Internet Engineering Task Force (IETF)                        C. Bormann
Request for Comments: 7228                       Universitaet Bremen TZI
Category: Informational                                         M. Ersue
ISSN: 2070-1721                             Nokia Solutions and Networks
                                                             A. Keranen
                                                               Ericsson
                                                               May 2014


              Terminology for Constrained-Node Networks

Abstract

  The Internet Protocol Suite is increasingly used on small devices
  with severe constraints on power, memory, and processing resources,
  creating constrained-node networks.  This document provides a number
  of basic terms that have been useful in the standardization work for
  constrained-node networks.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Not all documents
  approved by the IESG are a candidate for any level of Internet
  Standard; see Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7228.

















Bormann, et al.               Informational                     [Page 1]

RFC 7228                     CNN Terminology                    May 2014


Copyright Notice

  Copyright (c) 2014 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1. Introduction ....................................................3
  2. Core Terminology ................................................4
     2.1. Constrained Nodes ..........................................4
     2.2. Constrained Networks .......................................5
          2.2.1. Challenged Networks .................................6
     2.3. Constrained-Node Networks ..................................7
          2.3.1. LLN .................................................7
          2.3.2. LoWPAN, 6LoWPAN .....................................8
  3. Classes of Constrained Devices ..................................8
  4. Power Terminology ..............................................10
     4.1. Scaling Properties ........................................10
     4.2. Classes of Energy Limitation ..............................11
     4.3. Strategies for Using Power for Communication ..............12
  5. Security Considerations ........................................14
  6. Acknowledgements ...............................................14
  7. Informative References .........................................14


















Bormann, et al.               Informational                     [Page 2]

RFC 7228                     CNN Terminology                    May 2014


1.  Introduction

  Small devices with limited CPU, memory, and power resources, so-
  called "constrained devices" (often used as sensors/actuators, smart
  objects, or smart devices) can form a network, becoming "constrained
  nodes" in that network.  Such a network may itself exhibit
  constraints, e.g., with unreliable or lossy channels, limited and
  unpredictable bandwidth, and a highly dynamic topology.

  Constrained devices might be in charge of gathering information in
  diverse settings, including natural ecosystems, buildings, and
  factories, and sending the information to one or more server
  stations.  They might also act on information, by performing some
  physical action, including displaying it.  Constrained devices may
  work under severe resource constraints such as limited battery and
  computing power, little memory, and insufficient wireless bandwidth
  and ability to communicate; these constraints often exacerbate each
  other.  Other entities on the network, e.g., a base station or
  controlling server, might have more computational and communication
  resources and could support the interaction between the constrained
  devices and applications in more traditional networks.

  Today, diverse sizes of constrained devices with different resources
  and capabilities are becoming connected.  Mobile personal gadgets,
  building-automation devices, cellular phones, machine-to-machine
  (M2M) devices, and other devices benefit from interacting with other
  "things" nearby or somewhere in the Internet.  With this, the
  Internet of Things (IoT) becomes a reality, built up out of uniquely
  identifiable and addressable objects (things).  Over the next decade,
  this could grow to large numbers [FIFTY-BILLION] of Internet-
  connected constrained devices, greatly increasing the Internet's size
  and scope.

  The present document provides a number of basic terms that have been
  useful in the standardization work for constrained environments.  The
  intention is not to exhaustively cover the field but to make sure a
  few core terms are used consistently between different groups
  cooperating in this space.

  In this document, the term "byte" is used in its now customary sense
  as a synonym for "octet".  Where sizes of semiconductor memory are
  given, the prefix "kibi" (1024) is combined with "byte" to
  "kibibyte", abbreviated "KiB", for 1024 bytes [ISQ-13].








Bormann, et al.               Informational                     [Page 3]

RFC 7228                     CNN Terminology                    May 2014


  In computing, the term "power" is often used for the concept of
  "computing power" or "processing power", as in CPU performance.  In
  this document, the term stands for electrical power unless explicitly
  stated otherwise.  "Mains-powered" is used as a shorthand for being
  permanently connected to a stable electrical power grid.

