Internet Engineering Task Force (IETF)                       A. Williams
Request for Comments: 7273                                      Audinate
Category: Standards Track                                       K. Gross
ISSN: 2070-1721                                             AVA Networks
                                                     R. van Brandenburg
                                                            H. Stokking
                                                                    TNO
                                                              June 2014


                     RTP Clock Source Signalling

Abstract

  NTP format timestamps are used by several RTP protocols for
  synchronisation and statistical measurements.  This memo specifies
  Session Description Protocol (SDP) signalling that identifies
  timestamp reference clock sources and SDP signalling that identifies
  the media clock sources in a multimedia session.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7273.

Copyright Notice

  Copyright (c) 2014 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.



Williams, et al.             Standards Track                    [Page 1]

RFC 7273               RTP Clock Source Signalling             June 2014


Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
    1.1.  Requirements Language . . . . . . . . . . . . . . . . . .   3
  2.  Applications  . . . . . . . . . . . . . . . . . . . . . . . .   3
  3.  Definitions . . . . . . . . . . . . . . . . . . . . . . . . .   4
  4.  Timestamp Reference Clock Source Signalling . . . . . . . . .   5
    4.1.  Clock Synchronisation . . . . . . . . . . . . . . . . . .   5
    4.2.  Identifying NTP Reference Clocks  . . . . . . . . . . . .   6
    4.3.  Identifying PTP Reference Clocks  . . . . . . . . . . . .   6
    4.4.  Identifying Global Reference Clocks . . . . . . . . . . .   8
    4.5.  Private Reference Clocks  . . . . . . . . . . . . . . . .   8
    4.6.  Local Reference Clocks  . . . . . . . . . . . . . . . . .   8
    4.7.  Traceable Reference Clocks  . . . . . . . . . . . . . . .   8
    4.8.  SDP Signalling of Timestamp Reference Clock Source  . . .   9
      4.8.1.  Examples  . . . . . . . . . . . . . . . . . . . . . .  11
  5.  Media Clock Source Signalling . . . . . . . . . . . . . . . .  12
    5.1.  Asynchronously Generated Media Clock  . . . . . . . . . .  12
    5.2.  Direct-Referenced Media Clock . . . . . . . . . . . . . .  12
    5.3.  Stream-Referenced Media Clock . . . . . . . . . . . . . .  14
    5.4.  SDP Signalling of Media Clock Source  . . . . . . . . . .  15
    5.5.  Examples  . . . . . . . . . . . . . . . . . . . . . . . .  17
  6.  Signalling Considerations . . . . . . . . . . . . . . . . . .  19
    6.1.  Usage in Offer/Answer . . . . . . . . . . . . . . . . . .  19
      6.1.1.  Indicating Support for Clock Source Signalling  . . .  20
      6.1.2.  Timestamp Reference Clock . . . . . . . . . . . . . .  20
      6.1.3.  Media Clock . . . . . . . . . . . . . . . . . . . . .  20
    6.2.  Usage Outside of Offer/Answer . . . . . . . . . . . . . .  21
  7.  Security Considerations . . . . . . . . . . . . . . . . . . .  21
  8.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  22
    8.1.  Reference Clock SDP Parameter . . . . . . . . . . . . . .  22
    8.2.  Media Clock SDP Parameter . . . . . . . . . . . . . . . .  23
    8.3.  Timestamp Reference Clock Source Parameters Registry  . .  23
    8.4.  Media Clock Source Parameters Registry  . . . . . . . . .  24
    8.5.  Source-Level Attributes . . . . . . . . . . . . . . . . .  25
      8.5.1.  Source-Level Timestamp Reference Clock Attribute  . .  25
      8.5.2.  Source-Level Media Clock Attribute  . . . . . . . . .  25
  9.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  25
  10. References  . . . . . . . . . . . . . . . . . . . . . . . . .  25
    10.1.  Normative References . . . . . . . . . . . . . . . . . .  25
    10.2.  Informative References . . . . . . . . . . . . . . . . .  27










Williams, et al.             Standards Track                    [Page 2]

RFC 7273               RTP Clock Source Signalling             June 2014


1.  Introduction

  RTP protocols use NTP format timestamps to facilitate multimedia
  session synchronisation and to provide estimates of round-trip time
  (RTT) and other statistical parameters.

  Information about media clock timing exchanged in NTP format
  timestamps may come from a clock that is synchronised to a global
  time reference, but this cannot be assumed, nor is there a
  standardised mechanism available to indicate that timestamps are
  derived from a common reference clock.  Therefore, RTP
  implementations typically assume that NTP timestamps are taken using
  unsynchronised clocks and must compensate for absolute time
  differences and rate differences.  Without a shared reference clock,
  RTP can time align flows from the same source at a given receiver
  using relative timing; however, tight synchronisation between two or
  more different receivers (possibly with different network paths) or
  between two or more senders is not possible.

  High performance AV systems often use a reference media clock
  distributed to all devices in the system.  The reference media clock
  may be distinct from the reference clock used to provide timestamps.
  A reference media clock may be provided along with an audio or video
  signal interface, or via a dedicated clock signal (e.g., genlock
  [SMPTE-318M-1999] or audio word clock [AES11-2009]).  If sending and
  receiving media clocks are known to be synchronised to a common
  reference clock, performance can be improved by minimising buffering
  and avoiding rate conversion.

  This specification defines SDP signalling of timestamp reference
  clock sources and media reference clock sources.

1.1.  Requirements Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

2.  Applications

  Timestamp reference clock source and media clock signalling benefit
  applications requiring synchronised media capture or playout and low
  latency operation.








Williams, et al.             Standards Track                    [Page 3]

RFC 7273               RTP Clock Source Signalling             June 2014


  Examples include, but are not limited to:

  Social TV:  "Inter-Destination Media Synchronization (IDMS) Using the
     RTP Control Protocol (RTCP)" [RFC7272] defines social TV as the
     combination of media content consumption by two or more users at
     different devices and locations and real-time communication
     between those users.  An example of social TV is where two or more
     users are watching the same television broadcast at different
     devices and/or locations while communicating with each other using
     text, audio, and/or video.  A skew in the media playout of the two
     or more users can have adverse effects on their experience.  A
     well-known use case here is one friend experiencing a goal in a
     football match well before or after other friends.

  Video Walls:  A video wall consists of multiple computer monitors,
     video projectors, or television sets tiled together contiguously
     or overlapped in order to form one large screen.  Each of the
     screens reproduces a portion of the larger picture.  In some
     implementations, each screen or projector may be individually
     connected to the network and receive its portion of the overall
     image from a network-connected video server or video scaler.
     Screens are refreshed at 50 or 60 hertz or potentially faster.  If
     the refresh is not synchronised, the effect of multiple screens
     acting as one is broken.

