Internet Engineering Task Force (IETF)                           H. Zhai
Request for Comments: 7357                                         F. Hu
Updates: 6325                                                        ZTE
Category: Standards Track                                     R. Perlman
ISSN: 2070-1721                                               Intel Labs
                                                        D. Eastlake 3rd
                                                                 Huawei
                                                              O. Stokes
                                                       Extreme Networks
                                                         September 2014


        Transparent Interconnection of Lots of Links (TRILL):
    End Station Address Distribution Information (ESADI) Protocol

Abstract

  The IETF TRILL (Transparent Interconnection of Lots of Links)
  protocol provides least-cost pair-wise data forwarding without
  configuration in multi-hop networks with arbitrary topologies and
  link technologies.  TRILL supports multipathing of both unicast and
  multicast traffic.  Devices that implement the TRILL protocol are
  called TRILL switches or RBridges (Routing Bridges).

  ESADI (End Station Address Distribution Information) is an optional
  protocol by which a TRILL switch can communicate, in a Data Label
  (VLAN or fine-grained label) scoped way, end station address and
  reachability information to TRILL switches participating in ESADI for
  the relevant Data Label.  This document updates RFC 6325,
  specifically the documentation of the ESADI protocol, and is not
  backwards compatible.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7357.






Zhai, et al.                 Standards Track                    [Page 1]

RFC 7357                      TRILL: ESADI                September 2014


Copyright Notice

  Copyright (c) 2014 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.





































Zhai, et al.                 Standards Track                    [Page 2]

RFC 7357                      TRILL: ESADI                September 2014


Table of Contents

  1. Introduction ....................................................4
     1.1. Content and Precedence .....................................5
     1.2. Terminology ................................................5
  2. ESADI Protocol Overview .........................................6
     2.1. ESADI Virtual Link ........................................10
     2.2. ESADI Neighbor Determination ..............................10
     2.3. ESADI Payloads ............................................11
  3. ESADI DRB (Designated RBridge) Determination ...................11
  4. ESADI PDU Processing ...........................................12
     4.1. Unicasting ESADI PDUs .....................................12
     4.2. General Transmission of ESADI PDUs ........................13
     4.3. General Receipt of ESADI PDUs .............................14
     4.4. ESADI Reliable Flooding ...................................14
  5. End Station Addresses ..........................................15
     5.1. Learning Confidence Level .................................15
     5.2. Forgetting End Station Addresses ..........................16
     5.3. Duplicate MAC Address .....................................16
  6. ESADI-LSP Contents .............................................18
     6.1. ESADI Parameter Data ......................................19
     6.2. MAC-Reachability TLV ......................................20
     6.3. Default Authentication ....................................21
  7. IANA Considerations ............................................21
     7.1. ESADI Participation and Capability Flags ..................22
     7.2. TRILL GENINFO TLV .........................................23
  8. Security Considerations ........................................24
     8.1. Privacy Considerations ....................................25
  9. Acknowledgements ...............................................26
  10. References ....................................................26
     10.1. Normative References .....................................26
     10.2. Informative References ...................................28
  Appendix A. Interoperability and Changes to RFC 6325 ..............29
     A.1. ESADI PDU Changes .........................................29
     A.2. Unicasting Changes ........................................30
     A.3. Message Timing Changes and Suggestions ....................30
     A.4. Duplicate Address Reachability ............................30














Zhai, et al.                 Standards Track                    [Page 3]

RFC 7357                      TRILL: ESADI                September 2014


1.  Introduction

  The TRILL (Transparent Interconnection of Lots of Links) protocol
  [RFC6325] provides least-cost pair-wise data forwarding without
  configuration in multi-hop networks with arbitrary topologies and
  link technologies, safe forwarding even during periods of temporary
  loops, and support for multipathing of both unicast and multicast
  traffic.  TRILL accomplishes this with the IS-IS (Intermediate System
  to Intermediate System) [IS-IS] [RFC1195] [RFC7176] link-state
  routing protocol using a header with a hop count.  The design
  supports optimization of the distribution of multi-destination frames
  and two types of data labeling: VLANs (Virtual Local Area Networks)
  [RFC6325] and FGLs (fine-grained labels) [RFC7172].  Devices that
  implement TRILL are called TRILL switches or RBridges (Routing
  Bridges).

  There are five ways a TRILL switch can learn end station addresses,
  as described in Section 4.8 of [RFC6325].  One of these is the ESADI
  (End Station Address Distribution Information) protocol, which is an
  optional Data Label scoped way by which TRILL switches can
  communicate with each other information such as end station addresses
  and their TRILL switch of attachment.  A TRILL switch that is
  announcing interest in a Data Label MAY use the ESADI protocol to
  announce the end station address of some or all of its attached end
  stations in that Data Label to other TRILL switches that are running
  ESADI for that Data Label.  (In the future, ESADI may also be used
  for other address and reachability information.)

  By default, TRILL switches with connected end stations learn
  addresses from the data plane when ingressing and egressing native
  frames, although such learning can be disabled.  The ESADI protocol's
  potential advantages over data plane learning include the following:

  1. Security advantages:

     a) The ESADI protocol can be used to announce end stations with an
        authenticated enrollment (for example, enrollment authenticated
        by cryptographically based EAP (Extensible Authentication
        Protocol) [RFC3748] methods via [802.1X]).

     b) The ESADI protocol supports cryptographic authentication of its
        message payloads for more secure transmission.

  2. Fast update advantages: The ESADI protocol provides a fast update
     of end station MAC (Media Access Control) addresses and their
     TRILL switch of attachment.  If an end station is unplugged from
     one TRILL switch and plugged into another, ingressed frames with
     that end station's MAC address as their destination can be



Zhai, et al.                 Standards Track                    [Page 4]

RFC 7357                      TRILL: ESADI                September 2014


     black-holed.  That is, they can be sent just to the older egress
     TRILL switch that the end station was connected to until cached
     address information at some remote ingress TRILL switch times out,
     possibly for tens of seconds [RFC6325].

  MAC address reachability information, some ESADI parameters, and
  optional authentication information are carried in ESADI packets
  rather than in the TRILL IS-IS protocol.  As specified below, ESADI
  is, for each Data Label, a virtual logical topology overlay in the
  TRILL topology.  An advantage of using ESADI over using TRILL IS-IS
  is that the end station attachment information is not flooded to all
  TRILL switches but only to TRILL switches advertising ESADI
  participation for the Data Label in which those end stations occur.

1.1.  Content and Precedence

  This document updates [RFC6325], the TRILL base protocol
  specification, replacing the description of the TRILL ESADI protocol
  (Section 4.2.5 of [RFC6325], including all subsections), providing
  more detail on ESADI, updating other ESADI-related sections of
  [RFC6325], and prevailing over [RFC6325] in any case where they
  conflict.  For this reason, familiarity with [RFC6325] is
  particularly assumed.  These changes include a change to the format
  of ESADI-LSPs (ESADI Link State Protocol Data Units) that is not
  backwards compatible; this change is justified by the substantially
  increased amount of information that can be carried and in light of
  the very limited, if any, deployment of RFC 6325 ESADI.  These
  changes are further discussed in Appendix A.

  Section 2 of this document is the ESADI protocol overview.  Section 3
  specifies ESADI DRB (Designated RBridge) determination.  Section 4
  discusses the processing of ESADI PDUs.  Section 5 discusses
  interaction with other modes of end station address learning.
  Section 6 describes the ESADI-LSP and its contents.

1.2.  Terminology

  This document uses the acronyms defined in [RFC6325], in addition to
  the following:

     Data Label:      VLAN or FGL.

     ESADI RBridge:   An RBridge that is participating in ESADI for one
                      or more Data Labels.