2.  Core Terminology

  There are two important aspects to _scaling_ within the Internet of
  Things:

  o  scaling up Internet technologies to a large number [FIFTY-BILLION]
     of inexpensive nodes, while

  o  scaling down the characteristics of each of these nodes and of the
     networks being built out of them, to make this scaling up
     economically and physically viable.

  The need for scaling down the characteristics of nodes leads to
  "constrained nodes".

2.1.  Constrained Nodes

  The term "constrained node" is best defined by contrasting the
  characteristics of a constrained node with certain widely held
  expectations on more familiar Internet nodes:

  Constrained Node:  A node where some of the characteristics that are
     otherwise pretty much taken for granted for Internet nodes at the
     time of writing are not attainable, often due to cost constraints
     and/or physical constraints on characteristics such as size,
     weight, and available power and energy.  The tight limits on
     power, memory, and processing resources lead to hard upper bounds
     on state, code space, and processing cycles, making optimization
     of energy and network bandwidth usage a dominating consideration
     in all design requirements.  Also, some layer-2 services such as
     full connectivity and broadcast/multicast may be lacking.

  While this is not a rigorous definition, it is grounded in the state
  of the art and clearly sets apart constrained nodes from server
  systems, desktop or laptop computers, powerful mobile devices such as
  smartphones, etc.  There may be many design considerations that lead
  to these constraints, including cost, size, weight, and other scaling
  factors.







Bormann, et al.               Informational                     [Page 4]

RFC 7228                     CNN Terminology                    May 2014


  (An alternative term, when the properties as a network node are not
  in focus, is "constrained device".)

  There are multiple facets to the constraints on nodes, often applying
  in combination, for example:

  o  constraints on the maximum code complexity (ROM/Flash),

  o  constraints on the size of state and buffers (RAM),

  o  constraints on the amount of computation feasible in a period of
     time ("processing power"),

  o  constraints on the available power, and

  o  constraints on user interface and accessibility in deployment
     (ability to set keys, update software, etc.).

  Section 3 defines a small number of interesting classes ("class-N"
  for N = 0, 1, 2) of constrained nodes focusing on relevant
  combinations of the first two constraints.  With respect to available
  power, [RFC6606] distinguishes "power-affluent" nodes (mains-powered
  or regularly recharged) from "power-constrained nodes" that draw
  their power from primary batteries or by using energy harvesting;
  more detailed power terminology is given in Section 4.

  The use of constrained nodes in networks often also leads to
  constraints on the networks themselves.  However, there may also be
  constraints on networks that are largely independent from those of
  the nodes.  We therefore distinguish "constrained networks" from
  "constrained-node networks".

2.2.  Constrained Networks

  We define "constrained network" in a similar way:

  Constrained Network:  A network where some of the characteristics
     pretty much taken for granted with link layers in common use in
     the Internet at the time of writing are not attainable.

  Constraints may include:

  o  low achievable bitrate/throughput (including limits on duty
     cycle),

  o  high packet loss and high variability of packet loss (delivery
     rate),




Bormann, et al.               Informational                     [Page 5]

RFC 7228                     CNN Terminology                    May 2014


  o  highly asymmetric link characteristics,

  o  severe penalties for using larger packets (e.g., high packet loss
     due to link-layer fragmentation),

  o  limits on reachability over time (a substantial number of devices
     may power off at any point in time but periodically "wake up" and
     can communicate for brief periods of time), and

  o  lack of (or severe constraints on) advanced services such as IP
     multicast.

  More generally, we speak of constrained networks whenever at least
  some of the nodes involved in the network exhibit these
  characteristics.

  Again, there may be several reasons for this:

  o  cost constraints on the network,

  o  constraints posed by the nodes (for constrained-node networks),

  o  physical constraints (e.g., power constraints, environmental
     constraints, media constraints such as underwater operation,
     limited spectrum for very high density, electromagnetic
     compatibility),

  o  regulatory constraints, such as very limited spectrum availability
     (including limits on effective radiated power and duty cycle) or
     explosion safety, and

  o  technology constraints, such as older and lower-speed technologies
     that are still operational and may need to stay in use for some
     more time.

