Internet Engineering Task Force (IETF)                 IJ. Wijnands, Ed.
Request for Comments: 7246                                 Cisco Systems
Category: Standards Track                                     P. Hitchen
ISSN: 2070-1721                                                       BT
                                                             N. Leymann
                                                       Deutsche Telekom
                                                          W. Henderickx
                                                         Alcatel-Lucent
                                                               A. Gulko
                                                        Thomson Reuters
                                                            J. Tantsura
                                                               Ericsson
                                                              June 2014


     Multipoint Label Distribution Protocol In-Band Signaling in
         a Virtual Routing and Forwarding (VRF) Table Context

Abstract

  An IP Multicast Distribution Tree (MDT) may traverse both label
  switching (i.e., Multiprotocol Label Switching, or MPLS) and non-
  label switching regions of a network.  Typically, the MDT begins and
  ends in non-MPLS regions, but travels through an MPLS region.  In
  such cases, it can be useful to begin building the MDT as a pure IP
  MDT, then convert it to an MPLS Multipoint Label Switched Path
  (MP-LSP) when it enters an MPLS-enabled region, and then convert it
  back to a pure IP MDT when it enters a non-MPLS-enabled region.
  Other documents specify the procedures for building such a hybrid
  MDT, using Protocol Independent Multicast (PIM) in the non-MPLS
  region of the network, and using Multipoint Label Distribution
  Protocol (mLDP) in the MPLS region.  This document extends those
  procedures to handle the case where the link connecting the two
  regions is a Virtual Routing and Forwarding (VRF) table link, as
  defined in the "BGP IP/MPLS VPN" specification.  However, this
  document is primarily aimed at particular use cases where VRFs are
  used to support multicast applications other than multicast VPN.














Wijnands, et al.             Standards Track                    [Page 1]

RFC 7246          mLDP In-Band Signaling in VRF Context        June 2014


Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7246.

Copyright Notice

  Copyright (c) 2014 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
    1.1.  Conventions Used in This Document  . . . . . . . . . . . .  4
    1.2.  Terminology  . . . . . . . . . . . . . . . . . . . . . . .  5
  2.  VRF In-Band Signaling for MP LSPs  . . . . . . . . . . . . . .  5
  3.  Encoding the Opaque Value of an LDP MP FEC . . . . . . . . . .  7
    3.1.  Transit VPNv4 Source TLV . . . . . . . . . . . . . . . . .  7
    3.2.  Transit VPNv6 Source TLV . . . . . . . . . . . . . . . . .  8
    3.3.  Transit VPNv4 Bidir TLV  . . . . . . . . . . . . . . . . .  9
    3.4.  Transit VPNv6 Bidir TLV  . . . . . . . . . . . . . . . . . 10
  4.  Security Considerations  . . . . . . . . . . . . . . . . . . . 10
  5.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 11
  6.  Acknowledgments  . . . . . . . . . . . . . . . . . . . . . . . 11
  7.  References . . . . . . . . . . . . . . . . . . . . . . . . . . 11
    7.1.  Normative References . . . . . . . . . . . . . . . . . . . 11
    7.2.  Informative References . . . . . . . . . . . . . . . . . . 12





Wijnands, et al.             Standards Track                    [Page 2]

RFC 7246          mLDP In-Band Signaling in VRF Context        June 2014


1.  Introduction

  Sometimes an IP Multicast Distribution Tree (MDT) traverses both
  MPLS-enabled and non-MPLS-enabled regions of a network.  Typically,
  the MDT begins and ends in non-MPLS regions, but travels through an
  MPLS region.  In such cases, it can be useful to begin building the
  MDT as a pure IP MDT, then convert it to an MPLS Multipoint Label
  Switched Path (LSP) when it enters an MPLS-enabled region, and then
  convert it back to a pure IP MDT when it enters a non-MPLS-enabled
  region.  Other documents specify the procedures for building such a
  hybrid MDT, using Protocol Independent Multicast (PIM) in the non-
  MPLS region of the network, and using Multipoint Label Distribution
  Protocol (mLDP) in the MPLS region.  This document extends the
  procedures from [RFC6826] to handle the case where the link
  connecting the two regions is a Virtual Routing and Forwarding (VRF)
  table link, as defined in the "BGP IP/MPLS VPN" specification
  [RFC6513].  However, this document is primarily aimed at particular
  use cases where VRFs are used to support multicast applications other
  than multicast VPN.

