Internet Engineering Task Force (IETF)                   P. Wouters, Ed.
Request for Comments: 7250                                       Red Hat
Category: Standards Track                             H. Tschofenig, Ed.
ISSN: 2070-1721                                                 ARM Ltd.
                                                             J. Gilmore
                                         Electronic Frontier Foundation
                                                              S. Weiler
                                                                Parsons
                                                             T. Kivinen
                                                          INSIDE Secure
                                                              June 2014


       Using Raw Public Keys in Transport Layer Security (TLS)
             and Datagram Transport Layer Security (DTLS)

Abstract

  This document specifies a new certificate type and two TLS extensions
  for exchanging raw public keys in Transport Layer Security (TLS) and
  Datagram Transport Layer Security (DTLS).  The new certificate type
  allows raw public keys to be used for authentication.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7250.















Wouters, et al.              Standards Track                    [Page 1]

RFC 7250            Using Raw Public Keys in TLS/DTLS          June 2014


Copyright Notice

  Copyright (c) 2014 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
  2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   4
  3.  Structure of the Raw Public Key Extension . . . . . . . . . .   4
  4.  TLS Client and Server Handshake Behavior  . . . . . . . . . .   7
    4.1.  Client Hello  . . . . . . . . . . . . . . . . . . . . . .   7
    4.2.  Server Hello  . . . . . . . . . . . . . . . . . . . . . .   8
    4.3.  Client Authentication . . . . . . . . . . . . . . . . . .   9
    4.4.  Server Authentication . . . . . . . . . . . . . . . . . .   9
  5.  Examples  . . . . . . . . . . . . . . . . . . . . . . . . . .  10
    5.1.  TLS Server Uses a Raw Public Key  . . . . . . . . . . . .  10
    5.2.  TLS Client and Server Use Raw Public Keys . . . . . . . .  11
    5.3.  Combined Usage of Raw Public Keys and X.509 Certificates   12
  6.  Security Considerations . . . . . . . . . . . . . . . . . . .  13
  7.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  14
  8.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  14
  9.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  15
    9.1.  Normative References  . . . . . . . . . . . . . . . . . .  15
    9.2.  Informative References  . . . . . . . . . . . . . . . . .  15
  Appendix A.  Example Encoding . . . . . . . . . . . . . . . . . .  17















Wouters, et al.              Standards Track                    [Page 2]

RFC 7250            Using Raw Public Keys in TLS/DTLS          June 2014


1.  Introduction

  Traditionally, TLS client and server public keys are obtained in PKIX
  containers in-band as part of the TLS handshake procedure and are
  validated using trust anchors based on a [PKIX] certification
  authority (CA).  This method can add a complicated trust relationship
  that is difficult to validate.  Examples of such complexity can be
  seen in [Defeating-SSL].  TLS is, however, also commonly used with
  self-signed certificates in smaller deployments where the self-signed
  certificates are distributed to all involved protocol endpoints out-
  of-band.  This practice does, however, still require the overhead of
  the certificate generation even though none of the information found
  in the certificate is actually used.

  Alternative methods are available that allow a TLS client/server to
  obtain the TLS server/client public key:

  o  The TLS client can obtain the TLS server public key from a DNSSEC-
     secured resource record using DNS-Based Authentication of Named
     Entities (DANE) [RFC6698].

  o  The TLS client or server public key is obtained from a [PKIX]
     certificate chain from a Lightweight Directory Access Protocol
     [LDAP] server or web page.

  o  The TLS client and server public key is provisioned into the
     operating system firmware image and updated via software updates.
     For example:

     Some smart objects use the UDP-based Constrained Application
     Protocol [CoAP] to interact with a Web server to upload sensor
     data at regular intervals, such as temperature readings.  CoAP can
     utilize DTLS for securing the client-to-server communication.  As
     part of the manufacturing process, the embedded device may be
     configured with the address and the public key of a dedicated CoAP
     server, as well as a public/private key pair for the client
     itself.