     FGL:             Fine-Grained Label [RFC7172].

     LSP:             Link State PDU [IS-IS].



Zhai, et al.                 Standards Track                    [Page 5]

RFC 7357                      TRILL: ESADI                September 2014


     LSP number zero: A Link State PDU with fragment number equal to
                      zero.

     PDU:             Protocol Data Unit.

     TRILL switch:    An alternative name for an RBridge.

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

  Capitalized IANA-related terms such as "IETF Review" are to be
  interpreted as described in [RFC5226].

2.  ESADI Protocol Overview

  ESADI is a Data Label scoped way for TRILL switches (also known as
  RBridges) to announce and learn end station addresses rapidly and
  securely.  An RBridge that is announcing participation in ESADI for
  one or more Data Labels is called an ESADI RBridge.

  ESADI is an optional protocol that is separate from the mandatory
  TRILL IS-IS implemented by all RBridges in a campus.  There is a
  separate ESADI instance for each Data Label (VLAN or FGL) if ESADI is
  being used for that Data Label.  In essence, for each such Data
  Label, there is a modified instance of the IS-IS reliable flooding
  mechanism in which ESADI RBridges may choose to participate.  (These
  are not the instances specified in [RFC6822].)  Multiple ESADI
  instances may share implementation components within an RBridge as
  long as that sharing preserves the independent operation of each
  instance of the ESADI protocol.  For example, the ESADI link state
  database could be a single database with a field in each record
  indicating the Data Label to which it applies, or it could be a
  separate database per Data Label.  However, the ESADI update process
  operates separately for each ESADI instance and independently from
  the TRILL IS-IS update process.

  ESADI does no routing calculations, so there is no reason for
  pseudonodes in ESADI and none are created.  (Pseudonodes [IS-IS] are
  a construct for optimizing routing calculations.)  Furthermore, a
  relatively large amount of ESADI data will have to be distributed,
  under some circumstances, using ESADI mechanisms; this would require
  a large number of ESADI-LSP fragments.  ESADI-LSP, ESADI-CSNP, and
  ESADI-PSNP (ESADI Link State PDU, Complete Sequence Number PDU, and
  Partial Sequence Number PDU) payloads are therefore formatted as
  Extended Level 1 Circuit Scope (E-L1CS) PDUs [RFC7356] (see also
  Section 6).  This allows up to 2**16 fragments but does not support
  link state data associated with pseudonodes.



Zhai, et al.                 Standards Track                    [Page 6]

RFC 7357                      TRILL: ESADI                September 2014


  After the TRILL Header, ESADI packets have an inner Ethernet header
  with the Inner.MacDA of "All-Egress-RBridges" (formerly called
  "All-ESADI-RBridges"), an inner Data Label specifying the VLAN or FGL
  of interest, and the "L2-IS-IS" Ethertype followed by the ESADI
  payload, as shown in Figure 1.

                    +--------------------------------+
                    |          Link Header           |
                    +--------------------------------+
                    |       TRILL Data Header        |
                    +--------------------------------+
                    |   Inner Ethernet Addresses     |
                    +--------------------------------+
                    |           Data Label           |
                    +--------------------------------+
                    |       L2-IS-IS Ethertype       |
                    +--------------------------------+
                    |         ESADI Payload          |
                    +--------------------------------+
                    |          Link Trailer          |
                    +--------------------------------+

                  Figure 1: TRILL ESADI Packet Overview




























Zhai, et al.                 Standards Track                    [Page 7]

RFC 7357                      TRILL: ESADI                September 2014


  TRILL ESADI packets sent on an Ethernet link are structured as shown
  in Figure 2.  The outer VLAN tag will not be present if it was not
  included by the Ethernet port that sent the packet.

  Outer Ethernet Header:
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                 Next Hop Destination Address                  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Next Hop Destination Addr.    | Sending RBridge Port MAC Addr.|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                 Sending RBridge Port MAC Address              |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ...Ethernet frame tagging including optional Outer.VLAN tag...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Ethertype = TRILL      0x22F3 |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  TRILL Header:                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                     | V | R |M|Op-Length| Hop Count |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Egress Nickname               | Ingress (Origin) Nickname     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  Inner Ethernet Header:
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                      All-Egress-RBridges                      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | All-Egress-RBridges (cont.)   | Origin RBridge MAC Address    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |               Origin RBridge MAC Address (continued)          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  VLAN or FGL Data Label (4 or 8 bytes) [RFC7172] ...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Ethertype = L2-IS-IS   0x22F4 |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ESADI Payload (formatted as IS-IS):
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | IS-IS Common Header, IS-IS PDU Specific Fields, IS-IS TLVs    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  Frame Check Sequence:
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                  FCS (Frame Check Sequence)                   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 2: ESADI Ethernet Link Packet Format

  The Next Hop Destination Address or Outer.MacDA is the All-RBridges
  multicast address if the ESADI PDU is being multicast.  If it is
  being unicast, the Next Hop Destination Address is the unicast
  address of the next-hop RBridge.  The VLAN for the Outer.VLAN



Zhai, et al.                 Standards Track                    [Page 8]

RFC 7357                      TRILL: ESADI                September 2014


  information, if present, will be the Designated VLAN for the link on
  which the packet is sent.  The V and R fields will be zero while the
  M bit will be one, unless the ESADI PDU was unicast, in which case
  the M bit will be zero.  The Data Label specified will be the VLAN or
  FGL to which the ESADI packet applies.  The Origin RBridge MAC
  Address or Inner.MacSA MUST be a MAC address unique across the campus
  owned by the RBridge originating the ESADI packet -- for example, any
  of its port MAC addresses if it has any Ethernet ports -- and each
  ESADI RBridge MUST use the same Inner.MacSA for all of the ESADI
  packets it originates.

  TRILL ESADI packets sent on a PPP link are structured as shown in
  Figure 3 [RFC6361].

  PPP Header:
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | PPP = TNP (TRILL Data) 0x005D |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  TRILL Header:                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                     | V | R |M|Op-Length| Hop Count |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Egress Nickname               | Ingress (Origin) Nickname     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  Inner Ethernet Header:
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                      All-Egress-RBridges                      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | All-Egress-RBridges (cont.)   | Origin RBridge MAC Address    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |               Origin RBridge MAC Address (continued)          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  VLAN or FGL Data Label (4 or 8 bytes) [RFC7172] ...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Ethertype = L2-IS-IS   0x22F4 |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ESADI Payload (formatted as IS-IS):
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | IS-IS Common Header, IS-IS PDU Specific Fields, IS-IS TLVs    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  PPP Check Sequence:
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                       PPP Check Sequence                      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 3: ESADI PPP Link Packet Format






Zhai, et al.                 Standards Track                    [Page 9]

RFC 7357                      TRILL: ESADI                September 2014


2.1.  ESADI Virtual Link

  All RBridges forward ESADI packets as if they were ordinary TRILL
  Data packets.  Because of this forwarding, it appears to an instance
  of the ESADI protocol at an RBridge that it is directly connected by
  a multi-access virtual link to all RBridges in the campus that are
  "data reachable" from it (see Section 2 of [RFC7180]) and are running
  ESADI for that Data Label.  No "routing" calculation (least-cost path
  or distribution tree construction) ever has to be performed by ESADI.
  An ESADI RBridge merely transmits the ESADI packets it originates on
  this virtual link as described for TRILL Data packets in [RFC6325]
  and [RFC7172].  For multicast ESADI packets, it may use any
  distribution tree that it might use for an ordinary multi-destination
  TRILL Data packet.  RBridges that do not implement the ESADI
  protocol, do not have it enabled, or are not participating in the
  ESADI protocol for the Data Label of an ESADI packet do not
  decapsulate or locally process the ESADI packet.  Thus, ESADI packets
  are transparently tunneled through transit RBridges.

