ACK parameters with several SEQ sequence numbers
     even when they do not support sending such parameters.

  o  This document now clarifies that several ECHO_REQUEST_UNSIGNED
     parameters may be present in an R1 and that several ECHO_RESPONSE
     parameters may be present in an I2.

  o  Procedures for responding to version mismatches with an ICMP
     Parameter Problem have been added.

  o  The security considerations section (Section 8) has been updated
     to remove possible attacks no longer considered applicable.

  o  The use of the Anonymous bit for making the sender's Host Identity
     anonymous is now supported in packets other than the R1 and I2.

  o  Support for the use of a NULL HIP CIPHER is explicitly limited to
     debugging and testing HIP and is no longer a mandatory algorithm
     to support.

  The following changes have been made to the parameter types and
  encodings (Section 5.2).

  o  Four new parameter types have been added: DH_GROUP_LIST,
     HIP_CIPHER, HIT_SUITE_LIST, and TRANSPORT_FORMAT_LIST.

  o  Two parameter types have been renamed: HMAC has been renamed to
     HIP_MAC, and HMAC2 has been renamed to HIP_MAC_2.

  o  One parameter type is deprecated: HIP_TRANSFORM.  Functionally, it
     has been replaced by the HIP_CIPHER but with slightly different
     semantics (hashes have been removed and are now determined by
     RHASH).

  o  The TRANSPORT_FORMAT_LIST parameter allows transports to be
     negotiated with the list instead of by their order in the
     HIP packet.






Moskowitz, et al.            Standards Track                  [Page 115]

RFC 7401                          HIPv2                       April 2015


  o  The type code for the R1_COUNTER has been changed from 128 to 129
     to reflect that it is now considered a Critical parameter and must
     be echoed when present in R1.

  o  The PUZZLE and SOLUTION parameter lengths are now variable and
     dependent on the RHASH length.

  o  The Diffie-Hellman Group IDs supported have been updated.

  o  The HOST_ID parameter now requires specification of an Algorithm.

  o  The NOTIFICATION parameter supports new Notify Message Type
     values.

  o  The HIP_SIGNATURE algorithm field has been changed from 8 bits to
     16 bits to achieve alignment with the HOST_ID parameters.

  o  The specification clarifies that the SEQ parameter always contains
     one update ID but that the ACK parameter may acknowledge several
     update IDs.

  o  The restriction that only one ECHO_RESPONSE_UNSIGNED parameter
     must be present in each HIP packet has been removed.

  o  The document creates a new type range allocation for parameters
     that are only covered by a signature if a signature is present and
     applies it to the newly created DH_GROUP_LIST parameter.

  o  The document clarifies that several NOTIFY parameters may be
     present in a packet.

  The following changes have been made to the packet contents
  (Section 5.3).

  o  The I1 packet now carries the Initiator's DH_GROUP_LIST.

  o  The R1 packet now carries the HIP_CIPHER, HIT_SUITE_LIST,
     DH_GROUP_LIST, and TRANSPORT_FORMAT_LIST parameters.

  o  The I2 packet now carries the HIP_CIPHER and TRANSPORT_FORMAT_LIST
     parameters.

  o  This document clarifies that UPDATE packets that do not contain
     either a SEQ or ACK parameter are invalid.







Moskowitz, et al.            Standards Track                  [Page 116]

RFC 7401                          HIPv2                       April 2015


11.  References

11.1.  Normative References

  [FIPS.180-4.2012]
             National Institute of Standards and Technology, "Secure
             Hash Standard (SHS)", FIPS PUB 180-4, March 2012,
             <http://csrc.nist.gov/publications/fips/fips180-4/
             fips-180-4.pdf>.

  [NIST.800-131A.2011]
             National Institute of Standards and Technology,
             "Transitions: Recommendation for Transitioning the Use of
             Cryptographic Algorithms and Key Lengths", NIST
             SP 800-131A, January 2011, <http://csrc.nist.gov/
             publications/nistpubs/800-131A/sp800-131A.pdf>.