  This document introduces the use of raw public keys in TLS/DTLS.
  With raw public keys, only a subset of the information found in
  typical certificates is utilized: namely, the SubjectPublicKeyInfo
  structure of a PKIX certificate that carries the parameters necessary
  to describe the public key.  Other parameters found in PKIX
  certificates are omitted.  By omitting various certificate-related
  structures, the resulting raw public key is kept fairly small in
  comparison to the original certificate, and the code to process the
  keys can be simpler.  Only a minimalistic ASN.1 parser is needed;
  code for certificate path validation and other PKIX-related



Wouters, et al.              Standards Track                    [Page 3]

RFC 7250            Using Raw Public Keys in TLS/DTLS          June 2014


  processing is not required.  Note, however, the SubjectPublicKeyInfo
  structure is still in an ASN.1 format.  To further reduce the size of
  the exchanged information, this specification can be combined with
  the TLS Cached Info extension [CACHED-INFO], which enables TLS peers
  to exchange just fingerprints of their public keys.

  The mechanism defined herein only provides authentication when an
  out-of-band mechanism is also used to bind the public key to the
  entity presenting the key.

  Section 3 defines the structure of the two new TLS extensions,
  client_certificate_type and server_certificate_type, which can be
  used as part of an extended TLS handshake when raw public keys are to
  be used.  Section 4 defines the behavior of the TLS client and the
  TLS server.  Example exchanges are described in Section 5.  Section 6
  describes security considerations with this approach.  Finally, in
  Section 7 this document registers a new value to the IANA "TLS
  Certificate Types" subregistry for the support of raw public keys.

2.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [RFC2119].

  We use the terms "TLS server" and "server" as well as "TLS client"
  and "client" interchangeably.

3.  Structure of the Raw Public Key Extension

  This section defines the two TLS extensions client_certificate_type
  and server_certificate_type, which can be used as part of an extended
  TLS handshake when raw public keys are used.  Section 4 defines the
  behavior of the TLS client and the TLS server using these extensions.

  This specification uses raw public keys whereby the already available
  encoding used in a PKIX certificate in the form of a
  SubjectPublicKeyInfo structure is reused.  To carry the raw public
  key within the TLS handshake, the Certificate payload is used as a
  container, as shown in Figure 1.  The shown Certificate structure is
  an adaptation of its original form [RFC5246].










Wouters, et al.              Standards Track                    [Page 4]

RFC 7250            Using Raw Public Keys in TLS/DTLS          June 2014


  opaque ASN.1Cert<1..2^24-1>;

  struct {
      select(certificate_type){

           // certificate type defined in this document.
           case RawPublicKey:
             opaque ASN.1_subjectPublicKeyInfo<1..2^24-1>;

          // X.509 certificate defined in RFC 5246
          case X.509:
            ASN.1Cert certificate_list<0..2^24-1>;

          // Additional certificate type based on
          // "TLS Certificate Types" subregistry
      };
  } Certificate;

   Figure 1: Certificate Payload as a Container for the Raw Public Key

  The SubjectPublicKeyInfo structure is defined in Section 4.1 of RFC
  5280 [PKIX] and not only contains the raw keys, such as the public
  exponent and the modulus of an RSA public key, but also an algorithm
  identifier.  The algorithm identifier can also include parameters.
  The SubjectPublicKeyInfo value in the Certificate payload MUST
  contain the DER encoding [X.690] of the SubjectPublicKeyInfo.  The
  structure, as shown in Figure 2, therefore also contains length
  information.  An example is provided in Appendix A.

     SubjectPublicKeyInfo  ::=  SEQUENCE  {
          algorithm               AlgorithmIdentifier,
          subjectPublicKey        BIT STRING  }

     AlgorithmIdentifier   ::=  SEQUENCE  {
          algorithm               OBJECT IDENTIFIER,
          parameters              ANY DEFINED BY algorithm OPTIONAL  }

             Figure 2: SubjectPublicKeyInfo ASN.1 Structure

  The algorithm identifiers are Object Identifiers (OIDs).  RFC 3279
  [RFC3279] and RFC 5480 [RFC5480], for example, define the OIDs shown
  in Figure 3.  Note that this list is not exhaustive, and more OIDs
  may be defined in future RFCs.