2.2.  ESADI Neighbor Determination

  The ESADI instance for Data Label X at an RBridge RB1 determines who
  its adjacent ESADI neighbors are by examining the TRILL IS-IS link
  state database for RBridges that are data reachable from RB1 (see
  Section 2 of [RFC7180]) and are announcing their participation in
  Data Label X ESADI.  When an RBridge RB2 becomes data unreachable
  from RB1 or the relevant entries for RB2 are purged from the core
  IS-IS link state database, it is lost as a neighbor and also dropped
  from any ESADI instances from the point of view of RB1, and when RB2
  is no longer announcing participation in Data Label X ESADI, it
  ceases to be a neighbor for any Data Label X ESADI instance.  All
  these considerations are Data Label scoped.  Because of these
  mechanisms whereby an ESADI instance at an ESADI RBridge can
  determine its ESADI adjacencies by examining the TRILL IS-IS link
  state database, there are no "Hellos" sent in ESADI and no adjacency
  information is carried in ESADI-LSPs.

  A participation announcement in a VLAN scoped ESADI instance is
  generated by setting a flag bit in the Interested VLANs sub-TLV, and
  an announcement for an FGL scoped ESADI instance is generated by
  setting a flag bit in the Interested Labels sub-TLV [RFC7176] (see
  Section 7.1).









Zhai, et al.                 Standards Track                   [Page 10]

RFC 7357                      TRILL: ESADI                September 2014


2.3.  ESADI Payloads

  TRILL ESADI packet payloads are structured like IS-IS Extended
  Level 1 Circuit Scope (E-L1CS) LSP, CSNP, and PSNP PDUs [RFC7356],
  except as indicated below, but are always TRILL encapsulated on the
  wire as if they were TRILL Data packets.  The information distributed
  by the ESADI protocol includes a list of local end station MAC
  addresses connected to the originating RBridge and, for each such
  address, a 1-octet unsigned "Confidence" rating in the range 0-254
  (see Section 6.2).  It is entirely up to the originating RBridge
  which locally connected MAC addresses it wishes to advertise via
  ESADI and with what Confidence.  It MAY advertise all, some, or none
  of such addresses.  In addition, some ESADI parameters of the
  advertising RBridge (see Section 6.1) and, optionally, authentication
  information (see Section 6.3) are included.  Future uses of ESADI may
  distribute other similar address and reachability information.

  TRILL ESADI-LSPs MUST NOT contain a Data Label ID in their payload.
  The Data Label to which the ESADI data applies is the Data Label of
  the TRILL Data packet enclosing the ESADI payload.  If a Data Label
  ID could occur within the payload, it might conflict with that TRILL
  Data packet Data Label and could conflict with any future Data Label
  mapping scheme that may be adopted [VLANmapping].  If a VLAN or FGL
  ID field within an ESADI-LSP PDU does include a value, that field's
  contents MUST be ignored.

3.  ESADI DRB (Designated RBridge) Determination

  Because ESADI does no adjacency announcement or routing, the
  ESADI-DRB never creates a pseudonode.  However, a DRB [RFC7177] is
  still needed to issue ESADI-CSNP PDUs and respond to ESADI-PSNP PDUs
  for ESADI-LSP synchronization.

  Generally speaking, the DRB election on the ESADI virtual link (see
  Section 2.1) operates similarly to the DRB election on a TRILL IS-IS
  broadcast link, as described in Section 4.2.1 ("DRB Election
  Details") of [RFC7177], with the following exceptions: in the Data
  Label X ESADI-DRB election at RB1 on an ESADI virtual link, the
  candidates are the local ESADI instance for Data Label X and all
  remote ESADI instances at RBridges that are (1) data reachable from
  RB1 [RFC7180] and (2) announcing in their TRILL IS-IS LSP that they
  are participating in ESADI for Data Label X.  The winner is the
  instance with the highest ESADI Parameter 7-bit priority field with
  ties broken by the System ID, comparing fields as unsigned integers
  with the larger magnitude considered higher priority.  "SNPA/MAC
  address" (Subnetwork Point of Attachment / MAC address) is not
  considered in this tiebreaking, and there is no "Port ID".




Zhai, et al.                 Standards Track                   [Page 11]

RFC 7357                      TRILL: ESADI                September 2014


4.  ESADI PDU Processing

  Data Label X ESADI neighbors are usually not connected directly by a
  physical link but are always logically connected by a virtual link
  (see Section 2.1).  There could be hundreds or thousands of ESADI
  RBridges (TRILL switches) on the virtual link.  The only PDUs used in
  ESADI are the ESADI-LSP, ESADI-CSNP, and ESADI-PSNP PDUs.  In
  particular, there are no Hello or MTU PDUs, because ESADI does not
  build a topology, does not do any routing calculations, and does not
  determine MTU.  Instead, ESADI uses the distribution trees and the Sz
  campus minimum link MTU determined by the core TRILL IS-IS (see
  [RFC6325] and [RFC7180]).

4.1.  Unicasting ESADI PDUs

  For [IS-IS], PDU multicasting is normal on a local link and no effort
  is made to optimize to unicast, because on the typical physical link
  for which IS-IS was designed (commonly a piece of multi-access
  Ethernet cable), any frame made the link busy for that frame time.
  However, to ESADI instances, what appears to be a simple multi-access
  link is generally a set of multi-hop distribution trees that may or
  may not be pruned.  Thus, transmitting a multicast frame on such a
  tree can impose a substantially greater load than transmitting a
  unicast frame.  This load may be justified if there are likely to be
  multiple listeners but may not be justified if there is only one
  recipient of interest.  For this reason, under some circumstances,
  ESADI PDUs MAY be TRILL unicast if it is confirmed that the
  destination RBridge supports receiving unicast ESADI PDUs (see
  Section 6.1).

  The format of a unicast ESADI packet is the format of a multicast
  TRILL ESADI packet as described in Section 2 above, except as
  follows:

  o  On an Ethernet link, in the outer Ethernet header the Outer.MacDA
     is the unicast address of the next-hop RBridge.

  o  In the TRILL Header, the M bit is set to zero and the Egress
     Nickname is the nickname of the destination RBridge.












Zhai, et al.                 Standards Track                   [Page 12]

RFC 7357                      TRILL: ESADI                September 2014


  To support unicasting of ESADI PDUs, Section 4.6.2.2 of [RFC6325] is
  replaced with the following:

  4.6.2.2.  TRILL ESADI Packets

     If M = 1, the egress nickname designates the distribution tree.
     The packet is forwarded as described in Section 4.6.2.5.  In
     addition, if (1) the forwarding RBridge is interested in the
     specified VLAN or fine-grained label [RFC7172], (2) the forwarding
     RBridge implements the TRILL ESADI protocol, and (3) ESADI is
     enabled for the specified VLAN or fine-grained label, then the
     inner frame is decapsulated and provided to that local ESADI
     protocol.

     If M = 0 and the egress nickname is not that of the receiving
     RBridge, the packet is forwarded as for known unicast TRILL Data
     frames as described in Section 4.6.2.4.  If M = 0 and the egress
     nickname is that of the receiving RBridge, and the receiving
     RBridge supports unicast ESADI PDUs, then the ESADI packet is
     decapsulated and processed if it meets the three numbered
     conditions in the paragraph above; otherwise, it is discarded.

  The references to "4.6.2.2", "4.6.2.4", and "4.6.2.5" above refer to
  those sections in [RFC6325].

4.2.  General Transmission of ESADI PDUs

  Following the usual [IS-IS] rules, an ESADI instance does not
  transmit any ESADI PDUs if it has no ESADI adjacencies.  Such
  transmission would just be a waste of bandwidth.

