Internet Engineering Task Force (IETF)                          D. Frost
Request for Comments: 7167                                      Blue Sun
Category: Informational                                        S. Bryant
ISSN: 2070-1721                                            Cisco Systems
                                                               M. Bocci
                                                         Alcatel-Lucent
                                                              L. Berger
                                                        LabN Consulting
                                                             April 2014


    A Framework for Point-to-Multipoint MPLS in Transport Networks

Abstract

  The Multiprotocol Label Switching Transport Profile (MPLS-TP) is the
  common set of MPLS protocol functions defined to enable the
  construction and operation of packet transport networks.  The MPLS-TP
  supports both point-to-point and point-to-multipoint transport paths.
  This document defines the elements and functions of the MPLS-TP
  architecture that are applicable specifically to supporting point-to-
  multipoint transport paths.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Not all documents
  approved by the IESG are a candidate for any level of Internet
  Standard; see Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7167.













Frost, et al.                 Informational                     [Page 1]

RFC 7167          MPLS Transport Profile P2MP Framework       April 2014


Copyright Notice

  Copyright (c) 2014 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
    1.1.  Scope . . . . . . . . . . . . . . . . . . . . . . . . . .   3
    1.2.  Terminology . . . . . . . . . . . . . . . . . . . . . . .   3
  2.  Applicability . . . . . . . . . . . . . . . . . . . . . . . .   4
  3.  MPLS-TP P2MP Requirements . . . . . . . . . . . . . . . . . .   4
  4.  Architecture  . . . . . . . . . . . . . . . . . . . . . . . .   6
    4.1.  MPLS-TP Encapsulation and Forwarding  . . . . . . . . . .   6
  5.  Operations, Administration, and Maintenance . . . . . . . . .   6
  6.  Control Plane . . . . . . . . . . . . . . . . . . . . . . . .   7
    6.1.  P2MP LSP Control Plane  . . . . . . . . . . . . . . . . .   8
    6.2.  P2MP PW Control Plane . . . . . . . . . . . . . . . . . .   8
  7.  Survivability . . . . . . . . . . . . . . . . . . . . . . . .   8
  8.  Network Management  . . . . . . . . . . . . . . . . . . . . .   9
  9.  Security Considerations . . . . . . . . . . . . . . . . . . .   9
  10. References  . . . . . . . . . . . . . . . . . . . . . . . . .   9
    10.1.  Normative References . . . . . . . . . . . . . . . . . .   9
    10.2.  Informative References . . . . . . . . . . . . . . . . .  10

















Frost, et al.                 Informational                     [Page 2]

RFC 7167          MPLS Transport Profile P2MP Framework       April 2014


1.  Introduction

  The Multiprotocol Label Switching Transport Profile (MPLS-TP) is the
  common set of MPLS protocol functions defined to meet the
  requirements specified in [RFC5654].  The MPLS-TP Framework [RFC5921]
  provides an overall introduction to the MPLS-TP and defines the
  general architecture of the Transport Profile, as well as the aspects
  specific to point-to-point transport paths.  The purpose of this
  document is to define the elements and functions of the MPLS-TP
  architecture applicable specifically to supporting point-to-
  multipoint transport paths.

1.1.  Scope

  This document defines the elements and functions of the MPLS-TP
  architecture related to supporting point-to-multipoint transport
  paths.  The reader is referred to [RFC5921] for the aspects of the
  MPLS-TP architecture that are generic or are concerned specifically
  with point-to-point transport paths.

1.2.  Terminology

  Term    Definition
  ------- ---------------------------------------------------
  CE      Customer Edge
  LSP     Label Switched Path
  LSR     Label Switching Router
  MEG     Maintenance Entity Group
  MEP     Maintenance Entity Group End Point
  MIP     Maintenance Entity Group Intermediate Point
  MPLS-TE MPLS Traffic Engineering
  MPLS-TP MPLS Transport Profile
  OAM     Operations, Administration, and Maintenance
  OTN     Optical Transport Network
  P2MP    Point-to-multipoint
  PW      Pseudowire
  RSVP-TE Resource Reservation Protocol - Traffic Engineering
  SDH     Synchronous Digital Hierarchy
  tLDP    Targeted LDP

  Detailed definitions and additional terminology may be found in
  [RFC5921] and [RFC5654].