  In PIM, a tree is identified by a source address (or in the case of
  bidirectional trees [RFC5015], a rendezvous point address or "RPA")
  and a group address.  The tree is built from the leaves up, by
  sending PIM control messages in the direction of the source address
  or the RPA.  In mLDP, a tree is identified by a root address and an
  "opaque value", and is built by sending mLDP control messages in the
  direction of the root.  The procedures of [RFC6826] explain how to
  convert a PIM <source address or RPA, group address> pair into an
  mLDP <root node, opaque value> pair and how to convert the mLDP <root
  node, opaque value> pair back into the original PIM <source address
  or RPA, group address> pair.

  However, the procedures in [RFC6826] assume that the routers doing
  the PIM/mLDP conversion have routes to the source address or RPA in
  their global routing tables.  Thus, the procedures cannot be applied
  exactly as specified when the interfaces connecting the non-MPLS-
  enabled region to the MPLS-enabled region are interfaces that belong
  to a VRF as described in [RFC4364].  This specification extends the
  procedures of [RFC6826] so that they may be applied in the VRF
  context.

  As in [RFC6826], the scope of this document is limited to the case
  where the multicast content is distributed in the non-MPLS-enabled
  regions via PIM-created source-specific or bidirectional trees.
  Bidirectional trees are always mapped onto multipoint-to-multipoint
  LSPs, and source-specific trees are always mapped onto point-to-
  multipoint LSPs.




Wijnands, et al.             Standards Track                    [Page 3]

RFC 7246          mLDP In-Band Signaling in VRF Context        June 2014


  Note that the procedures described herein do not support non-
  bidirectional PIM Any-Source Multicast (ASM) groups, do not support
  the use of multicast trees other than mLDP multipoint LSPs in the
  core, and do not provide the capability to aggregate multiple PIM
  trees onto a single multipoint LSP.  If any of those features are
  needed, they can be provided by the procedures of [RFC6513] and
  [RFC6514].  However, there are cases where multicast services are
  offered through interfaces associated with a VRF, and where mLDP is
  used in the core, but where aggregation is not desired.  For example,
  some service providers offer multicast content to their customers,
  but have chosen to use VRFs to isolate the various customers and
  services.  This is a simpler scenario than one in which the customers
  provide their own multicast content, out of the control of the
  service provider, and can be handled with a simpler solution.  Also,
  when PIM trees are mapped one-to-one to multipoint LSPs, it is
  helpful for troubleshooting purposes to have the PIM source/group
  addresses encoded into the mLDP FEC (Forwarding Equivalence Class)
  element in what this document terms "mLDP in-band signaling".

  In order to use the mLDP in-band signaling procedures for a
  particular group address in the context of a particular set of VRFs,
  those VRFs MUST be configured with a range of multicast group
  addresses for which mLDP in-band signaling is to be enabled.  This
  configuration is per VRF defined in [RFC4364]).  For those groups,
  and those groups only, the procedures of this document are used.  For
  other groups, the general-purpose multicast VPN procedures MAY be
  used, although it is more likely this VRF is dedicated to mLDP in-
  band signaling procedures and all other groups are discarded.  The
  configuration MUST be present in all PE routers that attach to sites
  containing senders or receivers for the given set of group addresses.
  Note that because the provider most likely owns the multicast content
  and the method of transportation across the network, which are both
  transparent to the end user, no coordination needs to happen between
  the end user and the provider.