Wouters, et al.              Standards Track                    [Page 5]

RFC 7250            Using Raw Public Keys in TLS/DTLS          June 2014


  Key Type            | Document                   | OID
  --------------------+----------------------------+-------------------
  RSA                 | Section 2.3.1 of RFC 3279  | 1.2.840.113549.1.1
  ....................|............................|...................
  Digital Signature   |                            |
  Algorithm (DSA)     | Section 2.3.2 of RFC 3279  | 1.2.840.10040.4.1
  ....................|............................|...................
  Elliptic Curve      |                            |
  Digital Signature   |                            |
  Algorithm (ECDSA)   | Section 2 of RFC 5480      | 1.2.840.10045.2.1
  --------------------+----------------------------+-------------------

             Figure 3: Example Algorithm Object Identifiers

  The extension format for extended client and server hellos, which
  uses the "extension_data" field, is used to carry the
  ClientCertTypeExtension and the ServerCertTypeExtension structures.
  These two structures are shown in Figure 4.  The CertificateType
  structure is an enum with values taken from the "TLS Certificate
  Types" subregistry of the "Transport Layer Security (TLS) Extensions"
  registry [TLS-Ext-Registry].

  struct {
          select(ClientOrServerExtension) {
              case client:
                CertificateType client_certificate_types<1..2^8-1>;
              case server:
                CertificateType client_certificate_type;
          }
  } ClientCertTypeExtension;

  struct {
          select(ClientOrServerExtension) {
              case client:
                CertificateType server_certificate_types<1..2^8-1>;
              case server:
                CertificateType server_certificate_type;
          }
  } ServerCertTypeExtension;

                  Figure 4: CertTypeExtension Structure










Wouters, et al.              Standards Track                    [Page 6]

RFC 7250            Using Raw Public Keys in TLS/DTLS          June 2014


4.  TLS Client and Server Handshake Behavior

  This specification extends the ClientHello and the ServerHello
  messages, according to the extension procedures defined in [RFC5246].
  It does not extend or modify any other TLS message.

  Note: No new cipher suites are required to use raw public keys.  All
  existing cipher suites that support a key exchange method compatible
  with the defined extension can be used.

  The high-level message exchange in Figure 5 shows the
  client_certificate_type and server_certificate_type extensions added
  to the client and server hello messages.

   client_hello,
   client_certificate_type,
   server_certificate_type   ->

                             <-  server_hello,
                                 client_certificate_type,
                                 server_certificate_type,
                                 certificate,
                                 server_key_exchange,
                                 certificate_request,
                                 server_hello_done
   certificate,
   client_key_exchange,
   certificate_verify,
   change_cipher_spec,
   finished                  ->

                             <- change_cipher_spec,
                                finished

  Application Data        <------->     Application Data

               Figure 5: Basic Raw Public Key TLS Exchange

4.1.  Client Hello

  In order to indicate the support of raw public keys, clients include
  the client_certificate_type and/or the server_certificate_type
  extensions in an extended client hello message.  The hello extension
  mechanism is described in Section 7.4.1.4 of TLS 1.2 [RFC5246].

  The client_certificate_type extension in the client hello indicates
  the certificate types the client is able to provide to the server,
  when requested using a certificate_request message.



Wouters, et al.              Standards Track                    [Page 7]

RFC 7250            Using Raw Public Keys in TLS/DTLS          June 2014


  The server_certificate_type extension in the client hello indicates
  the types of certificates the client is able to process when provided
  by the server in a subsequent certificate payload.

  The client_certificate_type and server_certificate_type extensions
  sent in the client hello each carry a list of supported certificate
  types, sorted by client preference.  When the client supports only
  one certificate type, it is a list containing a single element.

  The TLS client MUST omit certificate types from the
  client_certificate_type extension in the client hello if it does not
  possess the corresponding raw public key or certificate that it can
  provide to the server when requested using a certificate_request
  message, or if it is not configured to use one with the given TLS
  server.  If the client has no remaining certificate types to send in
  the client hello, other than the default X.509 type, it MUST omit the
  client_certificate_type extension in the client hello.