  The MTU available to ESADI payloads is at least 24 bytes less than
  that available to TRILL IS-IS because of the additional fields
  required ( 2(TRILL Ethertype) + 6(TRILL Header) + 6(Inner.MacDA) +
  6(Inner.MacSA) + 4/8(Data Label) bytes ).  Thus, the inner ESADI
  payload, starting with the Intradomain Routeing Protocol
  Discriminator byte, MUST NOT exceed Sz minus 24 for a VLAN ESADI
  instance or Sz minus 28 for an FGL ESADI instance; however, if a
  larger payload is received, it is processed normally (see [RFC6325]
  and [RFC7180] for discussions of Sz and MTU).

  In all cases where this document says that an ESADI PDU is multicast,
  if the transmitting RBridge has only one neighbor and that neighbor
  advertises support for unicast, the PDU MAY be unicast (see
  Section 4.1).






Zhai, et al.                 Standards Track                   [Page 13]

RFC 7357                      TRILL: ESADI                September 2014


  A priority bit to indicate that an LSP fragment should be flooded
  with high priority is provided by [RFC7356].  This bit SHOULD be set
  on ESADI-LSP fragment zero because it is important that the ESADI
  Parameter APPsub-TLV get through promptly.  This bit SHOULD NOT be
  set on other ESADI-LSP fragments to avoid giving undue priority to
  less urgent PDUs.

4.3.  General Receipt of ESADI PDUs

  In contrast with Layer 3 IS-IS PDU acceptance tests, which check the
  source inner and outer SNPA/MAC in order to verify that a PDU is from
  an adjacent TRILL switch, in TRILL ESADI adjacency is based on the
  system ID, so the system ID inside the PDU is all that is tested for.

  If an ESADI instance believes that it has no ESADI neighbors, it
  ignores any ESADI PDUs it receives.

4.4.  ESADI Reliable Flooding

  The IS-IS reliable flooding mechanism (the Update Process) is
  modified for ESADI in the ways listed below.  Except as otherwise
  stated, the ESADI update process works as described in [IS-IS],
  [RFC1195], and [RFC7356].

  When an ESADI instance sees that it has a new ESADI neighbor, its
  self-originated ESADI-LSP fragments are scheduled to be sent and MAY
  be unicast to that neighbor if the neighbor is announcing in its LSP
  that it supports unicast ESADI (see Section 6.1).  If all the other
  ESADI instances for the same Data Label send their self-originated
  ESADI-LSPs immediately, there may be a surge of traffic to that new
  neighbor.  Therefore, the ESADI instances SHOULD wait an interval of
  time before sending their ESADI-LSP(s) to a new neighbor.  The
  interval time value is up to the device implementation.  One
  suggestion is that the interval time can be assigned a random value
  with a range based on the RBridge's nickname (or any one of its
  nicknames, if it holds more than one), such as ( 2000 * nickname /
  2**16 ) milliseconds, assuming "nickname" to be an unsigned quantity.

  All the TRILL switches participating in an ESADI instance for some
  Data Label appear to ESADI to be adjacent.  Thus, the originator of
  any active ESADI-LSP fragment always appears to be on link and, to
  spread the burden of such a response, could be the RBridge to respond
  to any ESADI-CSNP or PSNP request for that fragment.  However, under
  very rare circumstances, it could be that some version of the LSP
  fragment with a higher sequence number is actually held by another
  ESADI RBridge on the link, so non-originators need to be able to
  respond eventually.  Thus, when the receipt of a CSNP or PSNP causes
  the SRMflag (Send Routing Message flag [IS-IS]) to be set for an LSP



Zhai, et al.                 Standards Track                   [Page 14]

RFC 7357                      TRILL: ESADI                September 2014


  fragment, action is as specified in [IS-IS] for the originating ESADI
  RBridge of the fragment; however, at a non-originating ESADI RBridge,
  when changing the SRMflag from 0 to 1, the lastSent timestamp [IS-IS]
  is also set to the current time minus

         minimumLSPTransmissionInterval * Random (Jitter) / 100

  (where minimumLSPTransmissionInterval, Random, and Jitter are as in
  [IS-IS]).  This will delay and jitter the transmission of the LSP
  fragment by non-originators.  This gives the originator more time to
  send the fragment and provides more time for such an originator-
  transmitted copy to traverse the likely multi-hop path to
  non-originators and clear the SRMflag for the fragment at
  non-originators.

  The multi-hop distribution tree method with Reverse Path Forwarding
  Check used for multicast distribution by TRILL will typically be less
  reliable than transmission over a single local broadcast link hop.
  For LSP synchronization robustness, in addition to sending
  ESADI-CSNPs as usual when it is the DRB, an ESADI RBridge SHOULD also
  transmit an ESADI-CSNP for an ESADI instance if all of the following
  conditions are met:

  o  it sees one or more ESADI neighbors for that instance, and

  o  it does not believe it is the DRB for the ESADI instance, and

  o  it has not received or sent an ESADI-CSNP PDU for the instance for
     the average of the CSNP Time (see Section 6.1) of the DRB and its
     CSNP Time.

5.  End Station Addresses

  The subsections below discuss end station address considerations in
  the context of ESADI.

5.1.  Learning Confidence Level

  The Confidence level mechanism [RFC6325] allows an RBridge campus
  manager to cause certain address learning sources to prevail over
  others.  MAC address information learned through a registration
  protocol, such as [802.1X] with a cryptographically based EAP
  [RFC3748] method, might be considered more reliable than information
  learned through the mere observation of data traffic.  When such
  authenticated learned address information is transmitted via the
  ESADI protocol, the use of authentication in the TRILL ESADI-LSP
  packets could make tampering with it in transit very difficult.  As a
  result, it might be reasonable to announce such authenticated



Zhai, et al.                 Standards Track                   [Page 15]

RFC 7357                      TRILL: ESADI                September 2014


  information via the ESADI protocol with a high Confidence, so it
  would be used in preference to any alternative learning from data
  observation.

5.2.  Forgetting End Station Addresses

  The end station addresses learned through the TRILL ESADI protocol
  should be forgotten through changes in ESADI-LSPs.  The timeout of
  the learned end station address is up to the originating RBridge that
  decides when to remove such information from its ESADI-LSPs (or up to
  ESADI protocol timeouts if the originating RBridge becomes
  unreachable).

  If RBridge RBn participating in the TRILL ESADI protocol for Data
  Label X no longer wishes to participate in ESADI, it ceases to
  participate by (1) clearing the ESADI Participation bit in the
  appropriate Interested VLANs or Interested Labels sub-TLV and (2)
  sending a final ESADI-LSP nulling out its ESADI-LSP information.

5.3.  Duplicate MAC Address

  With ESADI, it is possible to persistently see occurrences of the
  same MAC address in the same Data Label being advertised as reachable
  by two or more RBridges.  The specification of how to handle this
  situation in [RFC6325] is updated by this document, by replacing the
  last sentence of the last paragraph of Section 4.2.6 of [RFC6325] as
  shown below to provide better traffic-spreading while avoiding
  possible address flip-flopping.

  As background, assume some end station or set of end stations ESn
  have two or more ports with the same MAC address in the same Data
  Label with the ports connected to different RBridges (RB1, RB2, ...)
  by separate links.  With ESADI, some other RBridge, RB0, can
  persistently see that MAC address in that Data Label connected to
  multiple RBridges.  When RB0 ingresses a frame, say from ES0,
  destined for that MAC and label, the current [RFC6325] text permits a
  wide range of behavior.  In particular, [RFC6325] would permit RB0 to
  use some rule, such as "always encapsulate to the egress with the
  lowest System ID", which would put all of this traffic through only
  one of the egress RBridges and one of the end station ports.  With
  that behavior, there would be no load-spreading, even if there were
  multiple different ingress RBridges and/or different MAC addresses
  with the same reachability.  [RFC6325] would also permit RB0 to send
  different traffic to different egresses by doing ECMP (Equal Cost
  Multipath) at a flow level, which would likely result in return
  traffic for RB0 to egress to ES0 from various of RB1, RB2, ... for
  the same MAC and label.  The resulting address reachability
  flip-flopping perceived at RB0 could cause problems.