  Networked Audio:  Networked loudspeakers, amplifiers, and analogue
     input/output (I/O) devices transmitting or receiving audio signals
     via RTP can be connected to various parts of a building or campus
     network.  Such situations can, for example, be found in large
     conference rooms, legislative chambers, classrooms (especially
     those supporting distance learning), and other large-scale
     environments such as stadiums.  Since humans are more sensitive to
     differences in audio delay, this use case needs even more accuracy
     than the video wall use case.  Depending on the exact application,
     the need for accuracy can then be in the range of microseconds
     [Olsen].

  Sensor Arrays:  Sensor arrays contain many synchronised measurement
     elements producing signals that are then combined to form an
     overall measurement.  Accurate capture of the phase relationships
     between the various signals arriving at each element of the array
     is critically important for proper operation.  Examples include
     towed or fixed sonar arrays, seismic arrays, and phased arrays
     used in radar applications, for instance.







Williams, et al.             Standards Track                    [Page 4]

RFC 7273               RTP Clock Source Signalling             June 2014


3.  Definitions

  The following definitions are used in this document:

  media level:  Media-level information applies to a single SDP media
     stream.  In an SDP description, media-level information appears
     after each "m"-line.

  multimedia session:  A set of multimedia senders and receivers as
     well as the data streams flowing from senders to receivers.  SDP
     [RFC4566] describes multimedia sessions.

  RTP media stream:  A single stream of RTP packets identified by an
     RTP Synchronisation Source (SSRC).

  RTP sender:  The device generating an associated RTP media stream.

  session level:  Session-level information applies to an entire
     multimedia session.  In an SDP description, session-level
     information appears before the first "m"-line.

  source level:  Source-level information applies to a specific RTP
     media stream.  "Source-Specific Media Attributes in the Session
     Description Protocol (SDP)" [RFC5576] defines how source-level
     information is included into an SDP session description.

  traceable time:  A clock is considered to provide traceable time if
     it can be proven to be synchronised to International Atomic Time
     (TAI).  Coordinated Universal Time (UTC) is a time standard
     synchronised to TAI.  UTC is, therefore, also considered traceable
     time once leap seconds have been taken into account.  GPS
     [IS-GPS-200F] is commonly used to provide a TAI traceable time
     reference.  Some network time synchronisation protocols (e.g.,
     Precision Time Protocol (PTP) [IEEE1588-2008] and NTP) can
     explicitly indicate that the master clock is providing a traceable
     time reference over the network.

4.  Timestamp Reference Clock Source Signalling

  The NTP format timestamps used by RTP are taken by reading a local
  real-time clock at the sender or receiver.  This local clock may be
  synchronised to another clock (time source) by some means, or it may
  be unsynchronised.  A variety of methods are available to synchronise
  local clocks to a reference time source, including network time
  protocols (e.g., NTP [RFC5905] and PTP [IEEE1588-2008]) and radio
  clocks (e.g., GPS [IS-GPS-200F]).





Williams, et al.             Standards Track                    [Page 5]

RFC 7273               RTP Clock Source Signalling             June 2014


  The following sections describe and define SDP signalling, indicating
  whether and how the local timestamping clock in an RTP sender or
  receiver is synchronised to a reference clock.

4.1.  Clock Synchronisation

  Two or more local clocks that are sufficiently synchronised will
  produce timestamps for a given RTP event that can be used as if they
  came from the same clock.  Timestamps produced in one RTP sender or
  receiver can be directly compared to a local clock in another RTP
  sender or receiver.

  The accuracy of synchronisation required is application dependent.
  See "Applications" (Section 2) for a discussion of applications and
  their corresponding requirements.  To serve as a reference clock,
  clocks must minimally be "syntonised" (exactly frequency matched) to
  one another.

  Sufficient synchronisation can typically be achieved by using a
  network time protocol (e.g., NTP, 802.1AS, and IEEE 1588-2008) to
  synchronise all devices to a single master clock.

  Another approach is to use clocks providing a global time reference
  (e.g., GPS, Galileo, and GLONASS).  This concept may be used in
  conjunction with network time protocols as some protocols (e.g., PTP
  and NTP) allow master clocks to indicate explicitly that they are
  providing traceable time.

4.2.  Identifying NTP Reference Clocks

  A single NTP server is identified by a hostname (or IP address) and
  an optional port number.  If the port number is not indicated, it is
  assumed to be the standard NTP port (123).

  Two or more NTP servers MAY be listed at the same level in the
  session description to indicate that all of the listed servers
  deliver the same reference time and may be used interchangeably.  RTP
  senders and receivers are assured proper synchronisation regardless
  of which server they choose and, in support of fault tolerance, may
  switch servers while streaming.

4.3.  Identifying PTP Reference Clocks

  The Precision Time Protocol (PTP) as standardised in IEEE 1588
  provides a shared reference clock in a network.  IEEE 1588 provides
  sub-microsecond synchronisation between devices on a LAN and
  typically locks within seconds at startup.  With support from
  Ethernet switches, IEEE 1588 protocols can achieve nanosecond timing



Williams, et al.             Standards Track                    [Page 6]

RFC 7273               RTP Clock Source Signalling             June 2014


  accuracy in LANs.  Network interface chips and cards supporting
  hardware timestamping of timing-critical protocol messages are also
  available.

  Three flavours of IEEE 1588 are in use today:

  o  IEEE 1588-2002 [IEEE1588-2002]: the original "Standard for a
     Precision Clock Synchronization Protocol for Networked Measurement
     and Control Systems".  This is also known as IEEE1588v1 or PTPv1.

  o  IEEE 1588-2008 [IEEE1588-2008]: the second version of the
     "Standard for a Precision Clock Synchronization Protocol for
     Networked Measurement and Control Systems".  This is a revised
     version of the original IEEE1588-2002 standard and is also known
     as IEEE1588v2 or PTPv2.  IEEE 1588-2008 is not protocol compatible
     with IEEE 1588-2002.

  o  IEEE 802.1AS [IEEE802.1AS-2011]: "Timing and Synchronization for
     Time Sensitive Applications in Bridged Local Area Networks".  This
     is a profile of IEEE 1588-2008 that is Layer 2 only and is for use
     in Audio/Video Bridged LANs as described in IEEE 802.1BA-2011
     [IEEE802.1BA-2011].

  Each IEEE 1588 clock is identified by a 64-bit Extended Unique
  Identifier (EUI-64) called a "ClockIdentity".  A slave clock using
  one of the IEEE 1588 family of network time protocols acquires the
  ClockIdentity of the grandmaster clock that is the ultimate source of
  timing information for the network.  A boundary clock, which is
  itself slaved to another boundary clock, or the grandmaster passes
  the grandmaster ClockIdentity through to its slaves.

  Several instances of the IEEE 1588 protocol may operate independently
  on a single network, forming distinct PTP domains, each of which may
  have a different grandmaster clock.  As the IEEE 1588 standards have
  evolved, the definition of PTP domains has changed.  IEEE 1588-2002
  identifies protocol subdomains by a textual name, but IEEE 1588-2008
  identifies protocol domains using a numeric domain number. 802.1AS is
  a Layer 2 profile of IEEE 1588-2008 supporting a single numeric clock
  domain (0).

