Internet Engineering Task Force (IETF)                             M. Ko
Request for Comments: 7145
Obsoletes: 5046                                             A. Nezhinsky
Category: Standards Track                                       Mellanox
ISSN: 2070-1721                                               April 2014


     Internet Small Computer System Interface (iSCSI) Extensions
       for the Remote Direct Memory Access (RDMA) Specification

Abstract

  Internet Small Computer System Interface (iSCSI) Extensions for
  Remote Direct Memory Access (RDMA) provides the RDMA data transfer
  capability to iSCSI by layering iSCSI on top of an RDMA-Capable
  Protocol.  An RDMA-Capable Protocol provides RDMA Read and Write
  services, which enable data to be transferred directly into SCSI I/O
  Buffers without intermediate data copies.  This document describes
  the extensions to the iSCSI protocol to support RDMA services as
  provided by an RDMA-Capable Protocol.

  This document obsoletes RFC 5046.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7145.















Ko & Nezhinsky               Standards Track                    [Page 1]

RFC 7145                   iSER Specification                 April 2014


Copyright Notice

  Copyright (c) 2014 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1. Introduction ....................................................5
     1.1. Motivation .................................................5
     1.2. iSCSI/iSER Layering ........................................6
     1.3. Architectural Goals ........................................7
     1.4. Protocol Overview ..........................................7
     1.5. RDMA Services and iSER .....................................9
          1.5.1. STag ................................................9
          1.5.2. Send ...............................................10
          1.5.3. RDMA Write .........................................11
          1.5.4. RDMA Read ..........................................11
     1.6. SCSI Read Overview ........................................11
     1.7. SCSI Write Overview .......................................12
  2. Definitions and Acronyms .......................................12
     2.1. Definitions ...............................................12
     2.2. Acronyms ..................................................18
     2.3. Conventions ...............................................20
  3. Upper-Layer Interface Requirements .............................20
     3.1. Operational Primitives offered by iSER ....................21
          3.1.1. Send_Control .......................................21
          3.1.2. Put_Data ...........................................21
          3.1.3. Get_Data ...........................................22
          3.1.4. Allocate_Connection_Resources ......................22
          3.1.5. Deallocate_Connection_Resources ....................23
          3.1.6. Enable_Datamover ...................................23
          3.1.7. Connection_Terminate ...............................23
          3.1.8. Notice_Key_Values ..................................24
          3.1.9. Deallocate_Task_Resources ..........................24
     3.2. Operational Primitives Used by iSER .......................24
          3.2.1. Control_Notify .....................................25
          3.2.2. Data_Completion_Notify .............................25
          3.2.3. Data_ACK_Notify ....................................25



Ko & Nezhinsky               Standards Track                    [Page 2]

RFC 7145                   iSER Specification                 April 2014


          3.2.4. Connection_Terminate_Notify ........................26
     3.3. iSCSI Protocol Usage Requirements .........................26
  4. Lower-Layer Interface Requirements .............................27
     4.1. Interactions with the RCaP Layer ..........................27
     4.2. Interactions with the Transport Layer .....................28
  5. Connection Setup and Termination ...............................28
     5.1. iSCSI/iSER Connection Setup ...............................28
          5.1.1. Initiator Behavior .................................30
          5.1.2. Target Behavior ....................................31
          5.1.3. iSER Hello Exchange ................................33
     5.2. iSCSI/iSER Connection Termination .........................36
          5.2.1. Normal Connection Termination at the Initiator .....36
          5.2.2. Normal Connection Termination at the Target ........36
          5.2.3. Termination without Logout Request/Response PDUs ...37
  6. Login/Text Operational Keys ....................................38
     6.1. HeaderDigest and DataDigest ...............................38
     6.2. MaxRecvDataSegmentLength ..................................38
     6.3. RDMAExtensions ............................................39
     6.4. TargetRecvDataSegmentLength ...............................40
     6.5. InitiatorRecvDataSegmentLength ............................41
     6.6. OFMarker and IFMarker .....................................41
     6.7. MaxOutstandingUnexpectedPDUs ..............................41
     6.8. MaxAHSLength ..............................................42
     6.9. TaggedBufferForSolicitedDataOnly ..........................43
     6.10. iSERHelloRequired ........................................43
  7. iSCSI PDU Considerations .......................................44
     7.1. iSCSI Data-Type PDU .......................................44
     7.2. iSCSI Control-Type PDU ....................................45
     7.3. iSCSI PDUs ................................................45
          7.3.1. SCSI Command .......................................45
          7.3.2. SCSI Response ......................................47
          7.3.3. Task Management Function Request/Response ..........49
          7.3.4. SCSI Data-out ......................................50
          7.3.5. SCSI Data-in .......................................51
          7.3.6. Ready To Transfer (R2T) ............................53
          7.3.7. Asynchronous Message ...............................55
          7.3.8. Text Request and Text Response .....................55
          7.3.9. Login Request and Login Response ...................55
          7.3.10. Logout Request and Logout Response ................56
          7.3.11. SNACK Request .....................................56
          7.3.12. Reject ............................................56
          7.3.13. NOP-Out and NOP-In ................................57
  8. Flow Control and STag Management ...............................57
     8.1. Flow Control for RDMA Send Messages .......................57
          8.1.1. Flow Control for Control-Type PDUs from the
                 Initiator ..........................................58
          8.1.2. Flow Control for Control-Type PDUs from the
                 Target .............................................60



Ko & Nezhinsky               Standards Track                    [Page 3]

RFC 7145                   iSER Specification                 April 2014


     8.2. Flow Control for RDMA Read Resources ......................61
     8.3. STag Management ...........................................62
          8.3.1. Allocation of STags ................................62
          8.3.2. Invalidation of STags ..............................62
  9. iSER Control and Data Transfer .................................64
     9.1. iSER Header Format ........................................64
     9.2. iSER Header Format for iSCSI Control-Type PDU .............65
     9.3. iSER Header Format for iSER Hello Message .................67
     9.4. iSER Header Format for iSER HelloReply Message ............68
     9.5. SCSI Data Transfer Operations .............................69
          9.5.1. SCSI Write Operation ...............................69
          9.5.2. SCSI Read Operation ................................70
          9.5.3. Bidirectional Operation ............................70
  10. iSER Error Handling and Recovery ..............................71
     10.1. Error Handling ...........................................71
          10.1.1. Errors in the Transport Layer .....................71
          10.1.2. Errors in the RCaP Layer ..........................72
          10.1.3. Errors in the iSER Layer ..........................73
          10.1.4. Errors in the iSCSI Layer .........................75
     10.2. Error Recovery ...........................................76
          10.2.1. PDU Recovery ......................................77
          10.2.2. Connection Recovery ...............................77
  11. Security Considerations .......................................78
  12. IANA Considerations ...........................................79
  13. References ....................................................79
     13.1. Normative References .....................................79
     13.2. Informative References ...................................80
  Appendix A. Summary of Changes from RFC 5046 ......................81
  Appendix B. Message Format for iSER ...............................83
  B.1. iWARP Message Format for iSER Hello Message ..................83
  B.2. iWARP Message Format for iSER HelloReply Message .............84
  B.3. iSER Header Format for SCSI Read Command PDU .................85
  B.4. iSER Header Format for SCSI Write Command PDU ................86
  B.5. iSER Header Format for SCSI Response PDU .....................87
  Appendix C. Architectural discussion of iSER over InfiniBand ......88
  C.1. Host Side of iSCSI and iSER Connections in InfiniBand ........88
  C.2. Storage Side of iSCSI and iSER Mixed Network Environment .....89
  C.3. Discovery Processes for an InfiniBand Host ...................89
  C.4. IBTA Connection Specifications ...............................90
  Appendix D. Acknowledgments .......................................90











Ko & Nezhinsky               Standards Track                    [Page 4]

RFC 7145                   iSER Specification                 April 2014


Table of Figures

  Figure 1. Example of iSCSI/iSER Layering in Full Feature Phase .....6
  Figure 2. iSER Header Format ......................................64
  Figure 3. iSER Header Format for iSCSI Control-Type PDU ...........65
  Figure 4. iSER Header Format for iSER Hello Message ...............67
  Figure 5. iSER Header Format for iSER HelloReply Message ..........68
  Figure 6. SendSE Message Containing an iSER Hello Message .........83
  Figure 7. SendSE Message Containing an iSER HelloReply Message ....84
  Figure 8. iSER Header Format for SCSI Read Command PDU ............85
  Figure 9. iSER Header Format for SCSI Write Command PDU ...........86
  Figure 10. iSER Header Format for SCSI Response PDU ...............87
  Figure 11. iSCSI and iSER on IB ...................................88
  Figure 12. Storage Controller with TCP, iWARP, and IB Connections .89

1.  Introduction

1.1.  Motivation

  The iSCSI protocol ([iSCSI]) is a mapping of the SCSI Architecture
  Model (see [SAM5] and [iSCSI-SAM]) over the TCP protocol.  SCSI
  commands are carried by iSCSI requests, and SCSI responses and status
  are carried by iSCSI responses.  Other iSCSI protocol exchanges and
  SCSI Data are also transported in iSCSI PDUs.

  Out-of-order TCP segments in the Traditional iSCSI model have to be
  stored and reassembled before the iSCSI protocol layer within an end
  node can place the data in the iSCSI buffers.  This reassembly is
  required because not every TCP segment is likely to contain an iSCSI
  header to enable its placement and TCP itself does not have a built-
  in mechanism for signaling ULP (Upper Level Protocol) message
  boundaries to aid placement of out-of-order segments.  This TCP
  reassembly at high network speeds is quite counterproductive for the
  following reasons: wasted memory bandwidth in data copying, need for
  reassembly memory, wasted CPU cycles in data copying, and the general
  store-and-forward latency from an application perspective.

  The generic term RDMA-Capable Protocol (RCaP) is used to refer to
  protocol stacks that provide the Remote Direct Memory Access (RDMA)
  functionality, such as iWARP and InfiniBand.

  With the availability of RDMA-Capable Controllers within a host
  system, it is appropriate for iSCSI to be able to exploit the direct
  data placement function of the RDMA-Capable Controller like other
  applications.






Ko & Nezhinsky               Standards Track                    [Page 5]

RFC 7145                   iSER Specification                 April 2014


  iSCSI Extensions for RDMA (iSER) is designed precisely to take
  advantage of generic RDMA technologies -- iSER's goal is to permit
  iSCSI to employ direct data placement and RDMA capabilities using a
  generic RDMA-Capable Controller.  In summary, the iSCSI/iSER protocol
  stack is designed to enable scaling to high speeds by relying on a
  generic data placement process and RDMA technologies and products
  that enable direct data placement of both in-order and out-of-order
  data.

  This document describes iSER as a protocol extension to iSCSI, both
  for convenience of description and also because it is true in a very
  strict protocol sense.  However, it is to be noted that iSER is in
  reality extending the connectivity of the iSCSI protocol defined in
  [iSCSI], and the name "iSER" reflects this reality.

  When the iSCSI protocol as defined in [iSCSI] (i.e., without the iSER
  enhancements) is intended in the rest of the document, the term
  "Traditional iSCSI" is used to make the intention clear.

  This document obsoletes RFC 5046.  See Appendix A for the list of
  changes from RFC 5046.

1.2.  iSCSI/iSER Layering

  iSCSI Extensions for RDMA (iSER) is layered between the iSCSI layer
  and the RCaP layer.

        +--------------------------------------------------------+
        |                        SCSI                            |
        +--------------------------------------------------------+
        |                        iSCSI                           |
  DI -> +--------------------------------------------------------+
        |                         iSER                           |
        +-------+--------------------------+---------------------+
        | RDMAP |                          |                     |
        +-------+      InfiniBand          |                     |
        |  DDP  |       Reliable           |       Other         |
        +-------+       Connected          |        RDMA         |
        |  MPA  |       Transport          |       Capable       |
        +-------+        Service           |       Protocol      |
        |  TCP  |                          |                     |
        +-------+--------------------------+---------------------+
        |  IP   | InfiniBand Network Layer | Other Network Layer |
        +-------+--------------------------+---------------------+

   Figure 1: Example of iSCSI/iSER Layering in Full Feature Phase





Ko & Nezhinsky               Standards Track                    [Page 6]

RFC 7145                   iSER Specification                 April 2014


  Figure 1 shows an example of the relationship between SCSI, iSCSI,
  iSER, and the different RCaP layers.  For TCP, the RCaP is iWARP.
  For InfiniBand, the RCaP is the Reliable Connected Transport Service.
  Note that the iSCSI layer as described here supports the RDMA
  Extensions as used in iSER.

