Internet Engineering Task Force (IETF)                           R. Cole
Request for Comments: 7367                                US Army CERDEC
Category: Experimental                                         J. Macker
ISSN: 2070-1721                                               B. Adamson
                                              Naval Research Laboratory
                                                           October 2014


 Definition of Managed Objects for the Mobile Ad Hoc Network (MANET)
           Simplified Multicast Framework Relay Set Process

Abstract

  This memo defines a portion of the Management Information Base (MIB)
  for use with network management protocols in the Internet community.
  In particular, it describes objects for configuring aspects of the
  Simplified Multicast Forwarding (SMF) process for Mobile Ad Hoc
  Networks (MANETs).  The SMF-MIB module also reports state
  information, performance information, and notifications.  In addition
  to configuration, the additional state and performance information is
  useful to operators troubleshooting multicast forwarding problems.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for examination, experimental implementation, and
  evaluation.

  This document defines an Experimental Protocol for the Internet
  community.  This document is a product of the Internet Engineering
  Task Force (IETF).  It represents the consensus of the IETF
  community.  It has received public review and has been approved for
  publication by the Internet Engineering Steering Group (IESG).  Not
  all documents approved by the IESG are a candidate for any level of
  Internet Standard; see Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7367.












Cole, et al.                  Experimental                      [Page 1]

RFC 7367                       The SMF-MIB                  October 2014


Copyright Notice

  Copyright (c) 2014 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1. Introduction ....................................................3
  2. The Internet-Standard Management Framework ......................3
  3. Conventions .....................................................3
  4. Overview ........................................................3
     4.1. SMF Management Model .......................................4
     4.2. Terms ......................................................5
  5. Structure of the MIB Module .....................................5
     5.1. Textual Conventions ........................................6
     5.2. The Capabilities Group .....................................6
     5.3. The Configuration Group ....................................6
     5.4. The State Group ............................................7
     5.5. The Performance Group ......................................7
     5.6. The Notifications Group ....................................7
     5.7. Tables and Indexing ........................................8
  6. Relationship to Other MIB Modules ...............................9
     6.1. Relationship to the SNMPv2-MIB .............................9
     6.2. Relationship to the IP-MIB .................................9
     6.3. Relationship to the IPMCAST-MIB ............................9
     6.4. MIB Modules Required for IMPORTS ..........................10
     6.5. Relationship to Future RSSA-MIB Modules ...................10
  7. SMF-MIB Definitions ............................................10
  8. IANA-SMF-MIB Definitions .......................................51
  9. Security Considerations ........................................56
  10. Applicability Statement .......................................59
  11. IANA Considerations ...........................................62
  12. References ....................................................62
     12.1. Normative References .....................................62
     12.2. Informative References ...................................64
  Acknowledgements ..................................................65
  Contributors ......................................................65
  Authors' Addresses ................................................65



Cole, et al.                  Experimental                      [Page 2]

RFC 7367                       The SMF-MIB                  October 2014


1.  Introduction

  This memo defines a portion of the Management Information Base (MIB)
  for use with network management protocols in the Internet community.
  In particular, it describes objects for configuring aspects of a
  process implementing Simplified Multicast Forwarding (SMF) [RFC6621]
  for Mobile Ad Hoc Networks (MANETs).  SMF provides multicast
  Duplicate Packet Detection (DPD) and supports algorithms for
  constructing an estimate of a MANET Minimum Connected Dominating Set
  (MCDS) for efficient multicast forwarding.  The SMF-MIB module also
  reports state information, performance information, and
  notifications.  In addition to configuration, this additional state
  and performance information is useful to operators troubleshooting
  multicast forwarding problems.

2.  The Internet-Standard Management Framework

  For a detailed overview of the documents that describe the current
  Internet-Standard Management Framework, please refer to section 7 of
  RFC 3410 [RFC3410].

  Managed objects are accessed via a virtual information store, termed
  the Management Information Base or MIB.  MIB objects are generally
  accessed through the Simple Network Management Protocol (SNMP).
  Objects in the MIB are defined using the mechanisms defined in the
  Structure of Management Information (SMI).  This memo specifies a MIB
  module that is compliant to the SMIv2, which is described in STD 58,
  RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580
  [RFC2580].

3.  Conventions

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in RFC
  2119 [RFC2119].

4.  Overview

  SMF provides methods for implementing DPD-based multicast forwarding
  with the optional use of CDS-based relay sets.  The CDS provides a
  complete connected coverage of the nodes comprising the MANET.  The
  MCDS is the smallest set of MANET nodes (comprising a connected
  cluster) that cover all the nodes in the cluster with their
  transmissions.  As the density of the MANET nodes increase, the
  fraction of nodes required in an MCDS decreases.  Using the MCDS as a
  multicast forwarding set then becomes an efficient multicast
  mechanism for MANETs.



Cole, et al.                  Experimental                      [Page 3]

RFC 7367                       The SMF-MIB                  October 2014


  Various algorithms for the construction of estimates of the MCDS
  exist.  The Simplified Multicast Framework [RFC6621] describes some
  of these.  It further defines various operational modes for a node
  that is participating in the collective creation of the MCDS
  estimates.  These modes depend upon the set of related MANET routing
  and discovery protocols and mechanisms in operation in the specific
  MANET node.

  A SMF router's MIB module contains SMF process configuration
  parameters (e.g., specific CDS algorithm), state information (e.g.,
  current membership in the CDS), performance counters (e.g., packet
  counters), and notifications.

4.1.  SMF Management Model

  This section describes the management model for the SMF node process.

  Figure 1 (reproduced from Figure 1 of [RFC6621]) shows the
  relationship between the SMF Relay Set Selection Algorithm and the
  related algorithms, processes, and protocols running in the MANET
  nodes.  The Relay Set Selection Algorithm (RSSA) can rely upon
  topology information acquired from the MANET Neighborhood Discovery
  Protocol (NHDP), from the specific MANET routing protocol running on
  the node, or from Layer 2 information passed up to the higher layer
  protocol processes.
      ______________                ____________
     |              |              |            |
     | Neighborhood |              | Relay Set  |
     |  Discovery   |------------->| Selection  |
     |              |   neighbor   |            |
     |______________|     info     |____________|
             \                             /
      neighbor\                           / forwarding
        info*  \      _____________      /    status
                \    |             |    /
                 `-->| Forwarding  |<--'
                     |   Process   |
   ----------------->|_____________|----------------->
    incoming packet,                   forwarded packets
    interface id*, and
    previous hop*

             Figure 1: SMF Router Architecture

  The asterisks (*) mark the primitives and relationships needed by
  relay set algorithms requiring previous-hop packet-forwarding
  knowledge.




Cole, et al.                  Experimental                      [Page 4]

RFC 7367                       The SMF-MIB                  October 2014


4.2.  Terms

  The following definitions apply throughout this document:

  Configuration Objects:  switches, tables, and objects that are
     initialized to default settings or set through the management
     interfaces such as defined by this MIB module.

  Tunable Configuration Objects:  objects whose values affect timing or
     attempt bounds on the SMF Relay Set (RS) process.

  State Objects:  automatically generated values that define the
     current operating state of the SMF RS process in the router.

  Performance Objects:  automatically generated values that help an
     administrator or automated tool to assess the performance of the
     CDS multicast process on the router and the overall multicast
     performance within the MANET routing domain.

5.  Structure of the MIB Module

  This section presents the structure of the SMF-MIB module.  The
  objects are arranged into the following groups:

  o  smfMIBNotifications - defines the notifications associated with
     the SMF process.

  o  smfMIBObjects - defines the objects forming the basis for the SMF-
     MIB module.  These objects are divided up by function into the
     following groups:

     *  Capabilities Group - This group contains the SMF objects that
        the device uses to advertise its local capabilities with
        respect to, e.g., the supported RSSAs.

     *  Configuration Group - This group contains the SMF objects that
        configure specific options that determine the overall operation
        of the SMF process and the resulting multicast performance.

     *  State Group - Contains information describing the current state
        of the SMF process such as the Neighbor Table.

     *  Performance Group - Contains objects that help to characterize
        the performance of the SMF process, typically counters for
        statistical computations.

  o  smfMIBConformance - defines two, i.e., minimal and full,
     conformance implementations for the SMF-MIB module.



Cole, et al.                  Experimental                      [Page 5]

RFC 7367                       The SMF-MIB                  October 2014


5.1.  Textual Conventions

  The Textual Conventions defined within the SMF-MIB module:

  o  The SmfStatus is defined within the SMF-MIB module.  This contains
     the current operational status of the SMF process on an interface.

  The Textual Conventions defined for the SMF-MIB module and maintained
  by IANA are:

  o  The IANAsmfOpModeIdTC represents an index that identifies a
     specific SMF operational mode.  This Textual Convention is
     maintained by IANA in the IANA-SMF-MIB.

  o  The IANAsmfRssaIdTC represents an index that identifies, through
     reference, a specific RSSA available for operation on the device.
     This Textual Convention is maintained by IANA also in the IANA-
     SMF-MIB.

5.2.  The Capabilities Group

  The SMF device supports a set of capabilities.  The list of
  capabilities that the device can advertise is as follows:

  o  Operational Mode - topology information from NHDP, CDS-aware
     unicast routing, or Cross-layer from Layer 2.

  o  SMF RSSA - the specific RSSA operational on the device.  Note that
     configuration, state, and performance objects related to a
     specific RSSA must be defined within a separate MIB module.

5.3.  The Configuration Group

  The SMF device is configured with a set of controls.  Some of the
  prominent configuration controls for the SMF device are:

  o  Operational Mode - determines from where topology information is
     derived, e.g., NHDP, CDS-aware unicast routing, or Cross-layer
     from Layer 2.

  o  SMF RSSA - the specific RSSA operational on the device.

  o  Duplicate Packet detection for IPv4 - Identification-based or
     Hash-based DPD (I-DPD or H-DPD, respectively).

  o  Duplicate Packet detection for IPv6 - Identification-based or
     Hash-based DPD.




Cole, et al.                  Experimental                      [Page 6]

RFC 7367                       The SMF-MIB                  October 2014


  o  SMF Type Message TLV - if NHDP mode is selected, then the SMF Type
     Message TLV MAY be included in the NHDP exchanges.

  o  SMF Address Block TLV - if NHDP mode is selected, then the SMF
     Address Block TLV SHOULD be included in the NHDP exchanges.

  o  SMF Address Forwarding Table - a table identifying configured
     multicast addresses to be forwarded by the SMF process.

5.4.  The State Group

  The State sub-tree reports current state information, for example,

  o  Node RSSA State - identifies whether the node is currently in or
     out of the Relay Set.

  o  Neighbors Table - a table containing current one-hop neighbors and
     their operational RSSA.

5.5.  The Performance Group

  The Performance sub-tree primarily reports counters that relate to
  SMF RSSA performance.  The SMF performance counters consist of per-
  node and per-interface objects:

  o  Total multicast packets received.

  o  Total multicast packets forwarded.

  o  Total duplicate multicast packets detected.

  o  Per interface statistics table with the following entries:

     *  Multicast packets received.

     *  Multicast packets forwarded.

     *  Duplicate multicast packets detected.

5.6.  The Notifications Group

  The Notifications sub-tree contains the list of notifications
  supported within the SMF-MIB module and their intended purpose and
  utility.







Cole, et al.                  Experimental                      [Page 7]

RFC 7367                       The SMF-MIB                  October 2014


5.7.  Tables and Indexing

  The SMF-MIB module contains a number of tables that record data
  related to:

  o  configuration and operation of packet forwarding on the local
     router,

  o  configuration and operation of local MANET interfaces on the
     router, and

  o  configuration and operation of various RSSAs for packet
     forwarding.

  The SMF-MIB module's tables are indexed via the following constructs:

  o  smfCapabilitiesIndex - the index identifying the combination of
     SMF mode and SMF RSSA available on this device.

  o  smfCfgAddrForwardingIndex - the index to configured multicast
     address lists that are forwarded by the SMF process.

  o  smfCfgIfIndex - the IfIndex of the interface on the local router
     on which SMF is configured.

  o  smfStateNeighborIpAddrType, smfStateNeighborIpAddr, and
     smfStateNeighborPrefixLen - the interface index set of specific
     one-hop neighbor nodes to this local router.

  These tables and their associated indexing are defined in the SMF-MIB
  module:

  o  smfCapabilitiesTable - identifies the resident set of (SMF
     Operational Modes, SMF RSSA algorithms) available on this router.
     This table has 'INDEX { smfCapabilitiesIndex }'.

  o  smfCfgAddrForwardingTable - contains information on multicast
     addresses that are to be forwarded by the SMF process on this
     device.  This table has 'INDEX { smfCfgAddrForwardingIndex }'.

  o  smfCfgInterfaceTable - describes the SMF interfaces on this device
     that are participating in the SMF packet forwarding process.  This
     table has 'INDEX { smfCfgIfIndex }'.








Cole, et al.                  Experimental                      [Page 8]

RFC 7367                       The SMF-MIB                  October 2014


  o  smfStateNeighborTable - describes the current neighbor nodes,
     their addresses and the SMF RSSA and the interface on which they
     can be reached.  This table has 'INDEX {
     smfStateNeighborIpAddrType, smfStateNeighborIpAddr,
     smfStateNeighborPrefixLen }'.

  o  smfPerfIpv4InterfacePerfTable - contains the IPv4-related SMF
     statistics per each SMF interface on this device.  This table has
     'INDEX { smfCfgIfIndex }'.

  o  smfPerfIpv6InterfacePerfTable - contains the IPv6-related SMF
     statistics per each SMF interface on this device.  This table has
     'INDEX { smfCfgIfIndex }'.

6.  Relationship to Other MIB Modules

6.1.  Relationship to the SNMPv2-MIB

  The 'system' group in the SNMPv2-MIB module [RFC3418] is defined as
  being mandatory for all systems, and the objects apply to the entity
  as a whole.  The 'system' group provides identification of the
  management entity and certain other system-wide data.  The SMF-MIB
  module does not duplicate those objects.

6.2.  Relationship to the IP-MIB

  It is an expectation that SMF devices will implement the standard IP-
  MIB module [RFC4293].  Exactly how to integrate SMF packet handling
  and management into the standard IP-MIB module management are part of
  the experiment.

  The SMF-MIB module counters within the smfPerformanceGroup count
  packets handled by the system and interface local SMF process (as
  discussed above).  Not all IP (unicast and multicast) packets on a
  device interface are handled by the SMF process.  So the counters are
  tracking different packet streams in the IP-MIB and SMF-MIB modules.

6.3.  Relationship to the IPMCAST-MIB

  The smfCfgAddrForwardingTable is essentially a filter table (if
  populated) that identifies addresses/packets to be forwarded via the
  local SMF flooding process.  The IP Multicast MIB module in RFC 5132
  [RFC5132] manages objects related to standard IP multicast, which
  could be running in parallel to SMF on the device.