  The TLS client MUST omit certificate types from the
  server_certificate_type extension in the client hello if it is unable
  to process the corresponding raw public key or other certificate
  type.  If the client has no remaining certificate types to send in
  the client hello, other than the default X.509 certificate type, it
  MUST omit the entire server_certificate_type extension from the
  client hello.

4.2.  Server Hello

  If the server receives a client hello that contains the
  client_certificate_type extension and/or the server_certificate_type
  extension, then three outcomes are possible:

  1.  The server does not support the extension defined in this
      document.  In this case, the server returns the server hello
      without the extensions defined in this document.

  2.  The server supports the extension defined in this document, but
      it does not have any certificate type in common with the client.
      Then, the server terminates the session with a fatal alert of
      type "unsupported_certificate".

  3.  The server supports the extensions defined in this document and
      has at least one certificate type in common with the client.  In
      this case, the processing rules described below are followed.

  The client_certificate_type extension in the client hello indicates
  the certificate types the client is able to provide to the server,
  when requested using a certificate_request message.  If the TLS



Wouters, et al.              Standards Track                    [Page 8]

RFC 7250            Using Raw Public Keys in TLS/DTLS          June 2014


  server wants to request a certificate from the client (via the
  certificate_request message), it MUST include the
  client_certificate_type extension in the server hello.  This
  client_certificate_type extension in the server hello then indicates
  the type of certificates the client is requested to provide in a
  subsequent certificate payload.  The value conveyed in the
  client_certificate_type extension MUST be selected from one of the
  values provided in the client_certificate_type extension sent in the
  client hello.  The server MUST also include a certificate_request
  payload in the server hello message.

  If the server does not send a certificate_request payload (for
  example, because client authentication happens at the application
  layer or no client authentication is required) or none of the
  certificates supported by the client (as indicated in the
  client_certificate_type extension in the client hello) match the
  server-supported certificate types, then the client_certificate_type
  payload in the server hello MUST be omitted.

  The server_certificate_type extension in the client hello indicates
  the types of certificates the client is able to process when provided
  by the server in a subsequent certificate payload.  If the client
  hello indicates support of raw public keys in the
  server_certificate_type extension and the server chooses to use raw
  public keys, then the TLS server MUST place the SubjectPublicKeyInfo
  structure into the Certificate payload.  With the
  server_certificate_type extension in the server hello, the TLS server
  indicates the certificate type carried in the Certificate payload.
  This additional indication enables avoiding parsing ambiguities since
  the Certificate payload may contain either the X.509 certificate or a
  SubjectPublicKeyInfo structure.  Note that only a single value is
  permitted in the server_certificate_type extension when carried in
  the server hello.

4.3.  Client Authentication

  When the TLS server has specified RawPublicKey as the
  client_certificate_type, authentication of the TLS client to the TLS
  server is supported only through authentication of the received
  client SubjectPublicKeyInfo via an out-of-band method.

4.4.  Server Authentication

  When the TLS server has specified RawPublicKey as the
  server_certificate_type, authentication of the TLS server to the TLS
  client is supported only through authentication of the received
  client SubjectPublicKeyInfo via an out-of-band method.




Wouters, et al.              Standards Track                    [Page 9]

RFC 7250            Using Raw Public Keys in TLS/DTLS          June 2014


5.  Examples

  Figures 6, 7, and 8 illustrate example exchanges.  Note that TLS
  ciphersuites using a Diffie-Hellman exchange offering forward secrecy
  can be used with a raw public key, although this document does not
  show the information exchange at that level with the subsequent
  message flows.

5.1.  TLS Server Uses a Raw Public Key

  This section shows an example where the TLS client indicates its
  ability to receive and validate a raw public key from the server.  In
  this example, the client is quite restricted since it is unable to
  process other certificate types sent by the server.  It also does not
  have credentials at the TLS layer it could send to the server and
  therefore omits the client_certificate_type extension.  Hence, the
  client only populates the server_certificate_type extension with the
  raw public key type, as shown in (1).