  When PTP domains are signalled via SDP, senders and receivers SHOULD
  check that both grandmaster ClockIdentity and the PTP domain match
  when determining clock equivalence.

  Two or more IEEE 1588 clocks MAY be listed at the same level in the
  session description to indicate that all of the listed clocks are
  candidate grandmaster clocks for the domain or deliver the same
  reference time and may be used interchangeably.  RTP senders and



Williams, et al.             Standards Track                    [Page 7]

RFC 7273               RTP Clock Source Signalling             June 2014


  receivers are assured proper synchronisation regardless of which
  synchronisation source they choose and, in support of fault
  tolerance, may switch the reference clock source while streaming.

  The PTP protocols employ a distributed election protocol called the
  "Best Master Clock Algorithm" (BMCA) to determine the active clock
  master.  The clock master choices available to BMCA can be restricted
  or biased by configuration parameters to influence the election
  process.  In some systems, it may be desirable to limit the number of
  possible PTP clock masters to avoid the need to re-signal timestamp
  reference clock sources when the clock master changes.

4.4.  Identifying Global Reference Clocks

  Global reference clocks provide a source of traceable time, typically
  via a hardware radio receiver interface.  Examples include GPS,
  Galileo, and GLONASS.  Apart from the name of the reference clock
  system, no further identification is required.

4.5.  Private Reference Clocks

  In other systems, all RTP senders and receivers may use a timestamp
  reference clock that is not provided by one of the methods listed
  above.  Examples may include the reference time information provided
  by digital television or cellular services.  These sources are
  identified as "private" reference clocks.  All RTP senders and
  receivers in a session using a private reference clock are assumed to
  have a mechanism outside this specification for determining whether
  their timestamp reference clocks are equivalent.

4.6.  Local Reference Clocks

  [RFC3550] allows senders and receivers to either use a local
  wallclock reference for their NTP timestamps or, by setting the
  timestamp field to 0, supply no timestamps at all.  Both are common
  practice in embedded RTP implementations.  These clocks are
  identified as "local" and can, at best, be assumed to be equivalent
  to clocks originating from the same device.

4.7.  Traceable Reference Clocks

  A timestamp reference clock source may be labelled "traceable" if it
  is known to be delivering traceable time, provided adjustments are
  made for differing epochs, timezones, and leap seconds.  Timestamps
  taken using clocks synchronised to a traceable time source can be
  directly compared even if the clocks are synchronised to different
  sources or via different mechanisms.




Williams, et al.             Standards Track                    [Page 8]

RFC 7273               RTP Clock Source Signalling             June 2014


  Marking a clock as traceable allows additional information (e.g., IP
  addresses, PTP master identifiers, and the like) to be omitted from
  the SDP since any traceable clock available at the answerer is
  considered to be an appropriate timestamp reference clock.  For
  example, an offerer could specify ts-refclk:ntp=/traceable/ and the
  answerer could use GPS as a reference clock since GPS is a source of
  traceable time.

4.8.  SDP Signalling of Timestamp Reference Clock Source

  Specification of the timestamp reference clock source may be at any
  or all levels (session, media, or source) of an SDP description (see
  level definitions in Section 3 earlier in this document for more
  information).

  Timestamp reference clock source signalling included at the session
  level provides default parameters for all RTP sessions and sources in
  the session description.  More specific signalling included at the
  media level overrides session-level signalling.  More specific
  signalling included at the source level overrides media-level
  signalling.

  If timestamp reference clock source signalling is included anywhere
  in an SDP description, it must be properly defined for all levels in
  the description.  This may simply be achieved by providing default
  signalling at the session level.

  Timestamp reference clock parameters may be repeated at a given level
  (i.e., for a session or source) to provide information about
  additional servers or clock sources.  If the attribute is repeated at
  a given level, all clocks described at that level are assumed to be
  equivalent.  Traceable time sources MUST NOT be mixed with non-
  traceable time sources at any given level.

  Note that clock source parameters may change from time to time, for
  example, as a result of a PTP grandmaster election.  SIP [RFC3261]
  supports the re-signalling of updated SDP information; however, other
  protocols may require additional notification mechanisms.

  General forms of usage:

  session level:  a=ts-refclk:<clksrc>

  media level:  a=ts-refclk:<clksrc>

  source level:  a=ssrc:<ssrc-id> ts-refclk:<clksrc>





Williams, et al.             Standards Track                    [Page 9]

RFC 7273               RTP Clock Source Signalling             June 2014


  ABNF [RFC5234] grammar for the timestamp reference clock attribute:

  ; external references:
  POS-DIGIT   = <See RFC 4566>
  token       = <See RFC 4566>
  byte-string = <See RFC 4566>
  DIGIT       = <See RFC 5234>
  HEXDIG      = <See RFC 5234>
  CRLF        = <See RFC 5234>
  hostport    = <See RFC 3261, with revisions from RFC 5954>

  timestamp-refclk = "ts-refclk:" clksrc CRLF

  clksrc = ntp / ptp / gps / gal / glonass / local / private /
           clksrc-ext

  clksrc-ext         = clksrc-param-name clksrc-param-value
  clksrc-param-name  = token
  clksrc-param-value = ["=" byte-string ]

  ntp             = "ntp=" ntp-server-addr
  ntp-server-addr = hostport / "/traceable/"

  ptp             = "ptp=" ptp-version ":" ptp-server
  ptp-version     = "IEEE1588-2002"
                  / "IEEE1588-2008"
                  / "IEEE802.1AS-2011"
                  / ptp-version-ext
  ptp-version-ext = token

  ptp-server      = ptp-gmid [":" ptp-domain]
                  / "traceable"
  ptp-gmid        = EUI64
  ptp-domain      = ptp-domain-name / ptp-domain-nmbr

  ; PTP domain allowed characters: 0x21-0x7E (IEEE 1588-2002)
  ptp-domain-name = "domain-name=" 1*16ptp-domain-char
  ptp-domain-char = %x21-7E

  ; PTP domain allowed number range: 0-127 (IEEE 1588-2008)
  ptp-domain-nmbr = "domain-nmbr=" ptp-domain-dgts
  ptp-domain-dgts = ptp-domain-n1 / ptp-domain-n2 / ptp-domain-n3
  ptp-domain-n1   = DIGIT             ; 0-9
  ptp-domain-n2   = POS-DIGIT DIGIT   ; 10-99
  ptp-domain-n3   = ("10"/"11") DIGIT ; 100-119
                  / "12" %x30-37      ; 120-127

  gps      =  "gps"



Williams, et al.             Standards Track                   [Page 10]

RFC 7273               RTP Clock Source Signalling             June 2014


  gal      =  "gal"
  glonass  =  "glonass"
  local    =  "local"
  private  =  "private" [ ":traceable" ]

