Internet Engineering Task Force (IETF)                     L. Ciavattone
Request for Comments: 7290                                     AT&T Labs
Category: Informational                                          R. Geib
ISSN: 2070-1721                                         Deutsche Telekom
                                                              A. Morton
                                                              AT&T Labs
                                                              M. Wieser
                                         Technical University Darmstadt
                                                              July 2014


 Test Plan and Results for Advancing RFC 2680 on the Standards Track

Abstract

  This memo provides the supporting test plan and results to advance
  RFC 2680, a performance metric RFC defining one-way packet loss
  metrics, along the Standards Track.  Observing that the metric
  definitions themselves should be the primary focus rather than the
  implementations of metrics, this memo describes the test procedures
  to evaluate specific metric requirement clauses to determine if the
  requirement has been interpreted and implemented as intended.  Two
  completely independent implementations have been tested against the
  key specifications of RFC 2680.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Not all documents
  approved by the IESG are a candidate for any level of Internet
  Standard; see Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7290.











Ciavattone, et al.            Informational                     [Page 1]

RFC 7290           Standards Track Tests for RFC 2680          July 2014


Copyright Notice

  Copyright (c) 2014 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents

  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

  This document may contain material from IETF Documents or IETF
  Contributions published or made publicly available before November
  10, 2008.  The person(s) controlling the copyright in some of this
  material may not have granted the IETF Trust the right to allow
  modifications of such material outside the IETF Standards Process.
  Without obtaining an adequate license from the person(s) controlling
  the copyright in such materials, this document may not be modified
  outside the IETF Standards Process, and derivative works of it may
  not be created outside the IETF Standards Process, except to format
  it for publication as an RFC or to translate it into languages other
  than English.
























Ciavattone, et al.            Informational                     [Page 2]

RFC 7290           Standards Track Tests for RFC 2680          July 2014


Table of Contents

  1. Introduction ....................................................3
     1.1. Requirements Language ......................................4
     1.2. RFC 2680 Coverage ..........................................5
  2. A Definition-Centric Metric Advancement Process .................5
  3. Test Configuration ..............................................5
  4. Error Calibration and RFC 2680 ..................................9
     4.1. Clock Synchronization Calibration ..........................9
     4.2. Packet Loss Determination Error ...........................10
  5. Predetermined Limits on Equivalence ............................10
  6. Tests to Evaluate RFC 2680 Specifications ......................11
     6.1. One-Way Loss: ADK Sample Comparison .......................11
          6.1.1. 340B/Periodic Cross-Implementation Results .........12
          6.1.2. 64B/Periodic Cross-Implementation Results ..........14
          6.1.3. 64B/Poisson Cross-Implementation Results ...........15
          6.1.4. Conclusions on the ADK Results for One-Way
                 Packet Loss ........................................16
     6.2. One-Way Loss: Delay Threshold .............................16
          6.2.1. NetProbe Results for Loss Threshold ................17
          6.2.2. Perfas+ Results for Loss Threshold .................17
          6.2.3. Conclusions for Loss Threshold .....................17
     6.3. One-Way Loss with Out-of-Order Arrival ....................17
     6.4. Poisson Sending Process Evaluation ........................19
          6.4.1. NetProbe Results ...................................19
          6.4.2. Perfas+ Results ....................................20
          6.4.3. Conclusions for Goodness-of-Fit ....................22
     6.5. Implementation of Statistics for One-Way Loss .............23
  7. Conclusions for a Revision of RFC 2680 .........................23
  8. Security Considerations ........................................24
  9. Acknowledgements ...............................................24
  10. Appendix - Network Configuration and Sample Commands ..........25
  11. References ....................................................28
     11.1. Normative References .....................................28
     11.2. Informative References ...................................29

1.  Introduction

  The IETF IP Performance Metrics (IPPM) working group has considered
  how to advance their metrics along the Standards Track since 2001.

  The renewed work effort sought to investigate ways in which the
  measurement variability could be reduced in order to thereby simplify
  the problem of comparison for equivalence.  As a result, there is
  consensus (captured in [RFC6576]) that equivalent results from
  independent implementations of metric specifications are sufficient
  evidence that the specifications themselves are clear and
  unambiguous; it is the parallel concept of protocol interoperability



Ciavattone, et al.            Informational                     [Page 3]

RFC 7290           Standards Track Tests for RFC 2680          July 2014


  for metric specifications.  The advancement process either (1)
  produces confidence that the metric definitions and supporting
  material are clearly worded and unambiguous or (2) identifies ways in
  which the metric definitions should be revised to achieve clarity.
  It is a non-goal to compare the specific implementations themselves.

  The process also permits identification of options described in the
  metric RFC that were not implemented, so that they can be removed
  from the advancing specification (this is an aspect more typical of
  protocol advancement along the Standards Track).

  This memo's purpose is to implement the current approach for
  [RFC2680] and document the results.

  In particular, this memo documents consensus on the extent of
  tolerable errors when assessing equivalence in the results.  In
  discussions, the IPPM working group agreed that the test plan
  and procedures should include the threshold for determining
  equivalence, and this information should be available in advance of
  cross-implementation comparisons.  This memo includes procedures for
  same-implementation comparisons to help set the equivalence
  threshold.

  Another aspect of the metric RFC advancement process is the
  requirement to document the work and results.  The procedures of
  [RFC2026] are expanded in [RFC5657], including sample implementation
  and interoperability reports.  This memo follows the template in
  [RFC6808] for the report that accompanies the protocol action request
  submitted to the Area Director, including a description of the test
  setup, procedures, results for each implementation, and conclusions.

  The conclusion reached is that [RFC2680], with modifications, should
  be advanced on the Standards Track.  The revised text of RFC 2680
  [LOSS-METRIC] is ready for review but awaits work in progress to
  update the IPPM Framework [RFC2330].  Therefore, this memo documents
  the information to support the advancement of [RFC2680], and the
  approval of a revision of RFC 2680 is left for future action.

1.1.  Requirements Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [RFC2119].
  Some of these key words were used in [RFC2680], but there are no
  requirements specified in this memo.






Ciavattone, et al.            Informational                     [Page 4]

RFC 7290           Standards Track Tests for RFC 2680          July 2014


1.2.  RFC 2680 Coverage

  This plan is intended to cover all critical requirements and sections
  of [RFC2680].

  Note that there are only five relevant instances of the requirement
  term "MUST" in [RFC2680], outside of the boilerplate and [RFC2119]
  reference; the instance of "MUST" in the Security Considerations
  section of [RFC2680] is not a basis for implementation equivalence
  comparisons.

  Statements in RFC 2680 that have the character of requirements may be
  included if the community reaches consensus that the wording implies
  a requirement.  At least one instance of an implied requirement has
  been found in Section 3.6 of [RFC2680].