1.3.  Architectural Goals

  This section summarizes the architectural goals that guided the
  design of iSER.

  1.  Provide an RDMA data transfer model for iSCSI that enables direct
      in-order or out-of-order data placement of SCSI data into pre-
      allocated SCSI buffers while maintaining in-order data delivery.

  2.  Do not require any major changes to the SCSI Architecture Model
      [SAM5] and SCSI command set standards.

  3.  Utilize the existing iSCSI infrastructure (sometimes referred to
      as "iSCSI ecosystem") including but not limited to MIB,
      bootstrapping, negotiation, naming and discovery, and security.

  4.  Enable a session to operate in the Traditional iSCSI data
      transfer mode if iSER is not supported by either the initiator or
      the target.  (Do not require iSCSI Full Feature Phase
      interoperability between an end node operating in Traditional
      iSCSI mode and an end node operating in iSER-assisted mode.)

  5.  Allow initiator and target implementations to utilize generic
      RDMA-Capable Controllers such as RNICs or to implement iSCSI and
      iSER in software.  (Do not require iSCSI- or iSER-specific
      assists in the RCaP implementation or RDMA-Capable Controller.)

  6.  Implement a lightweight Datamover protocol for iSCSI with minimal
      state maintenance.

1.4.  Protocol Overview

  Consistent with the architectural goals stated in Section 1.3, the
  iSER protocol does not require changes in the iSCSI ecosystem or any
  related SCSI specifications.  The iSER protocol defines the mapping
  of iSCSI PDUs to RCaP Messages in such a way that it is entirely
  feasible to realize iSCSI/iSER implementations that are based on
  generic RDMA-Capable Controllers.  The iSER protocol layer requires
  minimal state maintenance to assist a connection during the iSCSI
  Full Feature Phase, besides being oblivious to the notion of an iSCSI
  session.  The crucial protocol aspects of iSER may be summarized as
  follows:



Ko & Nezhinsky               Standards Track                    [Page 7]

RFC 7145                   iSER Specification                 April 2014


  1.  iSER-assisted mode is negotiated during the iSCSI login in the
      leading connection for each session, and an entire iSCSI session
      can only operate in one mode (i.e., a connection in a session
      cannot operate in iSER-assisted mode if a different connection of
      the same session is already in Full Feature Phase in the
      Traditional iSCSI mode).

  2.  Once in iSER-assisted mode, all iSCSI interactions on that
      connection use RCaP Messages.

  3.  A Send Message is used for carrying an iSCSI control-type PDU
      preceded by an iSER header.  See Section 7.2 for more details on
      iSCSI control-type PDUs.

  4.  RDMA Write, RDMA Read Request, and RDMA Read Response Messages
      are used for carrying control and all data information associated
      with the iSCSI data-type PDUs (i.e., SCSI Data-In PDUs and R2T
      PDUs).  iSER does not use SCSI Data-Out PDUs for solicited data,
      and SCSI Data-Out PDUs for unsolicited data are not treated as
      iSCSI data-type PDUs by iSER because RDMA is not used.  See
      Section 7.1 for more details on iSCSI data-type PDUs.

  5.  The target drives all data transfer (with the exception of iSCSI
      unsolicited data) for SCSI writes and SCSI reads, by issuing RDMA
      Read Requests and RDMA Writes, respectively.

  6.  RCaP is responsible for ensuring data integrity.  (For example,
      iWARP includes a CRC-enhanced framing layer called MPA on top of
      TCP; and for InfiniBand, the CRCs are included in the Reliable
      Connection mode).  For this reason, iSCSI header and data digests
      are negotiated to "None" for iSCSI/iSER sessions.

  7.  The iSCSI error recovery hierarchy defined in [iSCSI] is fully
      supported by iSER.  (However, see Section 7.3.11 on the handling
      of SNACK Request PDUs.)

  8.  iSER requires no changes to iSCSI security and text mode
      negotiation mechanisms.

  Note that Traditional iSCSI implementations may have to be adapted to
  employ iSER.  It is expected that the adaptation when required is
  likely to be centered around the upper-layer interface requirements
  of iSER (Section 3).








Ko & Nezhinsky               Standards Track                    [Page 8]

RFC 7145                   iSER Specification                 April 2014


1.5.  RDMA Services and iSER

  iSER is designed to work with software and/or hardware protocol
  stacks providing the protocol services defined in RCaP documents such
  as [RDMAP], [IB], etc.  The following subsections describe the key
  protocol elements of RCaP services on which iSER relies.

1.5.1.  STag

  An STag is the identifier of an I/O Buffer unique to an RDMA-Capable
  Controller that the iSER layer Advertises to the remote iSCSI/iSER
  node in order to complete a SCSI I/O.

  In iSER, Advertisement is the act of informing the target by the
  initiator that an I/O Buffer is available at the initiator for RDMA
  Read or RDMA Write access by the target.  The initiator Advertises
  the I/O Buffer by including the STag and the Base Offset in the
  header of an iSER Message containing the SCSI Command PDU to the
  target.  The buffer length is as specified in the SCSI Command PDU.

  The iSER layer at the initiator Advertises the STag and the Base
  Offset for the I/O Buffer of each SCSI I/O to the iSER layer at the
  target in the iSER header of a Send Message containing the SCSI
  Command PDU, unless the I/O can be completely satisfied by
  unsolicited data alone.  The SendSE Message should be used if
  supported by the RCaP layer (e.g., iWARP).

  The iSER layer at the target provides the STag for the I/O Buffer
  that is the Data Sink of an RDMA Read Operation (Section 1.5.4) to
  the RCaP layer on the initiator node -- i.e., this is completely
  transparent to the iSER layer at the initiator.

  The iSER layer at the initiator SHOULD invalidate the Advertised STag
  upon a normal completion of the associated task.  The Send with
  Invalidate Message, if supported by the RCaP layer (e.g., iWARP), can
  be used for automatic invalidation when it is used to carry the SCSI
  Response PDU.  There are two exceptions to this automatic
  invalidation -- bidirectional commands and abnormal completion of a
  command.  The iSER layer at the initiator SHOULD explicitly
  invalidate the STag in these two cases.  That iSER layer MUST check
  that STag invalidation has occurred whenever receipt of a Send with
  Invalidate message is the expected means of causing an STag to be
  invalidated, and it MUST perform the STag invalidation if the STag
  has not already been invalidated (e.g., because a Send Message was
  used instead of Send with Invalidate).






Ko & Nezhinsky               Standards Track                    [Page 9]

RFC 7145                   iSER Specification                 April 2014


  If the Advertised STag is not invalidated as recommended in the
  foregoing paragraph (e.g., in order to cache the STag for future
  reuse), the I/O Buffer remains exposed to the network for access by
  the RCaP.  Such an I/O Buffer is capable of being read or written by
  the RCaP outside the scope of the iSCSI operation for which it was
  originally established; this fact has both robustness and security
  considerations.  The robustness considerations are that the system
  containing the iSER initiator may react poorly to an unexpected
  modification of its memory.  For the security considerations, see
  Section 11.

1.5.2.  Send

  Send is the RDMA Operation that is not addressed to an Advertised
  buffer and uses Untagged buffers as the message is received.

  The iSER layer at the initiator uses the Send Operation to transmit
  any iSCSI control-type PDU to the target.  As an example, the
  initiator uses Send Operations to transfer iSER Messages containing
  SCSI Command PDUs to the iSER layer at the target.

  An iSER layer at the target uses the Send Operation to transmit any
  iSCSI control-type PDU to the initiator.  As an example, the target
  uses Send Operations to transfer iSER Messages containing SCSI
  Response PDUs to the iSER layer at the initiator.

  For interoperability, iSER implementations SHOULD accept and
  correctly process SendSE and SendInvSE messages.  However, SendSE and
  SendInvSE messages are to be regarded as optimizations or
  enhancements to the basic Send Message, and their support may vary by
  RCaP protocol and specific implementation.  In general, these
  messages SHOULD NOT be used, unless the RCaP requires support for
  them in all implementations.  If these messages are used, the
  implementation SHOULD be capable of reverting to use of Send in order
  to work with a receiver that does not support these messages.
  Attempted use of these messages with a peer that does not support
  them may result in a fatal error that closes the RCaP connection.
  For example, these messages SHOULD NOT be used with the InfiniBand
  RCaP because InfiniBand does not require support for them in all
  cases.  New iSER implementations SHOULD use Send (and not SendSE or
  SendInvSE) unless there are compelling reasons for doing otherwise.
  Similarly, iSER implementations SHOULD NOT rely on events triggered
  by SendSE and SendInvSE, as these messages may not be used.








Ko & Nezhinsky               Standards Track                   [Page 10]

RFC 7145                   iSER Specification                 April 2014


1.5.3.  RDMA Write

  RDMA Write is the RDMA Operation that is used to place data into an
  Advertised buffer at the Data Sink.  The Data Source addresses the
  Message using an STag and a Tagged Offset that are valid on the Data
  Sink.

  The iSER layer at the target uses the RDMA Write Operation to
  transfer the contents of a local I/O Buffer to an Advertised I/O
  Buffer at the initiator.  The iSER layer at the target uses the RDMA
  Write to transfer the whole data or part of the data required to
  complete a SCSI Read command.

  The iSER layer at the initiator does not employ RDMA Writes.

1.5.4.  RDMA Read

  RDMA Read is the RDMA Operation that is used to retrieve data from an
  Advertised buffer at the Data Source.  The sender of the RDMA Read
  Request addresses the Message using an STag and a Tagged Offset that
  are valid on the Data Source in addition to providing a valid local
  STag and Tagged Offset that identify the Data Sink.

  The iSER layer at the target uses the RDMA Read Operation to transfer
  the contents of an Advertised I/O Buffer at the initiator to a local
  I/O Buffer at the target.  The iSER layer at the target uses the RDMA
  Read to fetch whole or part of the data required to complete a SCSI
  Write Command.

  The iSER layer at the initiator does not employ RDMA Reads.

1.6.  SCSI Read Overview

  The iSER layer at the initiator receives the SCSI Command PDU from
  the iSCSI layer.  The iSER layer at the initiator generates an STag
  for the I/O Buffer of the SCSI Read and Advertises the buffer by
  including the STag and the Base Offset as part of the iSER header for
  the PDU.  The iSER Message is transferred to the target using a Send
  Message.  The SendSE Message should be used if supported by the RCaP
  layer (e.g., iWARP).

  The iSER layer at the target uses one or more RDMA Writes to transfer
  the data required to complete the SCSI Read.

  The iSER layer at the target uses a Send Message to transfer the SCSI
  Response PDU back to the iSER layer at the initiator.  The iSER layer
  at the initiator invalidates the STag and notifies the iSCSI layer of




Ko & Nezhinsky               Standards Track                   [Page 11]

RFC 7145                   iSER Specification                 April 2014


  the availability of the SCSI Response PDU.  The Send with Invalidate
  Message, if supported by the RCaP layer (e.g., iWARP), can be used
  for automatic invalidation of the STag.

1.7.  SCSI Write Overview

  The iSER layer at the initiator receives the SCSI Command PDU from
  the iSCSI layer.  If solicited data transfer is involved, the iSER
  layer at the initiator generates an STag for the I/O Buffer of the
  SCSI Write and Advertises the buffer by including the STag and the
  Base Offset as part of the iSER header for the PDU.  The iSER Message
  is transferred to the target using a Send Message.  The SendSE
  Message should be used if supported by the RCaP layer (e.g., iWARP).

  The iSER layer at the initiator may optionally send one or more non-
  immediate unsolicited data PDUs to the target using Send Messages.

  If solicited data transfer is involved, the iSER layer at the target
  uses one or more RDMA Reads to transfer the data required to complete
  the SCSI Write.

  The iSER layer at the target uses a Send Message to transfer the SCSI
  Response PDU back to the iSER layer at the initiator.  The iSER layer
  at the initiator invalidates the STag and notifies the iSCSI layer of
  the availability of the SCSI Response PDU.  The Send with Invalidate
  Message, if supported by the RCaP layer (e.g., iWARP), can be used
  for automatic invalidation of the STag.