Frost, et al.                 Informational                     [Page 3]

RFC 7167          MPLS Transport Profile P2MP Framework       April 2014


2.  Applicability

  The point-to-multipoint connectivity provided by an MPLS-TP network
  is based on the point-to-multipoint connectivity provided by MPLS
  networks.  Traffic Engineered P2MP LSP support is discussed in
  [RFC4875] and [RFC5332], and P2MP PW support is being developed based
  on [P2MP-PW-REQS] and [VPMS-FRMWK-REQS].  MPLS-TP point-to-multipoint
  connectivity is analogous to that provided by traditional transport
  technologies such as Optical Transport Network point-to-multipoint
  [G.798] and drop-and-continue [G.780], and thus supports the same
  class of traditional applications, e.g., video distribution.

  The scope of this document is limited to point-to-multipoint
  functions and it does not discuss multipoint-to-multipoint support.

3.  MPLS-TP P2MP Requirements

  The requirements for MPLS-TP are specified in [RFC5654], [RFC5860],
  and [RFC5951].  This section provides a brief summary of point-to-
  multipoint transport requirements as set out in those documents; the
  reader is referred to the documents themselves for the definitive and
  complete list of requirements.  This summary does not include the RFC
  2119 [BCP14] conformance language used in the original documents as
  this document is not authoritative.

  From [RFC5654]:

  o  MPLS-TP must support traffic-engineered point-to-multipoint
     transport paths.

  o  MPLS-TP must support unidirectional point-to-multipoint transport
     paths.

  o  MPLS-TP must be capable of using P2MP server (sub)layer
     capabilities as well as P2P server (sub)layer capabilities when
     supporting P2MP MPLS-TP transport paths.

  o  The MPLS-TP control plane must support establishing all the
     connectivity patterns defined for the MPLS-TP data plane (i.e.,
     unidirectional P2P, associated bidirectional P2P, co-routed
     bidirectional P2P, unidirectional P2MP) including configuration of
     protection functions and any associated maintenance functions.

  o  Recovery techniques used for P2P and P2MP should be identical to
     simplify implementation and operation.

  o  Unidirectional 1+1 and 1:n protection for P2MP connectivity must
     be supported.



Frost, et al.                 Informational                     [Page 4]

RFC 7167          MPLS Transport Profile P2MP Framework       April 2014


  o  MPLS-TP recovery in a ring must protect unidirectional P2MP
     transport paths.

  From [RFC5860]:

  o  The protocol solution(s) developed to perform the following OAM
     functions must also apply to point-to-point associated
     bidirectional LSPs, point-to-point unidirectional LSPs, and point-
     to-multipoint LSPs:

     *  Continuity Check

     *  Connectivity Verification, proactive

     *  Lock Instruct

     *  Lock Reporting

     *  Alarm Reporting

     *  Client Failure Indication

     *  Packet Loss Measurement

     *  Packet Delay Measurement

  o  The protocol solution(s) developed to perform the following OAM
     functions may also apply to point-to-point associated
     bidirectional LSPs, point-to-point unidirectional LSPs, and point-
     to-multipoint LSPs:

     *  Connectivity Verification, on-demand

     *  Route Tracing

     *  Diagnostic Tests

     *  Remote Defect Indication

  From [RFC5951]:

  o  For unidirectional (P2P and point-to-multipoint (P2MP))
     connection, proactive measurement of packet loss and loss ratio is
     required.

  o  For a unidirectional (P2P and P2MP) connection, on-demand
     measurement of delay measurement is required.




Frost, et al.                 Informational                     [Page 5]

RFC 7167          MPLS Transport Profile P2MP Framework       April 2014


4.  Architecture

  The overall architecture of the MPLS-TP is defined in [RFC5921].  The
  architecture for point-to-multipoint MPLS-TP comprises the following
  additional elements and functions:

  o  Unidirectional point-to-multipoint LSPs

  o  Unidirectional point-to-multipoint PWs

  o  Optional point-to-multipoint LSP and PW control planes

  o  Survivability, network management, and Operations, Administration,
     and Maintenance functions for point-to-multipoint PWs and LSPs.

  The following subsection summarises the encapsulation and forwarding
  of point-to-multipoint traffic within an MPLS-TP network, and the
  encapsulation options for delivery of traffic to and from MPLS-TP CE
  devices when the network is providing a packet transport service.