Zhai, et al.                 Standards Track                   [Page 16]

RFC 7357                      TRILL: ESADI                September 2014


  This update to [RFC6325] avoids these potential difficulties by
  requiring that RB0 use one of the following two policies: (1) only
  encapsulate to one egress RBridge for any particular MAC and label,
  but select that egress pseudorandomly, based on the topology
  (including MAC reachability) or (2) if RB0 will not be disturbed by
  the returning TRILL Data packets showing the same MAC or by label
  flip-flopping between different ingresses, RB0 may use ECMP.
  Assuming multiple ingress RBridges and/or multiple MAC and label
  addresses, strategy 1 should result in load-spreading without address
  flip-flopping, while strategy 2 will produce better load-spreading
  than strategy 1 but with address flip-flopping from the point of view
  of RB0.

  OLD [RFC6325] Section 4.2.6 text:

     "... If confidences are also tied between the duplicates, for
     consistency it is suggested that RB2 direct all such frames (or
     all such frames in the same ECMP flow) toward the same egress
     RBridge; however, the use of other policies will not cause a
     network problem since transit RBridges do not examine the
     Inner.MacDA for known unicast frames."

  NEW [RFC6325] Section 4.2.6 text:

     "... If confidences are also tied between the duplicates, then RB2
     MUST adopt one of the following two strategies:

     1. In a pseudorandom way [RFC4086], select one of the egress
        RBridges that is least cost from RB2 and to which the
        destination MAC appears to be attached, and send all traffic
        for the destination MAC and VLAN (or FGL [RFC7172]) to that
        egress.  This pseudorandom choice need only be changed when
        there is a change in campus topology or MAC attachment
        information.  Such pseudorandom selection will, over a
        population of ingress RBridges, probabilistically spread
        traffic over the possible egress RBridges.  Reasonable inputs
        to the pseudorandom selection are the ingress RBridge System ID
        and/or nickname, the VLAN or FGL, the destination MAC address,
        and a vector of the RBridges with connectivity to that MAC and
        VLAN or FGL.  There is no need for different RBridges to use
        the same pseudorandom function.










Zhai, et al.                 Standards Track                   [Page 17]

RFC 7357                      TRILL: ESADI                September 2014


        As an example of such a pseudorandom function, if there are k
        egress RBridges (RB0, RB1, ..., RB(k-1)) all reporting
        attachment to address MACx in Data Label DLy, then an ingress
        RBridge RBin could select the one to which it will send all
        unicast TRILL Data packets addressed to MACx in DLy based on
        the following:

           FNV-32(RBin | MACx | DLy | RB0 | RB1 | ... | RB(k-1)) mod k

           where the FNV (Fowler/Noll/Vo) algorithm is specified in
           [FNV], RBx means the nickname for RBridge RBx, "|" means
           concatenation, MACx is the destination MAC address, DLy is
           the Data Label, and "mod k" means the integer division
           remainder of the output of the FNV-32 function considered as
           a positive integer divided by k.

     2. If RB2 supports ECMP and will not be disturbed by return
        traffic from the same MAC and VLAN (or FGL [RFC7172]) coming
        from a variety of different RBridges, then it MAY send traffic
        using ECMP at the flow level to the egress RBridges that are
        least cost from RB2 and to which the destination MAC appears to
        be attached."

6.  ESADI-LSP Contents

  The only PDUs used in ESADI are the ESADI-LSP, ESADI-CSNP, and
  ESADI-PSNP PDUs.  Currently, the contents of an ESADI-LSP consist of
  zero or more MAC-Reachability TLVs, optionally an Authentication TLV,
  and exactly one ESADI parameter APPsub-TLV.  Other similar data may
  be included in the future and, as in [IS-IS], an ESADI instance
  ignores any TLVs or sub-TLVs it does not understand.  Because these
  PDUs are formatted as Extended Level 1 Circuit Scope (E-L1CS) PDUs
  [RFC7356], the Type and Length fields in the TLVs are 16-bit.

  This section specifies the format for the ESADI Parameter APPsub-TLV,
  gives the reference for the ESADI MAC-Reachability TLV, and discusses
  default authentication configuration.

  For robustness, the payload for an ESADI-LSP number zero and any
  ESADI-CSNP or ESADI-PSNP covering fragment zero MUST NOT exceed 1470
  minus 24 bytes in length (1446 bytes) if it has an Inner.VLAN, or
  1470 minus 28 bytes (1442 bytes) if it has an Inner.FGL.  However, if
  an ESADI-LSP number zero or such an ESADI-CSNP or ESADI-PSNP is
  received that is longer, it is still processed normally.  (As stated
  in Section 4.3.1 of [RFC6325], 1470 bytes was chosen to make it
  extremely unlikely that a TRILL control packet, even with reasonable
  additional headers, tags, and/or encapsulation, would encounter MTU
  problems on an inter-RBridge link.)



Zhai, et al.                 Standards Track                   [Page 18]

RFC 7357                      TRILL: ESADI                September 2014


6.1.  ESADI Parameter Data

  Figure 4 presents the format of the ESADI parameter data.  This
  APPsub-TLV MUST be included in a TRILL GENINFO TLV in ESADI-LSP
  number zero.  If it is missing from ESADI-LSP number zero or if
  ESADI-LSP number zero is not known, priority for the sending RBridge
  defaults to 0x40 and CSNP Time defaults to 30.  If there is more than
  one occurrence in ESADI-LSP number zero, the first occurrence will be
  used.  Occurrences of the ESADI Parameter APPsub-TLV in non-zero
  ESADI-LSP fragments are ignored.

              +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
              | Type                          |   (2 bytes)
              +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
              | Length                        |   (2 bytes)
              +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
              |R| Priority    |                   (1 byte)
              +-+-+-+-+-+-+-+-+
              | CSNP Time     |                   (1 byte)
              +-+-+-+-+-+-+-+-+
              | Flags         |                   (1 byte)
              +---------------+
              | Reserved for expansion            (variable)
              +-+-+-+-...

                  Figure 4: ESADI Parameter APPsub-TLV

  Type: Set to ESADI-PARAM sub-TLV (TRILL APPsub-TLV type 0x0001).
     Two bytes, because this APPsub-TLV appears in an extended TLV
     [RFC7356].

  Length: Variable, with a minimum of 3, but must fit within the ESADI
     packet.  This field is encoded as an unsigned integer in network
     byte order [RFC7356].

  R: A reserved bit that MUST be sent as zero and ignored on receipt.

  Priority: Gives the originating RBridge's priority for being the DRB
     on the ESADI instance virtual link (see Section 3) for the Data
     Label in which the PDU containing the parameter data was sent.  It
     is an unsigned 7-bit integer with the larger magnitude indicating
     higher priority.  It defaults to 0x40 for an RBridge participating
     in ESADI for which it has not been configured.








Zhai, et al.                 Standards Track                   [Page 19]

RFC 7357                      TRILL: ESADI                September 2014


  CSNP Time: An unsigned byte that gives the amount of time in seconds
     during which the originating RBridge, if it is the DRB on the
     ESADI virtual link, will send at least three ESADI-CSNP PDUs.  It
     defaults to 30 seconds for an RBridge participating in ESADI for
     which it has not been configured.

