Internet Engineering Task Force (IETF)                 M. Petit-Huguenin
Request for Comments: 7350                           Jive Communications
Updates: 5389, 5928                                         G. Salgueiro
Category: Standards Track                                  Cisco Systems
ISSN: 2070-1721                                              August 2014


        Datagram Transport Layer Security (DTLS) as Transport
            for Session Traversal Utilities for NAT (STUN)

Abstract

  This document specifies the usage of Datagram Transport Layer
  Security (DTLS) as a transport protocol for Session Traversal
  Utilities for NAT (STUN).  It provides guidance on when and how to
  use DTLS with the currently standardized STUN usages.  It also
  specifies modifications to the STUN and Traversal Using Relay NAT
  (TURN) URIs and to the TURN resolution mechanism to facilitate the
  resolution of STUN and TURN URIs into the IP address and port of STUN
  and TURN servers supporting DTLS as a transport protocol.  This
  document updates RFCs 5389 and 5928.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7350.
















Petit-Huguenin & Salgueiro   Standards Track                    [Page 1]

RFC 7350                     STUN over DTLS                  August 2014


Copyright Notice

  Copyright (c) 2014 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
  2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   3
  3.  DTLS as Transport for STUN  . . . . . . . . . . . . . . . . .   3
  4.  STUN Usages . . . . . . . . . . . . . . . . . . . . . . . . .   4
    4.1.  NAT Discovery Usage . . . . . . . . . . . . . . . . . . .   4
      4.1.1.  DTLS Support in STUN URIs . . . . . . . . . . . . . .   5
    4.2.  Connectivity Check Usage  . . . . . . . . . . . . . . . .   5
    4.3.  Media Keep-Alive Usage  . . . . . . . . . . . . . . . . .   5
    4.4.  SIP Keep-Alive Usage  . . . . . . . . . . . . . . . . . .   6
    4.5.  NAT Behavior Discovery Usage  . . . . . . . . . . . . . .   6
    4.6.  TURN Usage  . . . . . . . . . . . . . . . . . . . . . . .   6
      4.6.1.  DTLS Support in TURN URIs . . . . . . . . . . . . . .   7
      4.6.2.  Resolution Mechanism for TURN over DTLS . . . . . . .   7
  5.  Security Considerations . . . . . . . . . . . . . . . . . . .   8
  6.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   9
    6.1.  S-NAPTR Application Protocol Tag  . . . . . . . . . . . .   9
    6.2.  Service Name and Transport Protocol Port Number . . . . .   9
      6.2.1.  The "stuns" Service Name  . . . . . . . . . . . . . .  10
      6.2.2.  The "turns" Service Name  . . . . . . . . . . . . . .  11
  7.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  11
  8.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  12
    8.1.  Normative References  . . . . . . . . . . . . . . . . . .  12
    8.2.  Informative References  . . . . . . . . . . . . . . . . .  13
  Appendix A.  Examples . . . . . . . . . . . . . . . . . . . . . .  14










Petit-Huguenin & Salgueiro   Standards Track                    [Page 2]

RFC 7350                     STUN over DTLS                  August 2014


1.  Introduction

  STUN [RFC5389] defines Transport Layer Security (TLS) over TCP
  (simply referred to as TLS [RFC5246]) as the transport for STUN due
  to additional security advantages it offers over plain UDP or TCP
  transport.  But, TCP (and thus TLS-over-TCP) is not an optimal
  transport when STUN is used for its originally intended purpose,
  which is to support multimedia sessions.  This is a well documented
  and understood transport limitation for real-time communications.

  DTLS-over-UDP (referred to in this document as simply DTLS [RFC6347])
  offers the same security advantages as TLS-over-TCP, but without the
  undesirable concerns.

2.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "MAY", and "OPTIONAL"
  in this document are to be interpreted as described in [RFC2119] when
  they appear in ALL CAPS.  When these words are not in ALL CAPS (such
  as "must" or "Must"), they have their usual English meanings, and are
  not to be interpreted as RFC 2119 key words.

3.  DTLS as Transport for STUN

  STUN [RFC5389] defines three transports: UDP, TCP, and TLS.  This
  document adds DTLS as a valid transport for STUN.

