Internet Research Task Force (IRTF)                           T. Krovetz
Request for Comments: 7253                              Sacramento State
Category: Informational                                       P. Rogaway
ISSN: 2070-1721                                                 UC Davis
                                                               May 2014


              The OCB Authenticated-Encryption Algorithm

Abstract

  This document specifies OCB, a shared-key blockcipher-based
  encryption scheme that provides confidentiality and authenticity for
  plaintexts and authenticity for associated data.  This document is a
  product of the Crypto Forum Research Group (CFRG).

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This document is a product of the Internet Research Task Force
  (IRTF).  The IRTF publishes the results of Internet-related research
  and development activities.  These results might not be suitable for
  deployment.  This RFC represents the consensus of the Crypto Forum
  Research Group of the Internet Research Task Force (IRTF).  Documents
  approved for publication by the IRSG are not a candidate for any
  level of Internet Standard; see Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7253.

Copyright Notice

  Copyright (c) 2014 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.







Krovetz & Rogaway             Informational                     [Page 1]

RFC 7253              OCB Authenticated Encryption              May 2014


Table of Contents

  1. Introduction ....................................................2
  2. Notation and Basic Operations ...................................4
  3. OCB Global Parameters ...........................................5
     3.1. Named OCB Parameter Sets and RFC 5116 Constants ............6
  4. OCB Algorithms ..................................................6
     4.1. Processing Associated Data: HASH ...........................6
     4.2. Encryption: OCB-ENCRYPT ....................................8
     4.3. Decryption: OCB-DECRYPT ....................................9
  5. Security Considerations ........................................11
     5.1. Nonce Requirements ........................................12
  6. IANA Considerations ............................................13
  7. Acknowledgements ...............................................13
  8. References .....................................................14
     8.1. Normative References ......................................14
     8.2. Informative References ....................................14
  Appendix A.  Sample Results .......................................15

1.  Introduction

  Schemes for authenticated encryption (AE) simultaneously provide for
  confidentiality and authentication.  While this goal would
  traditionally be achieved by melding separate encryption and
  authentication mechanisms, each using its own key, integrated AE
  schemes intertwine what is needed for confidentiality and what is
  needed for authenticity.  By conceptualizing AE as a single
  cryptographic goal, AE schemes are less likely to be misused than
  conventional encryption schemes.  Also, integrated AE schemes can be
  significantly faster than what one sees from composing separate
  confidentiality and authenticity means.

  When an AE scheme allows for the authentication of unencrypted data
  at the same time that a plaintext is being encrypted and
  authenticated, the scheme is an authenticated encryption with
  associated data (AEAD) scheme.  Associated data can be useful when,
  for example, a network packet has unencrypted routing information and
  an encrypted payload.

  OCB is an AEAD scheme that depends on a blockcipher.  This document
  fully defines OCB encryption and decryption except for the choice of
  the blockcipher and the length of authentication tag that is part of
  the ciphertext.  The blockcipher must have a 128-bit blocksize.  Each
  choice of blockcipher and tag length specifies a different variant of
  OCB.  Several AES-based variants are defined in Section 3.1.






Krovetz & Rogaway             Informational                     [Page 2]

RFC 7253              OCB Authenticated Encryption              May 2014


  OCB encryption and decryption employ a nonce N, which must be
  distinct for each invocation of the OCB encryption operation.  OCB
  requires the associated data A to be specified when one encrypts or
  decrypts, but it may be zero-length.  The plaintext P and the
  associated data A can have any bitlength.  The ciphertext C one gets
  by encrypting P in the presence of A consists of a ciphertext-core
  having the same length as P, plus an authentication tag.  One can
  view the resulting ciphertext as either the pair (ciphertext-core,
  tag) or their concatenation (ciphertext-core || tag), the difference
  being purely how one assembles and parses ciphertexts.  This document
  uses concatenation.

  OCB encryption protects the confidentiality of P and the authenticity
  of A, N, and P.  It does this using, on average, about a + m + 1.02
  blockcipher calls, where a is the blocklength of A, m is the
  blocklength of P, and the nonce N is implemented as a counter (if N
  is random, then OCB uses a + m + 2 blockcipher calls).  If A is fixed
  during a session, then, after preprocessing, there is effectively no
  cost to having A authenticated on subsequent encryptions, and the
  mode will average m + 1.02 blockcipher calls.  OCB requires a single
  key K for the underlying blockcipher, and all blockcipher calls are
  keyed by K.  OCB is online.  In particular, one need not know the
  length of A or P to proceed with encryption, nor need one know the
  length of A or C to proceed with decryption.  OCB is parallelizable:
  the bulk of its blockcipher calls can be performed simultaneously.
  Computational work beyond blockcipher calls consists of a small and
  fixed number of logical operations per call.  OCB enjoys provable
  security: the mode of operation is secure assuming that the
  underlying blockcipher is secure.  As with most modes of operation,
  security degrades as the number of blocks processed gets large (see
  Section 5 for details).