  Flags: A byte of flags associated with the originating ESADI
     instance, as follows:

                    0   1   2   3   4   5   6   7
                 +---+---+---+---+---+---+---+---+
                 | UN|           RESV            |
                 +---+---+---+---+---+---+---+---+

     The UN flag indicates that the RBridge originating the ESADI-LSP,
     including this ESADI parameter data, will accept and properly
     process ESADI PDUs sent by TRILL unicast (see Section 4.1).  The
     remaining RESV bits are reserved for future use and MUST be sent
     as zero and ignored on receipt.

  Reserved for future expansion: Future versions of the ESADI Parameter
     APPsub-TLV may have additional information.  A receiving ESADI
     RBridge ignores any additional data here, unless it implements
     such future expansion(s).

6.2.  MAC-Reachability TLV

  The primary information in TRILL ESADI-LSP PDUs consists of
  MAC-Reachability (MAC-RI) TLVs specified in [RFC6165].  These TLVs
  contain one or more unicast MAC addresses of end stations that are
  both on a port and in a VLAN for which the originating RBridge is
  Appointed Forwarder, along with the 1-octet unsigned Confidence in
  this information with a value in the range 0-254.  If such a TLV is
  received containing a Confidence of 255, it is treated as if the
  Confidence was 254.  (This is to assure that any received address
  information can be overridden by local address information statically
  configured with a Confidence of 255.)

  The TLVs in TRILL ESADI PDUs, including the MAC-RI TLV, MUST NOT
  contain the Data Label ID.  If a Data Label ID is present in the
  MAC-RI TLV, it is ignored.  In the ESADI PDU, only the Inner.VLAN or
  Inner.FGL tag indicates the Data Label to which the ESADI-LSP
  applies.








Zhai, et al.                 Standards Track                   [Page 20]

RFC 7357                      TRILL: ESADI                September 2014


6.3.  Default Authentication

  The Authentication TLV may be included in ESADI PDUs [RFC5310]
  [IS-IS].  The default for ESADI PDU authentication is based on the
  state of TRILL IS-IS shared secret authentication for TRILL IS-IS LSP
  PDUs.  If TRILL IS-IS authentication and ESADI are implemented at a
  TRILL switch, then ESADI MUST be able to use the authentication
  algorithms implemented for TRILL IS-IS and implement the keying
  material derivation function given below.  If ESADI authentication
  has been manually configured, that configuration is not restricted by
  the configuration of TRILL IS-IS security.

  If TRILL IS-IS authentication is not in effect for LSP PDUs
  originated by a TRILL switch, then ESADI PDUs originated by that
  TRILL switch are by default also unsecured.

  If such IS-IS LSP PDU authentication is in effect at a TRILL switch,
  then, unless configured otherwise, ESADI PDUs sent by that switch
  MUST use the same algorithm in their Authentication TLVs.  The ESADI
  authentication keying material used is derived from the IS-IS LSP
  shared secret keying material as detailed below.  However, such
  authentication MAY be configured to use some other keying material.

          HMAC-SHA256 ( "TRILL ESADI", IS-IS-LSP-shared-key )

  In the algorithm above, HMAC-SHA256 is as described in [FIPS180] and
  [RFC6234], and "TRILL ESADI" is the 11-byte US ASCII [ASCII] string
  indicated.  IS-IS-LSP-shared-key is secret keying material being used
  by the originating TRILL switch for IS-IS LSP authentication.

7.  IANA Considerations

  IANA allocation and registry considerations are given below.  Three
  new sub-registries have been created in the "Transparent
  Interconnection of Lots of Links (TRILL) Parameters" registry located
  at <http://www.iana.org/assignments/trill-parameters> -- two in
  Section 7.1 and one in Section 7.2 -- and various code points have
  been assigned.













Zhai, et al.                 Standards Track                   [Page 21]

RFC 7357                      TRILL: ESADI                September 2014


7.1.  ESADI Participation and Capability Flags

  IANA Action 1:

     IANA has created the following new sub-registry called "Interested
     VLANs Flag Bits" in the "Transparent Interconnection of Lots of
     Links (TRILL) Parameters" registry.

        Sub-registry: Interested VLANs Flag Bits

        Registration Procedures: IETF Review

        Note: These bits appear in the Interested VLANs record within
        the Interested VLANs and Spanning Tree Roots Sub-TLV (INT-VLAN)
        specified in [RFC7176].

        References: [RFC7176], [RFC7357]

      Bit  Mnemonic  Description                      Reference
      ---  --------  -----------                      ---------
        0     M4     IPv4 Multicast Router Attached   [RFC7176]
        1     M6     IPv6 Multicast Router Attached   [RFC7176]
        2      -     Unassigned
        3     ES     ESADI Participation              [RFC7357]
       4-15    -     (used for a VLAN ID)             [RFC7176]
      16-19    -     Unassigned
      20-31    -     (used for a VLAN ID)             [RFC7176]

     The creation of this sub-registry (as immediately above) assigned
     bit 3 as the ESADI Participation bit in the Interested VLANs and
     Spanning Tree Roots sub-TLV.  If The ESADI Participation bit is a
     one, it indicates that the originating RBridge is participating in
     ESADI for the indicated Data Label(s).

  IANA Action 2:

     IANA has created the following new sub-registry called "Interested
     Labels Flag Bits" in the "Transparent Interconnection of Lots of
     Links (TRILL) Parameters" registry.

        Sub-registry: Interested Labels Flag Bits

        Registration Procedures: IETF Review

        Note: These bits appear in the Interested Labels record within
        the Interested Labels and Spanning Tree Roots Sub-TLV
        (INT-LABEL) specified in [RFC7176].




Zhai, et al.                 Standards Track                   [Page 22]

RFC 7357                      TRILL: ESADI                September 2014


        References: [RFC7176], [RFC7357]

     Bit  Mnemonic  Description                      Reference
     ---  --------  -----------                      ---------
       0     M4     IPv4 Multicast Router Attached   [RFC7176]
       1     M6     IPv6 Multicast Router Attached   [RFC7176]
       2     BM     Bit Map                          [RFC7176]
       3     ES     ESADI Participation              [RFC7357]
      4-7     -     Unassigned

     The creation of this sub-registry (as immediately above) assigned
     bit 3 as the ESADI Participation bit in the Interested Labels and
     Spanning Tree Roots sub-TLV.  If The ESADI Participation bit is a
     one, it indicates that the originating RBridge is participating in
     ESADI for the indicated Data Label(s).

7.2.  TRILL GENINFO TLV

  IANA Action 3:

     IANA has allocated the IS-IS Application Identifier 1 under the
     Generic Information TLV (#251) [RFC6823] for TRILL.

  IANA Action 4:

     IANA has created a sub-registry in the "Transparent
     Interconnection of Lots of Links (TRILL) Parameters" registry as
     follows:

        Sub-registry:  TRILL APPsub-TLV Types under IS-IS TLV 251
                       Application Identifier 1

        Registration Procedures: IETF Review with additional
           requirements on the documentation of the use being
           registered as specified in Section 7.2 of [RFC7357].

        Note: Types greater than 255 are only usable in contexts
        permitting a type larger than one byte, such as extended TLVs
        [RFC7356].