  [RFC0768]  Postel, J., "User Datagram Protocol", STD 6, RFC 768,
             August 1980, <http://www.rfc-editor.org/info/rfc768>.

  [RFC0793]  Postel, J., "Transmission Control Protocol", STD 7,
             RFC 793, September 1981, <http://www.rfc-editor.org/
             info/rfc793>.

  [RFC1035]  Mockapetris, P., "Domain names - implementation and
             specification", STD 13, RFC 1035, November 1987,
             <http://www.rfc-editor.org/info/rfc1035>.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997,
             <http://www.rfc-editor.org/info/rfc2119>.

  [RFC2404]  Madson, C. and R. Glenn, "The Use of HMAC-SHA-1-96 within
             ESP and AH", RFC 2404, November 1998,
             <http://www.rfc-editor.org/info/rfc2404>.

  [RFC2410]  Glenn, R. and S. Kent, "The NULL Encryption Algorithm and
             Its Use With IPsec", RFC 2410, November 1998,
             <http://www.rfc-editor.org/info/rfc2410>.

  [RFC2460]  Deering, S. and R. Hinden, "Internet Protocol, Version 6
             (IPv6) Specification", RFC 2460, December 1998,
             <http://www.rfc-editor.org/info/rfc2460>.

  [RFC2536]  Eastlake 3rd, D., "DSA KEYs and SIGs in the Domain Name
             System (DNS)", RFC 2536, March 1999,
             <http://www.rfc-editor.org/info/rfc2536>.




Moskowitz, et al.            Standards Track                  [Page 117]

RFC 7401                          HIPv2                       April 2015


  [RFC3110]  Eastlake 3rd, D., "RSA/SHA-1 SIGs and RSA KEYs in the
             Domain Name System (DNS)", RFC 3110, May 2001,
             <http://www.rfc-editor.org/info/rfc3110>.

  [RFC3526]  Kivinen, T. and M. Kojo, "More Modular Exponential (MODP)
             Diffie-Hellman groups for Internet Key Exchange (IKE)",
             RFC 3526, May 2003, <http://www.rfc-editor.org/
             info/rfc3526>.

  [RFC3602]  Frankel, S., Glenn, R., and S. Kelly, "The AES-CBC Cipher
             Algorithm and Its Use with IPsec", RFC 3602,
             September 2003, <http://www.rfc-editor.org/info/rfc3602>.

  [RFC3972]  Aura, T., "Cryptographically Generated Addresses (CGA)",
             RFC 3972, March 2005, <http://www.rfc-editor.org/
             info/rfc3972>.

  [RFC4034]  Arends, R., Austein, R., Larson, M., Massey, D., and S.
             Rose, "Resource Records for the DNS Security Extensions",
             RFC 4034, March 2005, <http://www.rfc-editor.org/
             info/rfc4034>.

  [RFC4282]  Aboba, B., Beadles, M., Arkko, J., and P. Eronen, "The
             Network Access Identifier", RFC 4282, December 2005,
             <http://www.rfc-editor.org/info/rfc4282>.

  [RFC4443]  Conta, A., Deering, S., and M. Gupta, "Internet Control
             Message Protocol (ICMPv6) for the Internet Protocol
             Version 6 (IPv6) Specification", RFC 4443, March 2006,
             <http://www.rfc-editor.org/info/rfc4443>.

  [RFC4754]  Fu, D. and J. Solinas, "IKE and IKEv2 Authentication Using
             the Elliptic Curve Digital Signature Algorithm (ECDSA)",
             RFC 4754, January 2007, <http://www.rfc-editor.org/
             info/rfc4754>.

  [RFC4868]  Kelly, S. and S. Frankel, "Using HMAC-SHA-256,
             HMAC-SHA-384, and HMAC-SHA-512 with IPsec", RFC 4868,
             May 2007, <http://www.rfc-editor.org/info/rfc4868>.

  [RFC5702]  Jansen, J., "Use of SHA-2 Algorithms with RSA in DNSKEY
             and RRSIG Resource Records for DNSSEC", RFC 5702,
             October 2009, <http://www.rfc-editor.org/info/rfc5702>.