  For reasons of generality, OCB is defined to operate on arbitrary
  bitstrings.  But for reasons of simplicity and efficiency, most
  implementations will assume that strings operated on are bytestrings
  (i.e., strings that are a multiple of 8 bits).  To promote
  interoperability, implementations of OCB that communicate with
  implementations of unknown capabilities should restrict all provided
  values (nonces, tags, plaintexts, ciphertexts, and associated data)
  to bytestrings.

  The version of OCB defined in this document is a refinement of two
  prior schemes.  The original OCB version was published in 2001 [OCB1]
  and was listed as an optional component in IEEE 802.11i.  A second
  version was published in 2004 [OCB2] and is specified in ISO 19772.
  The scheme described here is called OCB3 in the 2011 paper describing
  the mode [OCB3]; it shall be referred to simply as OCB throughout
  this document.  The only difference between the algorithm of this RFC



Krovetz & Rogaway             Informational                     [Page 3]

RFC 7253              OCB Authenticated Encryption              May 2014


  and that of the [OCB3] paper is that the tag length is now encoded
  into the internally formatted nonce.  See [OCB3] for complete
  references, timing information, and a discussion of the differences
  between the algorithms.  OCB was initially the acronym for Offset
  Codebook but is now the algorithm's full name.

  OCB has received years of in-depth analysis previous to its
  submission to the CFRG and has been under review by the members of
  the CFRG for over a year.  It is the consensus of the CFRG that the
  security mechanisms provided by the OCB AEAD algorithm described in
  this document are suitable for use in providing confidentiality and
  authentication.

2.  Notation and Basic Operations

  There are two types of variables used in this specification, strings
  and integers.  Although strings processed by most implementations of
  OCB will be strings of bytes, bit-level operations are used
  throughout this specification document for defining OCB.  String
  variables are always written with an initial uppercase letter while
  integer variables are written in all lowercase.  Following C's
  convention, a single equals ("=") indicates variable assignment and
  double equals ("==") is the equality relation.  Whenever a variable
  is followed by an underscore ("_"), the underscore is intended to
  denote a subscript, with the subscripted expression requiring
  evaluation to resolve the meaning of the variable.  For example, when
  i == 2, then P_i refers to the variable P_2.

  c^i           The integer c raised to the i-th power.

  bitlen(S)     The length of string S in bits (e.g., bitlen(101) ==
                3).

  zeros(n)      The string made of n zero bits.

  ntz(n)        The number of trailing zero bits in the base-2
                representation of the positive integer n.  More
                formally, ntz(n) is the largest integer x for which 2^x
                divides n.

  S xor T       The string that is the bitwise exclusive-or of S and T.
                Strings S and T will always have the same length.

  S[i]          The i-th bit of the string S (indices begin at 1, so if
                S is 011, then S[1] == 0, S[2] == 1, S[3] == 1).

  S[i..j]       The substring of S consisting of bits i through j,
                inclusive.



Krovetz & Rogaway             Informational                     [Page 4]

RFC 7253              OCB Authenticated Encryption              May 2014


  S || T        String S concatenated with string T (e.g., 000 || 111
                == 000111).

  str2num(S)    The base-2 interpretation of bitstring S (e.g.,
                str2num(1110) == 14).

  num2str(i,n)  The n-bit string whose base-2 interpretation is i
                (e.g., num2str(14,4) == 1110 and num2str(1,2) == 01).

  double(S)     If S[1] == 0, then double(S) == (S[2..128] || 0);
                otherwise, double(S) == (S[2..128] || 0) xor
                (zeros(120) || 10000111).

3.  OCB Global Parameters

  To be complete, the algorithms in this document require specification
  of two global parameters: a blockcipher operating on 128-bit blocks
  and the length of authentication tags in use.

  Specifying a blockcipher implicitly defines the following symbols.

  KEYLEN         The blockcipher's key length in bits.

  ENCIPHER(K,P)  The blockcipher function mapping 128-bit plaintext
                 block P to its corresponding ciphertext block using
                 KEYLEN-bit key K.

  DECIPHER(K,C)  The inverse blockcipher function mapping 128-bit
                 ciphertext block C to its corresponding plaintext
                 block using KEYLEN-bit key K.

  The TAGLEN parameter specifies the length of authentication tag used
  by OCB and may be any value up to 128.  Greater values for TAGLEN
  provide greater assurances of authenticity, but ciphertexts produced
  by OCB are longer than their corresponding plaintext by TAGLEN bits.
  See Section 5 for details about TAGLEN and security.

  As an example, if 128-bit authentication tags and AES with 192-bit
  keys are to be used, then KEYLEN is 192, ENCIPHER refers to the
  AES-192 cipher, DECIPHER refers to the AES-192 inverse cipher, and
  TAGLEN is 128 [AES].