  RFC 5132 manages traditional IP-based multicast (based upon multicast
  routing mechanisms).  The SMF-MIB module provides management for a
  MANET subnet-based flooding mechanism which, may be used for



Cole, et al.                  Experimental                      [Page 9]

RFC 7367                       The SMF-MIB                  October 2014


  multicast transport (through SMF broadcast) depending upon the MANET
  dynamics and other factors regarding the MANET subnet.  Further, they
  may coexist in certain MANET deployments using the
  smfCfgAddrForwardingTable to hand certain IP multicast addresses to
  the SMF process and other IP multicast packets to be forwarded by
  other multicast mechanisms that are IP route based.  SMF and the
  associated SMF-MIB module are experimental and these are some of the
  experiments to be had with SMF and the SMF-MIB module.

6.4.  MIB Modules Required for IMPORTS

  The objects imported for use in the SMF-MIB module are as follows.
  The MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE, Counter32,
  Integer32, TimeTicks and experimental macros are imported from RFC
  2578 [RFC2578].  The TEXTUAL-CONVENTION, RowStatus, and TruthValue
  macros are imported from RFC 2579 [RFC2579].  The MODULE-COMPLIANCE,
  OBJECT-GROUP, and NOTIFICATION-GROUP macros are imported from RFC
  2580 [RFC2580].  The InterfaceIndexOrZero and ifName textual
  conventions are imported from RFC 2863 [RFC2863].  The
  SnmpAdminString textual convention is imported from RFC 3411
  [RFC3411].  The InetAddress, InetAddressType, and
  InetAddressPrefixLength textual conventions are imported from RFC
  4001 [RFC4001].

6.5.  Relationship to Future RSSA-MIB Modules

  In a sense, the SMF-MIB module is a general front-end to a set of
  yet-to-be developed RSSA-specific MIB modules.  These RSSA-specific
  MIB modules will define the objects for the configuration, state,
  performance and notification required for the operation of these
  specific RSSAs.  The SMF-MIB module Capabilities Group allows the
  remote management station the ability to query the router to discover
  the set of supported RSSAs.

7.  SMF-MIB Definitions

  SMF-MIB DEFINITIONS ::= BEGIN

  IMPORTS

     MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE,
     Counter32, Integer32, TimeTicks, experimental
        FROM SNMPv2-SMI                          -- RFC 2578

     TEXTUAL-CONVENTION, RowStatus, TruthValue
        FROM SNMPv2-TC                           -- RFC 2579





Cole, et al.                  Experimental                     [Page 10]

RFC 7367                       The SMF-MIB                  October 2014


     MODULE-COMPLIANCE, OBJECT-GROUP,
     NOTIFICATION-GROUP
        FROM SNMPv2-CONF                         -- RFC 2580

     InterfaceIndexOrZero, ifName
        FROM IF-MIB                              -- RFC 2863

     SnmpAdminString
        FROM SNMP-FRAMEWORK-MIB                  -- RFC 3411

     InetAddress, InetAddressType,
     InetAddressPrefixLength
        FROM INET-ADDRESS-MIB                    -- RFC 4001

     IANAsmfOpModeIdTC,
     IANAsmfRssaIdTC
              FROM IANA-SMF-MIB
     ;

  smfMIB MODULE-IDENTITY
     LAST-UPDATED "201410100000Z"  -- October 10, 2014
     ORGANIZATION "IETF MANET Working Group"
     CONTACT-INFO
        "WG EMail:  [email protected]

         WG Chairs: [email protected]
                    [email protected]

         Editors:   Robert G. Cole
                    US Army CERDEC
                    6010 Frankford Road
                    Aberdeen Proving Ground, MD 21005
                    USA
                    Phone: +1 443 395-8744
                    EMail: [email protected]

                    Joseph Macker
                    Naval Research Laboratory
                    Washington, D.C. 20375
                    USA
                    EMail: [email protected]

                    Brian Adamson
                    Naval Research Laboratory
                    Washington, D.C. 20375
                    USA
                    EMail: [email protected]"




Cole, et al.                  Experimental                     [Page 11]

RFC 7367                       The SMF-MIB                  October 2014


     DESCRIPTION
        "This MIB module contains managed object definitions for
         the MANET SMF RSSA process defined in:

         Macker, J., Ed., Simplified Multicast Forwarding, RFC 6621,
         May 2012.

         Copyright (c) 2014 IETF Trust and the persons identified as
         authors of the code.  All rights reserved.

         Redistribution and use in source and binary forms, with or
         without modification, is permitted pursuant to, and subject
         to the license terms contained in, the Simplified BSD License
         set forth in Section 4.c of the IETF Trust's Legal Provisions
         Relating to IETF Documents
         (http://trustee.ietf.org/license-info)."

       -- Revision History
       REVISION    "201410100000Z"   -- October 10, 2014
       DESCRIPTION
          "The first version of this MIB module,
           published as RFC 7367.
          "
       ::= { experimental 126 }

  --
  -- TEXTUAL CONVENTIONs
  --

  SmfStatus ::= TEXTUAL-CONVENTION
      STATUS       current
      DESCRIPTION
         "An indication of the operability of an SMF
         function or feature.  For example, the status
         of an interface: 'enabled' indicates that
         this interface is performing SMF functions
         and 'disabled' indicates that it is not.
         Similarly, for the status of the device:
         'enabled' indicates that the device has
         enabled the SMF functions on the device and
         'disabled' means that the device and all interfaces
         have disabled all SMF functions."
      SYNTAX  INTEGER {
                       enabled (1),
                       disabled (2)
              }
  --
  -- Top-Level Object Identifier Assignments



Cole, et al.                  Experimental                     [Page 12]

RFC 7367                       The SMF-MIB                  October 2014


  --

  smfMIBNotifications OBJECT IDENTIFIER ::= { smfMIB 0 }
  smfMIBObjects       OBJECT IDENTIFIER ::= { smfMIB 1 }
  smfMIBConformance   OBJECT IDENTIFIER ::= { smfMIB 2 }

  --
  -- smfMIBObjects Assignments:
  --      smfCapabilitiesGroup  - 1
  --      smfConfigurationGroup - 2
  --      smfStateGroup         - 3
  --      smfPerformanceGroup   - 4
  --

  --
  -- smfCapabilitiesGroup
  --
  --    This group contains the SMF objects that identify specific
  --    capabilities within this device related to SMF functions.
  --

  smfCapabilitiesGroup  OBJECT IDENTIFIER ::= { smfMIBObjects 1 }

  --
  -- SMF Capabilities Table
  --

  smfCapabilitiesTable OBJECT-TYPE
      SYNTAX      SEQUENCE OF SmfCapabilitiesEntry
      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION
          "The smfCapabilitiesTable identifies the
           resident set of SMF Operational Modes and
           RSSA combinations that can run on this
           forwarder."
      REFERENCE
         "See Section 7.2 'Reduced Relay Set Forwarding',
          Section 8.1.1 'SMF Message TLV Type', and
          the Appendices A, B, and C in
          RFC 6621 - 'Simplified Multicast Forwarding',
          Macker, J., May 2012."
      ::= { smfCapabilitiesGroup 1 }

  smfCapabilitiesEntry OBJECT-TYPE
      SYNTAX      SmfCapabilitiesEntry
      MAX-ACCESS  not-accessible
      STATUS      current



Cole, et al.                  Experimental                     [Page 13]

RFC 7367                       The SMF-MIB                  October 2014


      DESCRIPTION
          "Information about a particular operational
           mode and RSSA combination.
          "
      INDEX   { smfCapabilitiesIndex }
      ::= { smfCapabilitiesTable 1 }

  SmfCapabilitiesEntry ::= SEQUENCE {
        smfCapabilitiesIndex                 Integer32,
        smfCapabilitiesOpModeID              IANAsmfOpModeIdTC,
        smfCapabilitiesRssaID                IANAsmfRssaIdTC
  }

  smfCapabilitiesIndex     OBJECT-TYPE
      SYNTAX      Integer32 (1..2147483647)
      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION
          "The index for this entry; a unique value,
           greater than zero, for each combination of
           a particular operational mode and RSSA
           available on this device.
           It is recommended that values are assigned
           contiguously starting from 1.

           Rows in this table are automatically
           populated by the entity's management system
           on initialization.

           By default, the agent should support at least the
           Classical Flooding 'cF' algorithm.  All compliant
           SMF forwarders must support Classical Flooding.
           Hence, the first entry in this table MUST exist
           and MUST be defined as:

              smfCapabilitiesIndex i '1'
              smfCapabilitiesOpModeID i 'cfOnly(1)'
              smfCapabilitiesRssaID i 'cF(1)'

           The value for each combination MUST remain
           constant at least from one re-initialization
           of the entity's management system to the
           next re-initialization."
      ::= { smfCapabilitiesEntry 1 }

  smfCapabilitiesOpModeID     OBJECT-TYPE
      SYNTAX      IANAsmfOpModeIdTC
      MAX-ACCESS  read-only



Cole, et al.                  Experimental                     [Page 14]

RFC 7367                       The SMF-MIB                  October 2014


      STATUS      current
      DESCRIPTION
          "This object identifies
           the particular operational mode for this device."
      ::= { smfCapabilitiesEntry 2 }

  smfCapabilitiesRssaID     OBJECT-TYPE
      SYNTAX      IANAsmfRssaIdTC
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
          "This object identifies
           the particular RSSA algorithm in this MIB
           module.  Example RSSAs are found in the
           appendix of RFC 6621."
      REFERENCE
         "For example, see Section 8.1.1 'SMF Message TLV Type',
          and the Appendices A, B, and C in
          RFC 6621 - 'Simplified Multicast Forwarding',
          Macker, J., May 2012."
      ::= { smfCapabilitiesEntry 3 }

  --
  -- smfConfigurationGroup
  --
  --    This group contains the SMF objects that configure specific
  --    options that determine the overall performance and operation
  --    of the multicast forwarding process for the router device
  --    and its interfaces.
  --

  smfConfigurationGroup  OBJECT IDENTIFIER ::= { smfMIBObjects 2 }

  smfCfgAdminStatus  OBJECT-TYPE
     SYNTAX      SmfStatus
     MAX-ACCESS  read-write
     STATUS      current
     DESCRIPTION
        "The configured status of the SMF process
         on this device.  'enabled(1)' means that
         SMF is configured to run on this device.
         'disabled(2)' means that the SMF process
         is configured off.

         Prior to SMF functions being performed over
         specific interfaces, this object must first
         be 'enabled'.  If this object is 'disabled',
         then no SMF functions are being performed on



Cole, et al.                  Experimental                     [Page 15]

RFC 7367                       The SMF-MIB                  October 2014


         the device and all smfCfgIfAdminStatus objects
         MUST also be set to 'disabled'.  When this
         object is changed from 'enabled' to 'disabled'
         by the manager, then all smfCfgIfAdminStatus
         objects MUST also be automatically set to
         'disabled' by the agent.

         The default value for this object SHOULD be
         'enabled'.

         This object is persistent and, when written,
         the entity SHOULD save the change to
         non-volatile storage."
     DEFVAL { enabled }
  ::= { smfConfigurationGroup 1 }

  smfCfgSmfSysUpTime OBJECT-TYPE
     SYNTAX  TimeTicks
     MAX-ACCESS  read-only
     STATUS  current
     DESCRIPTION
        "The time (in hundredths of a second) since the
         system SMF process was last re-initialized.
         The SMF process is re-initialized when the
         value of the 'smfCfgAdminStatus' object
         transitions to 'enabled' from either a prior
         value of 'disabled' or upon initialization
         of this device."
  ::= { smfConfigurationGroup 2 }

  smfCfgRouterIDAddrType  OBJECT-TYPE
     SYNTAX      InetAddressType { ipv4(1), ipv6(2) }
     MAX-ACCESS  read-write
     STATUS      current
     DESCRIPTION
        "The address type of the address used for
         the SMF ID of this router as specified
         in the 'smfCfgRouterID' next.

         Only the values ipv4(1) and ipv6(2)
         are supported.

         This object is persistent and, when written,
         the entity SHOULD save the change to
         non-volatile storage."
     DEFVAL { ipv4 }
  ::= { smfConfigurationGroup 3 }




Cole, et al.                  Experimental                     [Page 16]

RFC 7367                       The SMF-MIB                  October 2014


  smfCfgRouterID  OBJECT-TYPE
     SYNTAX      InetAddress (SIZE(4|16))
     MAX-ACCESS  read-write
     STATUS      current
     DESCRIPTION
        "The IP address used as the SMF router ID.
         This can be set by the management station.
         If not explicitly set, then the device
         SHOULD select a routable IP address
         assigned to this router for use as
         the 'smfCfgRouterID'.

         The smfCfgRouterID is a logical identification
         that MUST be consistent across interoperable
         SMF neighborhoods, and it is RECOMMENDED to be
         chosen as the numerically largest address
         contained in a node's 'Neighbor Address List'
         as defined in NHDP.  An smfCfgRouterID MUST be
         unique within the scope of the operating
         MANET network regardless of the method used
         for selecting it.

         This object is persistent and, when written,
         the entity SHOULD save the change to
         non-volatile storage."
     REFERENCE
        "For example, see

         Appendix A.1 'E-CDS Relay Set Selection Overview'

         and

         Appendix C.1 'MPR-CDS Relay Set Selection
         Overview' in

         RFC 6621 - 'Simplified Multicast Forwarding',
         Macker, J., Ed., May 2012."
   ::= { smfConfigurationGroup 4 }

  smfCfgOperationalMode  OBJECT-TYPE
     SYNTAX      Integer32 (1..2147483647)
     MAX-ACCESS  read-write
     STATUS      current
     DESCRIPTION
        "The SMF RSS node operational mode and
         RSSA combination active on this
         local forwarder.  This object is defined
         to be equal to the smfCapabilitiesIndex,



Cole, et al.                  Experimental                     [Page 17]

RFC 7367                       The SMF-MIB                  October 2014


         which identifies the specific active
         operational mode and RSSA.

         The default value for this object is
         '1', which corresponds to:

            smfCapabilitiesOpModeID i 'cfOnly(1)'
            smfCapabilitiesRssaID i 'cF(1)'

         This object is persistent and, when written,
         the entity SHOULD save the change to
         non-volatile storage."
     REFERENCE
         "See Section 7.2 'Reduced Relay Set Forwarding',
          and the Appendices A, B, and C in
          RFC 6621 - 'Simplified Multicast Forwarding',
          Macker, J., Ed., May 2012."
     DEFVAL { 1 }
  ::= { smfConfigurationGroup 5 }

  smfCfgRssaMember  OBJECT-TYPE
     SYNTAX      INTEGER {
                         potential(1),
                         always(2),
                         never(3)
                         }
     MAX-ACCESS  read-write
     STATUS      current
     DESCRIPTION
        "The RSSA downselects a set of forwarders for
         multicast forwarding.  Sometimes it is useful
         to force an agent to be included or excluded
         from the resulting RSS.  This object is a
         switch to allow for this behavior.