        Reference: [RFC7357]










Zhai, et al.                 Standards Track                   [Page 23]

RFC 7357                      TRILL: ESADI                September 2014


               Type      Name              Reference
            ----------  --------          -----------
                    0   Reserved          [RFC7357]
                    1   ESADI-PARAM       [RFC7357]
                2-254   Unassigned        [RFC7357]
                  255   Reserved          [RFC7357]
            256-65534   Unassigned        [RFC7357]
                65535   Reserved          [RFC7357]

     TRILL APPsub-TLV Types 2 through 254 and 256 through 65534 are
     available for assignment by IETF Review.  The RFC causing such an
     assignment will also include a discussion of security issues and
     of the rate of change of the information being advertised.  TRILL
     APPsub-TLVs MUST NOT alter basic IS-IS protocol operation
     including the establishment of adjacencies, the update process,
     and the decision process for TRILL IS-IS [IS-IS] [RFC1195]
     [RFC7177].  The TRILL Generic Information TLV MUST NOT be used in
     an IS-IS instance zero [RFC6822] LSP but may be used in Flooding
     Scoped LSPs (FS-LSPs) [RFC7356].

  The V, I, D, and S flags in the initial flags byte of a TRILL Generic
  Information TLV have the meanings specified in [RFC6823] but are not
  currently used, as TRILL operates as a Level 1 IS-IS area and no
  semantics are hereby assigned to the inclusion of an IPv4 and/or IPv6
  address via the I and V flags.  Thus, these I and V flags MUST be
  zero; however, if either or both are one, the space that should be
  taken by an IPv4 and/or IPv6 address, respectively, is skipped over
  and ignored.  Furthermore, the use of multilevel IS-IS is an obvious
  extension for TRILL [MultiLevel], and future IETF Standards Actions
  may update or obsolete this specification to provide for the use of
  any or all of these flags in the TRILL GENINFO TLV.

  The ESADI Parameters information, for which TRILL APPsub-TLV 1 is
  hereby assigned, is compact and slow changing (see Section 6.1).

  For security considerations related to ESADI and the ESADI Parameter
  APPsub-TLV, see Section 8.

8.  Security Considerations

  ESADI PDUs can be authenticated through the inclusion of the
  Authentication TLV [RFC5310].  Defaults for such authentication are
  described in Section 6.3.

  The ESADI-LSP data primarily announces MAC address reachability
  within a Data Label.  Such reachability can, in some cases, be an
  authenticated registration (for example, a Layer 2 authenticated
  registration using cryptographically based EAP (Extensible



Zhai, et al.                 Standards Track                   [Page 24]

RFC 7357                      TRILL: ESADI                September 2014


  Authentication Protocol [RFC3748]) methods via [802.1X]).  The
  combination of these techniques can cause ESADI MAC reachability
  information to be substantially more trustworthy than MAC
  reachability learned from observation of the data plane.
  Nevertheless, ESADI still involves trusting all other RBridges in the
  TRILL campus, at least those that have the keying material necessary
  to construct a valid Authentication TLV.

  However, there may be cases where authenticated registration is used
  for end stations, because of a significant threat of forged packets
  on end station links, but it is not necessary to authenticate ESADI
  PDUs because that threat is not present for inter-RBridge trunks.
  For example, a TRILL campus with secure RBridges and inter-RBridge
  links configured as trunks but with some end stations connected via
  IEEE 802.11 wireless access links might use 802.11 authentication for
  the connection of such end stations but might not necessarily
  authenticate ESADI PDUs.  Note that if the IS-IS LSPs in a TRILL
  campus are authenticated, perhaps due to a concern about forged
  packets, the ESADI PDUs will be authenticated by default as provided
  in Section 6.3.

  MAC reachability learned from the data plane (the TRILL default) is
  overwritten by any future learning of the same type.  ESADI
  advertisements are represented in the Data Label scoped link state
  database.  Thus, ESADI makes visible any multiple attachments of the
  same MAC address within a Data Label to different RBridges (see
  Section 5.3).  This may or may not be an error or misconfiguration,
  but ESADI at least makes it explicitly and persistently visible,
  which would not be the case with data plane learning.

  For general TRILL security considerations, see [RFC6325].

8.1.  Privacy Considerations

  The address reachability information distributed by ESADI has
  substantial privacy considerations under many, but not all,
  circumstances.

  For example, if ESADI were used in a TRILL campus with independent
  user end stations at the edge, the MAC addresses of such end stations
  could uniquely identify the users of those end stations.  Their
  reachability would be sensitive information and, particularly if
  logged, could reveal such user information.  On the other hand, if
  TRILL is being used to implement an Internet Exchange Point (IXP) to
  connect Internet Service Providers (ISPs), the MAC addresses being
  advertised in ESADI would typically be those of the ISP's directly
  connected IP router ports, since Layer 3 routers bound the TRILL
  campus, for which there would be few privacy concerns.



Zhai, et al.                 Standards Track                   [Page 25]

RFC 7357                      TRILL: ESADI                September 2014


  However, records of MAC attachment that include a modest amount of
  history, perhaps a few days' worth, can be useful in managing a
  network and troubleshooting network problems.  It might, in some
  cases, also be legally required, or required for billing purposes or
  the like.

  Network operators should seek a reasonable balance between these
  competing considerations, customized for the circumstances of their
  particular networks where ESADI is in use.  They should not maintain
  logs of MAC reachability information for any longer than is clearly
  required.

9.  Acknowledgements

  The authors thank the following, listed in alphabetic order, for
  their suggestions and contributions:

     David Black, Somnath Chatterjee, Adrian Farrel, Stephen Farrell,
     Sujay Gupta, Russ Housley, Pearl Liang, Kathleen Moriarty, Thomas
     Narten, Erik Nordmark, and Mingui Zhang.

10.  References

10.1.  Normative References

  [ASCII]    American National Standards Institute (formerly United
             States of America Standards Institute), "USA Code for
             Information Interchange", ANSI X3.4-1968, 1968.

             ANSI X3.4-1968 has been replaced by newer versions with
             slight modifications, but the 1968 version remains
             definitive for the Internet.

  [FIPS180]  "Secure Hash Standard (SHS)", National Institute of
             Standards and Technology, Federal Information Processing
             Standard (FIPS) 180-4, March 2012, <http://csrc.nist.gov/
             publications/fips/fips180-4/fips-180-4.pdf>.

  [IS-IS]    ISO/IEC 10589:2002, Second Edition, "Information
             technology -- Telecommunications and information exchange
             between systems -- Intermediate System to Intermediate
             System intra-domain routeing information exchange protocol
             for use in conjunction with the protocol for providing the
             connectionless-mode network service (ISO 8473)", 2002.

  [RFC1195]  Callon, R., "Use of OSI IS-IS for routing in TCP/IP and
             dual environments", RFC 1195, December 1990.




Zhai, et al.                 Standards Track                   [Page 26]

RFC 7357                      TRILL: ESADI                September 2014


  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC4086]  Eastlake 3rd, D., Schiller, J., and S. Crocker,
             "Randomness Requirements for Security", BCP 106, RFC 4086,
             June 2005.

  [RFC5226]  Narten, T. and H. Alvestrand, "Guidelines for Writing an
             IANA Considerations Section in RFCs", BCP 26, RFC 5226,
             May 2008.

  [RFC5310]  Bhatia, M., Manral, V., Li, T., Atkinson, R., White, R.,
             and M. Fanto, "IS-IS Generic Cryptographic
             Authentication", RFC 5310, February 2009.

  [RFC6165]  Banerjee, A. and D. Ward, "Extensions to IS-IS for Layer-2
             Systems", RFC 6165, April 2011.

  [RFC6325]  Perlman, R., Eastlake 3rd, D., Dutt, D., Gai, S., and A.
             Ghanwani, "Routing Bridges (RBridges): Base Protocol
             Specification", RFC 6325, July 2011.

  [RFC6361]  Carlson, J. and D. Eastlake 3rd, "PPP Transparent
             Interconnection of Lots of Links (TRILL) Protocol Control
             Protocol", RFC 6361, August 2011.