Krovetz & Rogaway             Informational                     [Page 5]

RFC 7253              OCB Authenticated Encryption              May 2014


3.1.  Named OCB Parameter Sets and RFC 5116 Constants

  The following table gives names to common OCB global parameter sets.
  Each of the AES variants is defined in [AES].

          +----------------------------+-------------+--------+
          | Name                       | Blockcipher | TAGLEN |
          +----------------------------+-------------+--------+
          | AEAD_AES_128_OCB_TAGLEN128 |   AES-128   |  128   |
          | AEAD_AES_128_OCB_TAGLEN96  |   AES-128   |   96   |
          | AEAD_AES_128_OCB_TAGLEN64  |   AES-128   |   64   |
          | AEAD_AES_192_OCB_TAGLEN128 |   AES-192   |  128   |
          | AEAD_AES_192_OCB_TAGLEN96  |   AES-192   |   96   |
          | AEAD_AES_192_OCB_TAGLEN64  |   AES-192   |   64   |
          | AEAD_AES_256_OCB_TAGLEN128 |   AES-256   |  128   |
          | AEAD_AES_256_OCB_TAGLEN96  |   AES-256   |   96   |
          | AEAD_AES_256_OCB_TAGLEN64  |   AES-256   |   64   |
          +----------------------------+-------------+--------+

  RFC 5116 defines an interface for authenticated-encryption schemes
  [RFC5116].  RFC 5116 requires the specification of certain constants
  for each named AEAD scheme.  For each of the OCB parameter sets
  listed above: P_MAX, A_MAX, and C_MAX are all unbounded; N_MIN is 1
  byte, and N_MAX is 15 bytes.  The parameter sets indicating the use
  of AES-128, AES-192, and AES-256 have K_LEN equal to 16, 24, and 32
  bytes, respectively.

  Each ciphertext is longer than its corresponding plaintext by exactly
  TAGLEN bits, and TAGLEN is given at the end of each name.  For
  instance, an AEAD_AES_128_OCB_TAGLEN64 ciphertext is exactly 64 bits
  longer than its corresponding plaintext.

4.  OCB Algorithms

  OCB is described in this section using pseudocode.  Given any
  collection of inputs of the required types, following the pseudocode
  description for a function will produce the correct output of the
  promised type.

4.1.  Processing Associated Data: HASH

  OCB has the ability to authenticate unencrypted associated data at
  the same time that it provides for authentication and encrypts a
  plaintext.  The following hash function is central to providing this
  functionality.  If an application has no associated data, then the
  associated data should be considered to exist and to be the empty
  string.  HASH, conveniently, always returns zeros(128) when the
  associated data is the empty string.



Krovetz & Rogaway             Informational                     [Page 6]

RFC 7253              OCB Authenticated Encryption              May 2014


  Function name:
    HASH
  Input:
    K, string of KEYLEN bits                      // Key
    A, string of any length                       // Associated data
  Output:
    Sum, string of 128 bits                       // Hash result

  Sum is defined as follows.

    //
    // Key-dependent variables
    //
    L_* = ENCIPHER(K, zeros(128))
    L_$ = double(L_*)
    L_0 = double(L_$)
    L_i = double(L_{i-1}) for every integer i > 0

    //
    // Consider A as a sequence of 128-bit blocks
    //
    Let m be the largest integer so that 128m <= bitlen(A)
    Let A_1, A_2, ..., A_m and A_* be strings so that
      A == A_1 || A_2 || ... || A_m || A_*, and
      bitlen(A_i) == 128 for each 1 <= i <= m.
      Note: A_* may possibly be the empty string.

    //
    // Process any whole blocks
    //
    Sum_0 = zeros(128)
    Offset_0 = zeros(128)
    for each 1 <= i <= m
       Offset_i = Offset_{i-1} xor L_{ntz(i)}
       Sum_i = Sum_{i-1} xor ENCIPHER(K, A_i xor Offset_i)
    end for

    //
    // Process any final partial block; compute final hash value
    //
    if bitlen(A_*) > 0 then
       Offset_* = Offset_m xor L_*
       CipherInput = (A_* || 1 || zeros(127-bitlen(A_*))) xor Offset_*
       Sum = Sum_m xor ENCIPHER(K, CipherInput)
    else
       Sum = Sum_m
    end if




Krovetz & Rogaway             Informational                     [Page 7]

RFC 7253              OCB Authenticated Encryption              May 2014


4.2.  Encryption: OCB-ENCRYPT

  This function computes a ciphertext (which includes a bundled
  authentication tag) when given a plaintext, associated data, nonce,
  and key.  For each invocation of OCB-ENCRYPT using the same key K,
  the value of the nonce input N must be distinct.

  Function name:
    OCB-ENCRYPT
  Input:
    K, string of KEYLEN bits                      // Key
    N, string of no more than 120 bits            // Nonce
    A, string of any length                       // Associated data
    P, string of any length                       // Plaintext
  Output:
    C, string of length bitlen(P) + TAGLEN bits   // Ciphertext

  C is defined as follows.