         The value 'potential(1)' allows the selected
         RSSA to determine if this agent is included
         or excluded from the RSS.

         The value 'always(2)' forces the selected
         RSSA to include this agent in the RSS.

         The value 'never(3)' forces the selected
         RSSA to exclude this agent from the RSS.

         The default setting for this object is
         'potential(1)'.  Other settings could pose
         operational risks under certain conditions.



Cole, et al.                  Experimental                     [Page 18]

RFC 7367                       The SMF-MIB                  October 2014


         This object is persistent and, when written,
         the entity SHOULD save the change to
         non-volatile storage."
     REFERENCE
        "See Section 7 'Relay Set Selection' in
         RFC 6621 - 'Simplified Multicast Forwarding',
         Macker, J., Ed., May 2012."
     DEFVAL { potential }
  ::= { smfConfigurationGroup 6 }

  smfCfgIpv4Dpd  OBJECT-TYPE
     SYNTAX      INTEGER {
                         hashBased(1),
                         identificationBased(2)
                         }
     MAX-ACCESS  read-write
     STATUS      current
     DESCRIPTION
        "The current method for IPv4 duplicate packet
         detection.

         The value 'hashBased(1)' indicates that the
         router's duplicate packet detection is based
         upon comparing a hash over the packet fields.
         This is the default setting for this object.

         The value 'identificationBased(2)'
         indicates that the duplicate packet
         detection relies upon header information
         in the multicast packets to identify
         previously received packets.

         This object is persistent and, when written,
         the entity SHOULD save the change to
         non-volatile storage."
     REFERENCE
        "See Section 6.2 'IPv4 Duplicate Packet
         Detection' in
         RFC 6621 - 'Simplified Multicast Forwarding',
         Macker, J., Ed., May 2012."
     DEFVAL { hashBased }
  ::= { smfConfigurationGroup 7 }

  smfCfgIpv6Dpd  OBJECT-TYPE
     SYNTAX      INTEGER {
                         hashBased(1),
                         identificationBased(2)
                         }



Cole, et al.                  Experimental                     [Page 19]

RFC 7367                       The SMF-MIB                  October 2014


     MAX-ACCESS  read-write
     STATUS      current
     DESCRIPTION
        "The current method for IPv6 duplicate packet
         detection.

         The values indicate the type of method used
         for duplicate packet detection as described
         the previous description for the object
         'smfCfgIpv4Dpd'.

         The default value for this object is
         'hashBased(1)'.

         This object is persistent and, when written,
         the entity SHOULD save the change to
         non-volatile storage."
     REFERENCE
        "See Section 6.1 'IPv6 Duplicate Packet
         Detection' in
         RFC 6621 - 'Simplified Multicast Forwarding',
         Macker, J., Ed., May 2012."
     DEFVAL { hashBased }
  ::= { smfConfigurationGroup 8 }

  smfCfgMaxPktLifetime  OBJECT-TYPE
     SYNTAX      Integer32 (0..65535)
     UNITS       "Seconds"
     MAX-ACCESS  read-write
     STATUS      current
     DESCRIPTION
        "The estimate of the network packet
         traversal time.

         This object is persistent and, when written,
         the entity SHOULD save the change to
         non-volatile storage."
     REFERENCE
        "See Section 6 'SMF Duplicate Packet
         Detection' in
         RFC 6621 - 'Simplified Multicast Forwarding',
         Macker, J., Ed., May 2012."
     DEFVAL { 60 }
  ::= { smfConfigurationGroup 9 }

  smfCfgDpdEntryMaxLifetime  OBJECT-TYPE
     SYNTAX      Integer32 (0..65525)
     UNITS       "Seconds"



Cole, et al.                  Experimental                     [Page 20]

RFC 7367                       The SMF-MIB                  October 2014


     MAX-ACCESS  read-write
     STATUS      current
     DESCRIPTION
        "The maximum lifetime of a cached DPD
         record in the local device storage.

         If the memory is running low prior to the
         MaxLifetime being exceeded, the local SMF
         devices should purge the oldest records first.

         This object is persistent and, when written,
         the entity SHOULD save the change to
         non-volatile storage."
     REFERENCE
        "See Section 6 'SMF Duplicate Packet
         Detection' in
         RFC 6621 - 'Simplified Multicast Forwarding',
         Macker, J., Ed., May 2012."
     DEFVAL { 600 }
  ::= { smfConfigurationGroup 10 }

  --
  -- Configuration of messages to be included in
  -- NHDP message exchanges in support of SMF
  -- operations.
  --

  smfCfgNhdpRssaMesgTLVIncluded  OBJECT-TYPE
     SYNTAX      TruthValue
     MAX-ACCESS  read-write
     STATUS      current
     DESCRIPTION
        "Indicates whether or not the associated NHDP
         messages include the RSSA Message TLV.  This
         is an optional SMF operational setting.
         The value 'true(1)' indicates that this TLV is
         included; the value 'false(2)' indicates that it
         is not included.

         It is RECOMMENDED that the RSSA Message TLV
         be included in the NHDP messages.

         This object is persistent and, when written,
         the entity SHOULD save the change to
         non-volatile storage."
     REFERENCE
        "See Section 8.1.1 'SMF Message TLV Type' in
         RFC 6621 - 'Simplified Multicast Forwarding',



Cole, et al.                  Experimental                     [Page 21]

RFC 7367                       The SMF-MIB                  October 2014


         Macker, J., Ed., May 2012."
     DEFVAL { true }
  ::= { smfConfigurationGroup 11 }

  smfCfgNhdpRssaAddrBlockTLVIncluded  OBJECT-TYPE
     SYNTAX      TruthValue
     MAX-ACCESS  read-write
     STATUS      current
     DESCRIPTION
        "Indicates whether or not the associated NHDP
         messages include the RSSA Address Block TLV.
         This is an optional SMF operational setting.
         The value 'true(1)' indicates that this TLV is
         included; the value 'false(2)' indicates that it
         is not included.

         The smfCfgNhdpRssaAddrBlockTLVIncluded is optional
         in all cases as it depends on the existence of
         an address block that may not be present.
         If this SMF device is configured with NHDP,
         then this object SHOULD be set to 'true(1)'.

         This object is persistent and, when written,
         the entity SHOULD save the change to
         non-volatile storage."
     REFERENCE
        "See Section 8.1.2 'SMF Address Block TLV
         Type' in
         RFC 6621 - 'Simplified Multicast Forwarding',
         Macker, J., Ed., May 2012."
     DEFVAL { true }
  ::= { smfConfigurationGroup 12 }

  --
  -- Table identifying configured multicast addresses to be forwarded.
  --

  smfCfgAddrForwardingTable  OBJECT-TYPE
     SYNTAX     SEQUENCE OF SmfCfgAddrForwardingEntry
     MAX-ACCESS not-accessible
     STATUS     current
     DESCRIPTION
        "The smfCfgAddrForwardingTable is essentially a filter
         table (if populated) that identifies addresses/packets
         to be forwarded via the local SMF flooding process.
         The IP Multicast MIB module in RFC 5132 manages objects
         related to standard IP multicast, which could be running
         in parallel to SMF on the device.



Cole, et al.                  Experimental                     [Page 22]

RFC 7367                       The SMF-MIB                  October 2014


         RFC 5132 manages traditional IP-based multicast (based
         upon multicast routing mechanisms).  The SMF-MIB module
         provides management for a MANET subnet-based flooding
         mechanism that may be used for multicast transport
         (through SMF broadcast) depending upon the MANET dynamics
         and other factors regarding the MANET subnet.  Further,
         they may coexist in certain MANET deployments
         using the smfCfgAddrForwardingTable to hand certain IP
         multicast addresses to the SMF process and other IP
         multicast packets to be forwarded by other
         multicast mechanisms that are IP route based.  SMF and
         the associated SMF-MIB module are experimental and these
         are some of the experiments to be had with SMF and
         the SMF-MIB module.

         This is the (conceptual) table containing information on
         multicast addresses that are to be forwarded by the SMF
         process.  This table represents an IP filters table for
         forwarding (or not) packets based upon their IP
         multicast address.

         The SMF process can be configured to forward only those
         multicast addresses found within the
         smfCfgAddrForwardingTable.  As such, addresses that are
         to be forwarded by the SMF process MUST be found within
         the address ranges configured within this table, unless
         this table is empty.

         Each row is associated with a range of multicast
         addresses, and ranges for different rows must be disjoint.
         Different rows MAY share a common
         smfCfgAddrForwardingGroupName to administratively
         associate different rows.

         The objects in this table are persistent and, when written,
         the entity SHOULD save the change to non-volatile storage."
     REFERENCE
        "See Section 9.1 'Forwarded Multicast Groups' in
         RFC 6621 - 'Simplified Multicast Forwarding',
         Macker, J., Ed., May 2012."
  ::= { smfConfigurationGroup 13 }

  smfCfgAddrForwardingEntry OBJECT-TYPE
     SYNTAX     SmfCfgAddrForwardingEntry
     MAX-ACCESS not-accessible
     STATUS     current
     DESCRIPTION
        "An entry (conceptual row) containing the information on a



Cole, et al.                  Experimental                     [Page 23]

RFC 7367                       The SMF-MIB                  October 2014


         particular multicast scope."
     INDEX { smfCfgAddrForwardingIndex }
     ::= { smfCfgAddrForwardingTable 1 }

  SmfCfgAddrForwardingEntry ::= SEQUENCE {
     smfCfgAddrForwardingIndex         Integer32,
     smfCfgAddrForwardingGroupName     SnmpAdminString,
     smfCfgAddrForwardingAddrType      InetAddressType,
     smfCfgAddrForwardingAddress       InetAddress,
     smfCfgAddrForwardingAddrPrefixLength
                                       InetAddressPrefixLength,
     smfCfgAddrForwardingStatus        RowStatus
  }

  smfCfgAddrForwardingIndex     OBJECT-TYPE
     SYNTAX      Integer32 (1..2147483647)
     MAX-ACCESS  not-accessible
     STATUS      current
     DESCRIPTION
        "This object identifies a unique entry
         for a forwarding group.  The index for
         this entry is a unique value,
         greater than zero, for each row.
         It is recommended that values are assigned
         contiguously starting from 1.

         The value for each row index MUST remain
         constant from one re-initialization
         of the entity's management system to the
         next re-initialization."
  ::= { smfCfgAddrForwardingEntry 1 }

  smfCfgAddrForwardingGroupName  OBJECT-TYPE
     SYNTAX      SnmpAdminString
     MAX-ACCESS  read-create
     STATUS      current
     DESCRIPTION
        "This object identifies a group name for a set of
         row entries in order to administratively associate
         a set of address ranges.

         If there is no group name or this object is
         otherwise not applicable, then this object contains
         a zero-length string.

         This object is persistent and, when written,
         the entity SHOULD save the change to
         non-volatile storage."



Cole, et al.                  Experimental                     [Page 24]

RFC 7367                       The SMF-MIB                  October 2014


  ::= { smfCfgAddrForwardingEntry 2 }

  smfCfgAddrForwardingAddrType OBJECT-TYPE
     SYNTAX     InetAddressType { ipv4(1), ipv6(2) }
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
        "The type of the addresses in the multicast
         forwarding ranges identified by this table.

         Only the values ipv4(1) and ipv6(2) are
         supported.

         This object is persistent and, when written,
         the entity SHOULD save the change to
         non-volatile storage."
  ::= { smfCfgAddrForwardingEntry 3 }

  smfCfgAddrForwardingAddress OBJECT-TYPE
     SYNTAX     InetAddress (SIZE(4|16))
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
        "The multicast group address that, when
         combined with smfCfgAddrForwardingAddrPrefixLength,
         gives the group prefix for this forwarding range.
         The InetAddressType is given by
         smfCfgAddrForwardingAddrType.

         This address object is only significant up to
         smfCfgAddrForwardingAddrPrefixLength bits.  The
         remaining address bits are set to zero.  This is
         especially important for this index field.
         Any non-zero bits would signify an entirely
         different entry.

         Legal values correspond to the subset of address
         families for which multicast address allocation
         is supported.

         This object is persistent and, when written,
         the entity SHOULD save the change to
         non-volatile storage."
  ::= { smfCfgAddrForwardingEntry 4 }

  smfCfgAddrForwardingAddrPrefixLength OBJECT-TYPE
     SYNTAX     InetAddressPrefixLength
     MAX-ACCESS read-create



Cole, et al.                  Experimental                     [Page 25]

RFC 7367                       The SMF-MIB                  October 2014


     STATUS     current
     DESCRIPTION
        "The length in bits of the mask that, when
         combined with smfCfgAddrForwardingAddress,
         gives the group prefix for this forwarding
         range.

         This object is persistent and, when written,
         the entity SHOULD save the change to
         non-volatile storage."
  ::= { smfCfgAddrForwardingEntry 5 }

  smfCfgAddrForwardingStatus OBJECT-TYPE
     SYNTAX     RowStatus
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
        "The status of this row, by which new entries may be
         created, or old entries deleted from this table."
  ::= { smfCfgAddrForwardingEntry 6 }

  --
  -- SMF Interfaces Configuration Table
  --

  smfCfgInterfaceTable  OBJECT-TYPE
     SYNTAX      SEQUENCE OF SmfCfgInterfaceEntry
     MAX-ACCESS  not-accessible
     STATUS      current
     DESCRIPTION
        "The SMF Interface Table describes the SMF
         interfaces that are participating in the
         SMF packet forwarding process.  The ifIndex is
         from the interfaces group defined in the
         Interfaces Group MIB module (RFC 2863).  As such,
         this table 'sparse augments' the ifTable
         specifically when SMF is to be configured to
         operate over this interface.

         A conceptual row in this table exists if and only
         if either a manager has explicitly created the row
         or there is an interface on the managed device
         that automatically supports and runs SMF as part
         of the device's initialization process.

         The manager creates a row in this table by setting
         the rowStatus to 'createAndGo' or 'createAndWait'.
         Row objects having associated DEFVAL clauses are



Cole, et al.                  Experimental                     [Page 26]

RFC 7367                       The SMF-MIB                  October 2014


         automatically defined by the agent with these
         values during row creation, unless the manager
         explicitly defines these object values during the
         row creation.

         As the smfCfgInterfaceTable sparsely augments the
         IfTable.  Hence,

            + an entry cannot exist in smfCfgInterfaceTable
              without a corresponding entry in the ifTable.

            + if an entry in the ifTable is removed, the
              corresponding entry (if it exists) in the
              smfCfgInterfaceTable MUST be removed.

            + the smfCfgIfStatus can have a value of
              'enabled' or 'disabled' independent of the
              current value of the ifAdminStatus of the
              corresponding entry in the ifTable.

         The values of the objects smfCfgAdminStatus and
         smfCfgIfAdminStatus reflect the up-down status of
         the SMF process running on the device and on the
         specific interfaces, respectively.  Hence,

            + the value of the smfCfgAdminStatus can be
              'enabled' or 'disabled' reflecting the current
              running status of the SMF process on the device.