  [RFC6724]  Thaler, D., Draves, R., Matsumoto, A., and T. Chown,
             "Default Address Selection for Internet Protocol Version 6
             (IPv6)", RFC 6724, September 2012,
             <http://www.rfc-editor.org/info/rfc6724>.



Moskowitz, et al.            Standards Track                  [Page 118]

RFC 7401                          HIPv2                       April 2015


  [RFC7343]  Laganier, J. and F. Dupont, "An IPv6 Prefix for Overlay
             Routable Cryptographic Hash Identifiers Version 2
             (ORCHIDv2)", RFC 7343, September 2014,
             <http://www.rfc-editor.org/info/rfc7343>.

  [RFC7402]  Jokela, P., Moskowitz, R., and J. Melen, "Using the
             Encapsulating Security Payload (ESP) Transport Format with
             the Host Identity Protocol (HIP)", RFC 7402, April 2015,
             <http://www.rfc-editor.org/info/rfc7402>.

11.2.  Informative References

  [AUR05]    Aura, T., Nagarajan, A., and A. Gurtov, "Analysis of the
             HIP Base Exchange Protocol", in Proceedings of the 10th
             Australasian Conference on Information Security and
             Privacy, July 2005.

  [CRO03]    Crosby, S. and D. Wallach, "Denial of Service via
             Algorithmic Complexity Attacks", in Proceedings of the
             12th USENIX Security Symposium, Washington, D.C.,
             August 2003.

  [DIF76]    Diffie, W. and M. Hellman, "New Directions in
             Cryptography", IEEE Transactions on Information Theory
             Volume IT-22, Number 6, pages 644-654, November 1976.

  [FIPS.186-4.2013]
             National Institute of Standards and Technology, "Digital
             Signature Standard (DSS)", FIPS PUB 186-4, July 2013,
             <http://nvlpubs.nist.gov/nistpubs/FIPS/
             NIST.FIPS.186-4.pdf>.

  [FIPS.197.2001]
             National Institute of Standards and Technology, "Advanced
             Encryption Standard (AES)", FIPS PUB 197, November 2001,
             <http://csrc.nist.gov/publications/fips/fips197/
             fips-197.pdf>.

  [HIP-ARCH] Moskowitz, R., Ed., and M. Komu, "Host Identity Protocol
             Architecture", Work in Progress,
             draft-ietf-hip-rfc4423-bis-09, October 2014.

  [HIP-DNS-EXT]
             Laganier, J., "Host Identity Protocol (HIP) Domain Name
             System (DNS) Extension", Work in Progress,
             draft-ietf-hip-rfc5205-bis-06, January 2015.





Moskowitz, et al.            Standards Track                  [Page 119]

RFC 7401                          HIPv2                       April 2015


  [HIP-HOST-MOB]
             Henderson, T., Ed., Vogt, C., and J. Arkko, "Host Mobility
             with the Host Identity Protocol", Work in Progress,
             draft-ietf-hip-rfc5206-bis-08, January 2015.

  [HIP-REND-EXT]
             Laganier, J. and L. Eggert, "Host Identity Protocol (HIP)
             Rendezvous Extension", Work in Progress,
             draft-ietf-hip-rfc5204-bis-05, December 2014.

  [KAU03]    Kaufman, C., Perlman, R., and B. Sommerfeld, "DoS
             protection for UDP-based protocols", in Proceedings of the
             10th ACM Conference on Computer and Communications
             Security, October 2003.

  [KRA03]    Krawczyk, H., "SIGMA: The 'SIGn-and-MAc' Approach to
             Authenticated Diffie-Hellman and Its Use in the IKE
             Protocols", in Proceedings of CRYPTO 2003, pages 400-425,
             August 2003.

  [RFC0792]  Postel, J., "Internet Control Message Protocol", STD 5,
             RFC 792, September 1981, <http://www.rfc-editor.org/
             info/rfc792>.

  [RFC2785]  Zuccherato, R., "Methods for Avoiding the "Small-Subgroup"
             Attacks on the Diffie-Hellman Key Agreement Method for
             S/MIME", RFC 2785, March 2000,
             <http://www.rfc-editor.org/info/rfc2785>.