4.1.  MPLS-TP Encapsulation and Forwarding

  Packet encapsulation and forwarding for MPLS-TP point-to-multipoint
  LSPs is identical to that for MPLS-TE point-to-multipoint LSPs.
  MPLS-TE point-to-multipoint LSPs were introduced in [RFC4875] and the
  related data-plane behaviour was further clarified in [RFC5332].
  MPLS-TP allows for both upstream-assigned and downstream-assigned
  labels for use with point-to-multipoint LSPs.

  Packet encapsulation and forwarding for point-to-multipoint PWs has
  been discussed within the PWE3 Working Group [P2MP-PW-ENCAPS], but
  such definition is for further study.

5.  Operations, Administration, and Maintenance

  The requirements for MPLS-TP OAM are specified in [RFC5860].  The
  overall OAM architecture for MPLS-TP is defined in [RFC6371], and
  P2MP OAM design considerations are described in Section 3.7 of that
  RFC.

  All the traffic sent over a P2MP transport path, including OAM
  packets generated by a MEP, is sent (multicast) from the root towards
  all the leaves, and thus may be processed by all the MIPs and MEPs
  associated with a P2MP MEG.  If an OAM packet is to be processed by
  only a specific leaf, it requires information to indicate to all
  other leaves that the packet must be discarded.  To address a packet
  to an intermediate node in the tree, Time-to-Live-based addressing is
  used to set the radius and additional information in the OAM payload



Frost, et al.                 Informational                     [Page 6]

RFC 7167          MPLS Transport Profile P2MP Framework       April 2014


  is used to identify the specific destination.  It is worth noting
  that a MIP and MEP may be instantiated on a single node when it is
  both a branch and leaf node.

  P2MP paths are unidirectional; therefore, any return path to an
  originating MEP for on-demand transactions will be out of band.  Out-
  of-band return paths are discussed in Section 3.8 of [RFC5921].

  A more detailed discussion of P2MP OAM considerations can be found in
  [MPLS-TP-P2MP-OAM].

6.  Control Plane

  The framework for the MPLS-TP control plane is provided in [RFC6373].
  This document reviews MPLS-TP control-plane requirements as well as
  provides details on how the MPLS-TP control plane satisfies these
  requirements.  Most of the requirements identified in [RFC6373] apply
  equally to P2P and P2MP transport paths.  The key P2MP-specific
  control-plane requirements are:

  o  requirement 6 (P2MP transport paths),

  o  requirement 34 (use P2P sub-layers),

  o  requirement 49 (common recovery solutions for P2P and P2MP),

  o  requirement 59 (1+1 protection),

  o  requirement 62 (1:n protection), and

  o  requirement 65 (1:n shared mesh recovery).

  [RFC6373] defines the control-plane approach used to support MPLS-TP
  transport paths.  It identifies GMPLS as the control plane for MPLS-
  TP LSPs and tLDP as the control plane for PWs.  MPLS-TP allows that
  either, or both, LSPs and PWs to be provisioned statically or via a
  control plane.  Quoting from [RFC6373]:

     The PW and LSP control planes, collectively, must satisfy the
     MPLS-TP control-plane requirements.  As with P2P services, when
     P2MP client services are provided directly via LSPs, all
     requirements must be satisfied by the LSP control plane.  When
     client services are provided via PWs, the PW and LSP control
     planes can operate in combination, and some functions may be
     satisfied via the PW control plane while others are provided to
     PWs by the LSP control plane.  This is particularly noteworthy for
     P2MP recovery.




Frost, et al.                 Informational                     [Page 7]

RFC 7167          MPLS Transport Profile P2MP Framework       April 2014


6.1.  P2MP LSP Control Plane

  The MPLS-TP control plane for P2MP LSPs uses GMPLS and is based on
  RSVP-TE for P2MP LSPs as defined in [RFC4875].  A detailed listing of
  how GMPLS satisfies MPLS-TP control-plane requirements is provided in
  [RFC6373].

  [RFC6373] notes that recovery techniques for traffic engineered P2MP
  LSPs are not formally defined, and that such a definition is needed.
  A formal definition will be based on existing RFCs and may not
  require any new protocol mechanisms but, nonetheless, should be
  documented.  GMPLS recovery is defined in [RFC4872] and [RFC4873].
  Protection of P2MP LSPs is also discussed in [RFC6372] Section 4.7.3.