            + the value of the smfCfgIfAdminStatus can be
              'enabled' or 'disabled' if the value of the
              smfCfgAdminStatus is set to 'enabled'.

            + if the value of the smfCfgAdminStatus is
              'disabled', then the corresponding
              smfCfgIfAdminStatus objects MUST be set
              to 'disabled' in the smfCfgInterfaceTable.

            + once the value of the smfCfgAdminStatus changes
              from 'disabled' to 'enabled', it is up to the
              management system to make the corresponding
              changes to the smfCfgIfAdminStatus values
              back to 'enabled'.
         "
     REFERENCE
        "RFC 2863 - 'The Interfaces Group MIB', McCloghrie,
         K., and F. Kastenholtz, June 2000."
  ::= { smfConfigurationGroup 14 }



Cole, et al.                  Experimental                     [Page 27]

RFC 7367                       The SMF-MIB                  October 2014


  smfCfgInterfaceEntry OBJECT-TYPE
     SYNTAX      SmfCfgInterfaceEntry
     MAX-ACCESS  not-accessible
     STATUS      current
     DESCRIPTION
        "The SMF interface entry describes one SMF
         interface as indexed by its ifIndex.

         The objects in this table are persistent and, when
         written, the device SHOULD save the change to
         non-volatile storage.  For further information
         on the storage behavior for these objects, refer
         to the description for the smfCfgIfRowStatus
         object."
     INDEX { smfCfgIfIndex }
  ::= { smfCfgInterfaceTable 1 }

  SmfCfgInterfaceEntry ::=
     SEQUENCE {
        smfCfgIfIndex        InterfaceIndexOrZero,
        smfCfgIfAdminStatus  SmfStatus,
        smfCfgIfSmfUpTime    TimeTicks,
        smfCfgIfRowStatus    RowStatus
        }

  smfCfgIfIndex  OBJECT-TYPE
     SYNTAX      InterfaceIndexOrZero
     MAX-ACCESS  not-accessible
     STATUS      current
     DESCRIPTION
        "The ifIndex for this SMF interface.  This value
         MUST correspond to an ifIndex referring
         to a valid entry in the Interfaces Table.
         If the manager attempts to create a row
         for which the ifIndex does not exist on the
         local device, then the agent SHOULD issue
         a return value of 'inconsistentValue' and
         the operation SHOULD fail."
     REFERENCE
        "RFC 2863 - 'The Interfaces Group MIB', McCloghrie,
         K., and F. Kastenholtz, June 2000."
     ::= { smfCfgInterfaceEntry 1 }

  smfCfgIfAdminStatus OBJECT-TYPE
     SYNTAX      SmfStatus
     MAX-ACCESS  read-create
     STATUS      current
     DESCRIPTION



Cole, et al.                  Experimental                     [Page 28]

RFC 7367                       The SMF-MIB                  October 2014


        "The SMF interface's administrative status.
        The value 'enabled' denotes that the interface
        is running the SMF forwarding process.
        The value 'disabled' denotes that the interface is
        currently external to the SMF forwarding process.

        When the value of the smfCfgAdminStatus is
        'disabled', then the corresponding smfCfgIfAdminStatus
        objects MUST be set to 'disabled' in the
        smfCfgInterfaceTable.

        If this object is not equal to 'enabled', all associated
        entries in the 'smfPerfIpv4InterfacePerfTable' and the
        'smfPerfIpv6InterfacePerfTable' MUST be deleted.

    The default value for this object is 'enabled(1)'.

        This object SHOULD be persistent and when
        written the device SHOULD save the change to
        non-volatile storage."
     DEFVAL { enabled }
     ::= { smfCfgInterfaceEntry 2 }

  smfCfgIfSmfUpTime OBJECT-TYPE
     SYNTAX  TimeTicks
     MAX-ACCESS  read-only
     STATUS  current
     DESCRIPTION
        "The time (in hundredths of a second) since
        this interface SMF process was last
        re-initialized.  The interface SMF process is
        re-initialized when the value of the
        'smfCfgIfAdminStatus' object transitions to 'enabled'
        from either a prior value of 'disabled' or upon
        initialization of this interface or this device."
     ::= { smfCfgInterfaceEntry 3 }

  smfCfgIfRowStatus  OBJECT-TYPE
     SYNTAX      RowStatus
     MAX-ACCESS  read-create
     STATUS      current
     DESCRIPTION
        "This object permits management of this table
         by facilitating actions such as row creation,
         construction, and destruction.  The value of
         this object has no effect on whether other
         objects in this conceptual row can be
         modified.



Cole, et al.                  Experimental                     [Page 29]

RFC 7367                       The SMF-MIB                  October 2014


         An entry may not exist in the 'active' state unless all
         objects in the entry have a defined appropriate value.  For
         objects with DEFVAL clauses, the management station
         does not need to specify the value of these objects in order
         for the row to transit to the 'active' state; the default
         value for these objects is used.  For objects that do not
         have DEFVAL clauses, the network manager MUST
         specify the value of these objects prior to this row
         transitioning to the 'active' state.

         When this object transitions to 'active', all objects
         in this row SHOULD be written to non-volatile (stable)
         storage.  Read-create objects in this row MAY be modified.
         When an object in a row with smfCfgIfRowStatus of 'active'
         is changed, then the updated value MUST be reflected in SMF
         and this new object value MUST be written to non-volatile
         storage."
     ::= { smfCfgInterfaceEntry 4 }

  --
  -- smfStateGroup
  --
  --    Contains information describing the current state of the SMF
  --    process such as the current inclusion in the RS or not.
  --

  smfStateGroup  OBJECT IDENTIFIER ::= { smfMIBObjects 3 }

  smfStateNodeRsStatusIncluded  OBJECT-TYPE
     SYNTAX      TruthValue
     MAX-ACCESS  read-only
     STATUS      current
     DESCRIPTION
        "The current status of the SMF node in the context of
         the MANETs relay set.  A value of 'true(1)' indicates
         that the node is currently part of the MANET Relay
         Set.  A value of 'false(2)' indicates that the node
         is currently not part of the MANET Relay Set."
     REFERENCE
        "See Section 7 'Relay Set Selection' in
         RFC 6621 - 'Simplified Multicast Forwarding',
         Macker, J., Ed., May 2012."
  ::= { smfStateGroup 1 }

  smfStateDpdMemoryOverflow  OBJECT-TYPE
     SYNTAX      Counter32
     UNITS       "DPD Records"
     MAX-ACCESS  read-only



Cole, et al.                  Experimental                     [Page 30]

RFC 7367                       The SMF-MIB                  October 2014


     STATUS      current
     DESCRIPTION
        "The number of DPD records that had to be flushed to
         prevent memory overruns for caching of these records.
         The number of records to be flushed upon a buffer
         overflow is an implementation specific decision.

         There is the potential for a counter discontinuity
         in this object if the system SMF process has been
         disabled and later enabled.  In order to check for
         the occurrence of such a discontinuity when monitoring
         this counter object, it is recommended that the
         smfCfgSmfSysUpTime object also be monitored."
     REFERENCE
        "See Section 6 'SMF Duplicate Packet
         Detection' in
         RFC 6621 - 'Simplified Multicast Forwarding',
         Macker, J., Ed., May 2012."
  ::= { smfStateGroup 2 }

  --
  -- SMF Neighbor Table
  --

  smfStateNeighborTable  OBJECT-TYPE
     SYNTAX       SEQUENCE OF SmfStateNeighborEntry
     MAX-ACCESS   not-accessible
     STATUS       current
     DESCRIPTION
        "The SMF StateNeighborTable describes the
         current one-hop neighbor nodes, their address
         and SMF RSSA, and the interface on which
         they can be reached."
     REFERENCE
        "See Section 8 'SMF Neighborhood Discovery' and
         Section 8.1. 'SMF Relay Algorithm TLV
         Types' in
         RFC 6621 - 'Simplified Multicast Forwarding',
         Macker, J., Ed., May 2012."
  ::= { smfStateGroup 3 }

  smfStateNeighborEntry  OBJECT-TYPE
     SYNTAX       SmfStateNeighborEntry
     MAX-ACCESS   not-accessible
     STATUS       current
     DESCRIPTION
        "The SMF Neighbor Table contains the
         set of one-hop neighbors, the interface



Cole, et al.                  Experimental                     [Page 31]

RFC 7367                       The SMF-MIB                  October 2014


         they are reachable on, and the SMF RSSA
         they are currently running."
     INDEX { smfStateNeighborIpAddrType,
             smfStateNeighborIpAddr,
             smfStateNeighborPrefixLen }
  ::= { smfStateNeighborTable 1 }

  SmfStateNeighborEntry ::=
     SEQUENCE {
        smfStateNeighborIpAddrType        InetAddressType,
        smfStateNeighborIpAddr            InetAddress,
        smfStateNeighborPrefixLen         InetAddressPrefixLength,
        smfStateNeighborRSSA              IANAsmfRssaIdTC,
        smfStateNeighborNextHopInterface  InterfaceIndexOrZero
        }

  smfStateNeighborIpAddrType  OBJECT-TYPE
     SYNTAX      InetAddressType { ipv4(1), ipv6(2) }
     MAX-ACCESS  not-accessible
     STATUS      current
     DESCRIPTION
        "The one-hop neighbor IP address type.

         Only the values 'ipv4(1)' and
         'ipv6(2)' are supported."
  ::= { smfStateNeighborEntry 1 }

  smfStateNeighborIpAddr  OBJECT-TYPE
     SYNTAX      InetAddress (SIZE(4|16))
     MAX-ACCESS  not-accessible
     STATUS      current
     DESCRIPTION
        "The one-hop neighbor Inet IPv4 or IPv6
        address.

        Only IPv4 and IPv6 addresses
        are supported."
  ::= { smfStateNeighborEntry 2 }

  smfStateNeighborPrefixLen  OBJECT-TYPE
     SYNTAX      InetAddressPrefixLength
     UNITS       "bits"
     MAX-ACCESS  not-accessible
     STATUS      current
     DESCRIPTION
        "The prefix length.  This is a decimal value that
         indicates the number of contiguous, higher-order
         bits of the address that make up the network



Cole, et al.                  Experimental                     [Page 32]

RFC 7367                       The SMF-MIB                  October 2014


         portion of the address."
  ::= { smfStateNeighborEntry 3 }

  smfStateNeighborRSSA  OBJECT-TYPE
     SYNTAX       IANAsmfRssaIdTC
     MAX-ACCESS   read-only
     STATUS       current
     DESCRIPTION
        "The current RSSA running on the neighbor."
  ::= { smfStateNeighborEntry 4 }

  smfStateNeighborNextHopInterface OBJECT-TYPE
     SYNTAX       InterfaceIndexOrZero
     MAX-ACCESS   read-only
     STATUS       current
     DESCRIPTION
        "The interface ifIndex over which the
         neighbor is reachable in one-hop."
  ::= { smfStateNeighborEntry 6 }

  --
  -- SMF Performance Group
  --
  --    Contains objects that help to characterize the
  --    performance of the SMF RSSA process, such as statistics
  --    counters.  There are two types of SMF RSSA statistics:
  --    global counters and per-interface counters.
  --
  --    It is an expectation that SMF devices will
  --    implement the standard IP-MIB module in RFC 4293.
  --    Exactly how to integrate SMF packet handling and
  --    management into the standard IP-MIB module management
  --    is part of the experiment.
  --
  --    The SMF-MIB module counters within the
  --    smfPerformanceGroup count packets handled by the
  --    system and interface local SMF process (as discussed
  --    above).  Not all IP (unicast and multicast) packets
  --    on a device interface are handled by the SMF process.
  --    So the counters are tracking different packet streams
  --    in the IP-MIB and SMF-MIB modules.
  --

  smfPerformanceGroup  OBJECT IDENTIFIER ::= { smfMIBObjects 4 }

  smfPerfGobalGroup  OBJECT IDENTIFIER ::= { smfPerformanceGroup 1 }

  --



Cole, et al.                  Experimental                     [Page 33]

RFC 7367                       The SMF-MIB                  October 2014


  -- IPv4 packet counters
  --

  smfPerfIpv4MultiPktsRecvTotal  OBJECT-TYPE
     SYNTAX      Counter32
     UNITS       "Packets"
     MAX-ACCESS  read-only
     STATUS      current
     DESCRIPTION
        "A counter of the total number of
         multicast IPv4 packets received by the
         device and delivered to the SMF process.

         There is the potential for a counter discontinuity
         in this object if the system SMF process has been
         disabled and later enabled.  In order to check for
         the occurrence of such a discontinuity when monitoring
         this counter object, it is recommended that the
         smfCfgSmfSysUpTime object also be monitored."
  ::= { smfPerfGobalGroup 1 }

  smfPerfIpv4MultiPktsForwardedTotal  OBJECT-TYPE
     SYNTAX      Counter32
     UNITS       "Packets"
     MAX-ACCESS  read-only
     STATUS      current
     DESCRIPTION
        "A counter of the total number of
         multicast IPv4 packets forwarded by the
         device.

         There is the potential for a counter discontinuity
         in this object if the system SMF process has been
         disabled and later enabled.  In order to check for
         the occurrence of such a discontinuity when monitoring
         this counter object, it is recommended that the
         smfCfgSmfSysUpTime object also be monitored."
  ::= { smfPerfGobalGroup 2 }

  smfPerfIpv4DuplMultiPktsDetectedTotal  OBJECT-TYPE
     SYNTAX      Counter32
     UNITS       "Packets"
     MAX-ACCESS  read-only
     STATUS      current
     DESCRIPTION
        "A counter of the total number of duplicate
         multicast IPv4 packets detected by the
         device.



Cole, et al.                  Experimental                     [Page 34]

RFC 7367                       The SMF-MIB                  October 2014


         There is the potential for a counter discontinuity
         in this object if the system SMF process has been
         disabled and later enabled.  In order to check for
         the occurrence of such a discontinuity when monitoring
         this counter object, it is recommended that the
         smfCfgSmfSysUpTime object also be monitored."
     REFERENCE
        "See Section 6.2 'IPv4 Duplicate Packet
         Detection' in
         RFC 6621 - 'Simplified Multicast Forwarding',
         Macker, J., Ed., May 2012."
  ::= { smfPerfGobalGroup 3 }

  smfPerfIpv4DroppedMultiPktsTTLExceededTotal  OBJECT-TYPE
     SYNTAX      Counter32
     UNITS       "Packets"
     MAX-ACCESS  read-only
     STATUS      current
     DESCRIPTION
        "A counter of the total number of dropped
         multicast IPv4 packets by the
         device due to Time to Live (TTL) exceeded.