  STUN over DTLS MUST use the same retransmission rules as STUN over
  UDP (as described in Section 7.2.1 of [RFC5389]).  It MUST also use
  the same rules that are described in Section 7.2.2 of [RFC5389] to
  verify the server identity.  Instead of TLS_RSA_WITH_AES_128_CBC_SHA,
  which is the default cipher suite for STUN over TLS, implementations
  of STUN over DTLS, and deployed clients and servers, MUST support
  TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 and
  TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, and MAY support other cipher
  suites.  Perfect Forward Secrecy (PFS) cipher suites MUST be
  preferred over non-PFS cipher suites.  Cipher suites with known
  weaknesses, such as those based on (single) DES and RC4, MUST NOT be
  used.  Implementations MUST disable TLS-level compression.  The same
  rules established in Section 7.2.2 of [RFC5389] for keeping open and
  closing TCP/TLS connections MUST be used as well for DTLS
  associations.

  In addition to the path MTU rules described in Section 7.1 of
  [RFC5389], if the path MTU is unknown, the actual STUN message needs
  to be adjusted to take into account the size of the (13-byte) DTLS
  Record header, the MAC size, and the padding size.




Petit-Huguenin & Salgueiro   Standards Track                    [Page 3]

RFC 7350                     STUN over DTLS                  August 2014


  By default, STUN over DTLS MUST use port 5349, the same port number
  as STUN over TLS.  However, the Service Record (SRV) procedures can
  be implemented to use a different port (as described in Section 9 of
  [RFC5389]).  When using SRV records, the service name MUST be set to
  "stuns" and the protocol name to "udp".

  Classic STUN [RFC3489] (which was obsoleted by [RFC5389]) defines
  only UDP as a transport, and DTLS MUST NOT be used.  Any STUN request
  or indication without the magic cookie (see Section 6 of [RFC5389])
  over DTLS MUST always result in an error.

4.  STUN Usages

  Section 7.2 of [RFC5389] states that STUN usages must specify which
  transport protocol is used.  The following sections discuss if and
  how the existing STUN usages are used with DTLS as the transport.
  Future STUN usages MUST take into account DTLS as a transport and
  discuss its applicability.  In all cases, new STUN usages MUST
  explicitly state if implementing the denial-of-service countermeasure
  described in Section 4.2.1 of [RFC6347] is mandatory.

4.1.  NAT Discovery Usage

  As stated by Section 13 of [RFC5389], "...TLS provides minimal
  security benefits..." for this particular STUN usage.  DTLS will also
  similarly offer only limited benefit.  This is because the only
  mandatory attribute that is TLS/DTLS protected is the
  XOR-MAPPED-ADDRESS, which is already known by an on-path attacker,
  since it is the same as the source address and port of the STUN
  request.  On the other hand, using TLS/DTLS will prevent an active
  attacker to inject XOR-MAPPED-ADDRESS in responses.  The TLS/DTLS
  transport will also protect the SOFTWARE attribute, which can be used
  to find vulnerabilities in STUN implementations.

  Regardless, this usage is rarely used by itself, since using TURN
  [RFC5766] with Interactive Connectivity Establishment (ICE) [RFC5245]
  is generally indispensable, and TURN provides the same NAT Discovery
  feature as part of an allocation creation.  In fact, with ICE, the
  NAT Discovery usage is only used when there is no longer any resource
  available for new allocations in the TURN server.

  A STUN server implementing the NAT Discovery usage and using DTLS
  MUST implement the denial-of-service countermeasure described in
  Section 4.2.1 of [RFC6347].







Petit-Huguenin & Salgueiro   Standards Track                    [Page 4]

RFC 7350                     STUN over DTLS                  August 2014


4.1.1.  DTLS Support in STUN URIs

  This document does not make any changes to the syntax of a STUN URI
  [RFC7064].  As indicated in Section 3.2 of [RFC7064], secure
  transports like STUN over TLS, and now STUN over DTLS, MUST use the
  "stuns" URI scheme.

  The <host> value MUST be used when using the rules in Section 7.2.2
  of [RFC5389] to verify the server identity.  A STUN URI containing an
  IP address MUST be rejected, unless the domain name is provided by
  the same mechanism that provided the STUN URI, and that domain name
  can be passed to the verification code.