2.  A Definition-Centric Metric Advancement Process

  The process described in Section 3.5 of [RFC6576] takes as a first
  principle that the metric definitions, embodied in the text of the
  RFCs, are the objects that require evaluation and possible revision
  in order to advance to the next step on the Standards Track.  This
  memo follows that process.

3.  Test Configuration

  One metric implementation used was NetProbe version 5.8.5 (an earlier
  version is used in the WIPM system and deployed worldwide [WIPM]).
  NetProbe uses UDP packets of variable size and can produce test
  streams with Periodic [RFC3432] or Poisson [RFC2330] sample
  distributions.

  The other metric implementation used was Perfas+ version 3.1,
  developed by Deutsche Telekom [Perfas].  Perfas+ uses UDP unicast
  packets of variable size (but also supports TCP and multicast).  Test
  streams with Periodic, Poisson, or uniform sample distributions may
  be used.














Ciavattone, et al.            Informational                     [Page 5]

RFC 7290           Standards Track Tests for RFC 2680          July 2014


  Figure 1 shows a view of the test path as each implementation's test
  flows pass through the Internet and the Layer 2 Tunneling Protocol
  version 3 (L2TPv3) [RFC3931] tunnel IDs (1 and 2), based on Figure 1
  of [RFC6576].

         +------------+                                +------------+
         |   Imp 1    |           ,---.                |    Imp 2   |
         +------------+          /     \    +-------+  +------------+
           | V100 ^ V200        /       \   | Tunnel|   | V300  ^ V400
           |      |            (         )  | Head  |   |       |
          +--------+  +------+ |         |__| Router|  +----------+
          |Ethernet|  |Tunnel| |Internet |  +---B---+  |Ethernet  |
          |Switch  |--|Head  |-|         |      |      |Switch    |
          +-+--+---+  |Router| |         |  +---+---+--+--+--+----+
            |__|      +--A---+ (         )  |Network|     |__|
                                \       /   |Emulat.|
          U-turn                 \     /    |"netem"|     U-turn
          V300 to V400            `-+-'     +-------+     V100 to V200



         Implementations                  ,---.       +--------+
                             +~~~~~~~~~~~/     \~~~~~~| Remote |
          +------->-----F2->-|          /       \     |->---.  |
          | +---------+      | Tunnel  (         )    |     |  |
          | | transmit|-F1->-|   ID 1  |         |    |->.  |  |
          | | Imp 1   |      +~~~~~~~~~|         |~~~~|  |  |  |
          | | receive |-<--+           |         |    | F1  F2 |
          | +---------+    |           |Internet |    |  |  |  |
          *-------<-----+  F1          |         |    |  |  |  |
            +---------+ |  | +~~~~~~~~~|         |~~~~|  |  |  |
            | transmit|-*  *-|         |         |    |<-*  |  |
            | Imp 2   |      | Tunnel  (         )    |     |  |
            | receive |-<-F2-|   ID 2   \       /     |<----*  |
            +---------+      +~~~~~~~~~~~\     /~~~~~~| Switch |
                                          `-+-'       +--------+

         Illustrations of a test setup with a bidirectional tunnel.
         The upper diagram emphasizes the VLAN connectivity and
         geographical location (where "Imp #" is the sender and
         receiver of implementation 1 or 2 -- either Perfas+ or
         NetProbe in this test).  The lower diagram shows example
         flows traveling between two measurement implementations.
         For simplicity, only two flows are shown, and the netem
         emulator is omitted (it would appear before or after the
         Internet, depending on the flow).

                                Figure 1



Ciavattone, et al.            Informational                     [Page 6]

RFC 7290           Standards Track Tests for RFC 2680          July 2014


  The testing employs the L2TPv3 [RFC3931] tunnel between test sites on
  the Internet.  The tunnel IP and L2TPv3 headers are intended to
  conceal the test equipment addresses and ports from hash functions
  that would tend to spread different test streams across parallel
  network resources, with likely variation in performance as a result.

  At each end of the tunnel, one pair of VLANs encapsulated in the
  tunnel are looped back so that test traffic is returned to each test
  site.  Thus, test streams traverse the L2TP tunnel twice but appear
  to be one-way tests from the point of view of the test equipment.

  The network emulator is a host running Fedora 14 Linux [FEDORA], with
  IP forwarding enabled and the "netem" Network emulator as part of the
  Fedora Kernel 2.6.35.11 [NETEM] loaded and operating.  The standard
  kernel is "tickless", replacing the previous periodic timer (250 Hz,
  with 4 ms uncertainty) interrupts with on-demand interrupts.
  Connectivity across the netem/Fedora host was accomplished by
  bridging Ethernet VLAN interfaces together with "brctl" commands
  (e.g., eth1.100 <-> eth2.100).  The netem emulator was activated on
  one interface (eth1) and only operated on test streams traveling in
  one direction.  In some tests, independent netem instances operated
  separately on each VLAN.  See the Appendix for more details.

  The links between the netem emulator host, the router, and the switch
  were found to be 100BaseTX-HD (100 Mbps half duplex), as reported by
  "mii-tool" [MII-TOOL] when testing was complete.  The use of half
  duplex was not intended but probably added a small amount of delay
  variation that could have been avoided in full-duplex mode.

  Each individual test was run with common packet rates (1 pps, 10 pps)
  Poisson/Periodic distributions, and IP packet sizes of 64, 340, and
  500 bytes.

  For these tests, a stream of at least 300 packets was sent from
  source to destination in each implementation.  Periodic streams (as
  per [RFC3432]) with 1-second spacing were used, except as noted.

  As required in Section 2.8.1 of [RFC2680], packet Type-P must be
  reported.  The packet Type-P for this test was IP-UDP with Best
  Effort Differentiated Services Code Point (DSCP).  These headers were
  encapsulated according to the L2TPv3 specification [RFC3931] and were
  unlikely to influence the treatment received as the packets traversed
  the Internet.








Ciavattone, et al.            Informational                     [Page 7]

RFC 7290           Standards Track Tests for RFC 2680          July 2014


  With the L2TPv3 tunnel in use, the metric name for the testing
  configured here (with respect to the IP header exposed to Internet
  processing) is:

  Type-IP-protocol-115-One-way-Packet-Loss-<StreamType>-Stream

  With (Section 3.2 of [RFC2680]) metric parameters:

  + Src, the IP address of a host (12.3.167.16 or 193.159.144.8)

  + Dst, the IP address of a host (193.159.144.8 or 12.3.167.16)

  + T0, a time

  + Tf, a time

  + lambda, a rate in reciprocal seconds

  + Thresh, a maximum waiting time in seconds (see Section 2.8.2 of
    [RFC2680])

  Metric Units: A sequence of pairs; the elements of each pair are:

  + T, a time, and

  + L, either a zero or a one

  The values of T in the sequence are monotonically increasing.
  Note that T would be a valid parameter of *singleton*
  Type-P-One-way-Packet-Loss and that L would be a valid value of
  Type-P-One-way-Packet-Loss (see Section 3.3 of [RFC2680]).