    //
    // Key-dependent variables
    //
    L_* = ENCIPHER(K, zeros(128))
    L_$ = double(L_*)
    L_0 = double(L_$)
    L_i = double(L_{i-1}) for every integer i > 0

    //
    // Consider P as a sequence of 128-bit blocks
    //
    Let m be the largest integer so that 128m <= bitlen(P)
    Let P_1, P_2, ..., P_m and P_* be strings so that
      P == P_1 || P_2 || ... || P_m || P_*, and
      bitlen(P_i) == 128 for each 1 <= i <= m.
      Note: P_* may possibly be the empty string.

    //
    // Nonce-dependent and per-encryption variables
    //
    Nonce = num2str(TAGLEN mod 128,7) || zeros(120-bitlen(N)) || 1 || N
    bottom = str2num(Nonce[123..128])
    Ktop = ENCIPHER(K, Nonce[1..122] || zeros(6))
    Stretch = Ktop || (Ktop[1..64] xor Ktop[9..72])
    Offset_0 = Stretch[1+bottom..128+bottom]
    Checksum_0 = zeros(128)






Krovetz & Rogaway             Informational                     [Page 8]

RFC 7253              OCB Authenticated Encryption              May 2014


    //
    // Process any whole blocks
    //
    for each 1 <= i <= m
       Offset_i = Offset_{i-1} xor L_{ntz(i)}
       C_i = Offset_i xor ENCIPHER(K, P_i xor Offset_i)
       Checksum_i = Checksum_{i-1} xor P_i
    end for

    //
    // Process any final partial block and compute raw tag
    //
    if bitlen(P_*) > 0 then
       Offset_* = Offset_m xor L_*
       Pad = ENCIPHER(K, Offset_*)
       C_* = P_* xor Pad[1..bitlen(P_*)]
       Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*)))
       Tag = ENCIPHER(K, Checksum_* xor Offset_* xor L_$) xor HASH(K,A)
    else
       C_* = <empty string>
       Tag = ENCIPHER(K, Checksum_m xor Offset_m xor L_$) xor HASH(K,A)
    end if

    //
    // Assemble ciphertext
    //
    C = C_1 || C_2 || ... || C_m || C_* || Tag[1..TAGLEN]

4.3.  Decryption: OCB-DECRYPT

  This function computes a plaintext when given a ciphertext,
  associated data, nonce, and key.  An authentication tag is embedded
  in the ciphertext.  If the tag is not correct for the ciphertext,
  associated data, nonce, and key, then an INVALID signal is produced.

  Function name:
    OCB-DECRYPT
  Input:
    K, string of KEYLEN bits                      // Key
    N, string of no more than 120 bits            // Nonce
    A, string of any length                       // Associated data
    C, string of at least TAGLEN bits             // Ciphertext
  Output:
    P, string of length bitlen(C) - TAGLEN bits,  // Plaintext
         or INVALID indicating authentication failure






Krovetz & Rogaway             Informational                     [Page 9]

RFC 7253              OCB Authenticated Encryption              May 2014


  P is defined as follows.

    //
    // Key-dependent variables
    //
    L_* = ENCIPHER(K, zeros(128))
    L_$ = double(L_*)
    L_0 = double(L_$)
    L_i = double(L_{i-1}) for every integer i > 0

    //
    // Consider C as a sequence of 128-bit blocks
    //
    Let m be the largest integer so that 128m <= bitlen(C) - TAGLEN
    Let C_1, C_2, ..., C_m, C_* and T be strings so that
      C == C_1 || C_2 || ... || C_m || C_* || T,
      bitlen(C_i) == 128 for each 1 <= i <= m, and
      bitlen(T) == TAGLEN.
      Note: C_* may possibly be the empty string.

    //
    // Nonce-dependent and per-decryption variables
    //
    Nonce = num2str(TAGLEN mod 128,7) || zeros(120-bitlen(N)) || 1 || N
    bottom = str2num(Nonce[123..128])
    Ktop = ENCIPHER(K, Nonce[1..122] || zeros(6))
    Stretch = Ktop || (Ktop[1..64] xor Ktop[9..72])
    Offset_0 = Stretch[1+bottom..128+bottom]
    Checksum_0 = zeros(128)

    //
    // Process any whole blocks
    //
    for each 1 <= i <= m
       Offset_i = Offset_{i-1} xor L_{ntz(i)}
       P_i = Offset_i xor DECIPHER(K, C_i xor Offset_i)
       Checksum_i = Checksum_{i-1} xor P_i
    end for

    //
    // Process any final partial block and compute raw tag
    //
    if bitlen(C_*) > 0 then
       Offset_* = Offset_m xor L_*
       Pad = ENCIPHER(K, Offset_*)
       P_* = C_* xor Pad[1..bitlen(C_*)]
       Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*)))
       Tag = ENCIPHER(K, Checksum_* xor Offset_* xor L_$) xor HASH(K,A)