2.2.1.  Challenged Networks

  A constrained network is not necessarily a "challenged network"
  [FALL]:

  Challenged Network:  A network that has serious trouble maintaining
     what an application would today expect of the end-to-end IP model,
     e.g., by:

     *  not being able to offer end-to-end IP connectivity at all,

     *  exhibiting serious interruptions in end-to-end IP connectivity,
        or



Bormann, et al.               Informational                     [Page 6]

RFC 7228                     CNN Terminology                    May 2014


     *  exhibiting delay well beyond the Maximum Segment Lifetime (MSL)
        defined by TCP [RFC0793].

  All challenged networks are constrained networks in some sense, but
  not all constrained networks are challenged networks.  There is no
  well-defined boundary between the two, though.  Delay-Tolerant
  Networking (DTN) has been designed to cope with challenged networks
  [RFC4838].

2.3.  Constrained-Node Networks

  Constrained-Node Network:  A network whose characteristics are
     influenced by being composed of a significant portion of
     constrained nodes.

  A constrained-node network always is a constrained network because of
  the network constraints stemming from the node constraints, but it
  may also have other constraints that already make it a constrained
  network.

  The rest of this subsection introduces two additional terms that are
  in active use in the area of constrained-node networks, without an
  intent to define them: LLN and (6)LoWPAN.

2.3.1.  LLN

  A related term that has been used to describe the focus of the IETF
  ROLL working group is "Low-Power and Lossy Network (LLN)".  The ROLL
  (Routing Over Low-Power and Lossy) terminology document [RFC7102]
  defines LLNs as follows:

     LLN: Low-Power and Lossy Network.  Typically composed of many
     embedded devices with limited power, memory, and processing
     resources interconnected by a variety of links, such as IEEE
     802.15.4 or low-power Wi-Fi.  There is a wide scope of application
     areas for LLNs, including industrial monitoring, building
     automation (heating, ventilation, and air conditioning (HVAC),
     lighting, access control, fire), connected home, health care,
     environmental monitoring, urban sensor networks, energy
     management, assets tracking, and refrigeration.

  Beyond that, LLNs often exhibit considerable loss at the physical
  layer, with significant variability of the delivery rate, and some
  short-term unreliability, coupled with some medium-term stability
  that makes it worthwhile to both construct directed acyclic graphs
  that are medium-term stable for routing and do measurements on the
  edges such as Expected Transmission Count (ETX) [RFC6551].  Not all
  LLNs comprise low-power nodes [RPL-DEPLOYMENT].



Bormann, et al.               Informational                     [Page 7]

RFC 7228                     CNN Terminology                    May 2014


  LLNs typically are composed of constrained nodes; this leads to the
  design of operation modes such as the "non-storing mode" defined by
  RPL (the IPv6 Routing Protocol for Low-Power and Lossy Networks
  [RFC6550]).  So, in the terminology of the present document, an LLN
  is a constrained-node network with certain network characteristics,
  which include constraints on the network as well.

2.3.2.  LoWPAN, 6LoWPAN

  One interesting class of a constrained network often used as a
  constrained-node network is "LoWPAN" [RFC4919], a term inspired from
  the name of an IEEE 802.15.4 working group (low-rate wireless
  personal area networks (LR-WPANs)).  The expansion of the LoWPAN
  acronym, "Low-Power Wireless Personal Area Network", contains a hard-
  to-justify "Personal" that is due to the history of task group naming
  in IEEE 802 more than due to an orientation of LoWPANs around a
  single person.  Actually, LoWPANs have been suggested for urban
  monitoring, control of large buildings, and industrial control
  applications, so the "Personal" can only be considered a vestige.
  Occasionally, the term is read as "Low-Power Wireless Area Networks"
  [WEI].  Originally focused on IEEE 802.15.4, "LoWPAN" (or when used
  for IPv6, "6LoWPAN") also refers to networks built from similarly
  constrained link-layer technologies [V6-BTLE] [V6-DECT-ULE]
  [V6-G9959].