  Also, Section 2.8.4 of [RFC2680] recommends that the path SHOULD be
  reported.  In this test setup, most of the path details will be
  concealed from the implementations by the L2TPv3 tunnels; thus, a
  more informative path traceroute can be conducted by the routers at
  each location.

  When NetProbe is used in production, a traceroute is conducted in
  parallel at the outset of measurements.

  Perfas+ does not support traceroute.









Ciavattone, et al.            Informational                     [Page 8]

RFC 7290           Standards Track Tests for RFC 2680          July 2014


IPLGW#traceroute 193.159.144.8

Type escape sequence to abort.
Tracing the route to 193.159.144.8

  1 12.126.218.245 [AS 7018] 0 msec 0 msec 4 msec
  2 cr84.n54ny.ip.att.net (12.123.2.158) [AS 7018] 4 msec 4 msec
    cr83.n54ny.ip.att.net (12.123.2.26) [AS 7018] 4 msec
  3 cr1.n54ny.ip.att.net (12.122.105.49) [AS 7018] 4 msec
    cr2.n54ny.ip.att.net (12.122.115.93) [AS 7018] 0 msec
    cr1.n54ny.ip.att.net (12.122.105.49) [AS 7018] 0 msec
  4 n54ny02jt.ip.att.net (12.122.80.225) [AS 7018] 4 msec 0 msec
    n54ny02jt.ip.att.net (12.122.80.237) [AS 7018] 4 msec
  5 192.205.34.182 [AS 7018] 0 msec
    192.205.34.150 [AS 7018] 0 msec
    192.205.34.182 [AS 7018] 4 msec
  6 da-rg12-i.DA.DE.NET.DTAG.DE (62.154.1.30) [AS 3320] 88 msec 88 msec
88 msec
  7 217.89.29.62 [AS 3320] 88 msec 88 msec 88 msec
  8 217.89.29.55 [AS 3320] 88 msec 88 msec 88 msec
  9  *  *  *

  NetProbe Traceroute

  It was only possible to conduct the traceroute for the measured path
  on one of the tunnel-head routers (the normal trace facilities of the
  measurement systems are confounded by the L2TPv3 tunnel
  encapsulation).

4.  Error Calibration and RFC 2680

  An implementation is required to report calibration results on clock
  synchronization per Section 2.8.3 of [RFC2680] (also required in
  Section 3.7 of [RFC2680] for sample metrics).

  Also, it is recommended to report the probability that a packet
  successfully arriving at the destination network interface is
  incorrectly designated as lost due to resource exhaustion in
  Section 2.8.3 of [RFC2680].

4.1.  Clock Synchronization Calibration

  For NetProbe and Perfas+ clock synchronization test results, refer to
  Section 4 of [RFC6808].







Ciavattone, et al.            Informational                     [Page 9]

RFC 7290           Standards Track Tests for RFC 2680          July 2014


4.2.  Packet Loss Determination Error

  Since both measurement implementations have resource limitations, it
  is theoretically possible that these limits could be exceeded and a
  packet that arrived at the destination successfully might be
  discarded in error.

  In previous test efforts [ADV-METRICS], NetProbe produced six
  multicast streams with an aggregate bit rate over 53 Mbit/s, in order
  to characterize the one-way capacity of an emulator based on NIST
  Net.  Neither the emulator nor the pair of NetProbe implementations
  used in this testing dropped any packets in these streams.

  The maximum load used here between any two NetProbe implementations
  was 11.5 Mbit/s divided equally among three unicast test streams.  We
  concluded that steady resource usage does not contribute error
  (additional loss) to the measurements.

5.  Predetermined Limits on Equivalence

  In this section, we provide the numerical limits on comparisons
  between implementations in order to declare that the results are
  equivalent and that the tested specification is therefore clear.

  A key point is that the allowable errors, corrections, and confidence
  levels only need to be sufficient to detect any misinterpretation of
  the tested specification that would indicate diverging
  implementations.

  Also, the allowable error must be sufficient to compensate for
  measured path differences.  It was simply not possible to measure
  fully identical paths in the VLAN-loopback test configuration used,
  and this practical compromise must be taken into account.

  For Anderson-Darling K-sample (ADK) [ADK] comparisons, the required
  confidence factor for the cross-implementation comparisons SHALL be
  the smallest of:

  o  0.95 confidence factor at 1-packet resolution, or

  o  the smallest confidence factor (in combination with resolution) of
     the two same-implementation comparisons for the same test
     conditions (if the number of streams is sufficient to allow such
     comparisons).







Ciavattone, et al.            Informational                    [Page 10]

RFC 7290           Standards Track Tests for RFC 2680          July 2014


  For Anderson-Darling Goodness-of-Fit (ADGoF) [RADGOF] comparisons,
  the required level of significance for the same-implementation
  Goodness-of-Fit (GoF) SHALL be 0.05 or 5%, as specified in
  Section 11.4 of [RFC2330].  This is equivalent to a 95% confidence
  factor.

6.  Tests to Evaluate RFC 2680 Specifications

  This section describes some results from production network (cross-
  Internet) tests with measurement devices implementing IPPM metrics
  and a network emulator to create relevant conditions, to determine
  whether the metric definitions were interpreted consistently by
  implementors.

  The procedures are similar to those contained in Appendix A.1 of
  [RFC6576] for one-way delay.

6.1.  One-Way Loss: ADK Sample Comparison

  This test determines if implementations produce results that appear
  to come from a common packet loss distribution, as an overall
  evaluation of Section 3 of [RFC2680] ("A Definition for Samples of
  One-way Packet Loss").  Same-implementation comparison results help
  to set the threshold of equivalence that will be applied to cross-
  implementation comparisons.

  This test is intended to evaluate measurements in Sections 2, 3, and
  4 of [RFC2680].

  By testing the extent to which the counts of one-way packet loss on
  different test streams of two [RFC2680] implementations appear to be
  from the same loss process, we reduce comparison steps because
  comparing the resulting summary statistics (as defined in Section 4
  of [RFC2680]) would require a redundant set of equivalence
  evaluations.  We can easily check whether the single statistic in
  Section 4 of [RFC2680] was implemented and report on that fact.

  1.  Configure an L2TPv3 path between test sites, and each pair of
      measurement devices to operate tests in their designated pair of
      VLANs.

  2.  Measure a sample of one-way packet loss singletons with two or
      more implementations, using identical options and network
      emulator settings (if used).