Krovetz & Rogaway             Informational                    [Page 10]

RFC 7253              OCB Authenticated Encryption              May 2014


    else
       P_* = <empty string>
       Tag = ENCIPHER(K, Checksum_m xor Offset_m xor L_$) xor HASH(K,A)
    end if

    //
    // Check for validity and assemble plaintext
    //
    if (Tag[1..TAGLEN] == T) then
       P = P_1 || P_2 || ... || P_m || P_*
    else
       P = INVALID
    end if

5.  Security Considerations

  OCB achieves two security properties, confidentiality and
  authenticity.  Confidentiality is defined via "indistinguishability
  from random bits", meaning that an adversary is unable to distinguish
  OCB outputs from an equal number of random bits.  Authenticity is
  defined via "authenticity of ciphertexts", meaning that an adversary
  is unable to produce any valid nonce-ciphertext pair that it has not
  already acquired.  The security guarantees depend on the underlying
  blockcipher being secure in the sense of a strong pseudorandom
  permutation.  Thus, if OCB is used with a blockcipher that is not
  secure as a strong pseudorandom permutation, the security guarantees
  vanish.  The need for the strong pseudorandom permutation property
  means that OCB should be used with a conservatively designed, well-
  trusted blockcipher, such as AES.

  Both the confidentiality and the authenticity properties of OCB
  degrade as per s^2 / 2^128, where s is the total number of blocks
  that the adversary acquires.  The consequence of this formula is that
  the proven security disappears when s becomes as large as 2^64.
  Thus, the user should never use a key to generate an amount of
  ciphertext that is near to, or exceeds, 2^64 blocks.  In order to
  ensure that s^2 / 2^128 remains small, a given key should be used to
  encrypt at most 2^48 blocks (2^55 bits or 4 petabytes), including the
  associated data.  To ensure these limits are not crossed, automated
  key management is recommended in systems exchanging large amounts of
  data [RFC4107].

  When a ciphertext decrypts as INVALID, it is the implementor's
  responsibility to make sure that no information beyond this fact is
  made adversarially available.

  OCB encryption and decryption produce an internal 128-bit
  authentication tag.  The parameter TAGLEN determines how many bits of



Krovetz & Rogaway             Informational                    [Page 11]

RFC 7253              OCB Authenticated Encryption              May 2014


  this internal tag are included in ciphertexts and used for
  authentication.  The value of TAGLEN has two impacts: an adversary
  can trivially forge with probability 2^{-TAGLEN}, and ciphertexts are
  TAGLEN bits longer than their corresponding plaintexts.  It is up to
  the application designer to choose an appropriate value for TAGLEN.
  Long tags cost no more computationally than short ones.

  Normally, a given key should be used to create ciphertexts with a
  single tag length, TAGLEN, and an application should reject any
  ciphertext that claims authenticity under the same key but a
  different tag length.  While the ciphertext core and all of the bits
  of the tag do depend on the tag length, this is done for added
  robustness to misuse and should not suggest that receivers accept
  ciphertexts employing variable tag lengths under a single key.

  Timing attacks are not a part of the formal security model and an
  implementation should take care to mitigate them in contexts where
  this is a concern.  To render timing attacks impotent, the amount of
  time to encrypt or decrypt a string should be independent of the key
  and the contents of the string.  The only explicitly conditional OCB
  operation that depends on private data is double(), which means that
  using constant-time blockcipher and double() implementations
  eliminates most (if not all) sources of timing attacks on OCB.
  Power-usage attacks are likewise out of the scope of the formal model
  and should be considered for environments where they are threatening.

  The OCB encryption scheme reveals in the ciphertext the length of the
  plaintext.  Sometimes the length of the plaintext is a valuable piece
  of information that should be hidden.  For environments where
  "traffic analysis" is a concern, techniques beyond OCB encryption
  (typically involving padding) would be necessary.

  Defining the ciphertext that results from OCB-ENCRYPT to be the pair
  (C_1 || C_2 || ... || C_m || C_*, Tag[1..TAGLEN]) instead of the
  concatenation C_1 || C_2 || ... || C_m || C_* || Tag[1..TAGLEN]
  introduces no security concerns.  Because TAGLEN is fixed, both
  versions allow ciphertexts to be parsed unambiguously.