2.  Definitions and Acronyms

2.1.  Definitions

  Advertisement (Advertised, Advertise, Advertisements, Advertises) --
     The act of informing a remote iSER (iSCSI Extensions for RDMA)
     layer that a local node's buffer is available to it.  A node makes
     a buffer available for incoming RDMA Read Request Message or
     incoming RDMA Write Message access by informing the remote iSER
     layer of the Tagged Buffer identifiers (STag, Base Offset, and
     buffer length).  Note that this Advertisement of Tagged Buffer
     information is the responsibility of the iSER layer on either end
     and is not defined by the RDMA-Capable Protocol.  A typical method
     would be for the iSER layer to embed the Tagged Buffer's STag,
     Base Offset, and buffer length in a message destined for the
     remote iSER layer.

  Base Offset - A value when added to the Buffer Offset forms the
     Tagged Offset.




Ko & Nezhinsky               Standards Track                   [Page 12]

RFC 7145                   iSER Specification                 April 2014


  Completion (Completed, Complete, Completes) - Completion is defined
     as the process by which the RDMA-Capable Protocol layer informs
     the iSER layer that a particular RDMA Operation has performed all
     functions specified for the RDMA Operation.

  Connection - A connection is a logical bidirectional communication
     channel between the initiator and the target, e.g., a TCP
     connection.  Communication between the initiator and the target
     occurs over one or more connections.  The connections carry
     control messages, SCSI commands, parameters, and data within iSCSI
     Protocol Data Units (iSCSI PDUs).

  Connection Handle - An information element that identifies the
     particular iSCSI connection and is unique for a given iSCSI layer
     and the underlying iSER layer.  Every invocation of an Operational
     Primitive is qualified with the Connection Handle.

  Data Sink - The peer receiving a data payload.  Note that the Data
     Sink can be required to both send and receive RCaP (RDMA-Capable
     Protocol) Messages to transfer a data payload.

  Data Source - The peer sending a data payload.  Note that the Data
     Source can be required to both send and receive RCaP Messages to
     transfer a data payload.

  Datamover Interface (DI) - The interface between the iSCSI layer and
     the Datamover Layer as described in [DA].

  Datamover Layer - A layer that is directly below the iSCSI layer and
     above the underlying transport layers.  This layer exposes and
     uses a set of transport-independent Operational Primitives for the
     communication between the iSCSI layer and itself.  The Datamover
     layer, operating in conjunction with the transport layers, moves
     the control and data information on the iSCSI connection.  In this
     specification, the iSER layer is the Datamover layer.

  Datamover Protocol - A Datamover protocol is the wire protocol that
     is defined to realize the Datamover-layer functionality.  In this
     specification, the iSER protocol is the Datamover protocol.

  Inbound RDMA Read Queue Depth (IRD) - The maximum number of incoming
     outstanding RDMA Read Requests that the RDMA-Capable Controller
     can handle on a particular RCaP Stream at the Data Source.  For
     some RDMA-Capable Protocol layers, the term "IRD" may be known by
     a different name.  For example, for InfiniBand, the equivalent to
     IRD is the Responder Resources.





Ko & Nezhinsky               Standards Track                   [Page 13]

RFC 7145                   iSER Specification                 April 2014


  I/O Buffer - A buffer that is used in a SCSI Read or Write operation
     so SCSI data may be sent from or received into that buffer.

  iSCSI - The iSCSI protocol as defined in [iSCSI] is a mapping of the
     SCSI Architecture Model of SAM-5 over TCP.

  iSCSI control-type PDU - Any iSCSI PDU that is not an iSCSI data-
     type PDU and also not a SCSI Data-Out PDU carrying solicited data
     is defined as an iSCSI control-type PDU.  Specifically, it is to
     be noted that SCSI Data-Out PDUs for unsolicited data are defined
     as iSCSI control-type PDUs.

  iSCSI data-type PDU - An iSCSI data-type PDU is defined as an iSCSI
     PDU that causes data transfer via RDMA operations at the iSER
     layer, transparent to the remote iSCSI layer, to take place
     between the peer iSCSI nodes on a Full Feature Phase iSCSI
     connection.  An iSCSI data-type PDU, when requested for
     transmission by the sender iSCSI layer, results in the associated
     data transfer without the participation of the remote iSCSI layer,
     i.e., the PDU itself is not delivered as-is to the remote iSCSI
     layer.  The following iSCSI PDUs constitute the set of iSCSI data-
     type PDUs -- SCSI Data-In PDU and R2T PDU.

  iSCSI Layer - A layer in the protocol stack implementation within an
     end node that implements the iSCSI protocol and interfaces with
     the iSER layer via the Datamover Interface.

  iSCSI PDU (iSCSI Protocol Data Unit) - The iSCSI layer at the
     initiator and the iSCSI layer at the target divide their
     communications into messages.  The term "iSCSI Protocol Data Unit"
     (iSCSI PDU) is used for these messages.

  iSCSI/iSER Connection - An iSER-assisted iSCSI connection.  An iSCSI
     connection that is not iSER assisted always maps onto a TCP
     connection at the transport level.  But an iSER-assisted iSCSI
     connection may not have an underlying TCP connection.  For some
     RCaP implementations (e.g., iWARP), an iSER-assisted iSCSI
     connection has an underlying TCP connection.  For other RCaP
     implementations (e.g., InfiniBand), there is no underlying TCP
     connection.  (In the specific example of InfiniBand [IB], an iSER-
     assisted iSCSI connection is directly mapped onto the InfiniBand
     Reliable Connection-based (RC) channel.)

  iSCSI/iSER Session - An iSER-assisted iSCSI session.  All connections
     of an iSCSI/iSER session are iSCSI/iSER connections.

  iSER - iSCSI Extensions for RDMA, the protocol defined in this
     document.



Ko & Nezhinsky               Standards Track                   [Page 14]

RFC 7145                   iSER Specification                 April 2014


  iSER-assisted - A term generally used to describe the operation of
     iSCSI when the iSER functionality is also enabled below the iSCSI
     layer for the specific iSCSI/iSER connection in question.

  iSER-IRD - This variable represents the maximum number of incoming
     outstanding RDMA Read Requests that the iSER layer at the
     initiator grants on a particular RCaP Stream.

  iSER-ORD - This variable represents the maximum number of outstanding
     RDMA Read Requests that the iSER layer can initiate on a
     particular RCaP Stream.  This variable is maintained only by the
     iSER layer at the target.

  iSER Layer - The layer that implements the iSCSI Extensions for RDMA
     (iSER) protocol.

  iWARP - A suite of wire protocols comprising of [RDMAP], [DDP], and
     [MPA] when layered above [TCP].  [RDMAP] and [DDP] may be layered
     above SCTP or other transport protocols.

  Local Mapping - A task state record maintained by the iSER layer that
     associates the Initiator Task Tag to the Local STag(s).  The
     specifics of the record structure are implementation dependent.

  Local Peer - The implementation of the RDMA-Capable Protocol on the
     local end of the connection.  Used to refer to the local entity
     when describing protocol exchanges or other interactions between
     two nodes.

  Node - A computing device attached to one or more links of a network.
     A node in this context does not refer to a specific application or
     protocol instantiation running on the computer.  A node may
     consist of one or more RDMA-Capable Controllers installed in a
     host computer.

  Operational Primitive - An Operational Primitive is an abstract
     functional interface procedure that requests another layer to
     perform a specific action on the requestor's behalf or notifies
     the other layer of some event.  The Datamover Interface between an
     iSCSI layer and a Datamover layer within an iSCSI end node uses a
     set of Operational Primitives to define the functional interface
     between the two layers.  Note that not every invocation of an
     Operational Primitive may elicit a response from the requested
     layer.  A full discussion of the Operational Primitive types and
     request-response semantics available to iSCSI and iSER can be
     found in [DA].





Ko & Nezhinsky               Standards Track                   [Page 15]

RFC 7145                   iSER Specification                 April 2014


  Outbound RDMA Read Queue Depth (ORD) - The maximum number of
     outstanding RDMA Read Requests that the RDMA-Capable Controller
     can initiate on a particular RCaP Stream at the Data Sink.  For
     some RDMA-Capable Protocol layer, the term "ORD" may be known by a
     different name.  For example, for InfiniBand, the equivalent to
     ORD is the Initiator Depth.

  Phase Collapse - Refers to the optimization in iSCSI where the SCSI
     status is transferred along with the final SCSI Data-In PDU from a
     target.  See Section 4.2 in [iSCSI].

  RCaP Message - One or more packets of the network layer that
     constitute a single RDMA operation or a part of an RDMA Read
     Operation of the RDMA-Capable Protocol.  For iWARP, an RCaP
     Message is known as an RDMAP Message.

  RCaP Stream - A single bidirectional association between the peer
     RDMA-Capable Protocol layers on two nodes over a single transport-
     level stream.  For iWARP, an RCaP Stream is known as an RDMAP
     Stream, and the association is created following a successful
     Login Phase during which iSER support is negotiated.

  RDMA-Capable Protocol (RCaP) - The protocol or protocol suite that
     provides a reliable RDMA transport functionality, e.g., iWARP,
     InfiniBand, etc.

  RDMA-Capable Controller - A network I/O adapter or embedded
     controller with RDMA functionality.  For example, for iWARP, this
     could be an RNIC, and for InfiniBand, this could be a HCA (Host
     Channel Adapter) or TCA (Target Channel Adapter).

  RDMA-enabled Network Interface Controller (RNIC) - A network I/O
     adapter or embedded controller with iWARP functionality.

  RDMA Operation - A sequence of RCaP Messages, including control
     messages, to transfer data from a Data Source to a Data Sink.  The
     following RDMA Operations are defined -- RDMA Write Operation,
     RDMA Read Operation, and Send Operation.

  RDMA Protocol (RDMAP) - A wire protocol that supports RDMA Operations
     to transfer ULP data between a Local Peer and the Remote Peer as
     described in [RDMAP].

  RDMA Read Operation - An RDMA Operation used by the Data Sink to
     transfer the contents of a Data Source buffer from the Remote Peer
     to a Data Sink buffer at the Local Peer.  An RDMA Read operation
     consists of a single RDMA Read Request Message and a single RDMA
     Read Response Message.



Ko & Nezhinsky               Standards Track                   [Page 16]

RFC 7145                   iSER Specification                 April 2014


  RDMA Read Request - An RCaP Message used by the Data Sink to request
     the Data Source to transfer the contents of a buffer.  The RDMA
     Read Request Message describes both the Data Source and the Data
     Sink buffers.

  RDMA Read Response - An RCaP Message used by the Data Source to
     transfer the contents of a buffer to the Data Sink, in response to
     an RDMA Read Request.  The RDMA Read Response Message only
     describes the Data Sink buffer.

  RDMA Write Operation - An RDMA Operation used by the Data Source to
     transfer the contents of a Data Source buffer from the Local Peer
     to a Data Sink buffer at the Remote Peer.  The RDMA Write Message
     only describes the Data Sink buffer.

  Remote Direct Memory Access (RDMA) - A method of accessing memory on
     a remote system in which the local system specifies the remote
     location of the data to be transferred.  Employing an RDMA-
     Capable Controller in the remote system allows the access to take
     place without interrupting the processing of the CPU(s) on the
     system.

  Remote Mapping - A task state record maintained by the iSER layer
     that associates the Initiator Task Tag to the Advertised STag(s)
     and the Base Offset(s).  The specifics of the record structure are
     implementation dependent.

  Remote Peer - The implementation of the RDMA-Capable Protocol on the
     opposite end of the connection.  Used to refer to the remote
     entity when describing protocol exchanges or other interactions
     between two nodes.

  SCSI Layer - This layer builds/receives SCSI CDBs (Command Descriptor
     Blocks) and sends/receives them with the remaining command execute
     [SAM5] parameters to/from the iSCSI layer.

  Send - An RDMA Operation that transfers the content of a buffer from
     the Local Peer to an untagged buffer at the Remote Peer.

  SendInvSE Message - A Send with Solicited Event and Invalidate
     Message.

  SendSE Message - A Send with Solicited Event Message.

  Sequence Number (SN) - DataSN for a SCSI Data-In PDU and R2TSN for an
     R2T PDU.  The semantics for both types of sequence numbers are as
     defined in [iSCSI].




Ko & Nezhinsky               Standards Track                   [Page 17]

RFC 7145                   iSER Specification                 April 2014


  Session, iSCSI Session - The group of connections that link an
     initiator SCSI port with a target SCSI port form an iSCSI session
     (equivalent to a SCSI Initiator-Target (I-T) nexus).  Connections
     can be added to and removed from a session even while the I-T
     nexus is intact.  Across all connections within a session, an
     initiator sees one and the same target.