Ciavattone, et al.            Informational                    [Page 11]

RFC 7290           Standards Track Tests for RFC 2680          July 2014


  3.  Measure a sample of one-way packet loss singletons with *four or
      more* instances of the *same* implementations, using identical
      options, noting that connectivity differences SHOULD be the same
      as for cross-implementation testing.

  4.  If less than ten test streams are available, skip to step 7.

  5.  Apply the ADK comparison procedures (see Appendix B of
      [RFC6576]), and determine the resolution and confidence factor
      for distribution equivalence of each same-implementation
      comparison and each cross-implementation comparison.

  6.  Take the coarsest resolution and confidence factor for
      distribution equivalence from the same-implementation pairs, or
      the limit defined in Section 5 above, as a limit on the
      equivalence threshold for these experimental conditions.

  7.  Compare the cross-implementation ADK performance with the
      equivalence threshold determined in step 5 to determine if
      equivalence can be declared.

  The metric parameters varied for each loss test, and they are listed
  first in each sub-section below.

  The cross-implementation comparison uses a simple ADK analysis
  [RTOOL] [RADK], where all NetProbe loss counts are compared with all
  Perfas+ loss results.

  In the results analysis of this section:

  o  All comparisons used 1-packet resolution.

  o  No correction factors were applied.

  o  The 0.95 confidence factor (and ADK criterion for t.obs < 1.960
     for cross-implementation comparison) was used.

6.1.1.  340B/Periodic Cross-Implementation Results

  Tests described in this section used:

  o  IP header + payload = 340 octets

  o  Periodic sampling at 1 packet per second

  o  Test duration = 1200 seconds (during April 7, 2011, EDT)





Ciavattone, et al.            Informational                    [Page 12]

RFC 7290           Standards Track Tests for RFC 2680          July 2014


  The netem emulator was set for 100 ms constant delay, with a 10% loss
  ratio.  In this experiment, the netem emulator was configured to
  operate independently on each VLAN; thus, the emulator itself is a
  potential source of error when comparing streams that traverse the
  test path in different directions.

  =======================================

  A07bps_loss <- c(114, 175, 138, 142, 181, 105)  (NetProbe)
  A07per_loss <- c(115, 128, 136, 127, 139, 138)  (Perfas+)

  > A07bps_loss <- c(114, 175, 138, 142, 181, 105)
  > A07per_loss <- c(115, 128, 136, 127, 139, 138)
  >
  > A07cross_loss_ADK <- adk.test(A07bps_loss, A07per_loss)
  > A07cross_loss_ADK
  Anderson-Darling k-sample test.

  Number of samples:  2
  Sample sizes: 6 6
  Total number of values: 12
  Number of unique values: 11

  Mean of Anderson Darling Criterion: 1
  Standard deviation of Anderson Darling Criterion: 0.6569

  T = (Anderson Darling Criterion - mean)/sigma

  Null Hypothesis: All samples come from a common population.

                      t.obs P-value extrapolation
  not adj. for ties 0.52043 0.20604             0
  adj. for ties     0.62679 0.18607             0
  >

  =======================================

  The cross-implementation comparisons pass the ADK criterion
  (t.obs < 1.960).












Ciavattone, et al.            Informational                    [Page 13]

RFC 7290           Standards Track Tests for RFC 2680          July 2014


6.1.2.  64B/Periodic Cross-Implementation Results

  Tests described in this section used:

  o  IP header + payload = 64 octets

  o  Periodic sampling at 1 packet per second

  o  Test duration = 300 seconds (during March 24, 2011, EDT)

  The netem emulator was set for 0 ms constant delay, with a 10% loss
  ratio.

  =======================================

  > M24per_loss <- c(42,34,35,35)         (Perfas+)
  > M24apd_23BC_loss <- c(27,39,29,24)    (NetProbe)
  > M24apd_loss23BC_ADK <- adk.test(M24apd_23BC_loss,M24per_loss)
  > M24apd_loss23BC_ADK
  Anderson-Darling k-sample test.

  Number of samples:  2
  Sample sizes: 4 4
  Total number of values: 8
  Number of unique values: 7

  Mean of Anderson Darling Criterion: 1
  Standard deviation of Anderson Darling Criterion: 0.60978

  T = (Anderson Darling Criterion - mean)/sigma

  Null Hypothesis: All samples come from a common population.

                      t.obs P-value extrapolation
  not adj. for ties 0.76921 0.16200             0
  adj. for ties     0.90935 0.14113             0

  Warning: At least one sample size is less than 5.
           p-values may not be very accurate.
  >

  =======================================

  The cross-implementation comparisons pass the ADK criterion.







Ciavattone, et al.            Informational                    [Page 14]

RFC 7290           Standards Track Tests for RFC 2680          July 2014


6.1.3.  64B/Poisson Cross-Implementation Results

  Tests described in this section used:

  o  IP header + payload = 64 octets

  o  Poisson sampling at lambda = 1 packet per second

  o  Test duration = 1200 seconds (during April 27, 2011, EDT)

  The netem configuration was 0 ms delay and 10% loss, but there were
  two passes through an emulator for each stream, and loss emulation
  was present for 18 minutes of the 20-minute (1200-second) test.

  =======================================

  A27aps_loss <- c(91,110,113,102,111,109,112,113)  (NetProbe)
  A27per_loss <- c(95,123,126,114)                  (Perfas+)

  A27cross_loss_ADK <- adk.test(A27aps_loss, A27per_loss)

  > A27cross_loss_ADK
  Anderson-Darling k-sample test.

  Number of samples:  2
  Sample sizes: 8 4
  Total number of values: 12
  Number of unique values: 11

  Mean of Anderson Darling Criterion: 1
  Standard deviation of Anderson Darling Criterion: 0.65642

  T = (Anderson Darling Criterion - mean)/sigma

  Null Hypothesis: All samples come from a common population.

                      t.obs P-value extrapolation
  not adj. for ties 2.15099 0.04145             0
  adj. for ties     1.93129 0.05125             0

  Warning: At least one sample size is less than 5.
           p-values may not be very accurate.
  >

  =======================================

  The cross-implementation comparisons barely pass the ADK criterion at
  95% = 1.960 when adjusting for ties.



Ciavattone, et al.            Informational                    [Page 15]

RFC 7290           Standards Track Tests for RFC 2680          July 2014


6.1.4.  Conclusions on the ADK Results for One-Way Packet Loss

  We conclude that the two implementations are capable of producing
  equivalent one-way packet loss measurements based on their
  interpretation of [RFC2680].

6.2.  One-Way Loss: Delay Threshold

  This test determines if implementations use the same configured
  maximum waiting time delay from one measurement to another under
  different delay conditions and correctly declare packets arriving in
  excess of the waiting time threshold as lost.

  See Section 2.8.2 of [RFC2680].