6.2.  P2MP PW Control Plane

  The MPLS-TP control plane for P2MP PWs should be based on the LDP
  control protocol used for point-to-point PWs [RFC4447], with updates
  as required for P2MP applications.  A detailed specification of the
  control plane for P2MP PWs is for further study.

7.  Survivability

  The overall survivability architecture for MPLS-TP is defined in
  [RFC6372], and Section 4.7.3 of that RFC in particular describes the
  application of linear protection to unidirectional P2MP entities
  using 1+1 and 1:1 protection architecture.  For 1+1, the approach is
  for the root of the P2MP tree to bridge the user traffic to both the
  working and protection entities.  Each sink/leaf MPLS-TP node selects
  the traffic from one entity according to some predetermined criteria.
  For 1:1, the source/root MPLS-TP node needs to identify the existence
  of a fault condition impacting delivery to any of the leaves.  Fault
  notification happens from the node identifying the fault to the root
  node via an out-of-band path.  The root then selects the protection
  transport path for traffic transfer.  More sophisticated
  survivability approaches such as partial tree protection and 1:n
  protection are for further study.

  The IETF has no experience with P2MP PW survivability as yet;
  therefore, it is proposed that the P2MP PW survivability will
  initially rely on the LSP survivability.  Further work is needed on
  this subject, particularly if a requirement emerges to provide
  survivability for P2MP PWs in an MPLS-TP context.








Frost, et al.                 Informational                     [Page 8]

RFC 7167          MPLS Transport Profile P2MP Framework       April 2014


8.  Network Management

  An overview of network management considerations for MPLS-TP can be
  found in Section 3.14 of [RFC5921].  The provided description applies
  equally to P2MP transport paths.

  The network management architecture and requirements for MPLS-TP are
  specified in [RFC5951].  They derive from the generic specifications
  described in ITU-T G.7710/Y.1701 [G.7710] for transport technologies.
  They also incorporate the OAM requirements for MPLS networks
  [RFC4377] and MPLS-TP networks [RFC5860] and expand on those
  requirements to cover the modifications necessary for fault,
  configuration, performance, and security in a transport network.
  [RFC5951] covers all MPLS-TP connection types, including P2MP.

  [RFC6639] provides the MIB-based architecture for MPLS-TP.  It
  reviews the interrelationships between different MIB modules that are
  not MPLS-TP specific and that can be leveraged for MPLS-TP network
  management, and identifies areas where additional MIB modules are
  required.  While the document does not consider P2MP transport paths,
  it does provide a foundation for an analysis of areas where MIB-
  module modification and addition may be needed to fully support P2MP
  transport paths.  There has also been work in the MPLS working group
  on a P2MP specific MIB, [MPLS-TE-P2MP-MIB].

9.  Security Considerations

  General security considerations for MPLS-TP are covered in [RFC5921].
  Additional security considerations for P2MP LSPs are provided in
  [RFC4875].  This document introduces no new security considerations
  beyond those covered in those documents.

10.  References

10.1.  Normative References

  [RFC4872]  Lang, J., Rekhter, Y., and D. Papadimitriou, "RSVP-TE
             Extensions in Support of End-to-End Generalized Multi-
             Protocol Label Switching (GMPLS) Recovery", RFC 4872, May
             2007.

  [RFC4873]  Berger, L., Bryskin, I., Papadimitriou, D., and A. Farrel,
             "GMPLS Segment Recovery", RFC 4873, May 2007.

  [RFC4875]  Aggarwal, R., Papadimitriou, D., and S. Yasukawa,
             "Extensions to Resource Reservation Protocol - Traffic
             Engineering (RSVP-TE) for Point-to-Multipoint TE Label
             Switched Paths (LSPs)", RFC 4875, May 2007.



Frost, et al.                 Informational                     [Page 9]

RFC 7167          MPLS Transport Profile P2MP Framework       April 2014


  [RFC5332]  Eckert, T., Rosen, E., Aggarwal, R., and Y. Rekhter, "MPLS
             Multicast Encapsulations", RFC 5332, August 2008.

  [RFC5654]  Niven-Jenkins, B., Brungard, D., Betts, M., Sprecher, N.,
             and S. Ueno, "Requirements of an MPLS Transport Profile",
             RFC 5654, September 2009.