4.2.  Connectivity Check Usage

  Using DTLS would hide the USERNAME, PRIORITY, USE-CANDIDATE,
  ICE-CONTROLLED, and ICE-CONTROLLING attributes.  But, because
  MESSAGE-INTEGRITY protects the entire STUN response using a password
  that is known only by looking at the Session Description Protocol
  (SDP) exchanged, it is not possible for an attacker that does not
  have access to this SDP to inject an incorrect XOR-MAPPED-ADDRESS,
  which would subsequently be used as a peer reflexive candidate.

  Adding DTLS on top of the connectivity check would delay, and
  consequently impair, the ICE process.  Adding additional round trips
  to ICE is undesirable, so much that there is a proposal ([ICE-DTLS])
  to use the DTLS handshake used by the WebRTC Secure Real-time
  Transport Protocol (SRTP) streams as a replacement for the
  connectivity checks.

  STUN URIs are not used with this usage.

4.3.  Media Keep-Alive Usage

  When STUN Binding Indications are being used for media keep-alive
  (described in Section 10 of [RFC5245]), it runs alongside an RTP or
  RTP Control Protocol (RTCP) session.  It is possible to send these
  media keep-alive packets inside a separately negotiated non-SRTP DTLS
  session if DTLS-SRTP [RFC5764] is used, but that would add overhead,
  with minimal security benefit.

  STUN URIs are not used with this usage.









Petit-Huguenin & Salgueiro   Standards Track                    [Page 5]

RFC 7350                     STUN over DTLS                  August 2014


4.4.  SIP Keep-Alive Usage

  The SIP keep-alive (described in [RFC5626]) runs inside a SIP flow.
  This flow would be protected if a SIP over DTLS transport mechanism
  is implemented (such as described in [SIP-DTLS]).

  STUN URIs are not used with this usage.

4.5.  NAT Behavior Discovery Usage

  The NAT Behavior Discovery usage is Experimental and to date has
  never been effectively deployed.  Despite this, using DTLS would add
  the same security properties as for the NAT Discovery usage
  (Section 4.1).

  The STUN URI can be used to access the NAT Discovery feature of a NAT
  Behavior Discovery server, but accessing the full features would
  require definition of a "stun-behaviors:" URI, which is out of scope
  for this document.

  A STUN server implementing the NAT Behavior Discovery usage and using
  DTLS MUST implement the denial-of-service countermeasure described in
  Section 4.2.1 of [RFC6347].

4.6.  TURN Usage

  TURN [RFC5766] defines three combinations of transports/allocations:
  UDP/UDP, TCP/UDP, and TLS/UDP.  This document adds DTLS/UDP as a
  valid combination.  A TURN server using DTLS MUST implement the
  denial-of-service countermeasure described in Section 4.2.1 of
  [RFC6347].

  [RFC6062] states that TCP allocations cannot be obtained using a UDP
  association between client and server.  The fact that DTLS uses UDP
  implies that TCP allocations MUST NOT be obtained using a DTLS
  association between client and server.

  By default, TURN over DTLS uses port 5349, the same port number as
  TURN over TLS.  However, the SRV procedures can be implemented to use
  a different port (as described in Section 6 of [RFC5766]).  When
  using SRV records, the service name MUST be set to "turns" and the
  protocol name to "udp".









Petit-Huguenin & Salgueiro   Standards Track                    [Page 6]

RFC 7350                     STUN over DTLS                  August 2014


4.6.1.  DTLS Support in TURN URIs

  This document does not make any changes to the syntax of a TURN URI
  [RFC7065].  As indicated in Section 3 of [RFC7065], secure transports
  like TURN over TLS, and now TURN over DTLS, MUST use the "turns" URI
  scheme.  When using the "turns" URI scheme to designate TURN over
  DTLS, the transport value of the TURN URI, if set, MUST be "udp".

  The <host> value MUST be used when using the rules in Section 7.2.2
  of [RFC5389] to verify the server identity.  A TURN URI containing an
  IP address MUST be rejected, unless the domain is provided by the
  same mechanism that provided the TURN URI, and that domain name can
  be passed to the verification code.