  1.  Configure an L2TPv3 path between test sites, and each pair of
      measurement devices to operate tests in their designated pair of
      VLANs.

  2.  Configure the network emulator to add 1 second of one-way
      constant delay in one direction of transmission.

  3.  Measure (average) one-way delay with two or more implementations,
      using identical waiting time thresholds (Thresh) for loss set at
      3 seconds.

  4.  Configure the network emulator to add 3 seconds of one-way
      constant delay in one direction of transmission equivalent to
      2 seconds of additional one-way delay (or change the path delay
      while the test is in progress, when there are sufficient packets
      at the first delay setting).

  5.  Repeat/continue measurements.

  6.  Observe that the increase measured in step 5 caused all packets
      with 2 seconds of additional delay to be declared lost and that
      all packets that arrive successfully in step 3 are assigned a
      valid one-way delay.

  The common parameters used for tests in this section are:

  o  IP header + payload = 64 octets

  o  Poisson sampling at lambda = 1 packet per second

  o  Test duration = 900 seconds total (March 21, 2011 EDT)





Ciavattone, et al.            Informational                    [Page 16]

RFC 7290           Standards Track Tests for RFC 2680          July 2014


  The netem emulator settings added constant delays as specified in the
  procedure above.

6.2.1.  NetProbe Results for Loss Threshold

  In NetProbe, the loss threshold was implemented uniformly over all
  packets as a post-processing routine.  With the loss threshold set at
  3 seconds, all packets with one-way delay >3 seconds were marked
  "Lost" and included in the Lost Packet list with their transmission
  time (as required in Section 3.3 of [RFC2680]).  This resulted in
  342 packets designated as lost in one of the test streams (with
  average delay = 3.091 sec).

6.2.2.  Perfas+ Results for Loss Threshold

  Perfas+ uses a fixed loss threshold, which was not adjustable during
  this study.  The loss threshold is approximately one minute, and
  emulation of a delay of this size was not attempted.  However, it is
  possible to implement any delay threshold desired with a
  post-processing routine and subsequent analysis.  Using this method,
  195 packets would be declared lost (with average delay = 3.091 sec).

6.2.3.  Conclusions for Loss Threshold

  Both implementations assume that any constant delay value desired can
  be used as the loss threshold, since all delays are stored as a pair
  <Time, Delay> as required in [RFC2680].  This is a simple way to
  enforce the constant loss threshold envisioned in [RFC2680] (see
  Section 2.8.2 of [RFC2680]).  We take the position that the
  assumption of post-processing is compliant and that the text of the
  revision of RFC 2680 should be revised slightly to include this
  point.

6.3.  One-Way Loss with Out-of-Order Arrival

  Section 3.6 of [RFC2680] indicates, with a lowercase "must" in the
  text, that implementations need to ensure that reordered packets are
  handled correctly.  In essence, this is an implied requirement
  because the correct packet must be identified as lost if it fails to
  arrive before its delay threshold under all circumstances, and
  reordering is always a possibility on IP network paths.  See
  [RFC4737] for the definition of reordering used in IETF
  standard-compliant measurements.

  The netem emulator can produce packet reordering because each
  packet's delay is drawn from an independent distribution.  Here,
  significant delay (2000 ms) and delay variation (1000 ms) were




Ciavattone, et al.            Informational                    [Page 17]

RFC 7290           Standards Track Tests for RFC 2680          July 2014


  sufficient to produce packet reordering.  Using the procedure
  described in Section 6.1, the netem emulator was set to introduce 10%
  loss while reordering was present.

  The tests described in this section used:

  o  IP header + payload = 64 octets

  o  Periodic sampling = 1 packet per second

  o  Test duration = 600 seconds (during May 2, 2011, EDT)

  =======================================

  > Y02aps_loss <- c(53,45,67,55)      (NetProbe)
  > Y02per_loss <- c(59,62,67,69)      (Perfas+)
  > Y02cross_loss_ADK <- adk.test(Y02aps_loss, Y02per_loss)
  > Y02cross_loss_ADK
  Anderson-Darling k-sample test.

  Number of samples:  2
  Sample sizes: 4 4
  Total number of values: 8
  Number of unique values: 7

  Mean of Anderson Darling Criterion: 1
  Standard deviation of Anderson Darling Criterion: 0.60978

  T = (Anderson Darling Criterion - mean)/sigma

  Null Hypothesis: All samples come from a common population.

                      t.obs P-value extrapolation
  not adj. for ties 1.11282 0.11531             0
  adj. for ties     1.19571 0.10616             0

  Warning: At least one sample size is less than 5.
           p-values may not be very accurate.
  >

  =======================================

  The test results indicate that extensive reordering was present.
  Both implementations capture the extensive delay variation between
  adjacent packets.  In NetProbe, packet arrival order is preserved in
  the raw measurement files, so an examination of arrival packet
  sequence numbers also reveals reordering.




Ciavattone, et al.            Informational                    [Page 18]

RFC 7290           Standards Track Tests for RFC 2680          July 2014


  Despite extensive continuous packet reordering present in the
  transmission path, the distributions of loss counts from the two
  implementations pass the ADK criterion at 95% = 1.960.

6.4.  Poisson Sending Process Evaluation

  Section 3.7 of [RFC2680] indicates that implementations need to
  ensure that their sending process is reasonably close to a classic
  Poisson distribution when used.  Much more detail on sample
  distribution generation and Goodness-of-Fit testing is specified in
  Section 11.4 of [RFC2330] and the Appendix of [RFC2330].

  In this section, each implementation's Poisson distribution is
  compared with an idealistic version of the distribution available in
  the base functionality of the R-tool for Statistical Analysis [RTOOL]
  and performed using the Anderson-Darling Goodness-of-Fit test package
  (ADGofTest) [RADGOF].  The Goodness-of-Fit criterion derived from
  [RFC2330] requires a test statistic value AD <= 2.492 for 5%
  significance.  The Appendix of [RFC2330] also notes that there may be
  difficulty satisfying the ADGofTest when the sample includes many
  packets (when 8192 were used, the test always failed, but smaller
  sets of the stream passed).

  Both implementations were configured to produce Poisson distributions
  with lambda = 1 packet per second and to assign received packet
  timestamps in the measurement application (above the UDP layer; see
  the calibration results in Section 4 of [RFC6808] for error
  assessment).

6.4.1.  NetProbe Results

  Section 11.4 of [RFC2330] suggests three possible measurement points
  to evaluate the Poisson distribution.  The NetProbe analysis uses
  "user-level timestamps made just before or after the system call for
  transmitting the packet".