  [RFC2898]  Kaliski, B., "PKCS #5: Password-Based Cryptography
             Specification Version 2.0", RFC 2898, September 2000,
             <http://www.rfc-editor.org/info/rfc2898>.

  [RFC3447]  Jonsson, J. and B. Kaliski, "Public-Key Cryptography
             Standards (PKCS) #1: RSA Cryptography Specifications
             Version 2.1", RFC 3447, February 2003,
             <http://www.rfc-editor.org/info/rfc3447>.

  [RFC3849]  Huston, G., Lord, A., and P. Smith, "IPv6 Address Prefix
             Reserved for Documentation", RFC 3849, July 2004,
             <http://www.rfc-editor.org/info/rfc3849>.

  [RFC5201]  Moskowitz, R., Nikander, P., Jokela, P., and T. Henderson,
             "Host Identity Protocol", RFC 5201, April 2008,
             <http://www.rfc-editor.org/info/rfc5201>.






Moskowitz, et al.            Standards Track                  [Page 120]

RFC 7401                          HIPv2                       April 2015


  [RFC5226]  Narten, T. and H. Alvestrand, "Guidelines for Writing an
             IANA Considerations Section in RFCs", BCP 26, RFC 5226,
             May 2008, <http://www.rfc-editor.org/info/rfc5226>.

  [RFC5338]  Henderson, T., Nikander, P., and M. Komu, "Using the Host
             Identity Protocol with Legacy Applications", RFC 5338,
             September 2008, <http://www.rfc-editor.org/info/rfc5338>.

  [RFC5533]  Nordmark, E. and M. Bagnulo, "Shim6: Level 3 Multihoming
             Shim Protocol for IPv6", RFC 5533, June 2009,
             <http://www.rfc-editor.org/info/rfc5533>.

  [RFC5737]  Arkko, J., Cotton, M., and L. Vegoda, "IPv4 Address Blocks
             Reserved for Documentation", RFC 5737, January 2010,
             <http://www.rfc-editor.org/info/rfc5737>.

  [RFC5869]  Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
             Key Derivation Function (HKDF)", RFC 5869, May 2010,
             <http://www.rfc-editor.org/info/rfc5869>.

  [RFC5903]  Fu, D. and J. Solinas, "Elliptic Curve Groups modulo a
             Prime (ECP Groups) for IKE and IKEv2", RFC 5903,
             June 2010, <http://www.rfc-editor.org/info/rfc5903>.

  [RFC6090]  McGrew, D., Igoe, K., and M. Salter, "Fundamental Elliptic
             Curve Cryptography Algorithms", RFC 6090, February 2011,
             <http://www.rfc-editor.org/info/rfc6090>.

  [RFC6253]  Heer, T. and S. Varjonen, "Host Identity Protocol
             Certificates", RFC 6253, May 2011,
             <http://www.rfc-editor.org/info/rfc6253>.

  [RFC7045]  Carpenter, B. and S. Jiang, "Transmission and Processing
             of IPv6 Extension Headers", RFC 7045, December 2013,
             <http://www.rfc-editor.org/info/rfc7045>.

  [RFC7296]  Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
             Kivinen, "Internet Key Exchange Protocol Version 2
             (IKEv2)", STD 79, RFC 7296, October 2014,
             <http://www.rfc-editor.org/info/rfc7296>.

  [RSA]      Rivest, R., Shamir, A., and L. Adleman, "A Method for
             Obtaining Digital Signatures and Public-Key
             Cryptosystems", Communications of the ACM 21 (2),
             pp. 120-126, February 1978.

  [SECG]     SECG, "Recommended Elliptic Curve Domain Parameters",
             SEC 2 Version 2.0, January 2010, <http://www.secg.org/>.