  When the TLS server receives the client hello, it processes the
  extension.  Since it has a raw public key, it indicates in (2) that
  it had chosen to place the SubjectPublicKeyInfo structure into the
  Certificate payload (3).

  The client uses this raw public key in the TLS handshake together
  with an out-of-band validation technique, such as DANE, to verify it.

 client_hello,
 server_certificate_type=(RawPublicKey) // (1)
                        ->
                        <- server_hello,
                           server_certificate_type=RawPublicKey, // (2)
                           certificate, // (3)
                           server_key_exchange,
                           server_hello_done

 client_key_exchange,
 change_cipher_spec,
 finished               ->

                        <- change_cipher_spec,
                           finished

 Application Data       <-------> Application Data

    Figure 6: Example with Raw Public Key Provided by the TLS Server





Wouters, et al.              Standards Track                   [Page 10]

RFC 7250            Using Raw Public Keys in TLS/DTLS          June 2014


5.2.  TLS Client and Server Use Raw Public Keys

  This section shows an example where the TLS client as well as the TLS
  server use raw public keys.  This is one of the use cases envisioned
  for smart object networking.  The TLS client in this case is an
  embedded device that is configured with a raw public key for use with
  TLS and is also able to process a raw public key sent by the server.
  Therefore, it indicates these capabilities in (1).  As in the
  previously shown example, the server fulfills the client's request,
  indicates this via the RawPublicKey value in the
  server_certificate_type payload (2), and provides a raw public key in
  the Certificate payload back to the client (see (3)).  The TLS server
  demands client authentication, and therefore includes a
  certificate_request (4).  The client_certificate_type payload in (5)
  indicates that the TLS server accepts a raw public key.  The TLS
  client, which has a raw public key pre-provisioned, returns it in the
  Certificate payload (6) to the server.

client_hello,
client_certificate_type=(RawPublicKey) // (1)
server_certificate_type=(RawPublicKey) // (1)
                        ->
                        <-  server_hello,
                            server_certificate_type=RawPublicKey // (2)
                            certificate, // (3)
                            client_certificate_type=RawPublicKey // (5)
                            certificate_request, // (4)
                            server_key_exchange,
                            server_hello_done

certificate, // (6)
client_key_exchange,
change_cipher_spec,
finished                  ->

                        <- change_cipher_spec,
                           finished

Application Data        <------->     Application Data

  Figure 7: Example with Raw Public Key provided by the TLS Server and
                               the Client









Wouters, et al.              Standards Track                   [Page 11]

RFC 7250            Using Raw Public Keys in TLS/DTLS          June 2014


5.3.  Combined Usage of Raw Public Keys and X.509 Certificates

  This section shows an example combining a raw public key and an X.509
  certificate.  The client uses a raw public key for client
  authentication, and the server provides an X.509 certificate.  This
  exchange starts with the client indicating its ability to process an
  X.509 certificate, OpenPGP certificate, or a raw public key, if
  provided by the server.  It prefers a raw public key, since the
  RawPublicKey value precedes the other values in the
  server_certificate_type vector.  Additionally, the client indicates
  that it has a raw public key for client-side authentication (see
  (1)).  The server chooses to provide its X.509 certificate in (3) and
  indicates that choice in (2).  For client authentication, the server
  indicates in (4) that it has selected the raw public key format and
  requests a certificate from the client in (5).  The TLS client
  provides a raw public key in (6) after receiving and processing the
  TLS server hello message.

client_hello,
server_certificate_type=(RawPublicKey, X.509, OpenPGP)
client_certificate_type=(RawPublicKey) // (1)
                        ->
                        <-  server_hello,
                            server_certificate_type=X.509 // (2)
                            certificate, // (3)
                            client_certificate_type=RawPublicKey // (4)
                            certificate_request, // (5)
                            server_key_exchange,
                            server_hello_done
certificate, // (6)
client_key_exchange,
change_cipher_spec,
finished                  ->

                         <- change_cipher_spec,
                            finished

Application Data        <------->     Application Data

                  Figure 8: Hybrid Certificate Example











Wouters, et al.              Standards Track                   [Page 12]

RFC 7250            Using Raw Public Keys in TLS/DTLS          June 2014


6.  Security Considerations

  The transmission of raw public keys, as described in this document,
  provides benefits by lowering the over-the-air transmission overhead
  since raw public keys are naturally smaller than an entire
  certificate.  There are also advantages from a code-size point of
  view for parsing and processing these keys.  The cryptographic
  procedures for associating the public key with the possession of a
  private key also follows standard procedures.