3.  Classes of Constrained Devices

  Despite the overwhelming variety of Internet-connected devices that
  can be envisioned, it may be worthwhile to have some succinct
  terminology for different classes of constrained devices.  In this
  document, the class designations in Table 1 may be used as rough
  indications of device capabilities:

    +-------------+-----------------------+-------------------------+
    | Name        | data size (e.g., RAM) | code size (e.g., Flash) |
    +-------------+-----------------------+-------------------------+
    | Class 0, C0 | << 10 KiB             | << 100 KiB              |
    |             |                       |                         |
    | Class 1, C1 | ~ 10 KiB              | ~ 100 KiB               |
    |             |                       |                         |
    | Class 2, C2 | ~ 50 KiB              | ~ 250 KiB               |
    +-------------+-----------------------+-------------------------+

       Table 1: Classes of Constrained Devices (KiB = 1024 bytes)

  As of the writing of this document, these characteristics correspond
  to distinguishable clusters of commercially available chips and
  design cores for constrained devices.  While it is expected that the



Bormann, et al.               Informational                     [Page 8]

RFC 7228                     CNN Terminology                    May 2014


  boundaries of these classes will move over time, Moore's law tends to
  be less effective in the embedded space than in personal computing
  devices: gains made available by increases in transistor count and
  density are more likely to be invested in reductions of cost and
  power requirements than into continual increases in computing power.

  Class 0 devices are very constrained sensor-like motes.  They are so
  severely constrained in memory and processing capabilities that most
  likely they will not have the resources required to communicate
  directly with the Internet in a secure manner (rare heroic, narrowly
  targeted implementation efforts notwithstanding).  Class 0 devices
  will participate in Internet communications with the help of larger
  devices acting as proxies, gateways, or servers.  Class 0 devices
  generally cannot be secured or managed comprehensively in the
  traditional sense.  They will most likely be preconfigured (and will
  be reconfigured rarely, if at all) with a very small data set.  For
  management purposes, they could answer keepalive signals and send on/
  off or basic health indications.

  Class 1 devices are quite constrained in code space and processing
  capabilities, such that they cannot easily talk to other Internet
  nodes employing a full protocol stack such as using HTTP, Transport
  Layer Security (TLS), and related security protocols and XML-based
  data representations.  However, they are capable enough to use a
  protocol stack specifically designed for constrained nodes (such as
  the Constrained Application Protocol (CoAP) over UDP [COAP]) and
  participate in meaningful conversations without the help of a gateway
  node.  In particular, they can provide support for the security
  functions required on a large network.  Therefore, they can be
  integrated as fully developed peers into an IP network, but they need
  to be parsimonious with state memory, code space, and often power
  expenditure for protocol and application usage.

  Class 2 devices are less constrained and fundamentally capable of
  supporting most of the same protocol stacks as used on notebooks or
  servers.  However, even these devices can benefit from lightweight
  and energy-efficient protocols and from consuming less bandwidth.
  Furthermore, using fewer resources for networking leaves more
  resources available to applications.  Thus, using the protocol stacks
  defined for more constrained devices on Class 2 devices might reduce
  development costs and increase the interoperability.

  Constrained devices with capabilities significantly beyond Class 2
  devices exist.  They are less demanding from a standards development
  point of view as they can largely use existing protocols unchanged.
  The present document therefore does not make any attempt to define
  classes beyond Class 2.  These devices can still be constrained by a
  limited energy supply.



Bormann, et al.               Informational                     [Page 9]

RFC 7228                     CNN Terminology                    May 2014


  With respect to examining the capabilities of constrained nodes,
  particularly for Class 1 devices, it is important to understand what
  type of applications they are able to run and which protocol
  mechanisms would be most suitable.  Because of memory and other
  limitations, each specific Class 1 device might be able to support
  only a few selected functions needed for its intended operation.  In
  other words, the set of functions that can actually be supported is
  not static per device type: devices with similar constraints might
  choose to support different functions.  Even though Class 2 devices
  have some more functionality available and may be able to provide a
  more complete set of functions, they still need to be assessed for
  the type of applications they will be running and the protocol
  functions they would need.  To be able to derive any requirements,
  the use cases and the involvement of the devices in the application
  and the operational scenario need to be analyzed.  Use cases may
  combine constrained devices of multiple classes as well as more
  traditional Internet nodes.

4.  Power Terminology

  Devices not only differ in their computing capabilities but also in
  available power and/or energy.  While it is harder to find
  recognizable clusters in this space, it is still useful to introduce
  some common terminology.

4.1.  Scaling Properties

  The power and/or energy available to a device may vastly differ, from
  kilowatts to microwatts, from essentially unlimited to hundreds of
  microjoules.