Moskowitz, et al.            Standards Track                  [Page 121]

RFC 7401                          HIPv2                       April 2015


Appendix A.  Using Responder Puzzles

  As mentioned in Section 4.1.1, the Responder may delay state creation
  and still reject most spoofed I2 packets by using a number of
  pre-calculated R1 packets and a local selection function.  This
  appendix defines one possible implementation in detail.  The purpose
  of this appendix is to give the implementors an idea of how to
  implement the mechanism.  If the implementation is based on this
  appendix, it MAY contain some local modification that makes an
  attacker's task harder.

  The Responder creates a secret value S, that it regenerates
  periodically.  The Responder needs to remember the two latest values
  of S.  Each time the S is regenerated, the R1 generation counter
  value is incremented by one.

  The Responder generates a pre-signed R1 packet.  The signature for
  pre-generated R1s must be recalculated when the Diffie-Hellman key is
  recomputed or when the R1_COUNTER value changes due to S value
  regeneration.

  When the Initiator sends the I1 packet for initializing a connection,
  the Responder receives the HIT and IP address from the packet, and
  generates an #I value for the puzzle.  The #I value is set to the
  pre-signed R1 packet.

      #I value calculation:
      #I = Ltrunc( RHASH ( S | HIT-I | HIT-R | IP-I | IP-R ), n)
      where n = RHASH_len

  The RHASH algorithm is the same as is used to generate the
  Responder's HIT value.

  From an incoming I2 packet, the Responder receives the required
  information to validate the puzzle: HITs, IP addresses, and the
  information of the used S value from the R1_COUNTER.  Using these
  values, the Responder can regenerate the #I, and verify it against
  the #I received in the I2 packet.  If the #I values match, it can
  verify the solution using #I, #J, and difficulty #K.  If the #I
  values do not match, the I2 is dropped.

      puzzle_check:
      V := Ltrunc( RHASH( I2.I | I2.hit_i | I2.hit_r | I2.J ), #K )
      if V != 0, drop the packet

  If the puzzle solution is correct, the #I and #J values are stored
  for later use.  They are used as input material when keying material
  is generated.



Moskowitz, et al.            Standards Track                  [Page 122]

RFC 7401                          HIPv2                       April 2015


  Keeping state about failed puzzle solutions depends on the
  implementation.  Although it is possible for the Responder not to
  keep any state information, it still may do so to protect itself
  against certain attacks (see Section 4.1.1).

Appendix B.  Generating a Public Key Encoding from an HI

  The following pseudo-code illustrates the process to generate a
  public key encoding from an HI for both RSA and DSA.

  The symbol ":=" denotes assignment; the symbol "+=" denotes
  appending.  The pseudo-function "encode_in_network_byte_order" takes
  two parameters, an integer (bignum) and a length in bytes, and
  returns the integer encoded into a byte string of the given length.

  switch ( HI.algorithm )
  {

  case RSA:
     buffer := encode_in_network_byte_order ( HI.RSA.e_len,
               ( HI.RSA.e_len > 255 ) ? 3 : 1 )
     buffer += encode_in_network_byte_order ( HI.RSA.e, HI.RSA.e_len )
     buffer += encode_in_network_byte_order ( HI.RSA.n, HI.RSA.n_len )

     break;

  case DSA:
     buffer := encode_in_network_byte_order ( HI.DSA.T , 1 )
     buffer += encode_in_network_byte_order ( HI.DSA.Q , 20 )
     buffer += encode_in_network_byte_order ( HI.DSA.P , 64 +
                                              8 * HI.DSA.T )
     buffer += encode_in_network_byte_order ( HI.DSA.G , 64 +
                                              8 * HI.DSA.T )
     buffer += encode_in_network_byte_order ( HI.DSA.Y , 64 +
                                              8 * HI.DSA.T )

     break;

  }

Appendix C.  Example Checksums for HIP Packets

  The HIP checksum for HIP packets is specified in Section 5.1.1.
  Checksums for TCP and UDP packets running over HIP-enabled security
  associations are specified in Section 4.5.1.  The examples below use
  [RFC3849] and [RFC5737] addresses, and HITs with the prefix of
  2001:20 followed by zeros, followed by a decimal 1 or 2,
  respectively.



Moskowitz, et al.            Standards Track                  [Page 123]

RFC 7401                          HIPv2                       April 2015


  The following example is defined only for testing the checksum
  calculation.