1.1.  Conventions Used in This Document

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [RFC2119].











Wijnands, et al.             Standards Track                    [Page 4]

RFC 7246          mLDP In-Band Signaling in VRF Context        June 2014


1.2.  Terminology

  In-band signaling:  Using the opaque value of an mLDP FEC element to
     encode the (S,G) or (*,G) identifying a particular IP multicast
     tree.

  Ingress LSR:  Source of a P2MP LSP, also referred to as root node.

  IP multicast tree:  An IP multicast distribution tree identified by a
     source IP address and/or IP multicast destination address, also
     referred to as (S,G) and (*,G).

  mLDP:  Multipoint LDP.

  MP LSP:  A multipoint LSP, either a P2MP or an MP2MP LSP.

  MP2MP LSP:  An LSP that connects a set of leaf nodes, acting
     indifferently as ingress or egress (see [RFC6388]).

  P2MP LSP:  An LSP that has one Ingress LSR and one or more Egress
     LSRs (see [RFC6388]).

  RPA: Rendezvous Point Address, the address that is used as the root
     of the distribution tree for a range of multicast groups.

  RD: Route Distinguisher, an identifier that makes a route unique in
     the context of a VRF.

  UMH: Upstream Multicast Hop, the upstream router in that is in the
     path to reach the source of the multicast flow.

  VRF:  Virtual Routing and Forwarding table.

2.  VRF In-Band Signaling for MP LSPs

  Suppose that a PE router, PE1, receives a PIM Join(S,G) message over
  one of its interfaces that is associated with a VRF.  Following the
  procedure of Section 5.1 of [RFC6513], PE1 determines the "upstream
  RD", the "upstream PE", and the "upstream multicast hop" (UMH) for
  the source address S.

  In order to transport the multicast tree via a multipoint (MP) LSP
  using VRF in-band signaling, an mLDP Label Mapping message is sent by
  PE1.  This message will contain either a P2MP FEC or an MP2MP FEC
  (see [RFC6388]), depending upon whether the PIM tree being
  transported is a source-specific tree, or a bidirectional tree,
  respectively.  The FEC contains a "root" and an "opaque value".




Wijnands, et al.             Standards Track                    [Page 5]

RFC 7246          mLDP In-Band Signaling in VRF Context        June 2014


  If the UMH and the upstream PE have the same IP address (i.e., the
  upstream PE is the UMH), then the root of the multipoint FEC is set
  to the IP address of the upstream PE.  If, in the context of this
  VPN, (S,G) refers to a source-specific MDT, then the values of S, G,
  and the upstream RD are encoded into the opaque value.  If, in the
  context of this VPN, G is a bidirectional group address, then S is
  replaced with the value of the RPA associated with G.

  The encoding details are specified in Section 3.  Conceptually, the
  multipoint FEC can be thought of as an ordered pair:
  {root=<Upstream-PE>; opaque_value=<S or RPA , G, Upstream-RD>}.  The
  mLDP Label Mapping message is then sent by PE1 on its LDP session to
  the "next hop" on the message's path to the upstream PE.  The "next
  hop" is usually the directly connected next hop, but see [RFC7060]
  for cases in which the next hop is not directly connected.

  If the UMH and the upstream PE do not have the same IP address, the
  procedures of Section 2 of [RFC6512] should be applied.  The root
  node of the multipoint FEC is set to the UMH.  The recursive opaque
  value is then set as follows: the root node is set to the upstream
  PE, and the opaque value is set to the multipoint FEC described in
  the previous paragraph.  That is, the multipoint FEC can be thought
  of as the following recursive ordered pair: {root=<UMH>;
  opaque_value=<root=Upstream-PE, opaque_value=<S or RPA, G,
  Upstream-RD>>}.