  Steering Tag (STag) - An identifier of a Tagged Buffer on a node
     (Local or Remote) as defined in [RDMAP] and [DDP].  For other
     RDMA-Capable Protocols, the Steering Tag may be known by different
     names but will be referred to herein as STags.  For example, for
     InfiniBand, a Remote STag is known as an R-Key, and a Local STag
     is known as an L-Key, and both will be considered STags.

  Tagged Buffer - A buffer that is explicitly Advertised to the iSER
     layer at the remote node through the exchange of an STag, Base
     Offset, and length.

  Tagged Offset - The offset within a Tagged Buffer.

  Traditional iSCSI - Refers to the iSCSI protocol as defined in
     [iSCSI] (i.e., without the iSER enhancements).

  Untagged Buffer - A buffer that is not explicitly Advertised to the
     iSER layer at the remode node.

2.2.  Acronyms

  Acronym        Definition

  --------------------------------------------------------------

  AHS            Additional Header Segment

  BHS            Basic Header Segment

  CO             Connection Only

  CRC            Cyclic Redundancy Check

  DDP            Direct Data Placement Protocol

  DI             Datamover Interface

  HCA            Host Channel Adapter

  IANA           Internet Assigned Numbers Authority




Ko & Nezhinsky               Standards Track                   [Page 18]

RFC 7145                   iSER Specification                 April 2014


  IB             InfiniBand

  IETF           Internet Engineering Task Force

  I/O            Input - Output

  IO             Initialize Only

  IP             Internet Protocol

  IPoIB          IP over InfiniBand

  IPsec          Internet Protocol Security

  iSER           iSCSI Extensions for RDMA

  ITT            Initiator Task Tag

  LO             Leading Only

  MPA            Marker PDU Aligned Framing for TCP

  NOP            No Operation

  NSG            Next Stage (during the iSCSI Login Phase)

  PDU            Protocol Data Unit

  R2T            Ready To Transfer

  R2TSN          Ready To Transfer Sequence Number

  RCaP           RDMA-Capable Protocol

  RDMA           Remote Direct Memory Access

  RDMAP          Remote Direct Memory Access Protocol

  RFC            Request For Comments

  RNIC           RDMA-enabled Network Interface Controller

  SAM5           SCSI Architecture Model - 5

  SCSI           Small Computer System Interface






Ko & Nezhinsky               Standards Track                   [Page 19]

RFC 7145                   iSER Specification                 April 2014


  SNACK          Selective Negative Acknowledgment - also

                 Sequence Number Acknowledgement for data

  STag           Steering Tag

  SW             Session Wide

  TCA            Target Channel Adapter

  TCP            Transmission Control Protocol

  TMF            Task Management Function

  TTT            Target Transfer Tag

  ULP            Upper Level Protocol

2.3.  Conventions

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

3.  Upper-Layer Interface Requirements

  This section discusses the upper-layer interface requirements in the
  form of an abstract model of the required interactions between the
  iSCSI layer and the iSER layer.  The abstract model used here is
  derived from the architectural model described in [DA].  [DA] also
  provides a functional overview of the interactions between the iSCSI
  layer and the Datamover layer as intended by the Datamover
  Architecture.

  The interface requirements are specified by Operational Primitives.
  An Operational Primitive is an abstract functional interface
  procedure between the iSCSI layer and the iSER layer that requests
  one layer to perform a specific action on behalf of the other layer
  or notifies the other layer of some event.  Whenever an Operational
  Primitive in invoked, the Connection_Handle qualifier is used to
  identify a particular iSCSI connection.  For some Operational
  Primitives, a Data_Descriptor is used to identify the iSCSI/SCSI data
  buffer associated with the requested or completed operation.

  The abstract model and the Operational Primitives defined in this
  section facilitate the description of the iSER protocol.  In the rest
  of the iSER specification, the compliance statements related to the
  use of these Operational Primitives are only for the purpose of the



Ko & Nezhinsky               Standards Track                   [Page 20]

RFC 7145                   iSER Specification                 April 2014


  required interactions between the iSCSI layer and the iSER layer.
  Note that the compliance statements related to the Operational
  Primitives in the rest of this specification only mandate functional
  equivalence on implementations, but do not put any requirements on
  the implementation specifics of the interface between the iSCSI layer
  and the iSER layer.

  Each Operational Primitive is invoked with a set of qualifiers which
  specify the information context for performing the specific action
  being requested of the Operational Primitive.  While the qualifiers
  are required, the method of realizing the qualifiers (e.g., by
  passing synchronously with invocation, or by retrieving from task
  context, or by retrieving from shared memory, etc.) is implementation
  dependent.

3.1.  Operational Primitives offered by iSER

  The iSER protocol layer MUST support the following Operational
  Primitives to be used by the iSCSI protocol layer.

3.1.1.  Send_Control

     Input qualifiers:  Connection_Handle, BHS and AHS (if any) of the
     iSCSI PDU, PDU-specific qualifiers

     Return results:  Not specified

  This is used by the iSCSI layers at the initiator and the target to
  request the outbound transfer of an iSCSI control-type PDU (see
  Section 7.2).  Qualifiers that only apply for a particular control-
  type PDU are known as PDU-specific qualifiers, e.g.,
  ImmediateDataSize for a SCSI Write command.  For details on PDU-
  specific qualifiers, see Section 7.3.  The iSCSI layer can only
  invoke the Send_Control Operational Primitive when the connection is
  in iSER-assisted mode.

3.1.2.  Put_Data

     Input qualifiers:  Connection_Handle, content of a SCSI Data-In
     PDU header, Data_Descriptor, Notify_Enable

     Return results:  Not specified

  This is used by the iSCSI layer at the target to request the outbound
  transfer of data for a SCSI Data-In PDU from the buffer identified by
  the Data_Descriptor qualifier.  The iSCSI layer can only invoke the
  Put_Data Operational Primitive when the connection is in iSER-
  assisted mode.



Ko & Nezhinsky               Standards Track                   [Page 21]

RFC 7145                   iSER Specification                 April 2014


  The Notify_Enable qualifier is used to indicate to the iSER layer
  whether or not it should generate an eventual local completion
  notification to the iSCSI layer.  See Section 3.2.2 on
  Data_Completion_Notify for details.

3.1.3.  Get_Data

     Input qualifiers:  Connection_Handle, content of an R2T PDU,
     Data_Descriptor, Notify_Enable

     Return results:  Not specified

  This is used by the iSCSI layer at the target to request the inbound
  transfer of solicited data requested by an R2T PDU into the buffer
  identified by the Data_Descriptor qualifier.  The iSCSI layer can
  only invoke the Get_Data Operational Primitive when the connection is
  in iSER-assisted mode.

  The Notify_Enable qualifier is used to indicate to the iSER layer
  whether or not it should generate the eventual local completion
  notification to the iSCSI layer.  See Section 3.2.2 on
  Data_Completion_Notify for details.

3.1.4.  Allocate_Connection_Resources

     Input qualifiers:  Connection_Handle, Resource_Descriptor
     (optional)

     Return results:  Status

  This is used by the iSCSI layers at the initiator and the target to
  request the allocation of all connection resources necessary to
  support RCaP for an operational iSCSI/iSER connection.  The iSCSI
  layer may optionally specify the implementation-specific resource
  requirements for the iSCSI connection using the Resource_Descriptor
  qualifier.

  A return result of Status=success means the invocation succeeded, and
  a return result of Status=failure means that the invocation failed.
  If the invocation is for a Connection_Handle for which an earlier
  invocation succeeded, the request will be ignored by the iSER layer
  and the result of Status=success will be returned.  Only one
  Allocate_Connection_Resources Operational Primitive invocation can be
  outstanding for a given Connection_Handle at any time.







Ko & Nezhinsky               Standards Track                   [Page 22]

RFC 7145                   iSER Specification                 April 2014


3.1.5.  Deallocate_Connection_Resources

     Input qualifiers:  Connection_Handle

     Return results:  Not specified

  This is used by the iSCSI layers at the initiator and the target to
  request the deallocation of all connection resources that were
  allocated earlier as a result of a successful invocation of the
  Allocate_Connection_Resources Operational Primitive.

3.1.6.  Enable_Datamover

     Input qualifiers:  Connection_Handle,
     Transport_Connection_Descriptor, Final Login_Response_PDU
     (optional)

     Return results:  Not specified

  This is used by the iSCSI layers at the initiator and the target to
  request that iSER-assisted mode be used for the connection.  The
  Transport_Connection_Descriptor qualifier is used to identify the
  specific connection associated with the Connection_Handle.  The iSCSI
  layer can only invoke the Enable_Datamover Operational Primitive when
  there was a corresponding prior resource allocation.

  The Final_Login_Response_PDU input qualifier is applicable only for a
  target and contains the final Login Response PDU that concludes the
  iSCSI Login Phase.

3.1.7.  Connection_Terminate

     Input qualifiers:  Connection_Handle

     Return results:  Not specified

  This is used by the iSCSI layers at the initiator and the target to
  request that a specified iSCSI/iSER connection be terminated and all
  associated connection and task resources be freed.  When this
  Operational Primitive invocation returns to the iSCSI layer, the
  iSCSI layer may assume full ownership of all iSCSI-level resources,
  e.g., I/O Buffers, associated with the connection.









Ko & Nezhinsky               Standards Track                   [Page 23]

RFC 7145                   iSER Specification                 April 2014


3.1.8.  Notice_Key_Values

     Input qualifiers:  Connection_Handle, number of keys, list of Key-
     Value pairs

     Return results:  Not specified

  This is used by the iSCSI layers at the initiator and the target to
  request the iSER layer to take note of the specified Key-Value pairs
  that were negotiated by the iSCSI peers for the connection.

3.1.9.  Deallocate_Task_Resources

     Input qualifiers:  Connection_Handle, ITT

     Return results:  Not specified

  This is used by the iSCSI layers at the initiator and the target to
  request the deallocation of all RCaP-specific resources allocated by
  the iSER layer for the task identified by the ITT qualifier.  The
  iSER layer may require a certain number of RCaP-specific resources
  associated with the ITT for each new iSCSI task.  In the normal
  course of execution, these task-level resources in the iSER layer are
  assumed to be transparently allocated on each task initiation and
  deallocated on the conclusion of each task as appropriate.  In
  exception scenarios where the task does not conclude with a SCSI
  Response PDU, the iSER layer needs to be notified of the individual
  task terminations to aid its task-level resource management.  This
  Operational Primitive is used for this purpose and is not needed when
  a SCSI Response PDU normally concludes a task.  Note that RCaP-
  specific task resources are deallocated by the iSER layer when a SCSI
  Response PDU normally concludes a task, even if the SCSI status was
  not success.

3.2.  Operational Primitives Used by iSER

  The iSER layer MUST use the following Operational Primitives offered
  by the iSCSI protocol layer when the connection is in iSER-assisted
  mode.












Ko & Nezhinsky               Standards Track                   [Page 24]

RFC 7145                   iSER Specification                 April 2014


3.2.1.  Control_Notify

     Input qualifiers:  Connection_Handle, an iSCSI control-type PDU

     Return results:  Not specified

  This is used by the iSER layers at the initiator and the target to
  notify the iSCSI layer of the availability of an inbound iSCSI
  control-type PDU.  A PDU is described as "available" to the iSCSI
  layer when the iSER layer notifies the iSCSI layer of the reception
  of that inbound PDU, along with an implementation-specific indication
  as to where the received PDU is.

3.2.2.  Data_Completion_Notify

     Input qualifiers:  Connection_Handle, ITT, SN

     Return results:  Not specified

  This is used by the iSER layer to notify the iSCSI layer of the
  completion of the outbound data transfer that was requested by the
  iSCSI layer only if the invocation of the Put_Data Operational
  Primitive (see Section 3.1.2) was qualified with Notify_Enable set.
  SN refers to the DataSN associated with the SCSI Data-In PDU.

  This is used by the iSER layer to notify the iSCSI layer of the
  completion of the inbound data transfer that was requested by the
  iSCSI layer only if the invocation of the Get_Data Operational
  Primitive (see Section 3.1.3) was qualified with Notify_Enable set.
  SN refers to the R2TSN associated with the R2T PDU.

3.2.3.  Data_ACK_Notify

     Input qualifier:  Connection_Handle, ITT, DataSN

     Return results:  Not specified

  This is used by the iSER layer at the target to notify the iSCSI
  layer of the arrival of the data acknowledgement (as defined in
  [iSCSI]) requested earlier by the iSCSI layer for the outbound data
  transfer via an invocation of the Put_Data Operational Primitive
  where the A-bit in the SCSI Data-In PDU is set to one.  See Section
  7.3.5.  DataSN refers to the expected DataSN of the next SCSI Data-In
  PDU that immediately follows the SCSI Data-In PDU with the A-bit set
  to which this notification corresponds, with semantics as defined in
  [iSCSI].