  EUI64 = 7(2HEXDIG "-") 2HEXDIG

          Figure 1: Timestamp Reference Clock Source Signalling

4.8.1.  Examples

  Figure 2 shows an example SDP description with a timestamp reference
  clock source defined at the session level.

  v=0
  o=jdoe 2890844526 2890842807 IN IP4 192.0.2.1
  s=SDP Seminar
  i=A Seminar on the session description protocol
  u=http://www.example.com/seminars/sdp.pdf
  [email protected] (Jane Doe)
  c=IN IP4 233.252.0.1/64
  t=2873397496 2873404696
  a=recvonly
  a=ts-refclk:ntp=/traceable/
  m=audio 49170 RTP/AVP 0
  m=video 51372 RTP/AVP 99
  a=rtpmap:99 h263-1998/90000

   Figure 2: Timestamp Reference Clock Definition at the Session Level






















Williams, et al.             Standards Track                   [Page 11]

RFC 7273               RTP Clock Source Signalling             June 2014


  Figure 3 shows an example SDP description with timestamp reference
  clock definitions at the media level overriding the session-level
  defaults.

  v=0
  o=jdoe 2890844526 2890842807 IN IP4 192.0.2.1
  s=SDP Seminar
  i=A Seminar on the session description protocol
  u=http://www.example.com/seminars/sdp.pdf
  [email protected] (Jane Doe)
  c=IN IP4 233.252.0.1/64
  t=2873397496 2873404696
  a=recvonly
  a=ts-refclk:local
  m=audio 49170 RTP/AVP 0
  a=ts-refclk:ntp=203.0.113.10
  a=ts-refclk:ntp=198.51.100.22
  m=video 51372 RTP/AVP 99
  a=rtpmap:99 h263-1998/90000
  a=ts-refclk:ptp=IEEE802.1AS-2011:39-A7-94-FF-FE-07-CB-D0

    Figure 3: Timestamp Reference Clock Definition at the Media Level

  Figure 4 shows an example SDP description with a timestamp reference
  clock definition at the source level overriding the session-level
  default.

  v=0
  o=jdoe 2890844526 2890842807 IN IP4 192.0.2.1
  s=SDP Seminar
  i=A Seminar on the session description protocol
  u=http://www.example.com/seminars/sdp.pdf
  [email protected] (Jane Doe)
  c=IN IP4 233.252.0.1/64
  t=2873397496 2873404696
  a=recvonly
  a=ts-refclk:local
  m=audio 49170 RTP/AVP 0
  m=video 51372 RTP/AVP 99
  a=rtpmap:99 h263-1998/90000
  a=ssrc:12345 ts-refclk:ptp=IEEE802.1AS-2011:39-A7-94-FF-FE-07-CB-D0

   Figure 4: Timestamp Reference Clock Signalling at the Source Level








Williams, et al.             Standards Track                   [Page 12]

RFC 7273               RTP Clock Source Signalling             June 2014


5.  Media Clock Source Signalling

  The media clock source for a stream determines the timebase used to
  advance the RTP timestamps included in RTP packets.  The media clock
  may be asynchronously generated by the sender, it may be generated in
  fixed relationship to the reference clock, or it may be generated
  with respect to another stream on the network (which is presumably
  being received by the sender).

5.1.  Asynchronously Generated Media Clock

  In the simplest sender implementation, the sender generates media by
  sampling audio or video according to a free-running local clock.  The
  RTP timestamps in media packets are advanced according to this media
  clock, and packet transmission is typically timed to regular
  intervals on this timeline.  The sender may or may not include an NTP
  timestamp in sender reports to allow mapping of this asynchronous
  media clock to a reference clock.

  The asynchronously generated media clock is the assumed mode of
  operation when there is no signalling of the media clock source.
  Alternatively, an asynchronous media clock may be explicitly
  signalled.

     a=mediaclk:sender

5.2.  Direct-Referenced Media Clock

  A media clock may be directly derived from a reference clock.  For
  this case, it is required that a reference clock be specified with an
  a=ts-refclk attribute (Section 4.8).

  The signalling optionally indicates a media clock offset value.  The
  offset indicates the RTP timestamp value at the epoch (time of
  origin) of the reference clock.  To use the offset, implementations
  need to compute RTP timestamps from reference clocks.  To simplify
  these calculations, streams utilizing offset signalling SHOULD use a
  TAI timestamp reference clock to avoid complications introduced by
  leap seconds.  See [RFC7164] for further discussion of leap-second
  issues in timestamp reference clocks.

  To compute the RTP timestamp against an IEEE 1588 (TAI-based)
  reference, the time elapsed between the 00:00:00 1 January 1970 IEEE
  1588 epoch and the current time must be computed.  Between the epoch
  and 1 January 2013, there were 15,706 days (including extra days
  during leap years).  Since there are no leap seconds in a TAI
  reference, there are exactly 86,400 seconds during each of these days
  or a total of 1,356,998,400 seconds from the epoch to 00:00:00 1



Williams, et al.             Standards Track                   [Page 13]

RFC 7273               RTP Clock Source Signalling             June 2014


  January 2013.  A 90 kHz RTP clock for a video stream would have
  advanced 122,129,856,000,000 units over this period.  With a
  signalled offset of 0, the RTP clock value modulo the 32-bit unsigned
  RTP timestamp representation in the RTP header would have been
  2,460,938,240 at 00:00:00 1 January 2013.  If an offset of 23,465 had
  been signalled, the clock value would have been 2,460,961,705.

  In order to use an NTP reference, the actual time elapsed between the
  00:00:00 1 January 1900 NTP epoch to the current time must be
  computed. 2,208,988,800 seconds elapsed between the NTP epoch and
  00:00:00 1 January 1970 [RFC0868].  Between the beginning of 1970 and
  2013, there were 15,706 days elapsed (including extra days during
  leap years) and 25 leap seconds inserted.  There is, therefore, a
  total of 3,565,987,225 seconds from the NTP epoch to 00:00:00 1
  January 2013.  A 90 kHz RTP clock for a video stream would have
  advanced 320,938,850,250,000 units over this period.  With a
  signalled offset of 0, the RTP clock value modulo the 32-bit unsigned
  representation would have been 1,714,023,696 at 00:00:00 1 January
  2013.

  If no offset is signalled, the offset can be inferred at the receiver
  by examining RTCP sender reports that contain NTP and RTP timestamps,
  which combined define a mapping.  The NTP/RTP timestamp mapping
  provided by RTCP sender reports (SRs) takes precedence over that
  signalled through SDP; however, the media clock rate implied by the
  SRs MUST be consistent with the rate signalled.

  A rate modifier may be specified.  The modifier is expressed as the
  ratio of two integers and modifies the rate specified or implied by
  the media description by this ratio.  If omitted, the rate is assumed
  to be the exact rate specified or implied by the media format.  For
  example, without a rate specification, the RTP clock for an 8 kHz
  G.711 audio stream will advance exactly 8000 units for each second
  advance in the reference clock from which it is derived.