5.1.  Nonce Requirements

  It is crucial that, as one encrypts, one does not repeat a nonce.
  The inadvertent reuse of the same nonce by two invocations of the OCB
  encryption operation, with the same key, but with distinct plaintext
  values, undermines the confidentiality of the plaintexts protected in
  those two invocations and undermines all of the authenticity and
  integrity protection provided by that key.  For this reason, OCB
  should only be used whenever nonce uniqueness can be provided with
  certainty.  Note that it is acceptable to input the same nonce value



Krovetz & Rogaway             Informational                    [Page 12]

RFC 7253              OCB Authenticated Encryption              May 2014


  multiple times to the decryption operation.  We emphasize that the
  security consequences are quite serious if an attacker observes two
  ciphertexts that were created using the same nonce and key values,
  unless the plaintext and associated data values in both invocations
  of the encrypt operation were identical.  First, a loss of
  confidentiality ensues because the attacker will be able to infer
  relationships between the two plaintext values.  Second, a loss of
  authenticity ensues because the attacker will be able to recover
  secret information used to provide authenticity, making subsequent
  forgeries trivial.  Note that there are AEAD schemes, particularly
  the Synthetic Initialization Vector (SIV) [RFC5297], appropriate for
  environments where nonces are unavailable or unreliable.  OCB is not
  such a scheme.

  Nonces need not be secret, and a counter may be used for them.  If
  two parties send OCB-encrypted plaintexts to one another using the
  same key, then the space of nonces used by the two parties must be
  partitioned so that no nonce that could be used by one party to
  encrypt could be used by the other to encrypt (e.g., odd and even
  counters).

6.  IANA Considerations

  The Internet Assigned Numbers Authority (IANA) has defined a registry
  for Authenticated Encryption with Associated Data parameters.  The
  IANA has added the following entries to the AEAD Registry.  Each name
  refers to a set of parameters defined in Section 3.1.

        +----------------------------+-------------+------------+
        | Name                       |  Reference  | Numeric ID |
        +----------------------------+-------------+------------+
        | AEAD_AES_128_OCB_TAGLEN128 | Section 3.1 |     20     |
        | AEAD_AES_128_OCB_TAGLEN96  | Section 3.1 |     21     |
        | AEAD_AES_128_OCB_TAGLEN64  | Section 3.1 |     22     |
        | AEAD_AES_192_OCB_TAGLEN128 | Section 3.1 |     23     |
        | AEAD_AES_192_OCB_TAGLEN96  | Section 3.1 |     24     |
        | AEAD_AES_192_OCB_TAGLEN64  | Section 3.1 |     25     |
        | AEAD_AES_256_OCB_TAGLEN128 | Section 3.1 |     26     |
        | AEAD_AES_256_OCB_TAGLEN96  | Section 3.1 |     27     |
        | AEAD_AES_256_OCB_TAGLEN64  | Section 3.1 |     28     |
        +----------------------------+-------------+------------+

7.  Acknowledgements

  The design of the original OCB scheme [OCB1] was done while Rogaway
  was at Chiang Mai University, Thailand.  Follow-up work [OCB2] was
  done with support of NSF grant 0208842 and a gift from Cisco.  The
  final work by Krovetz and Rogaway [OCB3] that has resulted in this



Krovetz & Rogaway             Informational                    [Page 13]

RFC 7253              OCB Authenticated Encryption              May 2014


  specification was supported by NSF grant 0904380.  Thanks go to the
  many members of the Crypto Forum Research Group (CFRG) who provided
  feedback on earlier drafts.  Thanks in particular go to David McGrew
  for contributing some text and for managing the RFC approval process,
  to James Manger for initiating a productive discussion on tag-length
  dependency and for greatly improving Appendix A, to Matt Caswell and
  Peter Dettman for writing implementations and verifying test vectors,
  and to Stephen Farrell and Spencer Dawkins for their careful reading
  and suggestions.

8.  References

8.1.  Normative References

  [AES]      National Institute of Standards and Technology, "Advanced
             Encryption Standard (AES)", FIPS PUB 197, November 2001.

  [RFC5116]  McGrew, D., "An Interface and Algorithms for Authenticated
             Encryption", RFC 5116, January 2008.

8.2.  Informative References

  [OCB1]     Rogaway, P., Bellare, M., Black, J., and T. Krovetz, "OCB:
             A Block-Cipher Mode of Operation for Efficient
             Authenticated Encryption", ACM Conference on Computer and
             Communications Security 2001 - CCS 2001, ACM Press, 2001.

  [OCB2]     Rogaway, P., "Efficient Instantiations of Tweakable
             Blockciphers and Refinements to Modes OCB and PMAC",
             Advances in Cryptology - ASIACRYPT 2004, Springer, 2004.

  [OCB3]     Krovetz, T. and P. Rogaway, "The Software Performance of
             Authenticated-Encryption Modes", Fast Software Encryption
             - FSE 2011 Springer, 2011.

  [RFC4107]  Bellovin, S. and R. Housley, "Guidelines for Cryptographic
             Key Management", BCP 107, RFC 4107, June 2005.

  [RFC5297]  Harkins, D., "Synthetic Initialization Vector (SIV)
             Authenticated Encryption Using the Advanced Encryption
             Standard (AES)", RFC 5297, October 2008.