Ko & Nezhinsky               Standards Track                   [Page 25]

RFC 7145                   iSER Specification                 April 2014


3.2.4.  Connection_Terminate_Notify

     Input qualifiers:  Connection_Handle

     Return results:  Not specified

  This is used by the iSER layers at the initiator and the target to
  notify the iSCSI layer of the unsolicited termination or failure of
  an iSCSI/iSER connection.  The iSER layer MUST deallocate the
  connection and task resources associated with the terminated
  connection before the invocation of this Operational Primitive.  Note
  that the Connection_Terminate_Notify Operational Primitive is not
  invoked when the termination of the connection was earlier requested
  by the local iSCSI layer.

3.3.  iSCSI Protocol Usage Requirements

  To operate in iSER-assisted mode, the iSCSI layers at both the
  initiator and the target MUST negotiate the RDMAExtensions key (see
  Section 6.3) to "Yes" on the leading connection.  If the
  RDMAExtensions key is not negotiated to "Yes", then iSER-assisted
  mode MUST NOT be used.  If the RDMAExtensons key is negotiated to
  "Yes", but the invocation of the Allocate_Connection_Resources
  Operational Primitive to the iSER layer fails, the iSCSI layer MUST
  fail the iSCSI Login process or terminate the connection as
  appropriate.  See Section 10.1.3.1 for details.

  If the RDMAExtensions key is negotiated to "Yes", the iSCSI layer
  MUST satisfy the following protocol usage requirements from the iSER
  protocol:

  1.  The iSCSI layer at the initiator MUST set ExpDataSN to zero in
      Task Management Function Requests for Task Allegiance
      Reassignment for read/bidirectional commands, so as to cause the
      target to send all unacknowledged read data.

  2.  The iSCSI layer at the target MUST always return the SCSI status
      in a separate SCSI Response PDU for read commands, i.e., there
      MUST NOT be a "phase collapse" in concluding a SCSI Read Command.

  3.  The iSCSI layers at both the initiator and the target MUST
      support the keys as defined in Section 6 on Login/Text
      Operational Keys.  If used as specified, these keys MUST NOT be
      answered with NotUnderstood, and the semantics as defined MUST be
      followed for each iSER-assisted connection.

  4.  The iSCSI layer at the initiator MUST NOT issue SNACKs for PDUs.




Ko & Nezhinsky               Standards Track                   [Page 26]

RFC 7145                   iSER Specification                 April 2014


4.  Lower-Layer Interface Requirements

4.1.  Interactions with the RCaP Layer

  The iSER protocol layer is layered on top of an RCaP layer (see
  Figure 1) and the following are the key features that are assumed to
  be supported by any RCaP layer:

  *  The RCaP layer supports all basic RDMA operations, including the
     RDMA Write Operation, RDMA Read Operation, and Send Operation.

  *  The RCaP layer provides reliable, in-order message delivery and
     direct data placement.

  *  When the iSER layer initiates an RDMA Read Operation following an
     RDMA Write Operation on one RCaP Stream, the RDMA Read Response
     Message processing on the remote node will be started only after
     the preceding RDMA Write Message payload is placed in the memory
     of the remote node.

  *  The RCaP layer encapsulates a single iSER Message into a single
     RCaP Message on the Data Source side.  The RCaP layer decapsulates
     the iSER Message before delivering it to the iSER layer on the
     Data Sink side.

  *  For an RCaP layer that supports the Send with Invalidate Message
     (e.g., iWARP), when the iSER layer provides the STag to be
     remotely invalidated to the RCaP layer for a Send with Invalidate
     Message, the RCaP layer uses this STag as the STag to be
     invalidated in the Send with Invalidate Message.

  *  The RCaP layer uses the STag and Tagged Offset provided by the
     iSER layer for the RDMA Write and RDMA Read Request Messages.

  *  When the RCaP layer delivers the content of an RDMA Send Message
     to the iSER layer, the RCaP layer provides the length of the RDMA
     Send Message.  This ensures that the iSER layer does not have to
     carry a length field in the iSER header.

  *  When the RCaP layer delivers the Send Message to the iSER layer,
     it notifies the iSER layer with the mechanism provided on that
     interface.

  *  For an RCaP layer that supports the Send with Invalidate Message
     (e.g., iWARP), when the RCaP layer delivers a Send with Invalidate
     Message to the iSER layer, it passes the value of the STag that
     was invalidated.




Ko & Nezhinsky               Standards Track                   [Page 27]

RFC 7145                   iSER Specification                 April 2014


  *  The RCaP layer propagates all status and error indications to the
     iSER layer.

  *  For a transport layer that operates in byte stream mode such as
     TCP, the RCaP implementation supports the enabling of the RDMA
     mode after connection establishment and the exchange of Login
     parameters in byte stream mode.  For a transport layer that
     provides message delivery capability such as [IB], the RCaP
     implementation supports the direct use of the messaging capability
     by the iSCSI layer for the Login Phase after connection
     establishment and before enabling iSER-assisted mode.  (In the
     specific example of InfiniBand [IB], the iSCSI layer uses IB
     messages to transfer iSCSI PDUs for the Login Phase after
     connection establishment and before enabling iSER-assisted mode.)

  *  Whenever the iSER layer terminates the RCaP Stream, the RCaP layer
     terminates the associated connection.

4.2.  Interactions with the Transport Layer

  After the iSER connection is established, the RCaP layer and the
  underlying transport layer are responsible for maintaining the
  connection and reporting to the iSER layer any connection failures.

5.  Connection Setup and Termination

5.1.  iSCSI/iSER Connection Setup

  During connection setup, the iSCSI layer at the initiator is
  responsible for establishing a connection with the target.  After the
  connection is established, the iSCSI layers at the initiator and the
  target enter the Login Phase using the same rules as outlined in
  [iSCSI].  The connection transitions into the iSCSI Full Feature
  Phase in iSER-assisted mode following a successful login negotiation
  between the initiator and the target in which iSER-assisted mode is
  negotiated and the connection resources necessary to support RCaP
  have been allocated at both the initiator and the target.  The same
  connection MUST be used for both the iSCSI Login Phase and the
  subsequent iSER-assisted Full Feature Phase.

  For a transport layer that operates in byte stream mode such as TCP,
  the RCaP implementation supports the enabling of the RDMA mode after
  connection establishment and the exchange of Login parameters in byte
  stream mode.  For a transport layer that provides message delivery
  capability such as [IB], the RCaP implementation supports the use of
  the messaging capability by the iSCSI layer directly for the Login
  Phase after connection establishment before enabling iSER-assisted
  mode.



Ko & Nezhinsky               Standards Track                   [Page 28]

RFC 7145                   iSER Specification                 April 2014


  iSER-assisted mode MUST NOT be enabled unless it is negotiated on the
  leading connection during the LoginOperationalNegotiation stage of
  the iSCSI Login Phase.  iSER-assisted mode is negotiated using the
  RDMAExtensions=<boolean-value> key.  Both the initiator and the
  target MUST exchange the RDMAExtensions key with the value set to
  "Yes" to enable iSER-assisted mode.  If both the initiator and the
  target fail to negotiate the RDMAExtensions key set to "Yes", then
  the connection MUST continue with the login semantics as defined in
  [iSCSI].  If the RDMAExtensions key is not negotiated to Yes, then
  for some RCaP implementation (such as [IB]), the existing connection
  may need to be torn down and a new connection may need to be
  established in TCP-capable mode.  (For InfiniBand, this will require
  a connection like [IPoIB].)

  iSER-assisted mode is defined for a Normal session only, and the
  RDMAExtensions key MUST NOT be negotiated for a Discovery session.
  Discovery sessions are always conducted using the transport layer as
  described in [iSCSI].

  An iSER-enabled node is not required to initiate the RDMAExtensions
  key exchange if its preference is for the Traditional iSCSI mode.
  The RDMAExtensions key, if offered, MUST be sent in the first
  available Login Response or Login Request PDU in the
  LoginOperationalNegotiation stage.  This is due to the fact that the
  value of some Login parameters might depend on whether or not iSER-
  assisted mode is enabled.

  iSER-assisted mode is a session-wide attribute.  If both the
  initiator and the target negotiated RDMAExtensions="Yes" on the
  leading connection of a session, then all subsequent connections of
  the same session MUST enable iSER-assisted mode without having to
  exchange RDMAExtensions keys during the iSCSI Login Phase.
  Conversely, if both the initiator and the target failed to negotiate
  RDMAExtensions to "Yes" on the leading connection of a session, then
  the RDMAExtensions key MUST NOT be negotiated further on any
  additional subsequent connection of the session.

  When the RDMAExtensions key is negotiated to "Yes", the HeaderDigest
  and the DataDigest keys MUST be negotiated to "None" on all
  iSCSI/iSER connections participating in that iSCSI session.  This is
  because, for an iSCSI/iSER connection, RCaP is responsible for
  providing error detection that is at least as good as a 32-bit CRC
  for all iSER Messages.  Furthermore, all SCSI Read data are sent
  using RDMA Write Messages instead of the SCSI Data-In PDUs, and all
  solicited SCSI Write data are sent using RDMA Read Response Messages
  instead of the SCSI Data-Out PDUs.  HeaderDigest and DataDigest that
  apply to iSCSI PDUs would not be appropriate for RDMA Read and RDMA
  Write operations used with iSER.



Ko & Nezhinsky               Standards Track                   [Page 29]

RFC 7145                   iSER Specification                 April 2014


5.1.1.  Initiator Behavior

  If the outcome of the iSCSI negotiation is to enable iSER-assisted
  mode, then on the initiator side, prior to sending the Login Request
  with the T (Transit) bit set to one and the NSG (Next Stage) field
  set to FullFeaturePhase, the iSCSI layer SHOULD request the iSER
  layer to allocate the connection resources necessary to support RCaP
  by invoking the Allocate_Connection_Resources Operational Primitive.
  The connection resources required are defined by the implementation
  and are outside the scope of this specification.  The iSCSI layer may
  invoke the Notice_Key_Values Operational Primitive before invoking
  the Allocate_Connection_Resources Operational Primitive to request
  the iSER layer to take note of the negotiated values of the iSCSI
  keys for the connection.  The specific keys to be passed in as input
  qualifiers are implementation dependent.  These may include, but are
  not limited to, MaxOutstandingR2T and ErrorRecoveryLevel.

  Among the connection resources allocated at the initiator is the
  Inbound RDMA Read Queue Depth (IRD).  As described in Section 9.5.1,
  R2Ts are transformed by the target into RDMA Read operations.  IRD
  limits the maximum number of simultaneously incoming outstanding RDMA
  Read Requests per an RCaP Stream from the target to the initiator.
  The required value of IRD is outside the scope of the iSER
  specification.  The iSER layer at the initiator MUST set IRD to 1 or
  higher if R2Ts are to be used in the connection.  However, the iSER
  layer at the initiator MAY set IRD to zero based on implementation
  configuration; setting IRD to zero indicates that no R2Ts will be
  used on that connection.  Initially, the iSER-IRD value at the
  initiator SHOULD be set to the IRD value at the initiator and MUST
  NOT be more than the IRD value.

  On the other hand, the Outbound RDMA Read Queue Depth (ORD) MAY be
  set to zero since the iSER layer at the initiator does not issue RDMA
  Read Requests to the target.

  Failure to allocate the requested connection resources locally
  results in a login failure, and its handling is described in Section
  10.1.3.1.

  The iSER layer MUST return a success status to the iSCSI layer in
  response to the Allocate_Connection_Resources Operational Primitive.










Ko & Nezhinsky               Standards Track                   [Page 30]

RFC 7145                   iSER Specification                 April 2014


  After the target returns the Login Response with the T bit set to one
  and the NSG field set to FullFeaturePhase, and a Status-Class of 0x00
  (Success), the iSCSI layer MUST invoke the Enable_Datamover
  Operational Primitive with the following qualifiers.  (See Section
  10.1.4.6 for the case when the Status-Class is not Success.)

     a. Connection_Handle that identifies the iSCSI connection.

     b. Transport_Connection_Descriptor that identifies the specific
        transport connection associated with the Connection_Handle.

  The iSER layer MUST send the iSER Hello Message as the first iSER
  Message only if iSERHelloRequired is negotiated to "Yes".  See
  Section 5.1.3 on iSER Hello Exchange.