  The encoding of the multipoint FEC also specifies the "type" of PIM
  MDT being spliced onto the multipoint LSP.  Four opaque encodings are
  defined in [RFC6826]: IPv4 source-specific tree, IPv6 source-specific
  tree, IPv4 bidirectional tree, and IPv6 bidirectional tree.

  When a PE router receives an mLDP message with a P2MP or MP2MP FEC,
  where the PE router itself is the root node, and the opaque value is
  one of the types defined in Section 3, then it uses the RD encoded in
  the opaque value field to determine the VRF context.  (This RD will
  be associated with one of the PEs VRFs.)  Then, in the context of
  that VRF, the PE follows the procedure specified in section 2 of
  [RFC6826].













Wijnands, et al.             Standards Track                    [Page 6]

RFC 7246          mLDP In-Band Signaling in VRF Context        June 2014


3.  Encoding the Opaque Value of an LDP MP FEC

  This section documents the different transit opaque encodings.

3.1.  Transit VPNv4 Source TLV

  This opaque value type is used when transporting a source-specific
  mode multicast tree whose source and group addresses are IPv4
  addresses.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Type          | Length                        | Source
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                                  | Group
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                                  |               ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ~                   RD                          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type:  250

  Length:  16

  Source:  IPv4 multicast source address, 4 octets.

  Group:  IPv4 multicast group address, 4 octets.

  RD:  Route Distinguisher, 8 octets.




















Wijnands, et al.             Standards Track                    [Page 7]

RFC 7246          mLDP In-Band Signaling in VRF Context        June 2014


3.2.  Transit VPNv6 Source TLV

  This opaque value type is used when transporting a source-specific
  mode multicast tree whose source and group addresses are IPv6
  addresses.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Type          | Length                        | Source        ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ~                                               | Group         ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ~                                               |               ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ~                 RD                            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type:  251

  Length:  40

  Source:  IPv6 multicast source address, 16 octets.

  Group:  IPv6 multicast group address, 16 octets.

  RD:  Route Distinguisher, 8 octets.
























Wijnands, et al.             Standards Track                    [Page 8]

RFC 7246          mLDP In-Band Signaling in VRF Context        June 2014


3.3.  Transit VPNv4 Bidir TLV

  This opaque value type is used when transporting a bidirectional
  multicast tree whose group address is an IPv4 address.  The RP
  address is also an IPv4 address in this case.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Type          | Length                        | Mask Len      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                              RP                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                            Group                              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ~                              RD                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type:  9

  Length:  17

  Mask Len:  The number of contiguous one bits that are left justified
     and used as a mask, 1 octet.

  RP:  Rendezvous Point (RP) IPv4 address used for the encoded Group, 4
     octets.

  Group:  IPv4 multicast group address, 4 octets.

  RD:  Route Distinguisher, 8 octets.




















Wijnands, et al.             Standards Track                    [Page 9]

RFC 7246          mLDP In-Band Signaling in VRF Context        June 2014


3.4.  Transit VPNv6 Bidir TLV

  This opaque value type is used when transporting a bidirectional
  multicast tree whose group address is an IPv6 address.  The RP
  address is also an IPv6 address in this case.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Type          | Length                        | Mask Len      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                              RP                               ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ~                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                            Group                              ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ~                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ~                              RD                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type:  10

  Length:  41

  Mask Len:  The number of contiguous one bits that are left justified
     and used as a mask, 1 octet.

  RP:  Rendezvous Point (RP) IPv6 address used for the encoded group,
     16 octets.

  Group:  IPv6 multicast group address, 16 octets.

  RD:  Route Distinguisher, 8 octets.

4.  Security Considerations

  The same security considerations apply as for the base LDP
  specification, described in [RFC5036], and the base mLDP
  specification, described in [RFC6388].

  Operators MUST configure packet filters to ensure that the mechanism
  described in this memo does not cause non-global-scoped IPv6
  multicast packets to be tunneled outside of their intended scope.