  However, the main security challenge is how to associate the public
  key with a specific entity.  Without a secure binding between
  identifier and key, the protocol will be vulnerable to man-in-the-
  middle attacks.  This document assumes that such binding can be made
  out-of-band, and we list a few examples in Section 1.  DANE [RFC6698]
  offers one such approach.  In order to address these vulnerabilities,
  specifications that make use of the extension need to specify how the
  identifier and public key are bound.  In addition to ensuring the
  binding is done out-of-band, an implementation also needs to check
  the status of that binding.

  If public keys are obtained using DANE, these public keys are
  authenticated via DNSSEC.  Using pre-configured keys is another out-
  of-band method for authenticating raw public keys.  While pre-
  configured keys are not suitable for a generic Web-based e-commerce
  environment, such keys are a reasonable approach for many smart
  object deployments where there is a close relationship between the
  software running on the device and the server-side communication
  endpoint.  Regardless of the chosen mechanism for out-of-band public
  key validation, an assessment of the most suitable approach has to be
  made prior to the start of a deployment to ensure the security of the
  system.

  An attacker might try to influence the handshake exchange to make the
  parties select different certificate types than they would normally
  choose.

  For this attack, an attacker must actively change one or more
  handshake messages.  If this occurs, the client and server will
  compute different values for the handshake message hashes.  As a
  result, the parties will not accept each others' Finished messages.
  Without the master_secret, the attacker cannot repair the Finished
  messages, so the attack will be discovered.








Wouters, et al.              Standards Track                   [Page 13]

RFC 7250            Using Raw Public Keys in TLS/DTLS          June 2014


7.  IANA Considerations

  IANA has registered a new value in the "TLS Certificate Types"
  subregistry of the "Transport Layer Security (TLS) Extensions"
  registry [TLS-Ext-Registry], as follows:

  Value: 2
  Description: Raw Public Key
  Reference: RFC 7250

  IANA has allocated two new TLS extensions, client_certificate_type
  and server_certificate_type, from the "TLS ExtensionType Values"
  subregistry defined in [RFC5246].  These extensions are used in both
  the client hello message and the server hello message.  The new
  extension types are used for certificate type negotiation.  The
  values carried in these extensions are taken from the "TLS
  Certificate Types" subregistry of the "Transport Layer Security (TLS)
  Extensions" registry [TLS-Ext-Registry].

8.  Acknowledgements

  The feedback from the TLS working group meeting at IETF 81 has
  substantially shaped the document, and we would like to thank the
  meeting participants for their input.  The support for hashes of
  public keys has been moved to [CACHED-INFO] after the discussions at
  the IETF 82 meeting.

  We would like to thank the following persons for their review
  comments: Martin Rex, Bill Frantz, Zach Shelby, Carsten Bormann,
  Cullen Jennings, Rene Struik, Alper Yegin, Jim Schaad, Barry Leiba,
  Paul Hoffman, Robert Cragie, Nikos Mavrogiannopoulos, Phil Hunt, John
  Bradley, Klaus Hartke, Stefan Jucker, Kovatsch Matthias, Daniel Kahn
  Gillmor, Peter Sylvester, Hauke Mehrtens, Alexey Melnikov, Stephen
  Farrell, Richard Barnes, and James Manger.  Nikos Mavrogiannopoulos
  contributed the design for reusing the certificate type registry.
  Barry Leiba contributed guidance for the IANA Considerations text.
  Stefan Jucker, Kovatsch Matthias, and Klaus Hartke provided
  implementation feedback regarding the SubjectPublicKeyInfo structure.