  The rate modifier is primarily useful for accommodating certain
  "oddball" audio sample rates associated with NTSC video (see
  Figure 7).  Modified rates are not advised for video streams that
  generally use a 90 kHz RTP clock regardless of frame rate or sample
  rate used for embedded audio.

     a=mediaclk:direct[=<offset>] [rate=<rate numerator>/<rate
     denominator>]








Williams, et al.             Standards Track                   [Page 14]

RFC 7273               RTP Clock Source Signalling             June 2014


5.3.  Stream-Referenced Media Clock

  A common synchronisation architecture for audio/visual systems
  involves distributing a reference media clock from a master device to
  a number of slave devices, typically by means of a cable.  Examples
  include audio word clock distribution and video black burst
  distribution.  In this case, the media clock is locally generated,
  often by a crystal oscillator, and is not locked to a timestamp
  reference clock.

  To support this architecture across a network, a master clock
  identifier is associated with an RTP media stream carrying media
  clock timing information from a master device.  The master clock
  identifier represents a media clock source in the master device.
  Slave devices in turn associate the master media clock identifier
  with streams they transmit, signalling the synchronisation
  relationship between the master and the transmitter's media clock.

  Slave devices recover media clock timing from the clock master
  stream, using it to synchronise the slave's media clock with the
  master.  If a common reference clock is available, NTP timestamps in
  the master clock RTP media stream are taken using the shared
  reference clock.  The NTP timestamps communicate information about
  media clock timing (rate and phase) from the master to the slave
  devices.  NTP timestamps are communicated in the usual RTP fashion
  via RTCP SRs, or via the [RFC6051] header extension.  If no shared
  reference clock is available or signalled, a slave can synchronise to
  the master's media clock using RTP timestamps alone as described in
  Section 5.1 of [RFC3550].

  Note that the slaving of a device media clock to a master device does
  not affect RTP inter-media synchronisation.  Time-aligned playout of
  two or more RTP sources still relies upon NTP timestamps supplied via
  RTCP SRs or by the RFC 6051 timestamp header extension.

  In a given system, master clock identifiers must uniquely identify a
  single media clock source.  Such identifiers MAY be manually
  configured; however, identifiers SHOULD be generated according to the
  "short-term persistent RTCP CNAME" algorithm as described in
  [RFC7022].  Master clock identifiers not already in base64 format
  MUST be encoded as base64 strings when used in SDP.  Although the
  CNAME algorithm is used to generate the master clock identifier, it
  is used to tag RTP sources in SDP descriptions and does not appear in
  RTCP as a CNAME.

  A reference stream can be an RTP stream or an Audio Video Bridging
  (AVB) stream based on the [IEEE1722] standard.




Williams, et al.             Standards Track                   [Page 15]

RFC 7273               RTP Clock Source Signalling             June 2014


  An RTP clock master stream SHOULD be identified at the source level
  by an SSRC [RFC5576] and master clock identifier.  An RTP stream that
  provides media clock timing directly from a reference media clock
  (e.g., internal crystal, audio word clock, or video black burst
  signal) SHOULD tag the stream as a master clock source using the
  "src:" prefix.  If master clock identifiers are declared at the media
  or session level, all RTP sources at or below the level of
  declaration MUST provide equivalent timing to a slave receiver.

     a=ssrc:<ssrc> mediaclk:id=src:<media-clktag> sender

     a=mediaclk:id=src:<media-clktag> sender

  A transmitted RTP stream slaved to the media clock master is
  signalled by including a master clock identifier:

     a=mediaclk:id=<media-clktag> sender

  An RTP media sender indicates that it is slaved to an IEEE 1722 clock
  master via a stream identifier (an EUI-64):

     a=mediaclk:IEEE1722=<StreamID>

  An RTP media sender may gateway IEEE 1722 media clock timing to RTP:

     a=mediaclk:id=src:<media-clktag> IEEE1722=<StreamID>

5.4.  SDP Signalling of Media Clock Source

  Specification of the media clock source may be at any or all levels
  (session, media, or source) of an SDP description (see level
  definitions (Section 3) earlier in this document for more
  information).

  Media clock source signalling included at session level provides
  default parameters for all RTP sessions and sources in the session
  description.  More specific signalling included at the media level
  overrides session-level signalling.  Further, source-level signalling
  overrides media clock source signalling at the enclosing media level
  and session level.

  Media clock source signalling may be present or absent on a per-
  stream basis.  In the absence of media clock source signals,
  receivers assume an asynchronous media clock generated by the sender.

  Media clock source parameters may be repeated at a given level (i.e.,
  for a session or source) to provide information about additional
  clock sources.  If the attribute is repeated at a given level, all



Williams, et al.             Standards Track                   [Page 16]

RFC 7273               RTP Clock Source Signalling             June 2014


  clocks described at that level are comparable clock sources and may
  be used interchangeably.

  General forms of usage:

  session level:  a=mediaclk:<mediaclock>

  media level:  a=mediaclk:<mediaclock>

  source level:  a=ssrc:<ssrc-id> mediaclk:<mediaclock>

  ABNF [RFC5234] grammar for the media clock reference attribute:

  ; external references:
  integer     = <See RFC 4566>
  token       = <See RFC 4566>
  byte-string = <See RFC 4566>
  base64      = <See RFC 4566>
  SP          = <See RFC 5234>
  DIGIT       = <See RFC 5234>
  HEXDIG      = <See RFC 5234>

  media-clksrc = "mediaclk:" [media-clkid SP] mediaclock

  media-clkid  = "id=" [ "src:" ] media-clktag
  media-clktag = base64

  mediaclock   = sender / direct / ieee1722-streamid / mediaclock-ext

  mediaclock-ext         = mediaclock-param-name mediaclock-param-value
  mediaclock-param-name  = token
  mediaclock-param-value = [ "=" byte-string ]

  sender = "sender"
  direct = "direct" [ "=" 1*DIGIT ] [SP rate]
  rate   = "rate=" integer "/" integer

  ieee1722-streamid = "IEEE1722=" avb-stream-id
  avb-stream-id     = EUI64
  EUI64 = 7(2HEXDIG "-") 2HEXDIG

                 Figure 5: Media Clock Source Signalling









Williams, et al.             Standards Track                   [Page 17]

RFC 7273               RTP Clock Source Signalling             June 2014


5.5.  Examples

  Figure 6 shows an example SDP description -- 8 channels of 24-bit, 48
  kHz audio transmitted as a multicast stream.  Media clock is derived
  directly from an IEEE 1588-2008 reference.

  v=0
  o=- 1311738121 1311738121 IN IP4 192.0.2.1
  c=IN IP4 233.252.0.1/64
  s=
  t=0 0
  m=audio 5004 RTP/AVP 96
  a=rtpmap:96 L24/48000/8
  a=sendonly
  a=ts-refclk:ptp=IEEE1588-2008:39-A7-94-FF-FE-07-CB-D0:0
  a=mediaclk:direct=963214424