         There is the potential for a counter discontinuity
         in this object if the system SMF process has been
         disabled and later enabled.  In order to check for
         the occurrence of such a discontinuity when monitoring
         this counter object, it is recommended that the
         smfCfgSmfSysUpTime object also be monitored."
     REFERENCE
        "See Section 5 'SMF Packet Processing and
         Forwarding' in
         RFC 6621 - 'Simplified Multicast Forwarding',
         Macker, J., Ed., May 2012."
  ::= { smfPerfGobalGroup 4 }

  smfPerfIpv4TTLLargerThanPreviousTotal  OBJECT-TYPE
     SYNTAX      Counter32
     UNITS       "Packets"
     MAX-ACCESS  read-only
     STATUS      current
     DESCRIPTION
        "A counter of the total number of IPv4 packets
         received that have a TTL larger than that
         of a previously received identical packet.

         There is the potential for a counter discontinuity
         in this object if the system SMF process has been



Cole, et al.                  Experimental                     [Page 35]

RFC 7367                       The SMF-MIB                  October 2014


         disabled and later enabled.  In order to check for
         the occurrence of such a discontinuity when monitoring
         this counter object, it is recommended that the
         smfCfgSmfSysUpTime object also be monitored."
     REFERENCE
        "See Section 5 'SMF Packet Processing and
         Forwarding' in
         RFC 6621 - 'Simplified Multicast Forwarding',
         Macker, J., Ed., May 2012."
  ::= { smfPerfGobalGroup 5 }

  --
  -- IPv6 packet counters
  --

  smfPerfIpv6MultiPktsRecvTotal  OBJECT-TYPE
     SYNTAX      Counter32
     UNITS       "Packets"
     MAX-ACCESS  read-only
     STATUS      current
     DESCRIPTION
        "A counter of the total number of
         multicast IPv6 packets received by the
         device and delivered to the SMF process.

         There is the potential for a counter discontinuity
         in this object if the system SMF process has been
         disabled and later enabled.  In order to check for
         the occurrence of such a discontinuity when monitoring
         this counter object, it is recommended that the
         smfCfgSmfSysUpTime object also be monitored."
  ::= { smfPerfGobalGroup 6 }

  smfPerfIpv6MultiPktsForwardedTotal  OBJECT-TYPE
     SYNTAX      Counter32
     UNITS       "Packets"
     MAX-ACCESS  read-only
     STATUS      current
     DESCRIPTION
        "A counter of the total number of
         multicast IPv6 packets forwarded by the
         device.

         There is the potential for a counter discontinuity
         in this object if the system SMF process has been
         disabled and later enabled.  In order to check for
         the occurrence of such a discontinuity when monitoring
         this counter object, it is recommended that the



Cole, et al.                  Experimental                     [Page 36]

RFC 7367                       The SMF-MIB                  October 2014


         smfCfgSmfSysUpTime object also be monitored."
  ::= { smfPerfGobalGroup 7 }

  smfPerfIpv6DuplMultiPktsDetectedTotal  OBJECT-TYPE
     SYNTAX      Counter32
     UNITS       "Packets"
     MAX-ACCESS  read-only
     STATUS      current
     DESCRIPTION
        "A counter of the total number of duplicate
         multicast IPv6 packets detected by the
         device.

         There is the potential for a counter discontinuity
         in this object if the system SMF process has been
         disabled and later enabled.  In order to check for
         the occurrence of such a discontinuity when monitoring
         this counter object, it is recommended that the
         smfCfgSmfSysUpTime object also be monitored."
     REFERENCE
        "See Section 6.1 'IPv6 Duplicate Packet
         Detection' in
         RFC 6621 - 'Simplified Multicast Forwarding',
         Macker, J., Ed., May 2012."
  ::= { smfPerfGobalGroup 8 }

  smfPerfIpv6DroppedMultiPktsTTLExceededTotal  OBJECT-TYPE
     SYNTAX      Counter32
     UNITS       "Packets"
     MAX-ACCESS  read-only
     STATUS      current
     DESCRIPTION
        "A counter of the total number of dropped
         multicast IPv6 packets by the
         device due to TTL exceeded.

         There is the potential for a counter discontinuity
         in this object if the system SMF process has been
         disabled and later enabled.  In order to check for
         the occurrence of such a discontinuity when monitoring
         this counter object, it is recommended that the
         smfCfgSmfSysUpTime object also be monitored."
     REFERENCE
        "See Section 5 'SMF Packet Processing and
         Forwarding' in
         RFC 6621 - 'Simplified Multicast Forwarding',
         Macker, J., Ed., May 2012."
  ::= { smfPerfGobalGroup 9 }



Cole, et al.                  Experimental                     [Page 37]

RFC 7367                       The SMF-MIB                  October 2014


  smfPerfIpv6TTLLargerThanPreviousTotal  OBJECT-TYPE
     SYNTAX      Counter32
     UNITS       "Packets"
     MAX-ACCESS  read-only
     STATUS      current
     DESCRIPTION
        "A counter of the total number of IPv6 packets
         received that have a TTL larger than that
         of a previously received identical packet.

         There is the potential for a counter discontinuity
         in this object if the system SMF process has been
         disabled and later enabled.  In order to check for
         the occurrence of such a discontinuity when monitoring
         this counter object, it is recommended that the
         smfCfgSmfSysUpTime object also be monitored."
     REFERENCE
        "See Section 5 'SMF Packet Processing and
         Forwarding' in
         RFC 6621 - 'Simplified Multicast Forwarding',
         Macker, J., Ed., May 2012."
  ::= { smfPerfGobalGroup 10 }

  smfPerfIpv6HAVAssistsReqdTotal  OBJECT-TYPE
     SYNTAX      Counter32
     UNITS       "Packets"
     MAX-ACCESS  read-only
     STATUS      current
     DESCRIPTION
        "A counter of the total number of IPv6 packets
         received that required the Hash Assist Value (HAV)
         for DPD.

         There is the potential for a counter discontinuity
         in this object if the system SMF process has been
         disabled and later enabled.  In order to check for
         the occurrence of such a discontinuity when monitoring
         this counter object, it is recommended that the
         smfCfgSmfSysUpTime object also be monitored."
     REFERENCE
        "See Section 6.1.1 'IPv6 SMF_DPD Option Header' in
         RFC 6621 - 'Simplified Multicast Forwarding',
         Macker, J., Ed., May 2012."
  ::= { smfPerfGobalGroup 11 }

  smfPerfIpv6DpdHeaderInsertionsTotal  OBJECT-TYPE
     SYNTAX      Counter32
     UNITS       "Packets"



Cole, et al.                  Experimental                     [Page 38]

RFC 7367                       The SMF-MIB                  October 2014


     MAX-ACCESS  read-only
     STATUS      current
     DESCRIPTION
        "A counter of the total number of IPv6 packets
         received that the device inserted the
         DPD header option.

         There is the potential for a counter discontinuity
         in this object if the system SMF process has been
         disabled and later enabled.  In order to check for
         the occurrence of such a discontinuity when monitoring
         this counter object, it is recommended that the
         smfCfgSmfSysUpTime object also be monitored."
     REFERENCE
        "See Section 6.1.2 'IPv6 Identification-Based
         DPD' in
         RFC 6621 - 'Simplified Multicast Forwarding',
         Macker, J., Ed., May 2012."
  ::= { smfPerfGobalGroup 12 }

  --
  -- Per SMF Interface Performance Table
  --

  smfPerfInterfaceGroup OBJECT IDENTIFIER ::= { smfPerformanceGroup 2 }

  smfPerfIpv4InterfacePerfTable OBJECT-TYPE
     SYNTAX       SEQUENCE OF SmfPerfIpv4InterfacePerfEntry
     MAX-ACCESS   not-accessible
     STATUS       current
     DESCRIPTION
        "The SMF Interface Performance Table
         describes the SMF counters per
         interface."
  ::= { smfPerfInterfaceGroup 1 }

  smfPerfIpv4InterfacePerfEntry OBJECT-TYPE
     SYNTAX       SmfPerfIpv4InterfacePerfEntry
     MAX-ACCESS   not-accessible
     STATUS       current
     DESCRIPTION
        "The SMF Interface Performance entry
         describes the statistics for a particular
         node interface."
     INDEX { smfCfgIfIndex }
  ::= { smfPerfIpv4InterfacePerfTable 1 }

  SmfPerfIpv4InterfacePerfEntry ::=



Cole, et al.                  Experimental                     [Page 39]

RFC 7367                       The SMF-MIB                  October 2014


     SEQUENCE {
        smfPerfIpv4MultiPktsRecvPerIf               Counter32,
        smfPerfIpv4MultiPktsForwardedPerIf          Counter32,
        smfPerfIpv4DuplMultiPktsDetectedPerIf       Counter32,
        smfPerfIpv4DroppedMultiPktsTTLExceededPerIf Counter32,
        smfPerfIpv4TTLLargerThanPreviousPerIf       Counter32
        }

  smfPerfIpv4MultiPktsRecvPerIf  OBJECT-TYPE
     SYNTAX      Counter32
     UNITS       "Packets"
     MAX-ACCESS  read-only
     STATUS      current
     DESCRIPTION
        "A counter of the number of multicast IP
         packets received by the SMF process on
         this device on this interface.

         There is the potential for a counter discontinuity
         in this object if the system SMF process has been
         disabled and later enabled on this interface.
         In order to check for the occurrence of such a
         discontinuity when monitoring this counter object,
         it is recommended that the smfCfgIfSmfUpTime
         object also be monitored."
  ::= { smfPerfIpv4InterfacePerfEntry 1 }

  smfPerfIpv4MultiPktsForwardedPerIf  OBJECT-TYPE
     SYNTAX      Counter32
     UNITS       "Packets"
     MAX-ACCESS  read-only
     STATUS      current
     DESCRIPTION
        "A counter of the number of
         multicast IP packets forwarded by the
         SMF process on this device
         on this interface.

         There is the potential for a counter discontinuity
         in this object if the system SMF process has been
         disabled and later enabled on this interface.
         In order to check for the occurrence of such a
         discontinuity when monitoring this counter object,
         it is recommended that the smfCfgIfSmfUpTime
         object also be monitored."
  ::= { smfPerfIpv4InterfacePerfEntry 2 }

  smfPerfIpv4DuplMultiPktsDetectedPerIf  OBJECT-TYPE



Cole, et al.                  Experimental                     [Page 40]

RFC 7367                       The SMF-MIB                  October 2014


     SYNTAX      Counter32
     UNITS       "Packets"
     MAX-ACCESS  read-only
     STATUS      current
     DESCRIPTION
        "A counter of the number of duplicate
         multicast IP packets detected by the
         SMF process on this device
         on this interface.

         There is the potential for a counter discontinuity
         in this object if the system SMF process has been
         disabled and later enabled on this interface.
         In order to check for the occurrence of such a
         discontinuity when monitoring this counter object,
         it is recommended that the smfCfgIfSmfUpTime
         object also be monitored."
  ::= { smfPerfIpv4InterfacePerfEntry 3 }

  smfPerfIpv4DroppedMultiPktsTTLExceededPerIf  OBJECT-TYPE
     SYNTAX      Counter32
     UNITS       "Packets"
     MAX-ACCESS  read-only
     STATUS      current
     DESCRIPTION
        "A counter of the total number of dropped
         multicast IPv4 packets by the SMF process
         on this device on this interface
         due to TTL exceeded.

         There is the potential for a counter discontinuity
         in this object if the system SMF process has been
         disabled and later enabled on this interface.
         In order to check for the occurrence of such a
         discontinuity when monitoring this counter object,
         it is recommended that the smfCfgIfSmfUpTime
         object also be monitored."
  ::= { smfPerfIpv4InterfacePerfEntry 4 }

  smfPerfIpv4TTLLargerThanPreviousPerIf  OBJECT-TYPE
     SYNTAX      Counter32
     UNITS       "Packets"
     MAX-ACCESS  read-only
     STATUS      current
     DESCRIPTION
        "A counter of the total number of IPv4 packets
         received by the SMF process on this device
         on this interface that have a TTL larger than



Cole, et al.                  Experimental                     [Page 41]

RFC 7367                       The SMF-MIB                  October 2014


         that of a previously received identical packet.

         There is the potential for a counter discontinuity
         in this object if the system SMF process has been
         disabled and later enabled on this interface.
         In order to check for the occurrence of such a
         discontinuity when monitoring this counter object,
         it is recommended that the smfCfgIfSmfUpTime
         object also be monitored."
  ::= { smfPerfIpv4InterfacePerfEntry 5 }

  smfPerfIpv6InterfacePerfTable OBJECT-TYPE
     SYNTAX       SEQUENCE OF SmfPerfIpv6InterfacePerfEntry
     MAX-ACCESS   not-accessible
     STATUS       current
     DESCRIPTION
        "The SMF Interface Performance Table
         describes the SMF counters per
         interface."
  ::= { smfPerfInterfaceGroup 2 }

  smfPerfIpv6InterfacePerfEntry OBJECT-TYPE
     SYNTAX       SmfPerfIpv6InterfacePerfEntry
     MAX-ACCESS   not-accessible
     STATUS       current
     DESCRIPTION
        "The SMF Interface Performance entry
         describes the counters for a particular
         node interface."
     INDEX { smfCfgIfIndex }
  ::= { smfPerfIpv6InterfacePerfTable 1 }

  SmfPerfIpv6InterfacePerfEntry ::=
     SEQUENCE {
        smfPerfIpv6MultiPktsRecvPerIf               Counter32,
        smfPerfIpv6MultiPktsForwardedPerIf          Counter32,
        smfPerfIpv6DuplMultiPktsDetectedPerIf       Counter32,
        smfPerfIpv6DroppedMultiPktsTTLExceededPerIf Counter32,
        smfPerfIpv6TTLLargerThanPreviousPerIf       Counter32,
        smfPerfIpv6HAVAssistsReqdPerIf              Counter32,
        smfPerfIpv6DpdHeaderInsertionsPerIf         Counter32
        }

  smfPerfIpv6MultiPktsRecvPerIf  OBJECT-TYPE
     SYNTAX      Counter32
     UNITS       "Packets"
     MAX-ACCESS  read-only
     STATUS      current



Cole, et al.                  Experimental                     [Page 42]

RFC 7367                       The SMF-MIB                  October 2014


     DESCRIPTION
        "A counter of the number of
         multicast IP packets received by the
         SMF process on this device
         on this interface.

         There is the potential for a counter discontinuity
         in this object if the system SMF process has been
         disabled and later enabled on this interface.
         In order to check for the occurrence of such a
         discontinuity when monitoring this counter object,
         it is recommended that the smfCfgIfSmfUpTime
         object also be monitored."
  ::= { smfPerfIpv6InterfacePerfEntry 1 }

  smfPerfIpv6MultiPktsForwardedPerIf  OBJECT-TYPE
     SYNTAX      Counter32
     UNITS       "Packets"
     MAX-ACCESS  read-only
     STATUS      current
     DESCRIPTION
        "A counter of the number of
         multicast IP packets forwarded by the
         SMF process on this device
         on this interface.