  The statistical summary for two NetProbe streams is below:

  =======================================

  > summary(a27ms$s1[2:1152])
     Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
   0.0100  0.2900  0.6600  0.9846  1.3800  8.6390
  > summary(a27ms$s2[2:1152])
     Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
    0.010   0.280   0.670   0.979   1.365   8.829

  =======================================



Ciavattone, et al.            Informational                    [Page 19]

RFC 7290           Standards Track Tests for RFC 2680          July 2014


  We see that both of the means are near the specified lambda = 1.

  The results of ADGoF tests for these two streams are shown below:

  =======================================

  > ad.test( a27ms$s1[2:101], pexp, 1)

          Anderson-Darling GoF Test

  data:  a27ms$s1[2:101]  and  pexp
  AD = 0.8908, p-value = 0.4197
  alternative hypothesis: NA

  > ad.test( a27ms$s1[2:1001], pexp, 1)

          Anderson-Darling GoF Test

  data:  a27ms$s1[2:1001]  and  pexp
  AD = 0.9284, p-value = 0.3971
  alternative hypothesis: NA

  > ad.test( a27ms$s2[2:101], pexp, 1)

          Anderson-Darling GoF Test

  data:  a27ms$s2[2:101]  and  pexp
  AD = 0.3597, p-value = 0.8873
  alternative hypothesis: NA

  > ad.test( a27ms$s2[2:1001], pexp, 1)

          Anderson-Darling GoF Test

  data:  a27ms$s2[2:1001]  and  pexp
  AD = 0.6913, p-value = 0.5661
  alternative hypothesis: NA

  =======================================

  We see that both sets of 100 packets and 1000 packets from two
  different streams (s1 and s2) all passed the AD <= 2.492 criterion.

6.4.2.  Perfas+ Results

  Section 11.4 of [RFC2330] suggests three possible measurement points
  to evaluate the Poisson distribution.  The Perfas+ analysis uses
  "wire times for the packets as recorded using a packet filter".



Ciavattone, et al.            Informational                    [Page 20]

RFC 7290           Standards Track Tests for RFC 2680          July 2014


  However, due to limited access at the Perfas+ side of the test setup,
  the captures were made after the Perfas+ streams traversed the
  production network, adding a small amount of unwanted delay variation
  to the wire times (and possibly error due to packet loss).

  The statistical summary for two Perfas+ streams is below:

  =======================================

  > summary(a27pe$p1)
     Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
    0.004   0.347   0.788   1.054   1.548   4.231
  > summary(a27pe$p2)
     Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
   0.0010  0.2710  0.7080  0.9696  1.3740  7.1160

  =======================================

  We see that both of the means are near the specified lambda = 1.

  The results of ADGoF tests for these two streams are shown below:

  =======================================

  > ad.test(a27pe$p1, pexp, 1 )

          Anderson-Darling GoF Test

  data:  a27pe$p1  and  pexp
  AD = 1.1364, p-value = 0.2930
  alternative hypothesis: NA

  > ad.test(a27pe$p2, pexp, 1 )

          Anderson-Darling GoF Test

  data:  a27pe$p2  and  pexp
  AD = 0.5041, p-value = 0.7424
  alternative hypothesis: NA

  > ad.test(a27pe$p1[1:100], pexp, 1 )

          Anderson-Darling GoF Test

  data:  a27pe$p1[1:100]  and  pexp
  AD = 0.7202, p-value = 0.5419
  alternative hypothesis: NA




Ciavattone, et al.            Informational                    [Page 21]

RFC 7290           Standards Track Tests for RFC 2680          July 2014


  > ad.test(a27pe$p1[101:193], pexp, 1 )

          Anderson-Darling GoF Test

  data:  a27pe$p1[101:193]  and  pexp
  AD = 1.4046, p-value = 0.201
  alternative hypothesis: NA

  > ad.test(a27pe$p2[1:100], pexp, 1 )

          Anderson-Darling GoF Test

  data:  a27pe$p2[1:100]  and  pexp
  AD = 0.4758, p-value = 0.7712
  alternative hypothesis: NA

  > ad.test(a27pe$p2[101:193], pexp, 1 )

          Anderson-Darling GoF Test

  data:  a27pe$p2[101:193]  and  pexp
  AD = 0.3381, p-value = 0.9068
  alternative hypothesis: NA

  >

  =======================================

  We see that sets of 193, 100, and 93 packets from two different
  streams (p1 and p2) all passed the AD <= 2.492 criterion.

6.4.3.  Conclusions for Goodness-of-Fit

  Both NetProbe and Perfas+ implementations produce adequate Poisson
  distributions according to the Anderson-Darling Goodness-of-Fit at
  the 5% significance (1-alpha = 0.05, or 95% confidence level).















Ciavattone, et al.            Informational                    [Page 22]

RFC 7290           Standards Track Tests for RFC 2680          July 2014


6.5.  Implementation of Statistics for One-Way Loss

  We check to see which statistics were implemented and report on those
  facts, noting that Section 4 of [RFC2680] does not specify the
  calculations exactly and only gives some illustrative examples.

                                                NetProbe    Perfas+

       Type-P-One-way-Packet-Loss-Average       yes         yes
         (this is more commonly referred
          to as "loss ratio")

            Implementation of RFC 2680 Section 4 Statistics

  We note that implementations refer to this metric as a loss ratio,
  and this is an area for likely revision of the text to make it more
  consistent with widespread usage.

7.  Conclusions for a Revision of RFC 2680

  This memo concludes that [RFC2680] should be advanced on the
  Standards Track and recommends the following edits to improve the
  text (which are not deemed significant enough to affect maturity).

  o  Revise Type-P-One-way-Packet-Loss-Ave to
     Type-P-One-way-Delay-Packet-Loss-Ratio.

  o  Regarding implementation of the loss delay threshold
     (Section 6.2), the assumption of post-processing is compliant, and
     the text of the revision of RFC 2680 should be revised slightly to
     include this point.

  o  The IETF has reached consensus on guidance for reporting metrics
     [RFC6703], and this memo should be referenced in a revision of
     RFC 2680 to incorporate recent experience where appropriate.

  We note that there are at least two errata for [RFC2680], and it
  appears that these minor revisions should be incorporated in a
  revision of RFC 2680.

  The authors that revise [RFC2680] should review all errata filed at
  the time the document is being written.  They should not rely upon
  this document to indicate all relevant errata updates.

  We recognize the existence of BCP 170 [RFC6390], which provides
  guidelines for development of documents describing new performance
  metrics.  However, the advancement of [RFC2680] represents fine-
  tuning of long-standing specifications based on experience that



Ciavattone, et al.            Informational                    [Page 23]

RFC 7290           Standards Track Tests for RFC 2680          July 2014


  helped to formulate BCP 170, and material that satisfies some of the
  requirements of [RFC6390] can be found in other RFCs, such as the
  IPPM Framework [RFC2330].  Thus, no specific changes to address
  BCP 170 guidelines are recommended for a revision of RFC 2680.