       Figure 6: Media Clock Directly Referenced to IEEE 1588-2008

  Figure 7 shows an example SDP description -- 2 channels of 24-bit,
  44056 kHz NTSC "pull-down" media clock derived directly from an IEEE
  1588-2008 reference clock.

  v=0
  o=- 1311738121 1311738121 IN IP4 192.0.2.1
  c=IN IP4 233.252.0.1/64
  s=
  t=0 0
  m=audio 5004 RTP/AVP 96
  a=rtpmap:96 L24/44100/2
  a=sendonly
  a=ts-refclk:ptp=IEEE1588-2008:39-A7-94-FF-FE-07-CB-D0:0
  a=mediaclk:direct=963214424 rate=1000/1001

  Figure 7: "Oddball" Sample Rate Directly Referenced to IEEE 1588-2008
















Williams, et al.             Standards Track                   [Page 18]

RFC 7273               RTP Clock Source Signalling             June 2014


  Figure 8 shows the same 48 kHz audio transmission from Figure 6 with
  media clock derived from another RTP stream.

  v=0
  o=- 1311738121 1311738121 IN IP4 192.0.2.1
  c=IN IP4 233.252.0.1/64
  s=
  t=0 0
  m=audio 5004 RTP/AVP 96
  a=rtpmap:96 L24/48000/2
  a=sendonly
  a=ts-refclk:ptp=IEEE1588-2008:39-A7-94-FF-FE-07-CB-D0:0
  a=mediaclk:id=MDA6NjA6MmI6MjA6MTI6MWY= sender

        Figure 8: RTP Stream with Media Clock Slaved to a Master

  Figure 9 shows the same 48 kHz audio transmission from Figure 6 with
  media clock derived from an IEEE 1722 AVB stream.

  v=0
  o=- 1311738121 1311738121 IN IP4 192.0.2.1
  c=IN IP4 233.252.0.1/64
  s=
  t=0 0
  m=audio 5004 RTP/AVP 96
  a=rtpmap:96 L24/48000/2
  a=sendonly
  a=ts-refclk:ptp=IEEE1588-2008:39-A7-94-FF-FE-07-CB-D0:0
  a=mediaclk:IEEE1722=38-D6-6D-8E-D2-78-13-2F

           Figure 9: RTP Stream with Media Clock Slaved to an
                         IEEE 1722 Master Device

6.  Signalling Considerations

  Signalling of timestamp reference clock source (Section 4.8) and
  media clock source (Section 5.4) is defined to be used either by
  applications that implement the SDP Offer/Answer model [RFC3264] or
  by applications that use SDP to describe media and transport
  configurations.

  A description SHOULD include both reference clock signalling and
  media clock signalling.  If no reference clock is available, this
  SHOULD be signalled as a local reference (Section 4.6).







Williams, et al.             Standards Track                   [Page 19]

RFC 7273               RTP Clock Source Signalling             June 2014


  When no media clock signalling is present, an asynchronous media
  clock (Section 5.1) MUST be assumed.  When no reference clock
  signalling is present, a local reference clock (Section 4.6) MUST be
  assumed.

  If a reference clock is not signalled or a local reference is
  specified, the corresponding media clock may be established as rate
  synchronised with no assurance of time synchronisation.

  When the description signals a direct-referenced media clock
  (Section 5.2), reference clock signalling is REQUIRED.  Asynchronous
  and stream-referenced media clocks (Section 5.3) MAY be specified
  with or without a reference clock signalling.

6.1.  Usage in Offer/Answer

  During offer/answer, clock source signalling via SDP uses a
  declarative model.  Supported media and/or reference clocks are
  specified in the offered SDP description.  The answerer may accept or
  reject the offer in an application-specific way depending on the
  clocks that are available and the clocks that are offered.  For
  example, an answerer may choose to accept an offer that lacks a
  common clock by falling back to a lower-performance mode of operation
  (e.g., by assuming reference or media clocks are local rather than
  shared).  Conversely, the answerer may choose to reject the offer
  when the offered clock specifications indicate that the available
  reference and/or media clocks are incompatible.

  While negotiation of reference clock and media clock attributes is
  not defined in this document, negotiation MAY be accomplished using
  the capabilities negotiation procedures defined in [RFC5939].

6.1.1.  Indicating Support for Clock Source Signalling

  An offerer or answerer indicates support for media clock signalling
  by including a reference or media clock specification in the SDP
  description.  An offerer or answerer without specific reference or
  media clocks to signal SHOULD indicate support for clock source
  signalling by including a local reference clock (Section 4.6)
  specification in the SDP description.

6.1.2.  Timestamp Reference Clock

  If one or more of the reference clocks specified in the offer are
  usable by the answerer, the answerer SHOULD respond with an answer
  containing the subset of reference clock specifications in the offer
  that are usable by the answerer.  If the answerer rejects the offer
  because the available reference clocks are incompatible, the



Williams, et al.             Standards Track                   [Page 20]

RFC 7273               RTP Clock Source Signalling             June 2014


  rejection MUST contain at least one timestamp reference clock
  specification usable by the answerer so that appropriate information
  is available for diagnostics.  If no external reference clock is
  available to the answerer, a local reference clock (Section 4.6)
  specification SHOULD be included in the rejection.

  In both offers and answers, multiple reference clock specifications
  indicate equivalent clocks from different sources that may be used
  interchangeably.  RTP senders and receivers are assured proper
  synchronisation regardless of which of the specified sources is
  chosen and, in support of fault tolerance, may switch clock sources
  while streaming.

6.1.3.  Media Clock

  If the media clock mode specified in the offer is acceptable to the
  answerer, the answerer SHOULD respond with an answer containing the
  same media clock specification as the offer.  If the answerer rejects
  the offer because the available reference clocks are incompatible,
  the rejection MUST contain a media clock specification supported by
  the answerer so that appropriate information is available for
  diagnostics.  If no shared media clocks are available to the
  answerer, an asynchronous media clock (Section 5.1) specification
  SHOULD be included in the rejection.

6.2.  Usage Outside of Offer/Answer

  SDP can be employed outside of the offer/answer context, for
  instance, for multimedia sessions that are announced through the
  Session Announcement Protocol (SAP) [RFC2974] or streamed through the
  Real Time Streaming Protocol (RTSP) [RFC2326].

  Devices using published descriptions to join sessions SHOULD assess
  their synchronisation compatibility with the described session based
  on the clock source signalling and SHOULD NOT attempt to join a
  session with incompatible reference or media clocks.

7.  Security Considerations

  Entities receiving and acting upon an SDP message should note that a
  session description cannot be trusted unless it has been obtained by
  an authenticated transport protocol from a known and trusted source.
  Many different transport protocols may be used to distribute a
  session description, and the nature of the authentication will differ
  from transport to transport.  For some transports, security features
  are often not deployed.  In case a session description has not been
  obtained in a trusted manner, the endpoint should exercise care
  because, among other attacks, the media sessions received may not be



Williams, et al.             Standards Track                   [Page 21]

RFC 7273               RTP Clock Source Signalling             June 2014


  the intended ones, the destination where media is sent to may not be
  the expected one, and any of the parameters of the session may be
  incorrect.