         There is the potential for a counter discontinuity
         in this object if the system SMF process has been
         disabled and later enabled on this interface.
         In order to check for the occurrence of such a
         discontinuity when monitoring this counter object,
         it is recommended that the smfCfgIfSmfUpTime
         object also be monitored."
  ::= { smfPerfIpv6InterfacePerfEntry 2 }

  smfPerfIpv6DuplMultiPktsDetectedPerIf  OBJECT-TYPE
     SYNTAX      Counter32
     UNITS       "Packets"
     MAX-ACCESS  read-only
     STATUS      current
     DESCRIPTION
        "A counter of the number of duplicate
         multicast IP packets detected by the
         SMF process on this device
         on this interface.

         There is the potential for a counter discontinuity
         in this object if the system SMF process has been



Cole, et al.                  Experimental                     [Page 43]

RFC 7367                       The SMF-MIB                  October 2014


         disabled and later enabled on this interface.
         In order to check for the occurrence of such a
         discontinuity when monitoring this counter object,
         it is recommended that the smfCfgIfSmfUpTime
         object also be monitored."
  ::= { smfPerfIpv6InterfacePerfEntry 3 }

  smfPerfIpv6DroppedMultiPktsTTLExceededPerIf  OBJECT-TYPE
     SYNTAX      Counter32
     UNITS       "Packets"
     MAX-ACCESS  read-only
     STATUS      current
     DESCRIPTION
        "A counter of the number of dropped
         multicast IP packets by the
         SMF process on this device
         on this interface due to TTL
         exceeded.

         There is the potential for a counter discontinuity
         in this object if the system SMF process has been
         disabled and later enabled on this interface.
         In order to check for the occurrence of such a
         discontinuity when monitoring this counter object,
         it is recommended that the smfCfgIfSmfUpTime
         object also be monitored."
  ::= { smfPerfIpv6InterfacePerfEntry 4 }

  smfPerfIpv6TTLLargerThanPreviousPerIf  OBJECT-TYPE
     SYNTAX      Counter32
     UNITS       "Packets"
     MAX-ACCESS  read-only
     STATUS      current
     DESCRIPTION
        "A counter of the total number of IPv6 packets
         received that have a TTL larger than that
         of a previously received identical packet
         by the SMF process on this device on this
         interface.

         There is the potential for a counter discontinuity
         in this object if the system SMF process has been
         disabled and later enabled on this interface.
         In order to check for the occurrence of such a
         discontinuity when monitoring this counter object,
         it is recommended that the smfCfgIfSmfUpTime
         object also be monitored."
  ::= { smfPerfIpv6InterfacePerfEntry 5 }



Cole, et al.                  Experimental                     [Page 44]

RFC 7367                       The SMF-MIB                  October 2014


  smfPerfIpv6HAVAssistsReqdPerIf  OBJECT-TYPE
     SYNTAX      Counter32
     UNITS       "Packets"
     MAX-ACCESS  read-only
     STATUS      current
     DESCRIPTION
        "A counter of the total number of IPv6 packets
         received by the SMF process on this device
         on this interface that required the
         HAV assist for DPD.

         There is the potential for a counter discontinuity
         in this object if the system SMF process has been
         disabled and later enabled on this interface.
         In order to check for the occurrence of such a
         discontinuity when monitoring this counter object,
         it is recommended that the smfCfgIfSmfUpTime
         object also be monitored."
  ::= { smfPerfIpv6InterfacePerfEntry 6 }

  smfPerfIpv6DpdHeaderInsertionsPerIf  OBJECT-TYPE
     SYNTAX      Counter32
     UNITS       "Packets"
     MAX-ACCESS  read-only
     STATUS      current
     DESCRIPTION
        "A counter of the total number of IPv6 packets
         received by the SMF process on this device
         on this interface that the device inserted the
         DPD header option.

         There is the potential for a counter discontinuity
         in this object if the system SMF process has been
         disabled and later enabled on this interface.
         In order to check for the occurrence of such a
         discontinuity when monitoring this counter object,
         it is recommended that the smfCfgIfSmfUpTime
         object also be monitored."
  ::= { smfPerfIpv6InterfacePerfEntry 7 }

  --
  -- Notifications
  --

smfMIBNotifObjects OBJECT IDENTIFIER ::= { smfMIBNotifications 0 }
smfMIBNotifControl OBJECT IDENTIFIER ::= { smfMIBNotifications 1 }

  -- smfMIBNotifObjects



Cole, et al.                  Experimental                     [Page 45]

RFC 7367                       The SMF-MIB                  October 2014


  smfNotifAdminStatusChange NOTIFICATION-TYPE
         OBJECTS { smfCfgRouterIDAddrType, -- The originator of
                                           --   the notification.
                   smfCfgRouterID,         -- The originator of
                                           --   the notification.
                   smfCfgAdminStatus       -- The new status of the
                                           --   SMF process.
                 }
         STATUS       current
         DESCRIPTION
            "smfCfgAdminStatusChange is a notification sent when
             the 'smfCfgAdminStatus' object changes."
         ::= { smfMIBNotifObjects 1 }

  smfNotifConfiguredOpModeChange NOTIFICATION-TYPE
         OBJECTS { smfCfgRouterIDAddrType, -- The originator of
                                           --   the notification.
                   smfCfgRouterID,         -- The originator of
                                           --   the notification.
                   smfCfgOperationalMode   -- The new Operations
                                           --   Mode of the SMF
                                           --   process.
                 }
         STATUS       current
         DESCRIPTION
            "smfNotifConfiguredOpModeChange is a notification
             sent when the 'smfCfgOperationalMode' object
             changes."
         ::= { smfMIBNotifObjects 2 }

  smfNotifIfAdminStatusChange NOTIFICATION-TYPE
         OBJECTS { smfCfgRouterIDAddrType, -- The originator of
                                           --   the notification.
                   smfCfgRouterID,         -- The originator of
                                           --   the notification.
                   ifName,                 -- The interface whose
                                           --   status has changed.
                   smfCfgIfAdminStatus     -- The new status of the
                                           --   SMF interface.
                 }
         STATUS       current
         DESCRIPTION
            "smfCfgIfAdminStatusChange is a notification sent when
             the 'smfCfgIfAdminStatus' object changes."
         ::= { smfMIBNotifObjects 3 }

   smfNotifDpdMemoryOverflowEvent NOTIFICATION-TYPE
         OBJECTS { smfCfgRouterIDAddrType,   -- The originator of



Cole, et al.                  Experimental                     [Page 46]

RFC 7367                       The SMF-MIB                  October 2014


                                             --   the notification.
                   smfCfgRouterID,           -- The originator of
                                             --   the notification.
                   smfStateDpdMemoryOverflow -- The counter of
                                             --   the overflows.
            }
         STATUS       current
         DESCRIPTION
            "smfNotifDpdMemoryOverflowEvents is sent when the
             number of memory overflow events exceeds
             the 'smfNotifDpdMemoryOverflowThreshold' within the
             previous number of seconds defined by the
             'smfNotifDpdMemoryOverflowWindow'."
         ::= { smfMIBNotifObjects 4 }

  -- smfMIBNotifControl
  smfNotifDpdMemoryOverflowThreshold OBJECT-TYPE
         SYNTAX       Integer32 (0..255)
         UNITS        "Events"
         MAX-ACCESS   read-write
         STATUS       current
         DESCRIPTION
            "A threshold value for the
             'smfNotifDpdmemoryOverflowEvents' object.
             If the number of occurrences exceeds
             this threshold within the previous
             number of seconds
             'smfNotifDpdMemoryOverflowWindow',
             then the 'smfNotifDpdMemoryOverflowEvent'
             notification is sent.

             The default value for this object is
             '1'."
         DEFVAL { 1 }
          ::= { smfMIBNotifControl 1 }

  smfNotifDpdMemoryOverflowWindow OBJECT-TYPE
         SYNTAX       TimeTicks
         MAX-ACCESS   read-write
         STATUS       current
         DESCRIPTION
            "A time window value for the
             'smfNotifDpdmemoryOverflowEvents' object.
             If the number of occurrences exceeds
             the 'smfNotifDpdMemoryOverflowThreshold'
             within the previous number of seconds
             'smfNotifDpdMemoryOverflowWindow',
             then the 'smfNotifDpdMemoryOverflowEvent'



Cole, et al.                  Experimental                     [Page 47]

RFC 7367                       The SMF-MIB                  October 2014


             notification is sent.

             The default value for this object is
             '1'."
         DEFVAL { 1 }
          ::= { smfMIBNotifControl 2 }

  --
  -- Compliance Statements
  --

  smfCompliances  OBJECT IDENTIFIER ::= { smfMIBConformance 1 }
  smfMIBGroups    OBJECT IDENTIFIER ::= { smfMIBConformance 2 }

  smfBasicCompliance  MODULE-COMPLIANCE
     STATUS current
     DESCRIPTION "The basic implementation requirements for
                  managed network entities that implement
                  the SMF RSSA process."
     MODULE  -- this module
     MANDATORY-GROUPS { smfCapabObjectsGroup,
                        smfConfigObjectsGroup }
  ::= { smfCompliances 1 }

  smfFullCompliance MODULE-COMPLIANCE
     STATUS current
     DESCRIPTION "The full implementation requirements for
                  managed network entities that implement
                  the SMF RSSA process."
     MODULE  -- this module
     MANDATORY-GROUPS { smfCapabObjectsGroup,
                        smfConfigObjectsGroup,
                        smfStateObjectsGroup,
                        smfPerfObjectsGroup,
                        smfNotifObjectsGroup,
                        smfNotificationsGroup
                      }
  ::= { smfCompliances 2 }

  --
  -- Units of Conformance
  --

  smfCapabObjectsGroup OBJECT-GROUP
     OBJECTS {
             smfCapabilitiesOpModeID,
             smfCapabilitiesRssaID
     }



Cole, et al.                  Experimental                     [Page 48]

RFC 7367                       The SMF-MIB                  October 2014


     STATUS  current
     DESCRIPTION
        "Set of SMF configuration objects implemented
         in this module."
  ::= { smfMIBGroups 1 }

  smfConfigObjectsGroup OBJECT-GROUP
     OBJECTS {
             smfCfgAdminStatus,
             smfCfgSmfSysUpTime,
             smfCfgRouterIDAddrType,
             smfCfgRouterID,
             smfCfgOperationalMode,
             smfCfgRssaMember,
             smfCfgIpv4Dpd,
             smfCfgIpv6Dpd,
             smfCfgMaxPktLifetime,
             smfCfgDpdEntryMaxLifetime,
             smfCfgNhdpRssaMesgTLVIncluded,
             smfCfgNhdpRssaAddrBlockTLVIncluded,

             smfCfgAddrForwardingGroupName,
             smfCfgAddrForwardingAddrType,
             smfCfgAddrForwardingAddress,
             smfCfgAddrForwardingAddrPrefixLength,
             smfCfgAddrForwardingStatus,

             smfCfgIfAdminStatus,
             smfCfgIfSmfUpTime,
             smfCfgIfRowStatus
     }
     STATUS  current
     DESCRIPTION
        "Set of SMF configuration objects implemented
         in this module."
  ::= { smfMIBGroups 2 }

  smfStateObjectsGroup  OBJECT-GROUP
     OBJECTS {
             smfStateNodeRsStatusIncluded,
             smfStateDpdMemoryOverflow,

             smfStateNeighborRSSA,
             smfStateNeighborNextHopInterface
     }
     STATUS  current
     DESCRIPTION
        "Set of SMF state objects implemented



Cole, et al.                  Experimental                     [Page 49]

RFC 7367                       The SMF-MIB                  October 2014


         in this module."
  ::= { smfMIBGroups 3 }

  smfPerfObjectsGroup  OBJECT-GROUP
     OBJECTS {
             smfPerfIpv4MultiPktsRecvTotal,
             smfPerfIpv4MultiPktsForwardedTotal,
             smfPerfIpv4DuplMultiPktsDetectedTotal,
             smfPerfIpv4DroppedMultiPktsTTLExceededTotal,
             smfPerfIpv4TTLLargerThanPreviousTotal,

             smfPerfIpv6MultiPktsRecvTotal,
             smfPerfIpv6MultiPktsForwardedTotal,
             smfPerfIpv6DuplMultiPktsDetectedTotal,
             smfPerfIpv6DroppedMultiPktsTTLExceededTotal,
             smfPerfIpv6TTLLargerThanPreviousTotal,
             smfPerfIpv6HAVAssistsReqdTotal,
             smfPerfIpv6DpdHeaderInsertionsTotal,

             smfPerfIpv4MultiPktsRecvPerIf,
             smfPerfIpv4MultiPktsForwardedPerIf,
             smfPerfIpv4DuplMultiPktsDetectedPerIf,
             smfPerfIpv4DroppedMultiPktsTTLExceededPerIf,
             smfPerfIpv4TTLLargerThanPreviousPerIf,
             smfPerfIpv6MultiPktsRecvPerIf,
             smfPerfIpv6MultiPktsForwardedPerIf,
             smfPerfIpv6DuplMultiPktsDetectedPerIf,
             smfPerfIpv6DroppedMultiPktsTTLExceededPerIf,
             smfPerfIpv6TTLLargerThanPreviousPerIf,
             smfPerfIpv6HAVAssistsReqdPerIf,
             smfPerfIpv6DpdHeaderInsertionsPerIf
     }
     STATUS  current
     DESCRIPTION
        "Set of SMF performance objects implemented
         in this module by total and per interface."
  ::= { smfMIBGroups 4 }

  smfNotifObjectsGroup  OBJECT-GROUP
     OBJECTS {
             smfNotifDpdMemoryOverflowThreshold,
             smfNotifDpdMemoryOverflowWindow
     }
     STATUS  current
     DESCRIPTION
        "Set of SMF notification control
         objects implemented in this module."
  ::= { smfMIBGroups 5 }



Cole, et al.                  Experimental                     [Page 50]

RFC 7367                       The SMF-MIB                  October 2014


  smfNotificationsGroup  NOTIFICATION-GROUP
     NOTIFICATIONS {
             smfNotifAdminStatusChange,
             smfNotifConfiguredOpModeChange,
             smfNotifIfAdminStatusChange,
             smfNotifDpdMemoryOverflowEvent
     }
     STATUS  current
     DESCRIPTION
        "Set of SMF notifications implemented
         in this module."
  ::= { smfMIBGroups 6 }


  END

8.  IANA-SMF-MIB Definitions

  This section contains the IANA-SMF-MIB module.  This MIB module
  defines two Textual Conventions for which IANA SHOULD maintain and
  keep synchronized with the registry identified below within the
  IANAsmfOpModeIdTC and the IANAsmfRssaIdTC TEXTUAL-CONVENTIONs.

  The IANAsmfOpModeIdTC defines an index that identifies through
  reference to a specific SMF operations mode.  The index is an integer
  valued named-number enumeration consisting of an integer and label.
  IANA is to create and maintain this Textual Convention.  Future
  assignments are made to anyone on a first come, first served basis.
  There is no substantive review of the request, other than to ensure
  that it is well-formed and does not duplicate an existing assignment.
  However, requests must include a minimal amount of clerical
  information, such as a point of contact (including an email address)
  and a brief description of the method being identified as a new SMF
  operations mode.