8.  Security Considerations

  The security considerations that apply to any active measurement of
  live networks are relevant here as well.  See [RFC4656] and
  [RFC5357].

9.  Acknowledgements

  The authors thank Lars Eggert for his continued encouragement to
  advance the IPPM metrics during his tenure as AD Advisor.

  Nicole Kowalski supplied the needed Customer Premises Equipment (CPE)
  router for the NetProbe side of the test setup and graciously managed
  her testing in spite of issues caused by dual-use of the router.
  Thanks, Nicole!

  The "NetProbe Team" also acknowledges many useful discussions on
  statistical interpretation with Ganga Maguluri.

  Constructive comments and helpful reviews were also provided by Bill
  Cerveny, Joachim Fabini, and Ann Cerveny.

























Ciavattone, et al.            Informational                    [Page 24]

RFC 7290           Standards Track Tests for RFC 2680          July 2014


10.  Appendix - Network Configuration and Sample Commands

  This Appendix provides some background information on the host
  configuration and sample tc commands for the "netem" network
  emulator, as described in Section 3 and Figure 1 of this memo.  These
  details are also applicable to the test plan in [RFC6808].

  The host interface and configuration are shown below.  Due to the
  limit of 72 characters per line, line breaks were added to the "tc"
  commands in the output below.

  [system@dell4-4 ~]$ su
  Password:
  [root@dell4-4 system]# service iptables save
  iptables: Saving firewall rules to /etc/sysconfig/iptables:[  OK  ]
  [root@dell4-4 system]# service iptables stop
  iptables: Flushing firewall rules:                         [  OK  ]
  iptables: Setting chains to policy ACCEPT: nat filter      [  OK  ]
  iptables: Unloading modules:                               [  OK  ]
  [root@dell4-4 system]# brctl show
  bridge name     bridge id               STP enabled     interfaces
  virbr0          8000.000000000000       yes
  [root@dell4-4 system]# ifconfig eth1.300 0.0.0.0 promisc up
  [root@dell4-4 system]# ifconfig eth1.400 0.0.0.0 promisc up
  [root@dell4-4 system]# ifconfig eth2.400 0.0.0.0 promisc up
  [root@dell4-4 system]# ifconfig eth2.300 0.0.0.0 promisc up
  [root@dell4-4 system]# brctl addbr br300
  [root@dell4-4 system]# brctl addif br300 eth1.300
  [root@dell4-4 system]# brctl addif br300 eth2.300
  [root@dell4-4 system]# ifconfig br300 up
  [root@dell4-4 system]# brctl addbr br400
  [root@dell4-4 system]# brctl addif br400 eth1.400
  [root@dell4-4 system]# brctl addif br400 eth2.400
  [root@dell4-4 system]# ifconfig br400 up
  [root@dell4-4 system]# brctl show
  bridge name     bridge id               STP enabled     interfaces
  br300           8000.0002b3109b8a       no              eth1.300
                                                          eth2.300
  br400           8000.0002b3109b8a       no              eth1.400
                                                          eth2.400
  virbr0          8000.000000000000       yes










Ciavattone, et al.            Informational                    [Page 25]

RFC 7290           Standards Track Tests for RFC 2680          July 2014


  [root@dell4-4 system]# brctl showmacs br300
  port no mac addr                is local?       ageing timer
    2     00:02:b3:10:9b:8a       yes                0.00
    1     00:02:b3:10:9b:99       yes                0.00
    1     00:02:b3:c4:c9:7a       no                 0.52
    2     00:02:b3:cf:02:c6       no                 0.52
    2     00:0b:5f:54:de:81       no                 0.01
  [root@dell4-4 system]# brctl showmacs br400
  port no mac addr                is local?       ageing timer
    2     00:02:b3:10:9b:8a       yes                0.00
    1     00:02:b3:10:9b:99       yes                0.00
    2     00:02:b3:c4:c9:7a       no                 0.60
    1     00:02:b3:cf:02:c6       no                 0.42
    2     00:0b:5f:54:de:81       no                 0.33
  [root@dell4-4 system]# tc qdisc add dev eth1.300 root netem
                         delay 100ms

  [root@dell4-4 system]# ifconfig eth1.200 0.0.0.0 promisc up
  [root@dell4-4 system]# vconfig add eth1 100
  Added VLAN with VID == 100 to IF -:eth1:-

  [root@dell4-4 system]# ifconfig eth1.100 0.0.0.0 promisc up

  [root@dell4-4 system]# vconfig add eth2 100
  Added VLAN with VID == 100 to IF -:eth2:-

  [root@dell4-4 system]# ifconfig eth2.100 0.0.0.0 promisc up
  [root@dell4-4 system]# ifconfig eth2.200 0.0.0.0 promisc up
  [root@dell4-4 system]# brctl addbr br100
  [root@dell4-4 system]# brctl addif br100 eth1.100
  [root@dell4-4 system]# brctl addif br100 eth2.100
  [root@dell4-4 system]# ifconfig br100 up
  [root@dell4-4 system]# brctl addbr br200
  [root@dell4-4 system]# brctl addif br200 eth1.200
  [root@dell4-4 system]# brctl addif br200 eth2.200
  [root@dell4-4 system]# ifconfig br200 up
  [root@dell4-4 system]# brctl show
  bridge name     bridge id               STP enabled     interfaces
  br100           8000.0002b3109b8a       no              eth1.100
                                                          eth2.100
  br200           8000.0002b3109b8a       no              eth1.200
                                                          eth2.200
  br300           8000.0002b3109b8a       no              eth1.300
                                                          eth2.300
  br400           8000.0002b3109b8a       no              eth1.400
                                                          eth2.400
  virbr0          8000.000000000000       yes




Ciavattone, et al.            Informational                    [Page 26]

RFC 7290           Standards Track Tests for RFC 2680          July 2014


  [root@dell4-4 system]# brctl showmacs br100
  port no mac addr                is local?       ageing timer
    2     00:02:b3:10:9b:8a       yes                0.00
    1     00:02:b3:10:9b:99       yes                0.00
    1     00:0a:e4:83:89:07       no                 0.19
    2     00:0b:5f:54:de:81       no                 0.91
    2     00:e0:ed:0f:72:86       no                 1.28
  [root@dell4-4 system]# brctl showmacs br200
  port no mac addr                is local?       ageing timer
    2     00:02:b3:10:9b:8a       yes                0.00
    1     00:02:b3:10:9b:99       yes                0.00
    2     00:0a:e4:83:89:07       no                 1.14
    2     00:0b:5f:54:de:81       no                 1.87
    1     00:e0:ed:0f:72:86       no                 0.24
  [root@dell4-4 system]# tc qdisc add dev eth1.100 root netem
                         delay 100ms
  [root@dell4-4 system]#