  If the iSCSI layer on the initiator side allocates the connection
  resources to support RCaP only after it receives the final Login
  Response PDU from the target, then it may not be able to handle the
  number of unexpected iSCSI control-type PDUs (as declared by the
  MaxOutstandingUnexpectedPDUs key from the initiator) that can be sent
  by the target before the buffer resources are allocated at the
  initiator side.  In this case, the iSERHelloRequired key SHOULD be
  negotiated to "Yes" so that the initiator can allocate the connection
  resources before sending the iSER Hello Message.  See Section 5.1.3
  for more details.

5.1.2.  Target Behavior

  If the outcome of the iSCSI negotiation is to enable iSER-assisted
  mode, then on the target side, prior to sending the Login Response
  with the T (Transit) bit set to one and the NSG (Next Stage) field
  set to FullFeaturePhase, the iSCSI layer MUST request the iSER layer
  to allocate the resources necessary to support RCaP by invoking the
  Allocate_Connection_Resources Operational Primitive.  The connection
  resources required are defined by implementation and are outside the
  scope of this specification.  Optionally, the iSCSI layer may invoke
  the Notice_Key_Values Operational Primitive before invoking the
  Allocate_Connection_Resources Operational Primitive to request the
  iSER layer to take note of the negotiated values of the iSCSI keys
  for the connection.  The specific keys to be passed in as input
  qualifiers are implementation dependent.  These may include, but not
  limited to, MaxOutstandingR2T and ErrorRecoveryLevel.

  Premature allocation of RCaP connection resources can expose an iSER
  target to a resource exhaustion attack on those resources via
  multiple iSER connections that progress only to the point at which
  the implementation allocates the RCaP connection resources.  The
  countermeasure for this attack is initiator authentication; the iSCSI



Ko & Nezhinsky               Standards Track                   [Page 31]

RFC 7145                   iSER Specification                 April 2014


  layer MUST NOT request the iSER layer to allocate the connection
  resources necessary to support RCaP until the iSCSI layer is
  sufficiently far along in the iSCSI Login Phase that it is reasonably
  certain that the peer side is not an attacker.  In particular, if the
  Login Phase includes a SecurityNegotiation stage, the iSCSI layer
  MUST defer the connection resource allocation (i.e., invoking the
  Allocate_Connection_Resources Operational Primitive) to the
  LoginOperationalNegotiation stage ([iSCSI]) so that the resource
  allocation occurs after the authentication phase is completed.

  Among the connection resources allocated at the target is the
  Outbound RDMA Read Queue Depth (ORD).  As described in Section 9.5.1,
  R2Ts are transformed by the target into RDMA Read operations.  The
  ORD limits the maximum number of simultaneously outstanding RDMA Read
  Requests per RCaP Stream from the target to the initiator.
  Initially, the iSER-ORD value at the target SHOULD be set to the ORD
  value at the target.

  On the other hand, the IRD at the target MAY be set to zero since the
  iSER layer at the target does not expect RDMA Read Requests to be
  issued by the initiator.

  Failure to allocate the requested connection resources locally
  results in a login failure, and its handling is described in Section
  10.1.3.1.

  If the iSER layer at the target is successful in allocating the
  connection resources necessary to support RCaP, the following events
  MUST occur in the specified sequence:

  1. The iSER layer MUST return a success status to the iSCSI layer in
     response to the Allocate_Connection_Resources Operational
     Primitive.

  2. The iSCSI layer MUST invoke the Enable_Datamover Operational
     Primitive with the following qualifiers:

     a. Connection_Handle that identifies the iSCSI connection.

     b. Transport_Connection_Descriptor that identifies the specific
        transport connection associated with the Connection_Handle.

     c. The final transport-layer (e.g., TCP) message containing the
        Login Response with the T bit set to one and the NSG field set
        to FullFeaturePhase.






Ko & Nezhinsky               Standards Track                   [Page 32]

RFC 7145                   iSER Specification                 April 2014


  3. The iSER layer MUST send the final Login Response PDU in the
     native transport mode to conclude the iSCSI Login Phase.  If the
     underlying transport is TCP, then the iSER layer MUST send the
     final Login Response PDU in byte stream mode.

  4. After receiving the iSER Hello Message from the initiator, the
     iSER layer MUST respond with the iSER HelloReply Message to be
     sent as the first iSER Message if iSERHelloRequired is negotiated
     to "Yes".  If the iSER layer receives an iSER Hello Message when
     iSERHelloRequired is negotiated to "No", then this MUST be treated
     as an iSER protocol error.  See Section 5.1.3 on iSER Hello
     Exchange for more details.

  Note: In the above sequence, the operations as described in items 3
  and 4 MUST be performed atomically for iWARP connections.  Failure to
  do this may result in race conditions.

5.1.3.  iSER Hello Exchange

  If iSERHelloRequired is negotiated to "Yes", the first iSER Message
  sent by the iSER layer at the initiator to the target MUST be the
  iSER Hello Message.  The iSER Hello Message is used by the iSER layer
  at the initiator to declare iSER parameters to the target.  See
  Section 9.3 on iSER Header Format for iSER Hello Message.
  Conversely, if iSERHelloRequired is negotiated to "No", then the iSER
  layer at the initiator MUST NOT send an iSER Hello Message.

  In response to the iSER Hello Message, the iSER layer at the target
  MUST return the iSER HelloReply Message as the first iSER Message
  sent by the target if iSERHelloRequired is negotiated to "Yes".  The
  iSER HelloReply Message is used by the iSER layer at the target to
  declare iSER parameters to the initiator.  See Section 9.4 on iSER
  Header Format for iSER HelloReply Message.  If the iSER layer
  receives an iSER Hello Message when iSERHelloRequired is negotiated
  to "No", then this MUST be treated as an iSER protocol error.  See
  Section 10.1.3.4 on iSER Protocol Errors on for more details.

  In the iSER Hello Message, the iSER layer at the initiator declares
  the iSER-IRD value to the target.

  Upon receiving the iSER Hello Message, the iSER layer at the target
  MUST set the iSER-ORD value to the minimum of the iSER-ORD value at
  the target and the iSER-IRD value declared by the initiator.  In
  order to free up the unused resources, the iSER layer at the target
  MAY adjust (lower) its ORD value to match the iSER-ORD value if the
  iSER-ORD value is smaller than the ORD value at the target.





Ko & Nezhinsky               Standards Track                   [Page 33]

RFC 7145                   iSER Specification                 April 2014


  In the iSER HelloReply Message, the iSER layer at the target declares
  the iSER-ORD value to the initiator.

  Upon receiving the iSER HelloReply Message, the iSER layer at the
  initiator MAY adjust (lower) its IRD value to match the iSER-ORD
  value in order to free up the unused resources, if the iSER-ORD value
  declared by the target is smaller than the iSER-IRD value declared by
  the initiator.

  It is an iSER-level negotiation failure if the iSER parameters
  declared in the iSER Hello Message by the initiator are unacceptable
  to the target.  This includes the following:

  *  The initiator-declared iSER-IRD value is greater than 0, and the
     target-declared iSER-ORD value is 0.

  *  The initiator-supported and the target-supported iSER protocol
     versions do not overlap.

  See Section 10.1.3.2 on the handling of the error situation.

  An initiator that conforms to [RFC5046] allocates connection
  resources before sending the Login Request with the T (Transit) bit
  set to one and the NSG (Next Stage) field set to FullFeaturePhase.
  (For brevity, this is referred to as "early" connection allocation.)
  The current iSER specification relaxes this requirement to allow an
  initiator to allocate connection resources after it receives the
  final Login Response PDU from the target.  (For brevity, this is
  referred to as "late" connection allocation.)  An initiator that
  employs "late" connection allocation may encounter problems (e.g.,
  RCaP connection closure) with a target that sends unexpected iSCSI
  PDUs immediately upon transitioning to Full Feature Phase, as allowed
  by the negotiated value of the MaxOutstandingUnexpectedPDUs key.  The
  only way to prevent this situation in full generality is to use iSER
  Hello Messages, as they enable the initiator to allocate its
  connection resources before sending its iSER Hello Message.  The
  iSERHelloRequired key is used by the initiator to determine if it is
  dealing with a target that supports the iSER Hello exchanges.
  Fortunately, known iSER target implementations do not take full
  advantage of the number of allowed unexpected PDUs immediately upon
  transitioning into Full Feature Phase, thus enabling an initiator
  workaround that involves a smaller quantity of connection resources
  prior to Full Feature Phase, as explained further below.

  In the following summary, where "late" connection allocation is
  practiced, an initiator that follows [RFC5046] is referred to as an
  "old" initiator; otherwise, it is referred to as a "new" initiator.
  Similarly, a target that does not support the iSERHelloRequired key



Ko & Nezhinsky               Standards Track                   [Page 34]

RFC 7145                   iSER Specification                 April 2014


  (and responds with "NotUnderstood" when negotiating the
  iSERHelloRequired key) is referred to as an "old" target; otherwise,
  it is referred to as a "new" target.  Note that an "old" target can
  still support the iSER Hello exchanges, but this fact is not known by
  the initiator.  A "new" target can also respond with "No" when
  negotiating the iSERHelloRequired key.  In this case, its behavior
  with respect to "late" connection allocation is similar to an "old"
  target.

  A "new" initiator will work fine with a "new" target.

  For an "old" initiator and an "old" target, the failure by the
  initiator to handle the number of unexpected iSCSI control-type PDUs
  that are sent by the target before the buffer resources are allocated
  at the initiator can result in the failure of the iSER session caused
  by closure of the underlying RCaP connection.  For the "old" target,
  there is a known implementation that sends one unexpected iSCSI
  control-type PDU after sending the final Login Response and then
  waits awhile before sending the next one.  This tends to alleviate
  somewhat the buffer allocation problem at the initiator.

  For a "new" initiator and an "old" target, the failure by the
  initiator to handle the number of unexpected iSCSI control-type PDUs
  that are sent by the target before the buffer resources are allocated
  at the initiator can result in the failure of the iSER session caused
  by closure of the underlying RCaP connection.  A "new" initiator MAY
  choose to terminate the connection; otherwise, it SHOULD do one of
  the following:

  1. Allocate the connection resources before sending the final Login
     Request PDU.

  2. Allocate one or more buffers for receiving unexpected control-type
     PDUs from the target before sending the final Login Request PDU.
     This reduces the possibility of the unexpected control-type PDUs
     causing the RCaP connection to close before the connection
     resources have been allocated.














Ko & Nezhinsky               Standards Track                   [Page 35]

RFC 7145                   iSER Specification                 April 2014


  For an "old" initiator and a "new" target, if the iSERHelloRequired
  key is not negotiated, a "new" target MUST still respond with the
  iSER HelloReply Message when it receives the iSER Hello Message.  If
  the iSERHelloRequired key is negotiated to "No" or "NotUnderstood", a
  "new" target MAY choose to terminate the connection; otherwise, it
  SHOULD delay sending any unexpected control-type PDUs until one of
  the following events has occurred:

  1. A PDU is received from the initiator after it sends the final
     Login Response PDU.

  2. A system-configurable timeout period (say, one second) has
     expired.

5.2.  iSCSI/iSER Connection Termination

5.2.1.  Normal Connection Termination at the Initiator

  The iSCSI layer at the initiator terminates an iSCSI/iSER connection
  normally by invoking the Send_Control Operational Primitive qualified
  with the Logout Request PDU.  The iSER layer at the initiator MUST
  use a Send Message to send the Logout Request PDU to the target.  The
  SendSE Message should be used if supported by the RCaP layer (e.g.,
  iWARP).  After the iSER layer at the initiator receives the Send
  Message containing the Logout Response PDU from the target, it MUST
  notify the iSCSI layer by invoking the Control_Notify Operational
  Primitive qualified with the Logout Response PDU.

  After the iSCSI logout process is complete, the iSCSI layer at the
  target is responsible for closing the iSCSI/iSER connection as
  described in Section 5.2.2.  After the RCaP layer at the initiator
  reports that the connection has been closed, the iSER layer at the
  initiator MUST deallocate all connection and task resources (if any)
  associated with the connection, and invalidate the Local Mappings (if
  any) before notifying the iSCSI layer by invoking the
  Connection_Terminate_Notify Operational Primitive.