4.6.2.  Resolution Mechanism for TURN over DTLS

  This document defines a new Straightforward-Naming Authority Pointer
  (S-NAPTR) application protocol tag: "turn.dtls".

  The <transport> component, as provisioned or resulting from the
  parsing of a TURN URI, is passed without modification to the TURN
  resolution mechanism defined in Section 3 of [RFC5928], but with the
  following alterations to that algorithm:

  o  The acceptable values for the transport name are extended with the
     addition of "dtls".

  o  The acceptable values in the ordered list of supported TURN
     transports is extended with the addition of "Datagram Transport
     Layer Security (DTLS)".

  o  The resolution algorithm check rules list is extended with the
     addition of the following step:

        If <secure> is true and <transport> is defined as "udp" but the
        list of TURN transports supported by the application does not
        contain DTLS, then the resolution MUST stop with an error.

  o  The 5th rule of the resolution algorithm check rules list is
     modified to read like this:

        If <secure> is true and <transport> is not defined but the list
        of TURN transports supported by the application does not
        contain TLS or DTLS, then the resolution MUST stop with an
        error.






Petit-Huguenin & Salgueiro   Standards Track                    [Page 7]

RFC 7350                     STUN over DTLS                  August 2014


  o  Table 1 is modified to add the following line:

               +----------+-------------+----------------+
               | <secure> | <transport> | TURN Transport |
               +----------+-------------+----------------+
               | true     | "udp"       | DTLS           |
               +----------+-------------+----------------+

  o  In step 1 of the resolution algorithm, the default port for DTLS
     is 5349.

  o  In step 4 of the resolution algorithm, the following is added to
     the list of conversions between the filtered list of TURN
     transports supported by the application and application protocol
     tags:

        "turn.dtls" is used if the TURN transport is DTLS.

  Note that using the resolution mechanism in [RFC5928] does not imply
  that additional round trips to the DNS server will be needed (e.g.,
  the TURN client will start immediately if the TURN URI contains an IP
  address).

5.  Security Considerations

  STUN over DTLS as a STUN transport does not introduce any specific
  security considerations beyond those for STUN over TLS detailed in
  [RFC5389].

  The usage of "udp" as a transport parameter with the "stuns" URI
  scheme does not introduce any specific security issues beyond those
  discussed in [RFC7064].

  TURN over DTLS as a TURN transport does not introduce any specific
  security considerations beyond those for TURN over TLS detailed in
  [RFC5766].

  The usage of "udp" as a transport parameter with the "turns" URI
  scheme does not introduce any specific security issues beyond those
  discussed in [RFC7065].

  The new S-NAPTR application protocol tag defined in this document as
  well as the modifications this document makes to the TURN resolution
  mechanism described in [RFC5928] do not introduce any additional
  security considerations beyond those outlined in [RFC5928].






Petit-Huguenin & Salgueiro   Standards Track                    [Page 8]

RFC 7350                     STUN over DTLS                  August 2014


6.  IANA Considerations

6.1.  S-NAPTR Application Protocol Tag

  This specification contains the registration information for one
  S-NAPTR application protocol tag in the "Straightforward-NAPTR
  (S-NAPTR) Parameters" registry under "S-NAPTR Application Protocol
  Tags" (in accordance with [RFC3958]).

   Application Protocol Tag:  turn.dtls
   Intended Usage:  See Section 4.6.2
   Interoperability considerations:  N/A
   Security considerations:  See Section 5
   Relevant publications:  This document
   Contact information:  Marc Petit-Huguenin <[email protected]>
   Author/Change controller:  The IESG

6.2.  Service Name and Transport Protocol Port Number

  This specification contains the registration information for two
  Service Name and Transport Protocol Port Numbers in the "Service
  Names and Transport Protocol Port Numbers/Service Name and Transport
  Protocol Port Number" registry (in accordance with [RFC6335]).




