  The IANAsmfRssaIdTC defines an index that identifies through
  reference to a specific Reduced Set Selection Algorithm (RSSA).  The
  index is an integer valued named-number enumeration consisting of an
  integer and label.  IANA is to create and maintain this Textual
  Convention.

  Future assignments to the IANAsmfRssaIdTC for the index range 5-127
  require an RFC publication (either as an IETF submission or as an
  Independent submission [RFC5742]).  The category of RFC MUST be
  Standards Track.  The specific RSSAs MUST be documented in sufficient
  detail so that interoperability between independent implementations
  is possible.




Cole, et al.                  Experimental                     [Page 51]

RFC 7367                       The SMF-MIB                  October 2014


  Future assignments to the IANAsmfRssaIdTC for the index range 128-239
  are private or local use only, with the type and purpose defined by
  the local site.  No attempt is made to prevent multiple sites from
  using the same value in different (and incompatible) ways.  There is
  no need for IANA to review such assignments (since IANA will not
  record these), and assignments are not generally useful for broad
  interoperability.  It is the responsibility of the sites making use
  of the Private Use range to ensure that no conflicts occur (within
  the intended scope of use).

  Future assignments to the IANAsmfRssaIdTC for the index range 240-255
  are to facilitate experimentation.  These require an RFC publication
  (either as an IETF submission or as an Independent submission
  [RFC5742]).  The category of RFC MUST be Experimental.  The RSSA
  algorithms MUST be documented in sufficient detail so that
  interoperability between independent implementations is possible.

  This MIB module references [RFC3626], [RFC5614], [RFC6621], and
  [RFC7181].

  IANA-SMF-MIB DEFINITIONS ::= BEGIN

  IMPORTS
      MODULE-IDENTITY, mib-2
                FROM SNMPv2-SMI     -- RFC 2578
      TEXTUAL-CONVENTION
                FROM SNMPv2-TC;     -- RFC 2579

  ianaSmfMIB MODULE-IDENTITY
      LAST-UPDATED "201410100000Z"  -- October 10, 2014
      ORGANIZATION "IANA"
      CONTACT-INFO "Internet Assigned Numbers Authority

                    Postal: ICANN
                            12025 Waterfront Drive, Suite 300
                            Los Angeles, CA 90094-2536
                            United States

                    Tel:    +1 310 301 5800
                    EMail:  [email protected]"
      DESCRIPTION  "This MIB module defines the
                    IANAsmfOpModeIdTC and IANAsmfRssaIdTC
                    Textual Conventions, and thus the
                    enumerated values of the
                    smfCapabilitiesOpModeID and
                    smfCapabilitiesRssaID objects defined
                    in the SMF-MIB."
      REVISION     "201410100000Z"  -- October 10, 2014



Cole, et al.                  Experimental                     [Page 52]

RFC 7367                       The SMF-MIB                  October 2014


      DESCRIPTION
         "Initial version of this MIB as published in RFC 7367.

          Copyright (c) 2014 IETF Trust and the persons identified as
          authors of the code.  All rights reserved.

          Redistribution and use in source and binary forms, with or
          without modification, is permitted pursuant to, and subject
          to the license terms contained in, the Simplified BSD License
          set forth in Section 4.c of the IETF Trust's Legal Provisions
          Relating to IETF Documents
          (http://trustee.ietf.org/license-info).
         "
      ::= { mib-2 225 }

  IANAsmfOpModeIdTC ::= TEXTUAL-CONVENTION
      STATUS       current
      DESCRIPTION
          "An index that identifies through reference to a specific
           SMF operations mode.  There are basically three styles
           of SMF operation with reduced relay sets currently
           identified:
             Independent operation 'independent(1)' -
                 SMF performs its own relay
                 set selection using information from an associated
                 MANET NHDP process.

             CDS-aware unicast routing operation 'routing(2)'-
                 a coexistent unicast routing
                 protocol provides dynamic relay
                 set state based upon its own control plane
                 Connected Dominating Set (CDS) or neighborhood
                 discovery information.

             Cross-layer operation 'crossLayer(3)' -
                 SMF operates using neighborhood
                 status and triggers from a
                 cross-layer information base for dynamic relay
                 set selection and maintenance.

           IANA MUST update this Textual Convention accordingly.

           The definition of this Textual Convention with the
           addition of newly assigned values is updated
           periodically by the IANA, in the
           IANA-maintained registries.  (The
           latest arrangements can be obtained by contacting the
           IANA.)



Cole, et al.                  Experimental                     [Page 53]

RFC 7367                       The SMF-MIB                  October 2014


           Requests for new values SHOULD be made to IANA via
           email ([email protected])."
     REFERENCE
          "See Section 7.2 'Reduced Relay Set Forwarding',
           and the Appendices A, B, and C in
           RFC 6621 - 'Simplified Multicast Forwarding',
           Macker, J., Ed., May 2012."
      SYNTAX  INTEGER {
                       independent (1),
                       routing (2),
                       crossLayer (3)
                       -- future (4-255)
      }

  IANAsmfRssaIdTC ::= TEXTUAL-CONVENTION
      STATUS       current
      DESCRIPTION
          "An index that identifies through reference to specific
           RSSAs.  Several are currently defined
           in the Appendices A, B, and C of RFC 6621.

           Examples of RSSAs already identified within
           this Textual Convention (TC) are:

             Classical Flooding (cF(1)) - is the standard
                flooding algorithm where each node in the next
                retransmits the information on each of its interfaces.

             Source-Based Multipoint Relay (sMPR(2)) -
                this algorithm is used by Optimized Link State Routing
                (OLSR) and OLSR version 2 (OLSRv2) protocols for the
                relay of link state updates and other control
                information (RFC 3626, RFC 7181).  Since each router
                picks its neighboring relays independently, sMPR
                forwarders depend upon previous hop information
                (e.g., source Media Access Control (MAC) address) to
                operate correctly.

             Essential Connected Dominating Set (eCDS(3)) -
                defined in RFC 5614, this algorithm forms a single
                CDS mesh for the SMF operating region.  Its
                packet-forwarding rules are not dependent upon
                previous hop knowledge in contrast to sMPR.

             Multipoint Relay Connected Dominating Set (mprCDS(4)) -
                This algorithm is an extension to the basic sMPR
                election algorithm that results in a shared
                (non-source-specific) SMF CDS.  Thus, its forwarding



Cole, et al.                  Experimental                     [Page 54]

RFC 7367                       The SMF-MIB                  October 2014


                rules are not dependent upon previous hop information,
                similar to eCDS.

           IANA MUST update this Textual Convention accordingly.

           The definition of this Textual Convention with the
           addition of newly assigned values is updated
           periodically by the IANA, in the
           IANA-maintained registries.  (The
           latest arrangements can be obtained by contacting the
           IANA.)

           Requests for new values SHOULD be made to IANA via
           email ([email protected])."
      REFERENCE
         "For example, see:

          Section 8.1.1. 'SMF Message TLV Type' and the Appendices
          A, B, and C in
          RFC 6621 - 'Simplified Multicast Forwarding',
          Macker, J., Ed., May 2012.

          RFC 3626 - Clausen, T., Ed., and P. Jacquet, Ed., 'Optimized
          Link State Routing Protocol (OLSR)', October 2003.

          RFC 5614 - Ogier, R. and P. Spagnolo, 'Mobile Ad Hoc
          Network (MANET) Extension of OSPF Using Connected
          Dominating Set (CDS) Flooding', August 2009.

          RFC 7181 - Clausen, T., Dearlove, C., Jacquet, P., and
          U. Herberg, 'The Optimized Link State Routing Protocol
          Version 2', April 2014."
      SYNTAX      INTEGER {
                          cF(1),
                          sMPR(2),
                          eCDS(3),
                          mprCDS(4)
                          -- future(5-127)
                          -- noStdAction(128-239)
                          -- experimental(240-255)
                  }

  END








Cole, et al.                  Experimental                     [Page 55]

RFC 7367                       The SMF-MIB                  October 2014


9.  Security Considerations

  This section discusses security implications of the choices made in
  this SMF-MIB module.

  There are a number of management objects defined in this MIB module
  with a MAX-ACCESS clause of read-write and/or read-create.  Such
  objects may be considered sensitive or vulnerable in some network
  environments.  The support for SET operations in a non-secure
  environment without proper protection can have a negative effect on
  network operations.  These are the tables and objects and their
  sensitivity/vulnerability:

  o  'smfCfgAdminStatus' - this writable configuration object controls
     the operational status of the SMF process.  If this setting is
     configured inconsistently across the MANET multicast domain, then
     delivery of multicast data may be inconsistent across the domain;
     some nodes may not receive multicast data intended for them.

  o  'smfCfgRouterIDAddrType' and 'smfCfgRouterID' - these writable
     configuration objects define the ID of the SMF process.  These
     objects should be configured with a routable address defined on
     the local SMF device.  The smfCfgRouterID is a logical
     identification that MUST be configured as unique across
     interoperating SMF neighborhoods, and it is RECOMMENDED to be
     chosen as the numerically largest address contained in a node's

     'Neighbor Address List' as defined in NHDP.  A smfCfgRouterID MUST
     be unique within the scope of the operating MANET network
     regardless of the method used for selecting it.  If these objects
     are misconfigured or configured inconsistently across the MANET,
     then the ability of various RSSAs, e.g., eCDS, may be compromised.
     This would potentially result in some routers within the MANET not
     receiving multicast packets destine to them.  Hence, intentionally
     misconfiguring these objects could pose a form of Denial-of-
     Service (DoS) attack against the MANET.

  o  'smfCfgOpMode' - this writable configuration object defines the
     operational mode of the SMF process.  The operational mode defines
     how the SMF process receives its data to form its local estimate
     of the CDS.  It is recommended that the value for this object be
     set consistently across the MANET to ensure proper operation of
     the multicast packet forwarding.  If the value for this object is
     set inconsistently across the MANET, the result may be that
     multicast packet delivery will be compromised within the MANET.
     Hence, intentionally misconfiguring this object could pose a form
     DoS attack against the MANET.




Cole, et al.                  Experimental                     [Page 56]

RFC 7367                       The SMF-MIB                  October 2014


  o  'smfCfgRssa' - this writable configuration object sets the
     specific RSSA for the SMF process.  If this object is set
     inconsistently across the MANET domain, multicast delivery of data
     will likely fail.  Hence, intentionally misconfiguring this object
     could pose a form DoS attack against the MANET.

  o  'smfCfgRssaMember' - this writable configuration object sets the
     'interest' of the local SMF node in participating in the CDS.
     Setting this object to 'never(3)' on a highly connected device
     could lead to frequent island formation.  Setting this object to
     'always(2)' could support data ex-filtration from the MANET
     domain.

  o  'smfCfgIpv4Dpd' - this writable configuration object sets the
     duplicate packet detection method, i.e., H-DPD or I-DPD, for
     forwarding of IPv4 multicast packets.  Forwarders may operate with
     mixed H-DPD and I-DPD modes as long as they consistently perform
     the appropriate DPD routines outlined in [RFC6621].  However, it
     is RECOMMENDED that a deployment be configured with a common mode
     for operational consistency.

  o  'smfCfgIpv6Dpd' - this writable configuration object sets the
     duplicate packet detection method for the forwarding of IPv6
     multicast packets.  Since IPv6 SMF does specify an option header,
     the interoperability constraints are not as loose as in the IPv4
     version, and forwarders SHOULD NOT operate with mixed H-DPD and
     I-DPD modes.  Hence, the value for this object SHOULD be
     consistently set within the forwarders comprising the MANET, else
     inconsistent forwarding may result unnecessary multicast packet
     dropping.

  o  'smfCfgMaxPktLifetime' - this writable configuration object sets
     the estimate of the network packet traversal time.  If set too
     small, this could lead to poor multicast data delivery ratios
     throughout the MANET domain.  This could serve as a form of DoS
     attack if this object value is set too small.

  o  'smfCfgDpdEntryMaxLifetime' - this writable configuration object
     sets the maximum lifetime (in seconds) for the cached DPD records
     for the combined IPv4 and IPv6 methods.  If the memory is running
     low prior to the MaxLifetime being exceeded, the local SMF devices
     should purge the oldest records first.  If this object value is
     set too small, then the effectiveness of the SMF DPD algorithms
     may become greatly diminished causing a higher than necessary
     packet load on the MANET.






Cole, et al.                  Experimental                     [Page 57]

RFC 7367                       The SMF-MIB                  October 2014


  o  'smfCfgNhdpRssaMesgTLVIncluded' - this writable configuration
     object indicates whether or not the associated NHDP messages
     include the RSSA Message TLV.  It is highly RECOMMENDED that this
     object be set to 'true(1)' when the SMF operation mode is set to
     independent as this information will inform the local forwarder of
     the RSSA implemented in neighboring forwarders and is used to
     ensure consistent forwarding across the MANET.  While it is
     possible that SMF neighbors MAY be configured differently with
     respect to the RSSA and still operate cooperatively, but these
     cases will vary dependent upon the algorithm types designated and
     this situation SHOULD be avoided.

  o  'smfCfgNhdpRssaAddrBlockTLVIncluded' - this writable configuration
     object indicates whether or not the associated NHDP messages
     include the RSSA Address Block TLV.  The
     smfNhdpRssaAddrBlockTLVIncluded is optional in all cases as it
     depends on the existence of an address block that may not be
     present.  If this SMF device is configured with NHDP, then this
     object should be set to 'true(1)' as this TLV enables CDS relay
     algorithm operation and configuration to be shared among 2-hop
     neighborhoods.  Some relay algorithms require 2-hop neighbor
     configuration in order to correctly select relay sets.

  o  'smfCfgAddrForwardingTable' - the writable configuration objects
     in this table indicate which multicast IP addresses are to be
     forwarded by this SMF node.  Misconfiguration of rows within this
     table can limit the ability of this SMF device to properly forward
     multicast data.

  o  'smfCfgInterfaceTable' - the writable configuration objects in
     this table indicate which SMF node interfaces are participating in
     the SMF packet forwarding process.  Misconfiguration of rows
     within this table can limit the ability of this SMF device to
     properly forward multicast data.

  Some of the readable objects in this MIB module (i.e., objects with a
  MAX-ACCESS other than not-accessible) may be considered sensitive or
  vulnerable in some network environments.  It is thus important to
  control even GET and/or NOTIFY access to these objects and possibly
  to even encrypt the values of these objects when sending them over
  the network via SNMP.  These are the tables and objects and their
  sensitivity/vulnerability:

  o  'smfNodeRsStatusIncluded' - this readable state object indicates
     whether or not this SMF node is part of the CDS.  Being part of
     the CDS makes this node a distinguished device.  It could be
     exploited for data ex-filtration, or DoS attacks.




Cole, et al.                  Experimental                     [Page 58]

RFC 7367                       The SMF-MIB                  October 2014


  o  'smfStateNeighborTable' - the readable state objects in this table
     indicate current neighbor nodes to this SMF node.  Exposing this
     information to an attacker could allow the attacker easier access
     to the larger MANET domain.