5.2.2.  Normal Connection Termination at the Target

  Upon receiving the Send Message containing the Logout Request PDU,
  the iSER layer at the target MUST notify the iSCSI layer at the
  target by invoking the Control_Notify Operational Primitive qualified
  with the Logout Request PDU.  The iSCSI layer completes the logout
  process by invoking the Send_Control Operational Primitive qualified
  with the Logout Response PDU.  The iSER layer at the target MUST use
  a Send Message to send the Logout Response PDU to the initiator.  The
  SendSE Message should be used if supported by the RCaP layer (e.g.,
  iWARP).  After the iSCSI logout process is complete, the iSCSI layer



Ko & Nezhinsky               Standards Track                   [Page 36]

RFC 7145                   iSER Specification                 April 2014


  at the target MUST request the iSER layer at the target to terminate
  the RCaP Stream by invoking the Connection_Terminate Operational
  Primitive.

  As part of the termination process, the RCaP layer MUST close the
  connection.  When the RCaP layer notifies the iSER layer after the
  RCaP Stream and the associated connection are terminated, the iSER
  layer MUST deallocate all connection and task resources (if any)
  associated with the connection, and invalidate the Local and Remote
  Mappings (if any).

5.2.3.  Termination without Logout Request/Response PDUs

5.2.3.1.  Connection Termination Initiated by the iSCSI layer

  The Connection_Terminate Operational Primitive MAY be invoked by the
  iSCSI layer to request the iSER layer to terminate the RCaP Stream
  without having previously exchanged the Logout Request and Logout
  Response PDUs between the two iSCSI/iSER nodes.  As part of the
  termination process, the RCaP layer will close the connection.  When
  the RCaP layer notifies the iSER layer after the RCaP Stream and the
  associated connection are terminated, the iSER layer MUST perform the
  following actions.

  If the Connection_Terminate Operational Primitive is invoked by the
  iSCSI layer at the target, then the iSER layer at the target MUST
  deallocate all connection and task resources (if any) associated with
  the connection, and invalidate the Local and Remote Mappings (if
  any).

  If the Connection_Terminate Operational Primitive is invoked by the
  iSCSI layer at the initiator, then the iSER layer at the initiator
  MUST deallocate all connection and task resources (if any) associated
  with the connection, and invalidate the Local Mappings (if any).

5.2.3.2.  Connection Termination Notification to the iSCSI layer

  If the iSCSI/iSER connection is terminated without the invocation of
  Connection_Terminate from the iSCSI layer, the iSER layer MUST notify
  the iSCSI layer that the iSCSI/iSER connection has been terminated by
  invoking the Connection_Terminate_Notify Operational Primitive.

  Prior to invoking Connection_Terminate_Notify, the iSER layer at the
  target MUST deallocate all connection and task resources (if any)
  associated with the connection, and invalidate the Local and Remote
  Mappings (if any).





Ko & Nezhinsky               Standards Track                   [Page 37]

RFC 7145                   iSER Specification                 April 2014


  Prior to invoking Connection_Terminate_Notify, the iSER layer at the
  initiator MUST deallocate all connection and task resources (if any)
  associated with the connection, and invalidate the Local Mappings (if
  any).

  If the remote iSCSI/iSER node initiated the closing of the connection
  (e.g., by sending a TCP FIN or TCP RST), the iSER layer MUST notify
  the iSCSI layer after the RCaP layer reports that the connection is
  closed by invoking the Connection_Terminate_Notify Operational
  Primitive.

  Another example of a connection termination without a preceding
  logout is when the iSCSI layer at the initiator does an implicit
  logout (connection reinstatement).

6.  Login/Text Operational Keys

  Certain iSCSI login/text operational keys have restricted usage in
  iSER, and additional keys are used to support the iSER protocol
  functionality.  All other keys defined in [iSCSI] and not discussed
  in this section may be used on iSCSI/iSER connections with the same
  semantics.

6.1.  HeaderDigest and DataDigest

  Irrelevant when: RDMAExtensions=Yes

  Negotiations resulting in RDMAExtensions=Yes for a session imply
  HeaderDigest=None and DataDigest=None for all connections in that
  session and override the settings, whether default or configured.

6.2.  MaxRecvDataSegmentLength

  For an iSCSI connection belonging to a session in which
  RDMAExtensions=Yes was negotiated on the leading connection of the
  session, MaxRecvDataSegmentLength need not be declared in the Login
  Phase, and MUST be ignored if it is declared.  Instead,
  InitiatorRecvDataSegmentLength (as described in Section 6.5) and
  TargetRecvDataSegmentLength (as described in Section 6.4) keys are
  negotiated.  The values of the local and remote
  MaxRecvDataSegmentLength are derived from the
  InitiatorRecvDataSegmentLength and TargetRecvDataSegmentLength keys.

  In the Full Feature Phase, the initiator MUST consider the value of
  its local MaxRecvDataSegmentLength (that it would have declared to
  the target) as having the value of InitiatorRecvDataSegmentLength,
  and the value of the remote MaxRecvDataSegmentLength (that would have
  been declared by the target) as having the value of



Ko & Nezhinsky               Standards Track                   [Page 38]

RFC 7145                   iSER Specification                 April 2014


  TargetRecvDataSegmentLength.  Similarly, the target MUST consider the
  value of its local MaxRecvDataSegmentLength (that it would have
  declared to the initiator) as having the value of
  TargetRecvDataSegmentLength, and the value of the remote
  MaxRecvDataSegmentLength (that would have been declared by the
  initiator) as having the value of InitiatorRecvDataSegmentLength.

  Note that RFC 3720 requires that when a target receives a NOP-Out
  request with a valid Initiator Task Tag, it responds with a NOP-In
  with the same Initiator Task Tag that was provided in the NOP-Out
  request.  Furthermore, it returns the first MaxRecvDataSegmentLength
  bytes of the initiator-provided Ping Data.  Since there is no
  MaxRecvDataSegmentLength common to the initiator and the target in
  iSER, the length of the data sent with the NOP-Out request MUST NOT
  exceed InitiatorMaxRecvDataSegmentLength.

  The MaxRecvDataSegmentLength key is applicable only for iSCSI
  control-type PDUs.

6.3.  RDMAExtensions

  Use: LO (leading only)

  Senders: Initiator and Target

  Scope: SW (session-wide)

  RDMAExtensions=<boolean-value>

  Irrelevant when: SessionType=Discovery

  Default is No

  Result function is AND

  This key is used by the initiator and the target to negotiate the
  support for iSER-assisted mode.  To enable the use of iSER-assisted
  mode, both the initiator and the target MUST exchange
  RDMAExtensions=Yes.  iSER-assisted mode MUST NOT be used if either
  the initiator or the target offers RDMAExtensions=No.

  An iSER-enabled node is not required to initiate the RDMAExtensions
  key exchange if it prefers to operate in the Traditional iSCSI mode.
  However, if the RDMAExtensions key is to be negotiated, an initiator
  MUST offer the key in the first Login Request PDU in the
  LoginOperationalNegotiation stage of the leading connection, and a
  target MUST offer the key in the first Login Response PDU with which
  it is allowed to do so (i.e., the first Login Response PDU issued



Ko & Nezhinsky               Standards Track                   [Page 39]

RFC 7145                   iSER Specification                 April 2014


  after the first Login Request PDU with the C bit set to zero) in the
  LoginOperationalNegotiation stage of the leading connection.  In
  response to the offered key=value pair of RDMAExtensions=yes, an
  initiator MUST respond in the next Login Request PDU with which it is
  allowed to do so, and a target MUST respond in the next Login
  Response PDU with which it is allowed to do so.

  Negotiating the RDMAExtensions key first enables a node to negotiate
  the optimal value for other keys.  Certain iSCSI keys such as
  MaxBurstLength, MaxOutstandingR2T, ErrorRecoveryLevel, InitialR2T,
  ImmediateData, etc., may be negotiated differently depending on
  whether the connection is in Traditional iSCSI mode or iSER-assisted
  mode.

6.4.  TargetRecvDataSegmentLength

  Use: IO (Initialize only)

  Senders: Initiator and Target

  Scope: CO (connection-only)

  Irrelevant when: RDMAExtensions=No

  TargetRecvDataSegmentLength=<numerical-value-512-to-(2**24-1)>

  Default is 8192 bytes

  Result function is minimum

  This key is relevant only for the iSCSI connection of an iSCSI
  session if RDMAExtensions=Yes was negotiated on the leading
  connection of the session.  It is used by the initiator and the
  target to negotiate the maximum size of the data segment that an
  initiator may send to the target in an iSCSI control-type PDU in the
  Full Feature Phase.  For SCSI Command PDUs and SCSI Data-Out PDUs
  containing non-immediate unsolicited data to be sent by the
  initiator, the initiator MUST send all non-Final PDUs with a data
  segment size of exactly TargetRecvDataSegmentLength whenever the PDUs
  constitute a data sequence whose size is larger than
  TargetRecvDataSegmentLength.










Ko & Nezhinsky               Standards Track                   [Page 40]

RFC 7145                   iSER Specification                 April 2014


6.5.  InitiatorRecvDataSegmentLength

  Use: IO (Initialize only)

  Senders: Initiator and Target

  Scope: CO (connection-only)

  Irrelevant when: RDMAExtensions=No

  InitiatorRecvDataSegmentLength=<numerical-value-512-to-(2**24-1)>

  Default is 8192 bytes

  Result function is minimum

  This key is relevant only for the iSCSI connection of an iSCSI
  session if RDMAExtensions=Yes was negotiated on the leading
  connection of the session.  It is used by the initiator and the
  target to negotiate the maximum size of the data segment that a
  target may send to the initiator in an iSCSI control-type PDU in the
  Full Feature Phase.

6.6.  OFMarker and IFMarker

  Irrelevant when: RDMAExtensions=Yes

  Negotiations resulting in RDMAExtensions=Yes for a session imply
  OFMarker=No and IFMarker=No for all connections in that session and
  override the settings, whether default or configured.

6.7.  MaxOutstandingUnexpectedPDUs

  Use: LO (leading only), Declarative

  Senders: Initiator and Target

  Scope: SW (session-wide)

  Irrelevant when: RDMAExtensions=No

  MaxOutstandingUnexpectedPDUs=
     <numerical-value-from-2-to-(2**32-1) | 0>

  Default is 0






Ko & Nezhinsky               Standards Track                   [Page 41]

RFC 7145                   iSER Specification                 April 2014


  This key is used by the initiator and the target to declare the
  maximum number of outstanding "unexpected" iSCSI control-type PDUs
  that it can receive in the Full Feature Phase.  It is intended to
  allow the receiving side to determine the amount of buffer resources
  needed beyond the normal flow control mechanism available in iSCSI.
  An initiator or target should select a value such that it would not
  impose an unnecessary constraint on the iSCSI layer under normal
  circumstances.  The value of 0 is defined to indicate that the
  declarer has no limit on the maximum number of outstanding
  "unexpected" iSCSI control-type PDUs that it can receive.  See
  Sections 8.1.1 and 8.1.2 for the usage of this key.  Note that iSER
  Hello and HelloReply Messages are not iSCSI control-type PDUs and are
  not affected by this key.

  For interoperability with implementations based on [RFC5046], this
  key SHOULD be negotiated because the default value of 0 in [RFC5046]
  is problematic for most implementations as it does not impose a bound
  on resources consumable by unexpected PDUs.

6.8.  MaxAHSLength

  Use: LO (leading only), Declarative

  Senders: Initiator and Target

  Scope: SW (session-wide)

  Irrelevant when: RDMAExtensions=No

  MaxAHSLength=<numerical-value-from-2-to-(2**32-1) | 0>

  Default is 256

  This key is used by the initiator and target to declare the maximum
  size of AHS in an iSCSI control-type PDU that it can receive in the
  Full Feature Phase.  It is intended to allow the receiving side to
  determine the amount of resources needed for receive buffering.  An
  initiator or target should select a value such that it would not
  impose an unnecessary constraint on the iSCSI layer under normal
  circumstances.  The value of 0 is defined to indicate that the
  declarer has no limit on the maximum size of AHS in iSCSI control-
  type PDUs that it can receive.

  For interoperability with implementations based on [RFC5046], an
  initiator or target MAY terminate the connection if it anticipates
  MaxAHSLength to be greater than 256 and the key is not understood by
  its peer.




Ko & Nezhinsky               Standards Track                   [Page 42]

RFC 7145                   iSER Specification                 April 2014


6.9.  TaggedBufferForSolicitedDataOnly

  Use: LO (leading only), Declarative

  Senders: Initiator

  Scope: SW (session-wide)

  RDMAExtensions=<boolean-value>

  Irrelevant when: RDMAExtensions=No

  Default is No

  This key is used by the initiator to declare to the target the usage
  of the Write Base Offset in the iSER header of an iSCSI control-type
  PDU.  When set to No, the Base Offset is associated with an I/O
  buffer that contains all the write data, including both unsolicited
  and solicited data.  When set to Yes, the Base Offset is associated
  with an I/O buffer that only contains solicited data.