Petit-Huguenin & Salgueiro   Standards Track                    [Page 9]

RFC 7350                     STUN over DTLS                  August 2014


6.2.1.  The "stuns" Service Name

  IANA has modified the following entry in the registry "Service Names
  and Transport Protocol Port Numbers/Service Name and Transport
  Protocol Port Number":

   Service Name:  stuns
   PortNumber:  5349
   Transport Protocol:  udp
   Description:  Reserved for a future enhancement of STUN
   Assignee:
   Contact:
   Reference:  RFC 5389

  So that it contains the following:

   Service Name:  stuns
   Port Number:  5349
   Transport Protocol:  udp
   Description:  STUN over DTLS
   Assignee:  IESG
   Contact:  IETF Chair <[email protected]>
   Reference:  RFC 7350
   Assignment Notes:  This service name was initially created by
      RFC 5389.


























Petit-Huguenin & Salgueiro   Standards Track                   [Page 10]

RFC 7350                     STUN over DTLS                  August 2014


6.2.2.  The "turns" Service Name

  IANA has modified the following entry in the registry "Service Names
  and Transport Protocol Port Numbers/Service Name and Transport
  Protocol Port Number":

   Service Name:  turns
   Port Number:  5349
   Transport Protocol:  udp
   Description:  Reserved for a future enhancement of TURN
   Assignee:
   Contact:
   Reference:  RFC 5766

  So that it contains the following:

   Service Name:  turns
   Port Number:  5349
   Transport Protocol:  udp
   Description:  TURN over DTLS
   Assignee:  IESG
   Contact:  IETF Chair <[email protected]>
   Reference:  RFC 7350
   Assignment Notes:  This service name was initially created by
      RFC 5766.

7.  Acknowledgements

  Thanks to Alan Johnston, Oleg Moskalenko, Simon Perreault, Thomas
  Stach, Simon Josefsson, Roni Even, Kathleen Moriarty, Benoit Claise,
  Martin Stiemerling, Jari Arkko, and Stephen Farrell for the comments,
  suggestions, and questions that helped improve this document.



















Petit-Huguenin & Salgueiro   Standards Track                   [Page 11]

RFC 7350                     STUN over DTLS                  August 2014


8.  References

8.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC3489]  Rosenberg, J., Weinberger, J., Huitema, C., and R. Mahy,
             "STUN - Simple Traversal of User Datagram Protocol (UDP)
             Through Network Address Translators (NATs)", RFC 3489,
             March 2003.

  [RFC3958]  Daigle, L. and A. Newton, "Domain-Based Application
             Service Location Using SRV RRs and the Dynamic Delegation
             Discovery Service (DDDS)", RFC 3958, January 2005.

  [RFC5245]  Rosenberg, J., "Interactive Connectivity Establishment
             (ICE): A Protocol for Network Address Translator (NAT)
             Traversal for Offer/Answer Protocols", RFC 5245, April
             2010.

  [RFC5246]  Dierks, T. and E. Rescorla, "The Transport Layer Security
             (TLS) Protocol Version 1.2", RFC 5246, August 2008.

  [RFC5389]  Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
             "Session Traversal Utilities for NAT (STUN)", RFC 5389,
             October 2008.

  [RFC5626]  Jennings, C., Mahy, R., and F. Audet, "Managing Client-
             Initiated Connections in the Session Initiation Protocol
             (SIP)", RFC 5626, October 2009.

  [RFC5764]  McGrew, D. and E. Rescorla, "Datagram Transport Layer
             Security (DTLS) Extension to Establish Keys for the Secure
             Real-time Transport Protocol (SRTP)", RFC 5764, May 2010.

  [RFC5766]  Mahy, R., Matthews, P., and J. Rosenberg, "Traversal Using
             Relays around NAT (TURN): Relay Extensions to Session
             Traversal Utilities for NAT (STUN)", RFC 5766, April 2010.

  [RFC5928]  Petit-Huguenin, M., "Traversal Using Relays around NAT
             (TURN) Resolution Mechanism", RFC 5928, August 2010.

  [RFC6062]  Perreault, S. and J. Rosenberg, "Traversal Using Relays
             around NAT (TURN) Extensions for TCP Allocations", RFC
             6062, November 2010.





Petit-Huguenin & Salgueiro   Standards Track                   [Page 12]

RFC 7350                     STUN over DTLS                  August 2014


  [RFC6335]  Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
             Cheshire, "Internet Assigned Numbers Authority (IANA)
             Procedures for the Management of the Service Name and
             Transport Protocol Port Number Registry", BCP 165, RFC
             6335, August 2011.