  Christer Holmberg provided the General Area (Gen-Art) review, Yaron
  Sheffer provided the Security Directorate (SecDir) review, Bert
  Greevenbosch provided the Applications Area Directorate review, and
  Linda Dunbar provided the Operations Directorate review.

  We would like to thank our TLS working group chairs, Eric Rescorla
  and Joe Salowey, for their guidance and support.  Finally, we would
  like to thank Sean Turner, who is the responsible Security Area
  Director for this work, for his review comments and suggestions.



Wouters, et al.              Standards Track                   [Page 14]

RFC 7250            Using Raw Public Keys in TLS/DTLS          June 2014


9.  References

9.1.  Normative References

  [PKIX]     Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
             Housley, R., and W. Polk, "Internet X.509 Public Key
             Infrastructure Certificate and Certificate Revocation List
             (CRL) Profile", RFC 5280, May 2008.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC3279]  Bassham, L., Polk, W., and R. Housley, "Algorithms and
             Identifiers for the Internet X.509 Public Key
             Infrastructure Certificate and Certificate Revocation List
             (CRL) Profile", RFC 3279, April 2002.

  [RFC5246]  Dierks, T. and E. Rescorla, "The Transport Layer Security
             (TLS) Protocol Version 1.2", RFC 5246, August 2008.

  [RFC5480]  Turner, S., Brown, D., Yiu, K., Housley, R., and T. Polk,
             "Elliptic Curve Cryptography Subject Public Key
             Information", RFC 5480, March 2009.

  [TLS-Ext-Registry]
             IANA, "Transport Layer Security (TLS) Extensions",
             <http://www.iana.org/assignments/
             tls-extensiontype-values>.

  [X.690]    ITU-T, "Information technology - ASN.1 encoding rules:
             Specification of Basic Encoding Rules (BER), Canonical
             Encoding Rules (CER) and Distinguished Encoding Rules
             (DER)", ITU-T Recommendation X.690, ISO/IEC 8825-1:2002,
             2002.

9.2.  Informative References

  [ASN.1-Dump]
             Gutmann, P., "ASN.1 Object Dump Program", February 2013,
             <http://www.cs.auckland.ac.nz/~pgut001/>.

  [CACHED-INFO]
             Santesson, S. and H. Tschofenig, "Transport Layer Security
             (TLS) Cached Information Extension", Work in Progress,
             February 2014.

  [CoAP]     Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
             Application Protocol (CoAP)", RFC 7252, June 2014.



Wouters, et al.              Standards Track                   [Page 15]

RFC 7250            Using Raw Public Keys in TLS/DTLS          June 2014


  [Defeating-SSL]
             Marlinspike, M., "New Tricks for Defeating SSL in
             Practice", February 2009, <http://www.blackhat.com/
             presentations/bh-dc-09/Marlinspike/
             BlackHat-DC-09-Marlinspike-Defeating-SSL.pdf>.

  [LDAP]     Sermersheim, J., "Lightweight Directory Access Protocol
             (LDAP): The Protocol", RFC 4511, June 2006.

  [RFC6698]  Hoffman, P. and J. Schlyter, "The DNS-Based Authentication
             of Named Entities (DANE) Transport Layer Security (TLS)
             Protocol: TLSA", RFC 6698, August 2012.







































Wouters, et al.              Standards Track                   [Page 16]

RFC 7250            Using Raw Public Keys in TLS/DTLS          June 2014


Appendix A.  Example Encoding

  For example, the hex sequence shown in Figure 9 describes a
  SubjectPublicKeyInfo structure inside the certificate payload.