C.1.  IPv6 HIP Example (I1 Packet)

    Source Address:                 2001:db8::1
    Destination Address:            2001:db8::2
    Upper-Layer Packet Length:      48              0x30
    Next Header:                    139             0x8b
    Payload Protocol:               59              0x3b
    Header Length:                  5               0x5
    Packet Type:                    1               0x1
    Version:                        2               0x2
    Reserved:                       1               0x1
    Control:                        0               0x0
    Checksum:                       6750            0x1a5e
    Sender's HIT:                   2001:20::1
    Receiver's HIT:                 2001:20::2
    DH_GROUP_LIST type:             511             0x1ff
    DH_GROUP_LIST length:           3               0x3
    DH_GROUP_LIST Group IDs:        3,4,8

C.2.  IPv4 HIP Packet (I1 Packet)

  The IPv4 checksum value for the example I1 packet is shown below.

    Source Address:                 192.0.2.1
    Destination Address:            192.0.2.2
    Upper-Layer Packet Length:      48              0x30
    Next Header:                    139             0x8b
    Payload Protocol:               59              0x3b
    Header Length:                  5               0x5
    Packet Type:                    1               0x1
    Version:                        2               0x2
    Reserved:                       1               0x1
    Control:                        0               0x0
    Checksum:                       61902           0xf1ce
    Sender's HIT:                   2001:20::1
    Receiver's HIT:                 2001:20::2
    DH_GROUP_LIST type:             511             0x1ff
    DH_GROUP_LIST length:           3               0x3
    DH_GROUP_LIST Group IDs:        3,4,8









Moskowitz, et al.            Standards Track                  [Page 124]

RFC 7401                          HIPv2                       April 2015


C.3.  TCP Segment

  Regardless of whether IPv6 or IPv4 is used, the TCP and UDP sockets
  use the IPv6 pseudo header format [RFC2460], with the HITs used in
  place of the IPv6 addresses.

    Sender's HIT:                   2001:20::1
    Receiver's HIT:                 2001:20::2
    Upper-Layer Packet Length:      20              0x14
    Next Header:                    6               0x06
    Source port:                    65500           0xffdc
    Destination port:               22              0x0016
    Sequence number:                1               0x00000001
    Acknowledgment number:          0               0x00000000
    Data offset:                    5               0x5
    Flags:                          SYN             0x02
    Window size:                    65535           0xffff
    Checksum:                       28586           0x6faa
    Urgent pointer:                 0               0x0000

Appendix D.  ECDH and ECDSA 160-Bit Groups

  The ECDH and ECDSA 160-bit group SECP160R1 is rated at 80 bits
  symmetric strength.  This was once considered appropriate for one
  year of security.  Today, these groups should be used only when the
  host is not powerful enough (e.g., some embedded devices) and when
  security requirements are low (e.g., long-term confidentiality is not
  required).

Appendix E.  HIT Suites and HIT Generation

  The HIT as an ORCHID [RFC7343] consists of three parts: A 28-bit
  prefix, a 4-bit encoding of the ORCHID generation algorithm (OGA),
  and a hash that includes the Host Identity and a context ID.  The OGA
  is an index pointing to the specific algorithm by which the public
  key and the 96-bit hashed encoding are generated.  The OGA is
  protocol specific and is to be interpreted as defined below for all
  protocols that use the same context ID as HIP.  HIP groups sets of
  valid combinations of signature and hash algorithms into HIT Suites.
  These HIT Suites are addressed by an index, which is transmitted in
  the OGA ID field of the ORCHID.

  The set of used HIT Suites will be extended to counter the progress
  in computation capabilities and vulnerabilities in the employed
  algorithms.  The intended use of the HIT Suites is to introduce a new
  HIT Suite and phase out an old one before it becomes insecure.  Since
  the 4-bit OGA ID field only permits 15 HIT Suites to be used at the
  same time (the HIT Suite with ID 0 is reserved), phased-out HIT



Moskowitz, et al.            Standards Track                  [Page 125]

RFC 7401                          HIPv2                       April 2015


  Suites must be reused at some point.  In such a case, there will be a
  rollover of the HIT Suite ID and the next newly introduced HIT Suite
  will start with a lower HIT Suite index than the previously
  introduced one.  The rollover effectively deprecates the reused HIT
  Suite.  For a smooth transition, the HIT Suite should be deprecated a
  considerable time before the HIT Suite index is reused.