  The remainder of the objects in the SMF-MIB module are performance
  counter objects.  While these give an indication of the activity of
  the SMF process on this node, it is not expected that exposing these
  values poses a security risk to the MANET network.

  SNMP versions prior to SNMPv3 did not include adequate security.
  Even if the network itself is secure (for example by using IPsec),
  even then, there is no control as to who on the secure network is
  allowed to access and GET/SET (read/change/create/delete) the objects
  in this MIB module.

  Implementations SHOULD provide the security features described by the
  SNMPv3 framework (see [RFC3410]), and implementations claiming
  compliance to the SNMPv3 standard MUST include full support for
  authentication and privacy via the User-based Security Model (USM)
  [RFC3414] with the AES cipher algorithm [RFC3826].  Implementations
  MAY also provide support for the Transport Security Model (TSM)
  [RFC5591] in combination with a secure transport such as SSH
  [RFC5592] or TLS/DTLS [RFC6353].

  Further, deployment of SNMP versions prior to SNMPv3 is NOT
  RECOMMENDED.  Instead, it is RECOMMENDED to deploy SNMPv3 and to
  enable cryptographic security.  It is then a customer/operator
  responsibility to ensure that the SNMP entity giving access to an
  instance of this MIB module is properly configured to give access to
  the objects only to those principals (users) that have legitimate
  rights to indeed GET or SET (change/create/delete) them.

10.  Applicability Statement

  This document describes objects for configuring parameters of the
  Simplified Multicast Forwarding [RFC6621] process on a Mobile Ad Hoc
  Network (MANET) router.  This MIB module, denoted SMF-MIB, also
  reports state and performance information and notifications.  This
  section provides some examples of how this MIB module can be used in
  MANET network deployments.  A fuller discussion of MANET network
  management use cases and challenges is out of scope for this
  document.

  SMF is designed to allow MANET routers to forward IPv4 and IPv6
  packets over the MANET and cover the MANET nodes through the
  automatic discovery of efficient estimates of the Minimum Connected
  Dominating Set (MCDS) of nodes within the MANET.  The MCDS is



Cole, et al.                  Experimental                     [Page 59]

RFC 7367                       The SMF-MIB                  October 2014


  estimated using the Relay Set Selection Algorithms (RSSAs) discussed
  within this document.  In the following, three scenarios are listed
  where this MIB module is useful:

  o  For a Parking Lot Initial Configuration Situation - it is common
     for the vehicles comprising the MANET being forward deployed at a
     remote location, e.g., the site of a natural disaster, to be off-
     loaded in a parking lot where an initial configuration of the
     networking devices is performed.  The configuration is loaded into
     the devices from a fixed-location Network Operations Center (NOC)
     at the parking lot, and the vehicles are stationary at the parking
     lot while the configuration changes are made.  Standards-based
     methods for configuration management from the co-located NOC are
     necessary for this deployment option.  The set of interesting
     configuration objects for the SMF process are listed within this
     MIB module.

  o  For Mobile vehicles with Low Bandwidth Satellite Link to a Fixed
     NOC - Here the vehicles carrying the MANET routers carry multiple
     wireless interfaces, one of which is a relatively low-bandwidth
     on-the-move satellite connection that interconnects a fix NOC to
     the nodes of the MANET.  Standards-based methods for monitoring
     and fault management from the fixed NOC are necessary for this
     deployment option.

  o  For Fixed NOC and Mobile Local Manager in Larger Vehicles - for
     larger vehicles, a hierarchical network management arrangement is
     useful.  Centralized network management is performed from a fixed
     NOC while local management is performed locally from within the
     vehicles.  Standards-based methods for configuration, monitoring,
     and fault management are necessary for this deployment option.

  Here we provide an example of the simplest of configurations to
  establish an operational multicast forwarding capability in a MANET.
  This discussion only identifies the configuration necessary through
  the SMF-MIB module and assumes that other configuration has occurred.
  Assume that the MANET is to support only IPv4 addressing and that the
  MANET nodes are to be configured in the context of the Parking Lot
  Initialization case above.  Then, the SMF-MIB module defines ten
  configuration OIDs and two configuration tables, i.e., the
  smfCfgAddrForwardingTable and the smfCfgInterfaceTable.  Of the ten
  OIDs defined, all but one, i.e., the smfCfgRouterID, have DEFVAL
  clauses that allow for a functional configuration of the SMF process
  within the MANET.  The smfCfgRouterIDType defaults to 'ipv4' so the
  smfCfgRouterID can be set as, e.g., (assuming the use of the Net-SNMP
  toolkit),:

  snmpset [options] <smfCfgRouterID_OID>.0 a 192.0.2.100



Cole, et al.                  Experimental                     [Page 60]

RFC 7367                       The SMF-MIB                  October 2014


  If the smfCfgAddrForwardingTable is left empty, then the SMF local
  forwarder will forward all multicast addresses.  So this table does
  not require configuration if you want to have the MANET forward all
  multicast addresses.

  All that remains is to configure at least one row in the
  smfCfgInterfaceTable.  Assume that the node has a wireless interface
  with an <ifName>='wlan0' and an <ifIndex>='1'.  All of the objects in
  the rows of the smfCfgInterfaceTable have a DEFVAL clause; hence,
  only the RowStatus object needs to be set.  So the SMF process will
  be activated on the 'wlan0' interface by the following network
  manager snmpset command:

  snmpset [options] <smfCfgIfRowStatus>.1 i active(1)

  At this point, the configured forwarder will begin a Classical
  Flooding algorithm to forward all multicast addresses IPv4 packets it
  receives.

  To provide a more efficient multicast forwarding within the MANET,
  the network manager could walk the smfCapabilitiesTable to identify
  other SMF Operational Modes, for example:

  snmpwalk [options] <smfCapabilitiesTable>

  SMF-MIB::smfCapabilitiesIndex.1 = INTEGER: 1

  SMF-MIB::smfCapabilitiesIndex.2 = INTEGER: 2

  SMF-MIB::smfCapabilitiesOpModeID.1 = INTEGER: cfOnly(1)

  SMF-MIB::smfCapabilitiesOpModeiD.2 = INTEGER: independent(2)

  SMF-MIB::smfCapabilitiesRssaID.1 = INTEGER: cF(1)

  SMF-MIB::smfCapabilitiesRssaID.2 = INTEGER: eCDS(3)

  In this example, the forwarding device also supports the Essential
  Connected Dominating Set (eCDS) RSSA with the forwarder in the
  'independent(2)' operational mode.  If the network manager were to
  then issue an snmpset, for example:

  snmpset [options] <smfCfgOperationalMode>.0 i 2

  then the local forwarder would switch its forwarding behavior from
  Classical Flooding to the more efficient eCDS flooding.





Cole, et al.                  Experimental                     [Page 61]

RFC 7367                       The SMF-MIB                  October 2014


11.  IANA Considerations

  This document defines two MIB modules:

  1.  SMF-MIB is defined in Section 7 and is an experimental MIB
      module.

  2.  IANA-SMF-MIB is defined in Section 8 and is an IANA MIB module
      that IANA maintains.

  Thus, IANA has completed three actions:

  IANA has allocated an OBJECT IDENTIFIER value and recorded it in the
  SMI Numbers registry in the subregistry called "SMI Experimental
  Codes" under the experimental branch (1.3.6.1.3).

             Decimal | Name    | Description   | Reference
             --------+---------+---------------+------------
              126    | smfMib  | SMF-MIB       | [RFC7367]

  IANA has allocated an OBJECT IDENTIFIER value and recorded it in the
  SMI Numbers registry in the subregistry called "SMI Network
  Management MGMT Codes Internet-standard MIB" under the mib-2 branch
  (1.3.6.1.2.1).

             Decimal | Name          | Description     | Reference
             --------+---------------+-----------------+------------
              225    | ianaSmfMIB    | IANA-SMF-MIB    | [RFC7367]
  IANA maintains a MIB module called ianaSmfMIB and has populated it
  with the initial MIB module defined in Section 8 of this document by
  creating a new entry in the registry "IANA Maintained MIBs" called
  "IANA-SMF-MIB".

12.  References

12.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997,
             <http://www.rfc-editor.org/info/rfc2119>.

  [RFC2578]  McCloghrie, K., Ed., Perkins, D., Ed., and J.
             Schoenwaelder, Ed., "Structure of Management Information
             Version 2 (SMIv2)", STD 58, RFC 2578, April 1999,
             <http://www.rfc-editor.org/info/rfc2578>.






Cole, et al.                  Experimental                     [Page 62]

RFC 7367                       The SMF-MIB                  October 2014


  [RFC2579]  McCloghrie, K., Ed., Perkins, D., Ed., and J.
             Schoenwaelder, Ed., "Textual Conventions for SMIv2", STD
             58, RFC 2579, April 1999,
             <http://www.rfc-editor.org/info/rfc2579>.

  [RFC2580]  McCloghrie, K., Perkins, D., and J. Schoenwaelder,
             "Conformance Statements for SMIv2", STD 58, RFC 2580,
             April 1999, <http://www.rfc-editor.org/info/rfc2580>.

  [RFC2863]  McCloghrie, K. and F. Kastenholz, "The Interfaces Group
             MIB", RFC 2863, June 2000,
             <http://www.rfc-editor.org/info/rfc2863>.

  [RFC3410]  Case, J., Mundy, R., Partain, D., and B. Stewart,
             "Introduction and Applicability Statements for Internet-
             Standard Management Framework", RFC 3410, December 2002,
             <http://www.rfc-editor.org/info/rfc3410>.

  [RFC3411]  Harrington, D., Presuhn, R., and B. Wijnen, "An
             Architecture for Describing Simple Network Management
             Protocol (SNMP) Management Frameworks", STD 62, RFC 3411,
             December 2002, <http://www.rfc-editor.org/info/rfc3411>.

  [RFC3414]  Blumenthal, U. and B. Wijnen, "User-based Security Model
             (USM) for version 3 of the Simple Network Management
             Protocol (SNMPv3)", STD 62, RFC 3414, December 2002,
             <http://www.rfc-editor.org/info/rfc3414>.

  [RFC3418]  Presuhn, R., "Management Information Base (MIB) for the
             Simple Network Management Protocol (SNMP)", STD 62, RFC
             3418, December 2002,
             <http://www.rfc-editor.org/info/rfc3418>.

  [RFC3626]  Clausen, T. and P. Jacquet, "Optimized Link State Routing
             Protocol (OLSR)", RFC 3626, October 2003,
             <http://www.rfc-editor.org/info/rfc3626>.

  [RFC3826]  Blumenthal, U., Maino, F., and K. McCloghrie, "The
             Advanced Encryption Standard (AES) Cipher Algorithm in the
             SNMP User-based Security Model", RFC 3826, June 2004,
             <http://www.rfc-editor.org/info/rfc3826>.

  [RFC4001]  Daniele, M., Haberman, B., Routhier, S., and J.
             Schoenwaelder, "Textual Conventions for Internet Network
             Addresses", RFC 4001, February 2005,
             <http://www.rfc-editor.org/info/rfc4001>.





Cole, et al.                  Experimental                     [Page 63]

RFC 7367                       The SMF-MIB                  October 2014


  [RFC5591]  Harrington, D. and W. Hardaker, "Transport Security Model
             for the Simple Network Management Protocol (SNMP)", STD
             78, RFC 5591, June 2009,
             <http://www.rfc-editor.org/info/rfc5591>.

  [RFC5592]  Harrington, D., Salowey, J., and W. Hardaker, "Secure
             Shell Transport Model for the Simple Network Management
             Protocol (SNMP)", RFC 5592, June 2009,
             <http://www.rfc-editor.org/info/rfc5592>.

  [RFC5614]  Ogier, R. and P. Spagnolo, "Mobile Ad Hoc Network (MANET)
             Extension of OSPF Using Connected Dominating Set (CDS)
             Flooding", RFC 5614, August 2009,
             <http://www.rfc-editor.org/info/rfc5614>.

  [RFC5742]  Alvestrand, H. and R. Housley, "IESG Procedures for
             Handling of Independent and IRTF Stream Submissions", BCP
             92, RFC 5742, December 2009,
             <http://www.rfc-editor.org/info/rfc5742>.

  [RFC6353]  Hardaker, W., "Transport Layer Security (TLS) Transport
             Model for the Simple Network Management Protocol (SNMP)",
             STD 78, RFC 6353, July 2011,
             <http://www.rfc-editor.org/info/rfc6353>.

  [RFC6621]  Macker, J., "Simplified Multicast Forwarding", RFC 6621,
             May 2012, <http://www.rfc-editor.org/info/rfc6621>.

  [RFC7181]  Clausen, T., Dearlove, C., Jacquet, P., and U. Herberg,
             "The Optimized Link State Routing Protocol Version 2", RFC
             7181, April 2014,
             <http://www.rfc-editor.org/info/rfc7181>.

12.2.  Informative References

  [RFC4293]  Routhier, S., "Management Information Base for the
             Internet Protocol (IP)", RFC 4293, April 2006,
             <http://www.rfc-editor.org/info/rfc4293>.

  [RFC5132]  McWalter, D., Thaler, D., and A. Kessler, "IP Multicast
             MIB", RFC 5132, December 2007,
             <http://www.rfc-editor.org/info/rfc5132>.









Cole, et al.                  Experimental                     [Page 64]

RFC 7367                       The SMF-MIB                  October 2014


Acknowledgements

  The authors would like to acknowledge the valuable comments from Sean
  Harnedy in the early phases of the development of this MIB module.
  The authors would like to thank Adrian Farrel, Dan Romascanu, Juergen
  Shoenwaelder, Stephen Hanna, and Brian Haberman for their careful
  review of this document and their insightful comments.  We also wish
  to thank the entire MANET WG for many reviews of this document.
  Further, the authors would like to thank James Nguyen for his careful
  review and comments on this MIB module and his work on the
  definitions of the follow-on MIB modules to configure specific RSSAs
  related to SMF.  Further, the authors would like to acknowledge the
  work of James Nguyen, Brian Little, Ryan Morgan, and Justin Dean on
  their software development of the SMF-MIB.

Contributors

  This MIB document uses the template authored by D.  Harrington that
  is based on contributions from the MIB Doctors, especially Juergen
  Schoenwaelder, Dave Perkins, C.M.  Heard, and Randy Presuhn.

Authors' Addresses

  Robert G. Cole
  US Army CERDEC
  6010 Frankford Road
  Aberdeen Proving Ground, Maryland  21005
  United States

  Phone: +1 443 395 8744
  EMail: [email protected]


  Joseph Macker
  Naval Research Laboratory
  Washington, D.C.  20375
  United States

  EMail: [email protected]


  Brian Adamson
  Naval Research Laboratory
  Washington, D.C.  20375
  United States

  EMail: [email protected]




Cole, et al.                  Experimental                     [Page 65]