  [RFC6823]  Ginsberg, L., Previdi, S., and M. Shand, "Advertising
             Generic Information in IS-IS", RFC 6823, December 2012.

  [RFC7172]  Eastlake 3rd, D., Zhang, M., Agarwal, P., Perlman, R., and
             D. Dutt, "Transparent Interconnection of Lots of Links
             (TRILL): Fine-Grained Labeling", RFC 7172, May 2014.

  [RFC7176]  Eastlake 3rd, D., Senevirathne, T., Ghanwani, A., Dutt,
             D., and A. Banerjee, "Transparent Interconnection of Lots
             of Links (TRILL) Use of IS-IS", RFC 7176, May 2014.

  [RFC7177]  Eastlake 3rd, D., Perlman, R., Ghanwani, A., Yang, H., and
             V. Manral, "Transparent Interconnection of Lots of Links
             (TRILL): Adjacency", RFC 7177, May 2014.











Zhai, et al.                 Standards Track                   [Page 27]

RFC 7357                      TRILL: ESADI                September 2014


  [RFC7180]  Eastlake 3rd, D., Zhang, M., Ghanwani, A., Manral, V., and
             A. Banerjee, "Transparent Interconnection of Lots of Links
             (TRILL): Clarifications, Corrections, and Updates",
             RFC 7180, May 2014.

  [RFC7356]  Ginsberg, L., Previdi, S., and Y. Yang, "IS-IS Flooding
             Scope Link State PDUs (LSPs)", RFC 7356, September 2014.

10.2.  Informative References

  [802.1X]   IEEE 802.1, "IEEE Standard for Local and metropolitan area
             networks--Port-Based Network Access Control", IEEE
             Standard 802.1X-2010, February 2010.

  [FNV]      Fowler, G., Noll, L., Vo, K., and D. Eastlake 3rd, "The
             FNV Non-Cryptographic Hash Algorithm", Work in Progress,
             April 2014.

  [MultiLevel]
             Perlman, R., Eastlake 3rd, D., Ghanwani, A., and H. Zhai,
             "Flexible Multilevel TRILL (Transparent Interconnection of
             Lots of Links)", Work in Progress, June 2014.

  [RFC3748]  Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
             Levkowetz, Ed., "Extensible Authentication Protocol
             (EAP)", RFC 3748, June 2004.

  [RFC6234]  Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
             (SHA and SHA-based HMAC and HKDF)", RFC 6234, May 2011.

  [RFC6822]  Previdi, S., Ed., Ginsberg, L., Shand, M., Roy, A., and D.
             Ward, "IS-IS Multi-Instance", RFC 6822, December 2012.

  [VLANmapping]
             Perlman, R., Rijhsinghani, A., Eastlake 3rd, D., Banerjee,
             A., and D. Dutt, "TRILL: Campus Label and Priority
             Regions", Work in Progress, January 2014.














Zhai, et al.                 Standards Track                   [Page 28]

RFC 7357                      TRILL: ESADI                September 2014


Appendix A.  Interoperability and Changes to RFC 6325

  This appendix summarizes the significant changes this document makes
  to the TRILL base protocol specification [RFC6325].  Although
  simultaneous use of [RFC6325] ESADI and ESADI as specified in this
  document in a TRILL campus is very unlikely due to non-deployment of
  [RFC6325] ESADI, this appendix also discusses, for each change, the
  interoperability considerations should such simultaneous use occur.

A.1.  ESADI PDU Changes

  The format of ESADI-LSP, ESADI-CSNP, and ESADI-PSNP PDU payloads is
  changed from the IS-IS Level 1 format [IS-IS] to the Extended Level 1
  Circuit Scope format (E-L1CS) specified in [RFC7356].  This change is
  not backwards compatible with [RFC6325].  It is made in light of the
  information-carrying capacity of the E-L1CS format, which is
  256 times greater than that of the base IS-IS format.  It is
  anticipated that this greater information-carrying capacity will be
  needed, under some circumstances, to carry end station addressing
  information or other similar address and reachability information
  when it is added to ESADI in the future.

  The PDU numbers used for the ESADI LSP, CSNP, and PSNP PDUs in
  [RFC6325] are 18, 24, and 26 [IS-IS].  With this document, the format
  changes, and the PDU numbers change to 10, 11, and 12 [RFC7356].  The
  use of different PDU numbers assures that a PDU will not be
  mis-parsed.  Because of this, implementations of this document and
  implementations of [RFC6325] ESADI will discard each other's PDUs.
  Thus, address reachability or other information distributed through
  either type of ESADI implementation will only be communicated to
  other implementations of the same type, and the two communities will
  not communicate any information with each other.

  Note that RBridges can use the TRILL mandatory-to-implement,
  enabled-by-default data plane address learning in addition to ESADI.
  (Section 5 of this document and the material it references explain
  how to handle conflicts between different sources of address
  reachability information.)  Simply leaving data plane address
  learning enabled would enable smooth incremental migration from
  [RFC6325] ESADI to the ESADI specification in this document, should
  that be necessary.  The data plane address learning would fill in any
  gaps due to non-communication between the two types of ESADI
  implementations, although without the speed or security advantages
  of ESADI.







Zhai, et al.                 Standards Track                   [Page 29]

RFC 7357                      TRILL: ESADI                September 2014


A.2.  Unicasting Changes

  Unicasting of ESADI PDUs is optionally supported, including replacing
  Section 4.6.2.2 of [RFC6325] with the new text given in Section 4.1
  of this document.  This unicast support is backwards compatible
  because it is only used when the recipient RBridge signals its
  support.

A.3.  Message Timing Changes and Suggestions

  The following timing-related ESADI message changes and suggestions
  are included in this document:

  1. Provide for staggered delay for non-originators of ESADI-LSP
     fragments in response to requests for such fragments by CSNP and
     PSNP messages.

  2. Suggest staggered timing of unicast ESADI-LSPs when a new ESADI
     RBridge appears on the ESADI virtual link.

  These relate only to the timing of messages for congestion
  minimization.  Should a message be lost, due to congestion or
  otherwise, it will be later retransmitted as a normal part of the
  robust flooding mechanism used by ESADI.

A.4.  Duplicate Address Reachability

  The handling of persistent reachability of the same MAC within the
  same Data Label from two or more RBridges is substantially modified,
  including the explicit replacement of some text in Section 4.2.6 of
  [RFC6325] (see Section 5.3 of this document).  There is no problem
  with a mixture of ESADI implementations in a TRILL campus, some
  conforming to [RFC6325] and some conforming to this document, for
  handling this condition.  The more implementations conform to the
  improved behavior specified in this document for this condition, the
  better the traffic-spreading will be, and the less likely address
  flip-flopping problems will be.














Zhai, et al.                 Standards Track                   [Page 30]

RFC 7357                      TRILL: ESADI                September 2014


Authors' Addresses

  Hongjun Zhai
  ZTE Corporation
  68 Zijinghua Road
  Nanjing 200012
  China
  Phone: +86-25-52877345
  EMail: [email protected]

  Fangwei Hu
  ZTE Corporation
  889 Bibo Road
  Shanghai 201203
  China
  Phone: +86-21-68896273
  EMail: [email protected]

  Radia Perlman
  EMC
  2010 256th Ave. NE, #200
  Bellevue, WA  98007
  USA
  EMail: [email protected]

  Donald Eastlake 3rd
  Huawei Technologies
  155 Beaver Street
  Milford, MA  01757
  USA
  Phone: +1-508-333-2270
  EMail: [email protected]

  Olen Stokes
  Extreme Networks
  2121 RDU Center Drive, Suite 300
  Morrisville, NC  27560
  USA
  EMail: [email protected]












Zhai, et al.                 Standards Track                   [Page 31]