Krovetz & Rogaway             Informational                    [Page 14]

RFC 7253              OCB Authenticated Encryption              May 2014


Appendix A.  Sample Results

  This section gives sample output values for various inputs when using
  OCB with AES as per the parameters defined in Section 3.1.  All
  strings are represented in hexadecimal (e.g., 0F represents the
  bitstring 00001111).

  The following 16 (N,A,P,C) tuples show the ciphertext C that results
  from OCB-ENCRYPT(K,N,A,P) for various lengths of associated data (A)
  and plaintext (P).  The key (K) has a fixed value, the tag length is
  128 bits, and the nonce (N) increments.

    K : 000102030405060708090A0B0C0D0E0F

  An empty entry indicates the empty string.

    N: BBAA99887766554433221100
    A:
    P:
    C: 785407BFFFC8AD9EDCC5520AC9111EE6

    N: BBAA99887766554433221101
    A: 0001020304050607
    P: 0001020304050607
    C: 6820B3657B6F615A5725BDA0D3B4EB3A257C9AF1F8F03009

    N: BBAA99887766554433221102
    A: 0001020304050607
    P:
    C: 81017F8203F081277152FADE694A0A00

    N: BBAA99887766554433221103
    A:
    P: 0001020304050607
    C: 45DD69F8F5AAE72414054CD1F35D82760B2CD00D2F99BFA9

    N: BBAA99887766554433221104
    A: 000102030405060708090A0B0C0D0E0F
    P: 000102030405060708090A0B0C0D0E0F
    C: 571D535B60B277188BE5147170A9A22C3AD7A4FF3835B8C5
       701C1CCEC8FC3358

    N: BBAA99887766554433221105
    A: 000102030405060708090A0B0C0D0E0F
    P:
    C: 8CF761B6902EF764462AD86498CA6B97





Krovetz & Rogaway             Informational                    [Page 15]

RFC 7253              OCB Authenticated Encryption              May 2014


    N: BBAA99887766554433221106
    A:
    P: 000102030405060708090A0B0C0D0E0F
    C: 5CE88EC2E0692706A915C00AEB8B2396F40E1C743F52436B
       DF06D8FA1ECA343D

    N: BBAA99887766554433221107
    A: 000102030405060708090A0B0C0D0E0F1011121314151617
    P: 000102030405060708090A0B0C0D0E0F1011121314151617
    C: 1CA2207308C87C010756104D8840CE1952F09673A448A122
       C92C62241051F57356D7F3C90BB0E07F

    N: BBAA99887766554433221108
    A: 000102030405060708090A0B0C0D0E0F1011121314151617
    P:
    C: 6DC225A071FC1B9F7C69F93B0F1E10DE

    N: BBAA99887766554433221109
    A:
    P: 000102030405060708090A0B0C0D0E0F1011121314151617
    C: 221BD0DE7FA6FE993ECCD769460A0AF2D6CDED0C395B1C3C
       E725F32494B9F914D85C0B1EB38357FF

    N: BBAA9988776655443322110A
    A: 000102030405060708090A0B0C0D0E0F1011121314151617
       18191A1B1C1D1E1F
    P: 000102030405060708090A0B0C0D0E0F1011121314151617
       18191A1B1C1D1E1F
    C: BD6F6C496201C69296C11EFD138A467ABD3C707924B964DE
       AFFC40319AF5A48540FBBA186C5553C68AD9F592A79A4240

    N: BBAA9988776655443322110B
    A: 000102030405060708090A0B0C0D0E0F1011121314151617
       18191A1B1C1D1E1F
    P:
    C: FE80690BEE8A485D11F32965BC9D2A32

    N: BBAA9988776655443322110C
    A:
    P: 000102030405060708090A0B0C0D0E0F1011121314151617
       18191A1B1C1D1E1F
    C: 2942BFC773BDA23CABC6ACFD9BFD5835BD300F0973792EF4
       6040C53F1432BCDFB5E1DDE3BC18A5F840B52E653444D5DF








Krovetz & Rogaway             Informational                    [Page 16]

RFC 7253              OCB Authenticated Encryption              May 2014


    N: BBAA9988776655443322110D
    A: 000102030405060708090A0B0C0D0E0F1011121314151617
       18191A1B1C1D1E1F2021222324252627
    P: 000102030405060708090A0B0C0D0E0F1011121314151617
       18191A1B1C1D1E1F2021222324252627
    C: D5CA91748410C1751FF8A2F618255B68A0A12E093FF45460
       6E59F9C1D0DDC54B65E8628E568BAD7AED07BA06A4A69483
       A7035490C5769E60

    N: BBAA9988776655443322110E
    A: 000102030405060708090A0B0C0D0E0F1011121314151617
       18191A1B1C1D1E1F2021222324252627
    P:
    C: C5CD9D1850C141E358649994EE701B68

    N: BBAA9988776655443322110F
    A:
    P: 000102030405060708090A0B0C0D0E0F1011121314151617
       18191A1B1C1D1E1F2021222324252627
    C: 4412923493C57D5DE0D700F753CCE0D1D2D95060122E9F15
       A5DDBFC5787E50B5CC55EE507BCB084E479AD363AC366B95
       A98CA5F3000B1479

  Next are several internal values generated during the OCB-ENCRYPT
  computation for the last test vector listed above.