  Incorrect reference or media clock parameters may cause devices or
  streams to synchronise to unintended clock sources.  Normally, this
  simply results in failure to establish a session or failure to
  synchronise once connected.  Enough devices fraudulently assigned to
  a specific clock source (e.g., a particular IEEE 1588 grandmaster)
  may, however, constitute a successful denial-of-service attack on
  that source.  Devices MAY wish to validate the integrity of the clock
  description through some means before connecting to unfamiliar clock
  sources.

  The timestamp reference clocks negotiated by this protocol are used
  to provide media timing information to RTP.  Negotiated timestamp
  reference clocks should not be relied upon to provide a secure time
  reference for security critical operations (e.g., the expiration of
  public key certificates).

8.  IANA Considerations

  This document defines two new SDP attributes: "ts-refclk" and
  "mediaclk", within the existing Internet Assigned Numbers Authority
  (IANA) registry of SDP Parameters.

  This document also defines a new IANA registry subordinate to the
  IANA SDP Parameters registry: the Media Clock Source Parameters
  registry.  Within this new registry, this document defines an initial
  set of three media clock source parameters.  Further, this document
  defines a second new IANA registry subordinate to the IANA SDP
  Parameters registry: the Timestamp Reference Clock Source Parameters
  registry.  Within this new registry, this document defines an initial
  six parameters.

















Williams, et al.             Standards Track                   [Page 22]

RFC 7273               RTP Clock Source Signalling             June 2014


8.1.  Reference Clock SDP Parameter

  The SDP attribute "ts-refclk" defined by this document is registered
  with the IANA registry of SDP Parameters as follows:

  SDP Attributes ( "att-field (both session and media level)" &
                   "att-field (source level)" ):

    Attribute name:     ts-refclk

    Long form:          Timestamp reference clock source

    Type of name:       att-field

    Type of attribute:  Session, media, and source level

    Subject to charset: No

    Purpose:            See Section 4 of this document

    Reference:          This document

    Values:             See Section 8.3 of this document

       Figure 10: Reference Clock SDP Parameter IANA Registration

  The attribute has an extensible parameter field; therefore, a
  registry for these parameters is required.  This new registry is
  defined in Section 8.3.






















Williams, et al.             Standards Track                   [Page 23]

RFC 7273               RTP Clock Source Signalling             June 2014


8.2.  Media Clock SDP Parameter

  The SDP attribute "mediaclk" defined by this document is registered
  with the IANA registry of SDP Parameters as follows:

  SDP Attributes ( "att-field (both session and media level)" &
                   "att-field (source level)" ):

    Attribute name:     mediaclk

    Long form:          Media clock source

    Type of name:       att-field

    Type of attribute:  Session, media, and source level

    Subject to charset: No

    Purpose:            See Section 5 of this document

    Reference:          This document

    Values:             See Section 8.4 of this document

         Figure 11: Media Clock SDP Parameter IANA Registration

  The attribute has an extensible parameter field; therefore, a
  registry for these parameters is required.  The new registry is
  defined in Section 8.4.

8.3.  Timestamp Reference Clock Source Parameters Registry

  This document creates a new IANA subregistry called the Timestamp
  Reference Clock Source Parameters registry, subordinate to the IANA
  SDP Parameters registry.  Each entry in the Timestamp Reference Clock
  Source Parameters registry contains:

  Name:       Token used in the SDP description (clksrc-param-name)

  Long name:  Descriptive name for the timestamp reference clock source

  Reference:  Reference to the document describing the
              SDP token (clksrc-param-name) and syntax for the optional
              value associated with the token (mediaclock-param-value)







Williams, et al.             Standards Track                   [Page 24]

RFC 7273               RTP Clock Source Signalling             June 2014


  Initial values for the Timestamp Reference Clock Source Parameters
  registry are given below.

  Future assignments are to be made through the Specification Required
  policy [RFC5226].  The Name field in the table corresponds to a new
  value corresponding to clksrc-param-name.  The Reference must specify
  a syntax corresponding to clksrc-param-value.

  +---------+------------------------------+--------------------------+
  | Name    | Long Name                    | Reference                |
  +---------+------------------------------+--------------------------+
  | ntp     | Network Time Protocol        | This document, Section 4 |
  |         |                              |                          |
  | ptp     | Precision Time Protocol      | This document, Section 4 |
  |         |                              |                          |
  | gps     | Global Positioning System    | This document, Section 4 |
  |         |                              |                          |
  | gal     | Galileo                      | This document, Section 4 |
  |         |                              |                          |
  | glonass | Global Navigation Satellite  | This document, Section 4 |
  |         | System                       |                          |
  |         |                              |                          |
  | local   | Local Clock                  | This document, Section 4 |
  |         |                              |                          |
  | private | Private Clock                | This document, Section 4 |
  +---------+------------------------------+--------------------------+

8.4.  Media Clock Source Parameters Registry

  This document creates a new IANA subregistry called the Media Clock
  Source Parameters registry, subordinate to the IANA SDP Parameters
  registry.  Each entry in the Media Clock Source Parameters registry
  contains:

  Name:       Token used in the SDP description (mediaclock-param-name)

  Long name:  Descriptive name for the media clock source type

  Reference:  Reference to the document describing the SDP token
              (mediaclock-param-name) and syntax for the optional
              value associated with the token (mediaclock-param-value)

  Initial values for the Media Clock Source Parameters registry are
  given below.







Williams, et al.             Standards Track                   [Page 25]

RFC 7273               RTP Clock Source Signalling             June 2014


  Future assignments are to be made through the Specification Required
  policy [RFC5226].  The Name field in the table corresponds to a new
  value corresponding to mediaclock-param-name.  The Reference must
  specify a syntax corresponding to mediaclock-param-value.

  +----------+-----------------------------+--------------------------+
  | Name     | Long Name                   | Reference                |
  +----------+-----------------------------+--------------------------+
  | sender   | Asynchronously Generated    | This document, Section 5 |
  |          | Media Clock                 |                          |
  |          |                             |                          |
  | direct   | Direct-Referenced Media     | This document, Section 5 |
  |          | Clock                       |                          |
  |          |                             |                          |
  | IEEE1722 | IEEE1722 Media Stream       | This document, Section 5 |
  |          | Identifier                  |                          |
  +----------+-----------------------------+--------------------------+

8.5.  Source-Level Attributes

  [RFC5576] requires new source-level attributes to be registered with
  the IANA registry named "att-field (source level)".

8.5.1.  Source-Level Timestamp Reference Clock Attribute

  The source-level SDP attribute "ts-refclk" defined by this document
  is registered with the "att-field (source level)" IANA registry of
  SDP Parameters, according to Figure 10.