  Instead of defining classes or clusters, we simply state, using the
  International System of Units (SI units), an approximate value for
  one or both of the quantities listed in Table 2:

  +------+--------------------------------------------------+---------+
  | Name | Definition                                       | SI Unit |
  +------+--------------------------------------------------+---------+
  | Ps   | Sustainable average power available for the      | W       |
  |      | device over the time it is functioning           | (Watt)  |
  |      |                                                  |         |
  | Et   | Total electrical energy available before the     | J       |
  |      | energy source is exhausted                       | (Joule) |
  +------+--------------------------------------------------+---------+

            Table 2: Quantities Relevant to Power and Energy





Bormann, et al.               Informational                    [Page 10]

RFC 7228                     CNN Terminology                    May 2014


  The value of Et may need to be interpreted in conjunction with an
  indication over which period of time the value is given; see
  Section 4.2.

  Some devices enter a "low-power" mode before the energy available in
  a period is exhausted or even have multiple such steps on the way to
  exhaustion.  For these devices, Ps would need to be given for each of
  the modes/steps.

4.2.  Classes of Energy Limitation

  As discussed above, some devices are limited in available energy as
  opposed to (or in addition to) being limited in available power.
  Where no relevant limitations exist with respect to energy, the
  device is classified as E9.  The energy limitation may be in total
  energy available in the usable lifetime of the device (e.g., a device
  that is discarded when its non-replaceable primary battery is
  exhausted), classified as E2.  Where the relevant limitation is for a
  specific period, the device is classified as E1, e.g., a solar-
  powered device with a limited amount of energy available for the
  night, a device that is manually connected to a charger and has a
  period of time between recharges, or a device with a periodic
  (primary) battery replacement interval.  Finally, there may be a
  limited amount of energy available for a specific event, e.g., for a
  button press in an energy-harvesting light switch; such devices are
  classified as E0.  Note that, in a sense, many E1 devices are also
  E2, as the rechargeable battery has a limited number of useful
  recharging cycles.

  Table 3 provides a summary of the classifications described above.





















Bormann, et al.               Informational                    [Page 11]

RFC 7228                     CNN Terminology                    May 2014


  +------+------------------------------+-----------------------------+
  | Name | Type of energy limitation    | Example Power Source        |
  +------+------------------------------+-----------------------------+
  | E0   | Event energy-limited         | Event-based harvesting      |
  |      |                              |                             |
  | E1   | Period energy-limited        | Battery that is             |
  |      |                              | periodically recharged or   |
  |      |                              | replaced                    |
  |      |                              |                             |
  | E2   | Lifetime energy-limited      | Non-replaceable primary     |
  |      |                              | battery                     |
  |      |                              |                             |
  | E9   | No direct quantitative       | Mains-powered               |
  |      | limitations to available     |                             |
  |      | energy                       |                             |
  +------+------------------------------+-----------------------------+

                  Table 3: Classes of Energy Limitation

4.3.  Strategies for Using Power for Communication

  Especially when wireless transmission is used, the radio often
  consumes a big portion of the total energy consumed by the device.
  Design parameters, such as the available spectrum, the desired range,
  and the bitrate aimed for, influence the power consumed during
  transmission and reception; the duration of transmission and
  reception (including potential reception) influence the total energy
  consumption.

  Different strategies for power usage and network attachment may be
  used, based on the type of the energy source (e.g., battery or mains-
  powered) and the frequency with which a device needs to communicate.

  The general strategies for power usage can be described as follows:

  Always-on:  This strategy is most applicable if there is no reason
     for extreme measures for power saving.  The device can stay on in
     the usual manner all the time.  It may be useful to employ power-
     friendly hardware or limit the number of wireless transmissions,
     CPU speeds, and other aspects for general power-saving and cooling
     needs, but the device can be connected to the network all the
     time.

  Normally-off:  Under this strategy, the device sleeps such long
     periods at a time that once it wakes up, it makes sense for it to
     not pretend that it has been connected to the network during





Bormann, et al.               Informational                    [Page 12]

RFC 7228                     CNN Terminology                    May 2014


     sleep: the device reattaches to the network as it is woken up.
     The main optimization goal is to minimize the effort during the
     reattachment process and any resulting application communications.