    L_*       : C6A13B37878F5B826F4F8162A1C8D879
    L_$       : 8D42766F0F1EB704DE9F02C54391B075
    L_0       : 1A84ECDE1E3D6E09BD3E058A8723606D
    L_1       : 3509D9BC3C7ADC137A7C0B150E46C0DA
    bottom    : 15 (decimal)
    Ktop      : 9862B0FDEE4E2DD56DBA6433F0125AA2
    Stretch   : 9862B0FDEE4E2DD56DBA6433F0125AA2FAD24D13A063F8B8
    Offset_0  : 587EF72716EAB6DD3219F8092D517D69
    Offset_1  : 42FA1BF908D7D8D48F27FD83AA721D04
    Offset_2  : 77F3C24534AD04C7F55BF696A434DDDE
    Offset_*  : B152F972B3225F459A1477F405FC05A7
    Checksum_1: 000102030405060708090A0B0C0D0E0F
    Checksum_2: 10101010101010101010101010101010
    Checksum_*: 30313233343536379010101010101010











Krovetz & Rogaway             Informational                    [Page 17]

RFC 7253              OCB Authenticated Encryption              May 2014


  The next tuple shows a result with a tag length of 96 bits and a
  different key.

    K: 0F0E0D0C0B0A09080706050403020100

    N: BBAA9988776655443322110D
    A: 000102030405060708090A0B0C0D0E0F1011121314151617
       18191A1B1C1D1E1F2021222324252627
    P: 000102030405060708090A0B0C0D0E0F1011121314151617
       18191A1B1C1D1E1F2021222324252627
    C: 1792A4E31E0755FB03E31B22116E6C2DDF9EFD6E33D536F1
       A0124B0A55BAE884ED93481529C76B6AD0C515F4D1CDD4FD
       AC4F02AA

  The following algorithm tests a wider variety of inputs.  Results are
  given for each parameter set defined in Section 3.1.

     K = zeros(KEYLEN-8) || num2str(TAGLEN,8)
     C = <empty string>
     for i = 0 to 127 do
        S = zeros(8i)
        N = num2str(3i+1,96)
        C = C || OCB-ENCRYPT(K,N,S,S)
        N = num2str(3i+2,96)
        C = C || OCB-ENCRYPT(K,N,<empty string>,S)
        N = num2str(3i+3,96)
        C = C || OCB-ENCRYPT(K,N,S,<empty string>)
     end for
     N = num2str(385,96)
     Output : OCB-ENCRYPT(K,N,C,<empty string>)

  Iteration i of the loop adds 2i + (3 * TAGLEN / 8) bytes to C,
  resulting in an ultimate length for C of 22,400 bytes when TAGLEN ==
  128, 20,864 bytes when TAGLEN == 192, and 19,328 bytes when TAGLEN ==
  64.  The final OCB-ENCRYPT has an empty plaintext component, so
  serves only to authenticate C.  The output should be:

    AEAD_AES_128_OCB_TAGLEN128 Output: 67E944D23256C5E0B6C61FA22FDF1EA2
    AEAD_AES_192_OCB_TAGLEN128 Output: F673F2C3E7174AAE7BAE986CA9F29E17
    AEAD_AES_256_OCB_TAGLEN128 Output: D90EB8E9C977C88B79DD793D7FFA161C
    AEAD_AES_128_OCB_TAGLEN96 Output : 77A3D8E73589158D25D01209
    AEAD_AES_192_OCB_TAGLEN96 Output : 05D56EAD2752C86BE6932C5E
    AEAD_AES_256_OCB_TAGLEN96 Output : 5458359AC23B0CBA9E6330DD
    AEAD_AES_128_OCB_TAGLEN64 Output : 192C9B7BD90BA06A
    AEAD_AES_192_OCB_TAGLEN64 Output : 0066BC6E0EF34E24
    AEAD_AES_256_OCB_TAGLEN64 Output : 7D4EA5D445501CBE





Krovetz & Rogaway             Informational                    [Page 18]

RFC 7253              OCB Authenticated Encryption              May 2014


Authors' Addresses

  Ted Krovetz
  Computer Science Department
  California State University, Sacramento
  6000 J Street
  Sacramento, CA  95819-6021
  USA

  EMail: [email protected]


  Phillip Rogaway
  Computer Science Department
  University of California, Davis
  One Shields Avenue
  Davis, CA  95616-8562
  USA

  EMail: [email protected]































Krovetz & Rogaway             Informational                    [Page 19]