         0     1     2     3     4     5     6     7     8     9
     +------+-----+-----+-----+-----+-----+-----+-----+-----+-----
  1  | 0x30, 0x81, 0x9f, 0x30, 0x0d, 0x06, 0x09, 0x2a, 0x86, 0x48,
  2  | 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x01, 0x05, 0x00, 0x03, 0x81,
  3  | 0x8d, 0x00, 0x30, 0x81, 0x89, 0x02, 0x81, 0x81, 0x00, 0xcd,
  4  | 0xfd, 0x89, 0x48, 0xbe, 0x36, 0xb9, 0x95, 0x76, 0xd4, 0x13,
  5  | 0x30, 0x0e, 0xbf, 0xb2, 0xed, 0x67, 0x0a, 0xc0, 0x16, 0x3f,
  6  | 0x51, 0x09, 0x9d, 0x29, 0x2f, 0xb2, 0x6d, 0x3f, 0x3e, 0x6c,
  7  | 0x2f, 0x90, 0x80, 0xa1, 0x71, 0xdf, 0xbe, 0x38, 0xc5, 0xcb,
  8  | 0xa9, 0x9a, 0x40, 0x14, 0x90, 0x0a, 0xf9, 0xb7, 0x07, 0x0b,
  9  | 0xe1, 0xda, 0xe7, 0x09, 0xbf, 0x0d, 0x57, 0x41, 0x86, 0x60,
  10 | 0xa1, 0xc1, 0x27, 0x91, 0x5b, 0x0a, 0x98, 0x46, 0x1b, 0xf6,
  11 | 0xa2, 0x84, 0xf8, 0x65, 0xc7, 0xce, 0x2d, 0x96, 0x17, 0xaa,
  12 | 0x91, 0xf8, 0x61, 0x04, 0x50, 0x70, 0xeb, 0xb4, 0x43, 0xb7,
  13 | 0xdc, 0x9a, 0xcc, 0x31, 0x01, 0x14, 0xd4, 0xcd, 0xcc, 0xc2,
  14 | 0x37, 0x6d, 0x69, 0x82, 0xd6, 0xc6, 0xc4, 0xbe, 0xf2, 0x34,
  15 | 0xa5, 0xc9, 0xa6, 0x19, 0x53, 0x32, 0x7a, 0x86, 0x0e, 0x91,
  16 | 0x82, 0x0f, 0xa1, 0x42, 0x54, 0xaa, 0x01, 0x02, 0x03, 0x01,
  17 | 0x00, 0x01

     Figure 9: Example SubjectPublicKeyInfo Structure Byte Sequence

  The decoded byte sequence shown in Figure 9 (for example, using Peter
  Gutmann's ASN.1 decoder [ASN.1-Dump]) illustrates the structure, as
  shown in Figure 10.

  Offset  Length   Description
  -------------------------------------------------------------------
     0     3+159:   SEQUENCE {
     3      2+13:     SEQUENCE {
     5       2+9:      OBJECT IDENTIFIER Value (1 2 840 113549 1 1 1)
                :             PKCS #1, rsaEncryption
    16       2+0:      NULL
                :      }
    18     3+141:    BIT STRING, encapsulates {
    22     3+137:      SEQUENCE {
    25     3+129:        INTEGER Value (1024 bit)
   157       2+3:        INTEGER Value (65537)
                :        }
                :      }
                :    }

      Figure 10: Decoding of Example SubjectPublicKeyInfo Structure



Wouters, et al.              Standards Track                   [Page 17]

RFC 7250            Using Raw Public Keys in TLS/DTLS          June 2014


Authors' Addresses

  Paul Wouters (editor)
  Red Hat

  EMail: [email protected]


  Hannes Tschofenig (editor)
  ARM Ltd.
  6060 Hall in Tirol
  Austria

  EMail: [email protected]
  URI:   http://www.tschofenig.priv.at


  John Gilmore
  Electronic Frontier Foundation
  PO Box 170608
  San Francisco, California  94117
  USA

  Phone: +1 415 221 6524
  EMail: [email protected]
  URI:   https://www.toad.com/


  Samuel Weiler
  Parsons
  7110 Samuel Morse Drive
  Columbia, Maryland  21046
  US

  EMail: [email protected]


  Tero Kivinen
  INSIDE Secure
  Eerikinkatu 28
  Helsinki  FI-00180
  FI

  EMail: [email protected]







Wouters, et al.              Standards Track                   [Page 18]