     If the device sleeps for long periods of time and needs to
     communicate infrequently, the relative increase in energy
     expenditure during reattachment may be acceptable.

  Low-power:  This strategy is most applicable to devices that need to
     operate on a very small amount of power but still need to be able
     to communicate on a relatively frequent basis.  This implies that
     extremely low-power solutions need to be used for the hardware,
     chosen link-layer mechanisms, and so on.  Typically, given the
     small amount of time between transmissions, despite their sleep
     state, these devices retain some form of attachment to the
     network.  Techniques used for minimizing power usage for the
     network communications include minimizing any work from re-
     establishing communications after waking up and tuning the
     frequency of communications (including "duty cycling", where
     components are switched on and off in a regular cycle) and other
     parameters appropriately.

  Table 4 provides a summary of the strategies described above.

  +------+--------------+---------------------------------------------+
  | Name | Strategy     | Ability to communicate                      |
  +------+--------------+---------------------------------------------+
  | P0   | Normally-off | Reattach when required                      |
  |      |              |                                             |
  | P1   | Low-power    | Appears connected, perhaps with high        |
  |      |              | latency                                     |
  |      |              |                                             |
  | P9   | Always-on    | Always connected                            |
  +------+--------------+---------------------------------------------+

          Table 4: Strategies of Using Power for Communication

  Note that the discussion above is at the device level; similar
  considerations can apply at the communications-interface level.  This
  document does not define terminology for the latter.

  A term often used to describe power-saving approaches is "duty-
  cycling".  This describes all forms of periodically switching off
  some function, leaving it on only for a certain percentage of time
  (the "duty cycle").






Bormann, et al.               Informational                    [Page 13]

RFC 7228                     CNN Terminology                    May 2014


  [RFC7102] only distinguishes two levels, defining a Non-Sleepy Node
  as a node that always remains in a fully powered-on state (always
  awake) where it has the capability to perform communication (P9) and
  a Sleepy Node as a node that may sometimes go into a sleep mode (a
  low-power state to conserve power) and temporarily suspend protocol
  communication (P0); there is no explicit mention of P1.

5.  Security Considerations

  This document introduces common terminology that does not raise any
  new security issues.  Security considerations arising from the
  constraints discussed in this document need to be discussed in the
  context of specific protocols.  For instance, Section 11.6 of [COAP],
  "Constrained node considerations", discusses implications of specific
  constraints on the security mechanisms employed.  [ROLL-SEC-THREATS]
  provides a security threat analysis for the RPL routing protocol.
  Implementation considerations for security protocols on constrained
  nodes are discussed in [IKEV2-MINIMAL] and [TLS-MINIMAL].  A wider
  view of security in constrained-node networks is provided in
  [IOT-SECURITY].

6.  Acknowledgements

  Dominique Barthel and Peter van der Stok provided useful comments;
  Charles Palmer provided a full editorial review.

  Peter van der Stok insisted that we should include power terminology,
  hence Section 4.  The text for Section 4.3 is mostly lifted from a
  previous version of [COAP-CELLULAR] and has been adapted for this
  document.

7.  Informative References

  [COAP]     Shelby, Z., Hartke, K., and C. Bormann, "Constrained
             Application Protocol (CoAP)", Work in Progress, June 2013.

  [COAP-CELLULAR]
             Arkko, J., Eriksson, A., and A. Keranen, "Building Power-
             Efficient CoAP Devices for Cellular Networks", Work in
             Progress, February 2014.

  [FALL]     Fall, K., "A Delay-Tolerant Network Architecture for
             Challenged Internets", SIGCOMM 2003, 2003.








Bormann, et al.               Informational                    [Page 14]

RFC 7228                     CNN Terminology                    May 2014


  [FIFTY-BILLION]
             Ericsson, "More Than 50 Billion Connected Devices",
             Ericsson White Paper 284 23-3149 Uen, February 2011,
             <http://www.ericsson.com/res/docs/whitepapers/
             wp-50-billions.pdf>.

  [IKEV2-MINIMAL]
             Kivinen, T., "Minimal IKEv2", Work in Progress, October
             2013.

  [IOT-SECURITY]
             Garcia-Morchon, O., Kumar, S., Keoh, S., Hummen, R., and
             R. Struik, "Security Considerations in the IP-based
             Internet of Things", Work in Progress, September 2013.