  [RFC5921]  Bocci, M., Bryant, S., Frost, D., Levrau, L., and L.
             Berger, "A Framework for MPLS in Transport Networks", RFC
             5921, July 2010.

10.2.  Informative References

  [BCP14]    Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [G.7710]   ITU-T, "Common equipment management function
             requirements", ITU-T G.7710/Y.1701, July 2007.

  [G.780]    ITU-T, "Terms and definitions for synchronous digital
             hierarchy (SDH) networks", ITU-T G.780/Y.1351, July 2010.

  [G.798]    ITU-T, "Characteristics of optical transport network
             hierarchy equipment functional blocks", ITU-T G.798,
             December 2012.

  [MPLS-TE-P2MP-MIB]
             Farrel, A., Yasukawa, S., and T. Nadeau, "Point-to-
             Multipoint Multiprotocol Label Switching (MPLS) Traffic
             Engineering (TE) Management Information Base (MIB)
             module", Work in Progress, April 2009.

  [MPLS-TP-P2MP-OAM]
             Arai, K., Koike, Y., Hamano, T., and M. Namiki, "Framework
             for Point-to-Multipoint MPLS-TP OAM", Work in Progress,
             January 2014.

  [P2MP-PW-ENCAPS]
             Aggarwal, R. and F. Jounay, "Point-to-Multipoint Pseudo-
             Wire Encapsulation", Work in Progress, March 2010.

  [P2MP-PW-REQS]
             Jounay, F., Kamite, Y., Heron, G., and M. Bocci,
             "Requirements and Framework for Point-to-Multipoint
             Pseudowires over MPLS PSNs", Work in Progress, February
             2014.





Frost, et al.                 Informational                    [Page 10]

RFC 7167          MPLS Transport Profile P2MP Framework       April 2014


  [RFC4377]  Nadeau, T., Morrow, M., Swallow, G., Allan, D., and S.
             Matsushima, "Operations and Management (OAM) Requirements
             for Multi-Protocol Label Switched (MPLS) Networks", RFC
             4377, February 2006.

  [RFC4447]  Martini, L., Rosen, E., El-Aawar, N., Smith, T., and G.
             Heron, "Pseudowire Setup and Maintenance Using the Label
             Distribution Protocol (LDP)", RFC 4447, April 2006.

  [RFC5860]  Vigoureux, M., Ward, D., and M. Betts, "Requirements for
             Operations, Administration, and Maintenance (OAM) in MPLS
             Transport Networks", RFC 5860, May 2010.

  [RFC5951]  Lam, K., Mansfield, S., and E. Gray, "Network Management
             Requirements for MPLS-based Transport Networks", RFC 5951,
             September 2010.

  [RFC6371]  Busi, I. and D. Allan, "Operations, Administration, and
             Maintenance Framework for MPLS-Based Transport Networks",
             RFC 6371, September 2011.

  [RFC6372]  Sprecher, N. and A. Farrel, "MPLS Transport Profile (MPLS-
             TP) Survivability Framework", RFC 6372, September 2011.

  [RFC6373]  Andersson, L., Berger, L., Fang, L., Bitar, N., and E.
             Gray, "MPLS Transport Profile (MPLS-TP) Control Plane
             Framework", RFC 6373, September 2011.

  [RFC6639]  King, D. and M. Venkatesan, "Multiprotocol Label Switching
             Transport Profile (MPLS-TP) MIB-Based Management
             Overview", RFC 6639, June 2012.

  [VPMS-FRMWK-REQS]
             Kamite, Y., Jounay, F., Niven-Jenkins, B., Brungard, D.,
             and L. Jin, "Framework and Requirements for Virtual
             Private Multicast Service (VPMS)", Work in Progress,
             October 2012.














Frost, et al.                 Informational                    [Page 11]

RFC 7167          MPLS Transport Profile P2MP Framework       April 2014


Authors' Addresses

  Dan Frost
  Blue Sun

  EMail: [email protected]


  Stewart Bryant
  Cisco Systems

  EMail: [email protected]


  Matthew Bocci
  Alcatel-Lucent
  Voyager Place, Shoppenhangers Road
  Maidenhead, Berks  SL6 2PJ
  United Kingdom

  EMail: [email protected]


  Lou Berger
  LabN Consulting

  Phone: +1-301-468-9228
  EMail: [email protected]























Frost, et al.                 Informational                    [Page 12]