  [RFC6347]  Rescorla, E. and N. Modadugu, "Datagram Transport Layer
             Security Version 1.2", RFC 6347, January 2012.

  [RFC7064]  Nandakumar, S., Salgueiro, G., Jones, P., and M. Petit-
             Huguenin, "URI Scheme for the Session Traversal Utilities
             for NAT (STUN) Protocol", RFC 7064, November 2013.

  [RFC7065]  Petit-Huguenin, M., Nandakumar, S., Salgueiro, G., and P.
             Jones, "Traversal Using Relays around NAT (TURN) Uniform
             Resource Identifiers", RFC 7065, November 2013.

8.2.  Informative References

  [ICE-DTLS] Thomson, M., "Using Datagram Transport Layer Security
             (DTLS) For Interactivity Connectivity Establishment (ICE)
             Connectivity Checking: ICE-DTLS", Work in Progress, March
             2012.

  [SIP-DTLS] Jennings, C. and N. Modadugu, "Session Initiation Protocol
             (SIP) over Datagram Transport Layer Security (DTLS)", Work
             in Progress, October 2007.
























Petit-Huguenin & Salgueiro   Standards Track                   [Page 13]

RFC 7350                     STUN over DTLS                  August 2014


Appendix A.  Examples

  Table 1 shows how the <secure>, <port>, and <transport> components
  are populated for a TURN URI that uses DTLS as its transport.  For
  all these examples, the <host> component is populated with
  "example.net".

  +---------------------------------+----------+--------+-------------+
  | URI                             | <secure> | <port> | <transport> |
  +---------------------------------+----------+--------+-------------+
  | turns:example.net?transport=udp | true     |        | DTLS        |
  +---------------------------------+----------+--------+-------------+

                                 Table 1

  With the DNS Resource Records (RRs) in Figure 1 and an ordered TURN
  transport list of {DTLS, TLS, TCP, UDP}, the resolution algorithm
  will convert the TURN URI "turns:example.net" to the ordered list of
  IP address, port, and protocol tuples in Table 2.

  example.net.
  IN NAPTR 100 10 "" RELAY:turn.udp:turn.dtls "" datagram.example.net.
  IN NAPTR 200 10 "" RELAY:turn.tcp:turn.tls "" stream.example.net.

  datagram.example.net.
  IN NAPTR 100 10 S RELAY:turn.udp "" _turn._udp.example.net.
  IN NAPTR 200 10 S RELAY:turn.dtls "" _turns._udp.example.net.

  stream.example.net.
  IN NAPTR 100 10 S RELAY:turn.tcp "" _turn._tcp.example.net.
  IN NAPTR 200 10 A RELAY:turn.tls "" a.example.net.

  _turn._udp.example.net.
  IN SRV   0 0 3478 a.example.net.

  _turn._tcp.example.net.
  IN SRV   0 0 5000 a.example.net.

  _turns._udp.example.net.
  IN SRV   0 0 5349 a.example.net.

  a.example.net.
  IN A     192.0.2.1

                                Figure 1






Petit-Huguenin & Salgueiro   Standards Track                   [Page 14]

RFC 7350                     STUN over DTLS                  August 2014


                +-------+----------+------------+------+
                | Order | Protocol | IP address | Port |
                +-------+----------+------------+------+
                | 1     | DTLS     | 192.0.2.1  | 5349 |
                | 2     | TLS      | 192.0.2.1  | 5349 |
                +-------+----------+------------+------+

                                 Table 2











































Petit-Huguenin & Salgueiro   Standards Track                   [Page 15]

RFC 7350                     STUN over DTLS                  August 2014


Authors' Addresses

  Marc Petit-Huguenin
  Jive Communications
  1275 West 1600 North, Suite 100
  Orem, UT  84057
  USA

  EMail: [email protected]


  Gonzalo Salgueiro
  Cisco Systems
  7200-12 Kit Creek Road
  Research Triangle Park, NC  27709
  USA

  EMail: [email protected]

































Petit-Huguenin & Salgueiro   Standards Track                   [Page 16]