  [ISQ-13]   International Electrotechnical Commission, "International
             Standard -- Quantities and units -- Part 13: Information
             science and technology", IEC 80000-13, March 2008.

  [RFC0793]  Postel, J., "Transmission Control Protocol", STD 7, RFC
             793, September 1981.

  [RFC4838]  Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst,
             R., Scott, K., Fall, K., and H. Weiss, "Delay-Tolerant
             Networking Architecture", RFC 4838, April 2007.

  [RFC4919]  Kushalnagar, N., Montenegro, G., and C. Schumacher, "IPv6
             over Low-Power Wireless Personal Area Networks (6LoWPANs):
             Overview, Assumptions, Problem Statement, and Goals", RFC
             4919, August 2007.

  [RFC6550]  Winter, T., Thubert, P., Brandt, A., Hui, J., Kelsey, R.,
             Levis, P., Pister, K., Struik, R., Vasseur, JP., and R.
             Alexander, "RPL: IPv6 Routing Protocol for Low-Power and
             Lossy Networks", RFC 6550, March 2012.

  [RFC6551]  Vasseur, JP., Kim, M., Pister, K., Dejean, N., and D.
             Barthel, "Routing Metrics Used for Path Calculation in
             Low-Power and Lossy Networks", RFC 6551, March 2012.

  [RFC6606]  Kim, E., Kaspar, D., Gomez, C., and C. Bormann, "Problem
             Statement and Requirements for IPv6 over Low-Power
             Wireless Personal Area Network (6LoWPAN) Routing", RFC
             6606, May 2012.

  [RFC7102]  Vasseur, JP., "Terms Used in Routing for Low-Power and
             Lossy Networks", RFC 7102, January 2014.




Bormann, et al.               Informational                    [Page 15]

RFC 7228                     CNN Terminology                    May 2014


  [ROLL-SEC-THREATS]
             Tsao, T., Alexander, R., Dohler, M., Daza, V., Lozano, A.,
             and M. Richardson, "A Security Threat Analysis for Routing
             Protocol for Low-power and lossy networks (RPL)", Work in
             Progress, December 2013.

  [RPL-DEPLOYMENT]
             Vasseur, J., Ed., Hui, J., Ed., Dasgupta, S., and G. Yoon,
             "RPL deployment experience in large scale networks", Work
             in Progress, July 2012.

  [TLS-MINIMAL]
             Kumar, S., Keoh, S., and H. Tschofenig, "A Hitchhiker's
             Guide to the (Datagram) Transport Layer Security Protocol
             for Smart Objects and Constrained Node Networks", Work in
             Progress, March 2014.

  [V6-BTLE]  Nieminen, J., Ed., Savolainen, T., Ed., Isomaki, M.,
             Patil, B., Shelby, Z., and C. Gomez, "Transmission of IPv6
             Packets over BLUETOOTH Low Energy", Work in Progress, May
             2014.

  [V6-DECT-ULE]
             Mariager, P., Ed., Petersen, J., and Z. Shelby,
             "Transmission of IPv6 Packets over DECT Ultra Low Energy",
             Work in Progress, July 2013.

  [V6-G9959] Brandt, A. and J. Buron, "Transmission of IPv6 packets
             over ITU-T G.9959 Networks", Work in Progress, May 2014.

  [WEI]      Shelby, Z. and C. Bormann, "6LoWPAN: the Wireless Embedded
             Internet", ISBN 9780470747995, 2009.



















Bormann, et al.               Informational                    [Page 16]

RFC 7228                     CNN Terminology                    May 2014


Authors' Addresses

  Carsten Bormann
  Universitaet Bremen TZI
  Postfach 330440
  D-28359 Bremen
  Germany

  Phone: +49-421-218-63921
  EMail: [email protected]


  Mehmet Ersue
  Nokia Solutions and Networks
  St.-Martinstrasse 76
  81541 Munich
  Germany

  Phone: +49 172 8432301
  EMail: [email protected]


  Ari Keranen
  Ericsson
  Hirsalantie 11
  02420 Jorvas
  Finland

  EMail: [email protected]






















Bormann, et al.               Informational                    [Page 17]