  =====================================================================

  Some sample tc command lines controlling netem and its impairments
  are given below.

  tc qdisc add dev eth1.100 root netem loss 0%
  tc qdisc add dev eth1.200 root netem loss 0%
  tc qdisc add dev eth1.300 root netem loss 0%
  tc qdisc add dev eth1.400 root netem loss 0%

  Add delay and delay variation:
  tc qdisc change dev eth1.100 root netem delay 100ms 50ms
  tc qdisc change dev eth1.200 root netem delay 100ms 50ms
  tc qdisc change dev eth1.300 root netem delay 100ms 50ms
  tc qdisc change dev eth1.400 root netem delay 100ms 50ms

  Add delay, delay variation, and loss:
  tc qdisc change dev eth1 root netem delay 2000ms 1000ms loss 10%

  =====================================================================













Ciavattone, et al.            Informational                    [Page 27]

RFC 7290           Standards Track Tests for RFC 2680          July 2014


11.  References

11.1.  Normative References

  [RFC2026]  Bradner, S., "The Internet Standards Process --
             Revision 3", BCP 9, RFC 2026, October 1996.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2330]  Paxson, V., Almes, G., Mahdavi, J., and M. Mathis,
             "Framework for IP Performance Metrics", RFC 2330,
             May 1998.

  [RFC2680]  Almes, G., Kalidindi, S., and M. Zekauskas, "A One-way
             Packet Loss Metric for IPPM", RFC 2680, September 1999.

  [RFC3432]  Raisanen, V., Grotefeld, G., and A. Morton, "Network
             performance measurement with periodic streams", RFC 3432,
             November 2002.

  [RFC4656]  Shalunov, S., Teitelbaum, B., Karp, A., Boote, J., and M.
             Zekauskas, "A One-way Active Measurement Protocol
             (OWAMP)", RFC 4656, September 2006.

  [RFC4737]  Morton, A., Ciavattone, L., Ramachandran, G., Shalunov,
             S., and J. Perser, "Packet Reordering Metrics", RFC 4737,
             November 2006.

  [RFC5357]  Hedayat, K., Krzanowski, R., Morton, A., Yum, K., and J.
             Babiarz, "A Two-Way Active Measurement Protocol (TWAMP)",
             RFC 5357, October 2008.

  [RFC5657]  Dusseault, L. and R. Sparks, "Guidance on Interoperation
             and Implementation Reports for Advancement to Draft
             Standard", BCP 9, RFC 5657, September 2009.

  [RFC6390]  Clark, A. and B. Claise, "Guidelines for Considering New
             Performance Metric Development", BCP 170, RFC 6390,
             October 2011.

  [RFC6576]  Geib, R., Morton, A., Fardid, R., and A. Steinmitz, "IP
             Performance Metrics (IPPM) Standard Advancement Testing",
             BCP 176, RFC 6576, March 2012.







Ciavattone, et al.            Informational                    [Page 28]

RFC 7290           Standards Track Tests for RFC 2680          July 2014


  [RFC6703]  Morton, A., Ramachandran, G., and G. Maguluri, "Reporting
             IP Network Performance Metrics: Different Points of View",
             RFC 6703, August 2012.

  [RFC6808]  Ciavattone, L., Geib, R., Morton, A., and M. Wieser, "Test
             Plan and Results Supporting Advancement of RFC 2679 on the
             Standards Track", RFC 6808, December 2012.

11.2.  Informative References

  [ADK]      Scholz, F. and M. Stephens, "K-Sample Anderson-Darling
             Tests of Fit, for Continuous and Discrete Cases",
             University of Washington, Technical Report No. 81,
             May 1986.

  [ADV-METRICS]
             Morton, A., "Lab Test Results for Advancing Metrics on the
             Standards Track", Work in Progress, October 2010.

  [FEDORA]   "Fedora", <http://fedoraproject.org/>.

  [LOSS-METRIC]
             Almes, G., Kalidindi, S., Zekauskas, M., and A. Morton,
             Ed., "A One-Way Loss Metric for IPPM", Work in Progress,
             July 2014.

  [MII-TOOL]
             Hinds, D., Becker, D., and B. Eckenfels, "Linux System
             Administrator's Manual", February 2013,
             <http://man7.org/linux/man-pages/man8/mii-tool.8.html>.

  [NETEM]    Linux Foundation, "netem",
             <http://www.linuxfoundation.org/collaborate/workgroups/
             networking/netem>.

  [Perfas]   Heidemann, C., "Qualitaet in IP-Netzen Messverfahren",
             published by ITG Fachgruppe, 2nd meeting 5.2.3,
             November 2001, <www.itg523.de/oeffentlich/01nov/
             Heidemann_QOS_Messverfahren.pdf>.

  [RADGOF]   Bellosta, C., "ADGofTest: Anderson-Darling Goodness-of-Fit
             Test.  R package version 0.3.", R-Package Version 0.3,
             December 2011, <http://cran.r-project.org/web/packages/
             ADGofTest/index.html>.

  [RADK]     Scholz, F., "ADK: Anderson-Darling K-Sample Test and
             Combinations of Such Tests. R package version 1.0.", 2008.




Ciavattone, et al.            Informational                    [Page 29]

RFC 7290           Standards Track Tests for RFC 2680          July 2014


  [RFC3931]  Lau, J., Townsley, M., and I. Goyret, "Layer Two Tunneling
             Protocol - Version 3 (L2TPv3)", RFC 3931, March 2005.

  [RTOOL]    R Development Core Team, "R: A Language and Environment
             for Statistical Computing", ISBN 3-900051-07-0, 2014,
             <http://www.R-project.org/>.

  [WIPM]     AT&T, "AT&T Global IP Network", 2014,
             <http://ipnetwork.bgtmo.ip.att.net/pws/index.html>.










































Ciavattone, et al.            Informational                    [Page 30]

RFC 7290           Standards Track Tests for RFC 2680          July 2014


Authors' Addresses

  Len Ciavattone
  AT&T Labs
  200 Laurel Avenue South
  Middletown, NJ  07748
  USA

  Phone: +1 732 420 1239
  EMail: [email protected]


  Ruediger Geib
  Deutsche Telekom
  Heinrich Hertz Str. 3-7
  Darmstadt  64295
  Germany

  Phone: +49 6151 58 12747
  EMail: [email protected]


  Al Morton
  AT&T Labs
  200 Laurel Avenue South
  Middletown, NJ  07748
  USA

  Phone: +1 732 420 1571
  Fax:   +1 732 368 1192
  EMail: [email protected]
  URI:   http://home.comcast.net/~acmacm/


  Matthias Wieser
  Technical University Darmstadt
  Darmstadt
  Germany

  EMail: [email protected]











Ciavattone, et al.            Informational                    [Page 31]