Wijnands, et al.             Standards Track                   [Page 10]

RFC 7246          mLDP In-Band Signaling in VRF Context        June 2014


5.  IANA Considerations

  [RFC6388] defines a registry for the "LDP MP Opaque Value Element
  basic type".  IANA has assigned four new code points in this
  registry:

     Transit VPNv4 Source TLV type - 250

     Transit VPNv6 Source TLV type - 251

     Transit VPNv4 Bidir TLV type - 9

     Transit VPNv6 Bidir TLV type - 10

6.  Acknowledgments

  Thanks to Eric Rosen, Andy Green, Yakov Rekhter, and Eric Gray for
  their comments on the document.

7.  References

7.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC4364]  Rosen, E. and Y. Rekhter, "BGP/MPLS IP Virtual Private
             Networks (VPNs)", RFC 4364, February 2006.

  [RFC5015]  Handley, M., Kouvelas, I., Speakman, T., and L. Vicisano,
             "Bidirectional Protocol Independent Multicast (BIDIR-
             PIM)", RFC 5015, October 2007.

  [RFC5036]  Andersson, L., Ed., Minei, I., Ed., and B. Thomas, Ed.,
             "LDP Specification", RFC 5036, October 2007.

  [RFC6388]  Wijnands, IJ., Ed., Minei, I., Ed., Kompella, K., and B.
             Thomas, "Label Distribution Protocol Extensions for Point-
             to-Multipoint and Multipoint-to-Multipoint Label Switched
             Paths", RFC 6388, November 2011.

  [RFC6512]  Wijnands, IJ., Rosen, E., Napierala, M., and N. Leymann,
             "Using Multipoint LDP When the Backbone Has No Route to
             the Root", RFC 6512, February 2012.







Wijnands, et al.             Standards Track                   [Page 11]

RFC 7246          mLDP In-Band Signaling in VRF Context        June 2014


  [RFC6826]  Wijnands, IJ., Ed., Eckert, T., Leymann, N., and M.
             Napierala, "Multipoint LDP In-Band Signaling for Point-to-
             Multipoint and Multipoint-to-Multipoint Label Switched
             Paths", RFC 6826, January 2013.

7.2.  Informative References

  [RFC6513]  Rosen, E., Ed., and R. Aggarwal, Ed., "Multicast in
             MPLS/BGP IP VPNs", RFC 6513, February 2012.

  [RFC6514]  Aggarwal, R., Rosen, E., Morin, T., and Y. Rekhter, "BGP
             Encodings and Procedures for Multicast in MPLS/BGP IP
             VPNs", RFC 6514, February 2012.

  [RFC7060]  Napierala, M., Rosen, E., and IJ. Wijnands, "Using LDP
             Multipoint Extensions on Targeted LDP Sessions", RFC 7060,
             November 2013.


































Wijnands, et al.             Standards Track                   [Page 12]

RFC 7246          mLDP In-Band Signaling in VRF Context        June 2014


Authors' Addresses

  IJsbrand Wijnands (editor)
  Cisco Systems
  De kleetlaan 6a
  Diegem  1831
  Belgium
  EMail: [email protected]

  Paul Hitchen
  BT
  BT Adastral Park
  Ipswich  IP53RE
  United Kingdom
  EMail: [email protected]

  Nicolai Leymann
  Deutsche Telekom
  Winterfeldtstrasse 21
  Berlin  10781
  Germany
  EMail: [email protected]

  Wim Henderickx
  Alcatel-Lucent
  Copernicuslaan 50
  Antwerp  2018
  Belgium
  EMail: [email protected]

  Arkadiy Gulko
  Thomson Reuters
  195 Broadway
  New York, NY  10007
  United States
  EMail: [email protected]

  Jeff Tantsura
  Ericsson
  300 Holger Way
  San Jose, CA  95134
  United States
  EMail: [email protected]








Wijnands, et al.             Standards Track                   [Page 13]