  Since the number of HIT Suites is tightly limited to 16, the HIT
  Suites must be assigned carefully.  Hence, sets of suitable
  algorithms are grouped in a HIT Suite.

  The HIT Suite of the Responder's HIT determines the RHASH and the
  hash function to be used for the HMAC in HIP packets as well as the
  signature algorithm family used for generating the HI.  The list of
  HIT Suites is defined in Table 10.




































Moskowitz, et al.            Standards Track                  [Page 126]

RFC 7401                          HIPv2                       April 2015


Acknowledgments

  The drive to create HIP came to being after attending the MALLOC
  meeting at the 43rd IETF meeting.  Baiju Patel and Hilarie Orman
  really gave the original author, Bob Moskowitz, the assist to get HIP
  beyond 5 paragraphs of ideas.  It has matured considerably since the
  early versions thanks to extensive input from IETFers.  Most
  importantly, its design goals are articulated and are different from
  other efforts in this direction.  Particular mention goes to the
  members of the NameSpace Research Group of the IRTF.  Noel Chiappa
  provided valuable input at early stages of discussions about
  identifier handling and Keith Moore the impetus to provide
  resolvability.  Steve Deering provided encouragement to keep working,
  as a solid proposal can act as a proof of ideas for a research group.

  Many others contributed; extensive security tips were provided by
  Steve Bellovin.  Rob Austein kept the DNS parts on track.  Paul
  Kocher taught Bob Moskowitz how to make the puzzle exchange expensive
  for the Initiator to respond, but easy for the Responder to validate.
  Bill Sommerfeld supplied the Birthday concept, which later evolved
  into the R1 generation counter, to simplify reboot management.  Erik
  Nordmark supplied the CLOSE-mechanism for closing connections.
  Rodney Thayer and Hugh Daniels provided extensive feedback.  In the
  early times of this document, John Gilmore kept Bob Moskowitz
  challenged to provide something of value.

  During the later stages of this document, when the editing baton was
  transferred to Pekka Nikander, the input from the early implementors
  was invaluable.  Without having actual implementations, this document
  would not be on the level it is now.

  In the usual IETF fashion, a large number of people have contributed
  to the actual text or ideas.  The list of these people includes Jeff
  Ahrenholz, Francis Dupont, Derek Fawcus, George Gross, Xin Gu, Rene
  Hummen, Miika Komu, Mika Kousa, Julien Laganier, Andrew McGregor, Jan
  Melen, Henrik Petander, Michael Richardson, Tim Shepard, Jorma Wall,
  and Jukka Ylitalo.  Our apologies to anyone whose name is missing.

  Once the HIP Working Group was founded in early 2004, a number of
  changes were introduced through the working group process.  Most
  notably, the original document was split in two, one containing the
  base exchange and the other one defining how to use ESP.  Some
  modifications to the protocol proposed by Aura, et al. [AUR05] were
  added at a later stage.







Moskowitz, et al.            Standards Track                  [Page 127]

RFC 7401                          HIPv2                       April 2015


Authors' Addresses

  Robert Moskowitz (editor)
  HTT Consulting
  Oak Park, MI
  United States

  EMail: [email protected]


  Tobias Heer
  Hirschmann Automation and Control
  Stuttgarter Strasse 45-51
  Neckartenzlingen  72654
  Germany

  EMail: [email protected]


  Petri Jokela
  Ericsson Research NomadicLab
  Jorvas  FIN-02420
  Finland

  Phone: +358 9 299 1
  EMail: [email protected]


  Thomas R. Henderson
  University of Washington
  Campus Box 352500
  Seattle, WA
  United States

  EMail: [email protected]
















Moskowitz, et al.            Standards Track                  [Page 128]