8.5.2.  Source-Level Media Clock Attribute

  The source-level SDP attribute "mediaclk" defined by this document is
  registered with the "att-field (source level)" IANA registry of SDP
  Parameters, according to Figure 11.

9.  Acknowledgements

  The authors would like to thank Magnus Westerlund and Paul Kyzivat
  for valuable comments that resulted in important improvements to this
  document.











Williams, et al.             Standards Track                   [Page 26]

RFC 7273               RTP Clock Source Signalling             June 2014


10.  References

10.1.  Normative References

  [IEEE1588-2002]
             IEEE, "1588-2002 - IEEE Standard for a Precision Clock
             Synchronization Protocol for Networked Measurement and
             Control Systems", October 2002,
             <http://standards.ieee.org/findstds/
             standard/1588-2002.html>.

  [IEEE1588-2008]
             IEEE, "1588-2008 - IEEE Standard for a Precision Clock
             Synchronization Protocol for Networked Measurement and
             Control Systems", July 2008,
             <http://standards.ieee.org/findstds/
             standard/1588-2008.html>.

  [IEEE1722] IEEE, "1722-2001 - IEEE Standard for Layer 2 Transport
             Protocol for Time Sensitive Applications in a Bridged
             Local Area Network", May 2011,
             <http://standards.ieee.org/findstds/
             standard/1722-2011.html>.

  [IEEE802.1AS-2011]
             IEEE, "802.1AS-2011 - IEEE Standard for Local and
             Metropolitan Area Networks - Timing and Synchronization
             for Time-Sensitive Applications in Bridged Local Area
             Networks", February 2011,
             <http://standards.ieee.org/findstds/
             standard/802.1AS-2011.html>.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC3264]  Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
             with Session Description Protocol (SDP)", RFC 3264, June
             2002.

  [RFC3550]  Schulzrinne, H., Casner, S., Frederick, R., and V.
             Jacobson, "RTP: A Transport Protocol for Real-Time
             Applications", STD 64, RFC 3550, July 2003.

  [RFC4566]  Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
             Description Protocol", RFC 4566, July 2006.






Williams, et al.             Standards Track                   [Page 27]

RFC 7273               RTP Clock Source Signalling             June 2014


  [RFC5226]  Narten, T. and H. Alvestrand, "Guidelines for Writing an
             IANA Considerations Section in RFCs", BCP 26, RFC 5226,
             May 2008.

  [RFC5234]  Crocker, D. and P. Overell, "Augmented BNF for Syntax
             Specifications: ABNF", STD 68, RFC 5234, January 2008.

  [RFC5576]  Lennox, J., Ott, J., and T. Schierl, "Source-Specific
             Media Attributes in the Session Description Protocol
             (SDP)", RFC 5576, June 2009.

  [RFC5905]  Mills, D., Martin, J., Burbank, J., and W. Kasch, "Network
             Time Protocol Version 4: Protocol and Algorithms
             Specification", RFC 5905, June 2010.

  [RFC6051]  Perkins, C. and T. Schierl, "Rapid Synchronisation of RTP
             Flows", RFC 6051, November 2010.

  [RFC7022]  Begen, A., Perkins, C., Wing, D., and E. Rescorla,
             "Guidelines for Choosing RTP Control Protocol (RTCP)
             Canonical Names (CNAMEs)", RFC 7022, September 2013.

10.2.  Informative References

  [AES11-2009]
             Audio Engineering Society, "AES11-2009: AES recommended
             practice for digital audio engineering - Synchronization
             of digital audio equipment in studio operations", February
             2010, <http://www.aes.org/standards/>.

  [IEEE802.1BA-2011]
             IEEE, "802.1BA-2011 - IEEE Standard for Local and
             metropolitan area networks -- Audio Video Bridging (AVB)
             Systems", September 2011,
             <http://standards.ieee.org/findstds/
             standard/802.1BA-2011.html>.

  [IS-GPS-200F]
             Global Positioning Systems Directorate, "Navstar GPS Space
             Segment/Navigation User Segment Interfaces", IS-GPS-200F ,
             September 2011,
             <http://www.navcen.uscg.gov/pdf/IS-GPS-200F.pdf>.

  [Olsen]    Olsen, D., "Time Accuracy Requirements in Audio Networks",
             April 2007,
             <http://www.ieee802.org/1/files/public/docs2007/
             as-dolsen-time-accuracy-0407.pdf>.




Williams, et al.             Standards Track                   [Page 28]

RFC 7273               RTP Clock Source Signalling             June 2014


  [RFC0868]  Postel, J. and K. Harrenstien, "Time Protocol", STD 26,
             RFC 868, May 1983.

  [RFC2326]  Schulzrinne, H., Rao, A., and R. Lanphier, "Real Time
             Streaming Protocol (RTSP)", RFC 2326, April 1998.

  [RFC2974]  Handley, M., Perkins, C., and E. Whelan, "Session
             Announcement Protocol", RFC 2974, October 2000.

  [RFC3261]  Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
             A., Peterson, J., Sparks, R., Handley, M., and E.
             Schooler, "SIP: Session Initiation Protocol", RFC 3261,
             June 2002.

  [RFC5939]  Andreasen, F., "Session Description Protocol (SDP)
             Capability Negotiation", RFC 5939, September 2010.

  [RFC7164]  Gross, K. and R. Brandenburg, "RTP and Leap Seconds", RFC
             7164, March 2014.

  [RFC7272]  Brandenburg, R., Stokking, H., Deventer, O., Boronat, F.,
             Montagud, M., and K. Gross, "Inter-Destination Media
             Synchronization (IDMS) Using the RTP Control Protocol
             (RTCP)", RFC 7272, June 2014.

  [SMPTE-318M-1999]
             Society of Motion Picture & Television Engineers,
             "Television and Audio - Synchronization of 59.94- or 50-Hz
             Related Video and Audio Systems in Analog and Digital
             Areas - Reference Signals", ST 318:1999,
             <http://standards.smpte.org/>.




















Williams, et al.             Standards Track                   [Page 29]

RFC 7273               RTP Clock Source Signalling             June 2014


Authors' Addresses

  Aidan Williams
  Audinate
  Level 1, 458 Wattle St
  Ultimo, NSW  2007
  Australia

  Phone: +61 2 8090 1000
  Fax:   +61 2 8090 1001
  EMail: [email protected]
  URI:   http://www.audinate.com/


  Kevin Gross
  AVA Networks
  Boulder, CO
  US

  EMail: [email protected]
  URI:   http://www.avanw.com/

  Ray van Brandenburg
  TNO
  Brassersplein 2
  Delft  2612CT
  The Netherlands

  Phone: +31-88-866-7000
  EMail: [email protected]


  Hans Stokking
  TNO
  Brassersplein 2
  Delft  2612CT
  The Netherlands

  EMail: [email protected]












Williams, et al.             Standards Track                   [Page 30]