6.10.  iSERHelloRequired

  Use: LO (leading only), Declarative

  Senders: Initiator

  Scope: SW (session-wide)

  RDMAExtensions=<boolean-value>

  Irrelevant when: RDMAExtensions=No

  Default is No

  This key is relevant only for the iSCSI connection of an iSCSI
  session if RDMAExtensions=Yes was negotiated on the leading
  connection of the session.  It is used by the initiator to declare to
  the target whether the iSER Hello Exchange is required.  When set to
  Yes, the iSER layers MUST perform the iSER Hello Exchange as
  described in Section 5.1.3.  When set to No, the iSER layers MUST NOT
  perform the iSER Hello Exchange.









Ko & Nezhinsky               Standards Track                   [Page 43]

RFC 7145                   iSER Specification                 April 2014


7.  iSCSI PDU Considerations

  When a connection is in the iSER-assisted mode, two types of message
  transfers are allowed between the iSCSI layer (at the initiator) and
  the iSCSI layer (at the target).  These are known as the iSCSI data-
  type PDUs and the iSCSI control-type PDUs, and these terms are
  described in the following sections.

7.1.  iSCSI Data-Type PDU

  An iSCSI data-type PDU is defined as an iSCSI PDU that causes data
  transfer, transparent to the remote iSCSI layer, to take place
  between the peer iSCSI nodes in the Full Feature Phase of an
  iSCSI/iSER connection.  An iSCSI data-type PDU, when requested for
  transmission by the iSCSI layer in the sending node, results in the
  data's transfer without the participation of the iSCSI layers at the
  sending and the receiving nodes.  This is due to the fact that the
  PDU itself is not delivered as-is to the iSCSI layer in the receiving
  node.  Instead, the data transfer operations are transformed into the
  appropriate RDMA operations, which are handled by the RDMA-Capable
  Controller.  The set of iSCSI data-type PDUs consists of SCSI Data-In
  PDUs and R2T PDUs.

  If the invocation of the Operational Primitive by the iSCSI layer to
  request the iSER layer to process an iSCSI data-type PDU is qualified
  with Notify_Enable set, then upon completing the RDMA operation, the
  iSER layer at the target MUST notify the iSCSI layer at the target by
  invoking the Data_Completion_Notify Operational Primitive qualified
  with the ITT and SN.  There is no data completion notification at the
  initiator since the RDMA operations are completely handled by the
  RDMA-Capable Controller at the initiator and the iSER layer at the
  initiator is not involved with the data transfer associated with
  iSCSI data-type PDUs.

  If the invocation of the Operational Primitive by the iSCSI layer to
  request the iSER layer to process an iSCSI data-type PDU is qualified
  with Notify_Enable cleared, then upon completing the RDMA operation,
  the iSER layer at the target MUST NOT notify the iSCSI layer at the
  target and MUST NOT invoke the Data_Completion_Notify Operational
  Primitive.

  If an operation associated with an iSCSI data-type PDU fails for any
  reason, the contents of the Data Sink buffers associated with the
  operation are considered indeterminate.







Ko & Nezhinsky               Standards Track                   [Page 44]

RFC 7145                   iSER Specification                 April 2014


7.2.  iSCSI Control-Type PDU

  Any iSCSI PDU that is not an iSCSI data-type PDU and also not a SCSI
  Data-Out PDU carrying solicited data is defined as an iSCSI control-
  type PDU.  The iSCSI layer invokes the Send_Control Operational
  Primitive to request the iSER layer to process an iSCSI control-type
  PDU.  iSCSI control-type PDUs are transferred using Send Messages of
  RCaP.  Specifically, it is to be noted that SCSI Data-Out PDUs
  carrying unsolicited data are defined as iSCSI control-type PDUs.
  See Section 7.3.4 on the treatment of SCSI Data-Out PDUs.

  When the iSER layer receives an iSCSI control-type PDU, it MUST
  notify the iSCSI layer by invoking the Control_Notify Operational
  Primitive qualified with the iSCSI control-type PDU.

7.3.  iSCSI PDUs

  This section describes the handling of each of the iSCSI PDU types by
  the iSER layer.  The iSCSI layer requests the iSER layer to process
  the iSCSI PDU by invoking the appropriate Operational Primitive.  A
  Connection_Handle MUST qualify each of these invocations.  In
  addition, the BHS and the optional AHS of the iSCSI PDU as defined in
  [iSCSI] MUST qualify each of the invocations.  The qualifying
  Connection_Handle, the BHS, and the AHS are not explicitly listed in
  the subsequent sections.

7.3.1.  SCSI Command

     Type:  control-type PDU

     PDU-specific qualifiers (for SCSI Write or bidirectional command):
     ImmediateDataSize, UnsolicitedDataSize, DataDescriptorOut

     PDU-specific qualifiers (for SCSI Read or bidirectional command):
     DataDescriptorIn

  The iSER layer at the initiator MUST send the SCSI command in a Send
  Message to the target.  The SendSE Message should be used if
  supported by the RCaP layer (e.g., iWARP).












Ko & Nezhinsky               Standards Track                   [Page 45]

RFC 7145                   iSER Specification                 April 2014


  For a SCSI Write or bidirectional command, the iSCSI layer at the
  initiator MUST invoke the Send_Control Operational Primitive as
  follows:

  *  If there is immediate data to be transferred for the SCSI write or
     bidirectional command, the qualifier ImmediateDataSize MUST be
     used to define the number of bytes of immediate unsolicited data
     to be sent with the write or bidirectional command, and the
     qualifier DataDescriptorOut MUST be used to define the initiator's
     I/O Buffer containing the SCSI Write data.

  *  If there is unsolicited data to be transferred for the SCSI Write
     or bidirectional command, the qualifier UnsolicitedDataSize MUST
     be used to define the number of bytes of immediate and non-
     immediate unsolicited data for the command.  The iSCSI layer will
     issue one or more SCSI Data-Out PDUs for the non-immediate
     unsolicited data.  See Section 7.3.4 on SCSI Data-Out.

  *  If there is solicited data to be transferred for the SCSI Write or
     bidirectional command, as indicated when the Expected Data
     Transfer Length in the SCSI Command PDU exceeds the value of
     UnsolicitedDataSize, the iSER layer at the initiator MUST do the
     following:

     a. It MUST allocate a Write STag for the I/O Buffer defined by the
        qualifier DataDescriptorOut.  DataDescriptorOut describes the
        I/O buffer starting with the immediate unsolicited data (if
        any), followed by the non-immediate unsolicited data (if any)
        and solicited data.  When TaggedBufferForSolicitedDataOnly is
        negotiated to No, the Base Offset is associated with this I/O
        Buffer.  When TaggedBufferForSolicitedDataOnly is negotiated to
        Yes, the Base Offset is associated with an I/O Buffer that
        contains only solicited data.

     b. It MUST establish a Local Mapping that associates the Initiator
        Task Tag (ITT) to the Write STag.

     c. It MUST Advertise the Write STag and the Base Offset to the
        target by sending them in the iSER header of the iSER Message
        (the payload of the Send Message of RCaP) containing the SCSI
        Write or bidirectional command PDU.  The SendSE Message should
        be used if supported by the RCaP layer (e.g., iWARP).  See
        Section 9.2 on iSER Header Format for iSCSI Control-Type PDU.








Ko & Nezhinsky               Standards Track                   [Page 46]

RFC 7145                   iSER Specification                 April 2014


  For a SCSI Read or bidirectional command, the iSCSI layer at the
  initiator MUST invoke the Send_Control Operational Primitive
  qualified with DataDescriptorIn, which defines the initiator's I/O
  Buffer for receiving the SCSI Read data.  The iSER layer at the
  initiator MUST do the following:

     a. It MUST allocate a Read STag for the I/O Buffer and note the
        Base Offset for this I/O Buffer.

     b. It MUST establish a Local Mapping that associates the Initiator
        Task Tag (ITT) to the Read STag.

     c. It MUST Advertise the Read STag and the Base Offset to the
        target by sending them in the iSER header of the iSER Message
        (the payload of the Send Message of RCaP) containing the SCSI
        Read or bidirectional command PDU.  The SendSE Message should
        be used if supported by the RCaP layer (e.g., iWARP).  See
        Section 9.2 on iSER Header Format for iSCSI Control-Type PDU.

  If the amount of unsolicited data to be transferred in a SCSI Command
  exceeds TargetRecvDataSegmentLength, then the iSCSI layer at the
  initiator MUST segment the data into multiple iSCSI control-type
  PDUs, with the data segment length in all generated PDUs (except the
  last one) having exactly the size TargetRecvDataSegmentLength.  The
  data segment length of the last iSCSI control-type PDU carrying the
  unsolicited data can be up to TargetRecvDataSegmentLength.

  When the iSER layer at the target receives the SCSI Command, it MUST
  establish a Remote Mapping that associates the ITT to the Base
  Offset(s) and the Advertised STag(s) in the iSER header.  The Write
  STag is used by the iSER layer at the target in handling the data
  transfer associated with the R2T PDU(s) as described in Section
  7.3.6.  The Read STag is used in handling the SCSI Data-In PDU(s)
  from the iSCSI layer at the target as described in Section 7.3.5.

7.3.2.  SCSI Response

     Type:  control-type PDU

     PDU-specific qualifiers:  DataDescriptorStatus

  The iSCSI layer at the target MUST invoke the Send_Control
  Operational Primitive qualified with DataDescriptorStatus, which
  defines the buffer containing the sense and response information.
  The iSCSI layer at the target MUST always return the SCSI status for
  a SCSI command in a separate SCSI Response PDU.  "Phase collapse" for





Ko & Nezhinsky               Standards Track                   [Page 47]

RFC 7145                   iSER Specification                 April 2014


  transferring SCSI status in a SCSI Data-In PDU MUST NOT be used. The
  iSER layer at the target sends the SCSI Response PDU according to the
  following rules:

  *  If no STags were Advertised by the initiator in the iSER Message
     containing the SCSI command PDU, then the iSER layer at the target
     MUST send a Send Message containing the SCSI Response PDU.  The
     SendSE Message should be used if supported by the RCaP layer
     (e.g., iWARP).

  *  If the initiator Advertised a Read STag in the iSER Message
     containing the SCSI Command PDU, then the iSER layer at the target
     MUST send a Send Message containing the SCSI Response PDU.  The
     header of the Send Message MUST carry the Read STag to be
     invalidated at the initiator.  The Send with Invalidate Message,
     if supported by the RCaP layer (e.g., iWARP), can be used for the
     automatic invalidation of the STag.

  *  If the initiator Advertised only the Write STag in the iSER
     Message containing the SCSI command PDU, then the iSER layer at
     the target MUST send a Send Message containing the SCSI Response
     PDU.  The header of the Send Message MUST carry the Write STag to
     be invalidated at the initiator.  The Send with Invalidate
     Message, if supported by the RCaP layer (e.g., iWARP), can be used
     for the automatic invalidation of the STag.

  When the iSCSI layer at the target invokes the Send_Control
  Operational Primitive to send the SCSI Response PDU, the iSER layer
  at the target MUST invalidate the Remote Mapping before transferring
  the SCSI Response PDU to the initiator.

  Upon receiving a Send Message containing the SCSI Response PDU from
  the target, the iSER layer at the initiator MUST invalidate the
  STag(s) specified in the header.  (If a Send with Invalidate Message
  is supported by the RCaP layer (e.g., iWARP) and is used to carry the
  SCSI Response PDU, the RCaP layer at the initiator will invalidate
  the STag.  The iSER layer at the initiator MUST ensure that the
  correct STag is invalidated.  If both the Read and the Write STags
  were Advertised earlier by the initiator, then the iSER layer at the
  initiator MUST explicitly invalidate the Write STag upon receiving
  the Send with Invalidate Message because the header of the Send with
  Invalidate Message can only carry one STag (in this case, the Read
  STag) to be invalidated.)

  The iSER layer at the initiator MUST ensure the invalidation of the
  STag(s) used in a command before notifying the iSCSI layer at the
  initiator by invoking the Control_Notify Operational Primitive
  qualified with the SCSI Response.  This precludes the possibility of



Ko & Nezhinsky               Standards Track                   [Page 48]

RFC 7145                   iSER Specification                 April 2014


  using the STag(s) after the completion of the command; such use would
  cause data corruption.

  When the iSER layer at the initiator receives a Send Message
  containing the SCSI Response PDU, it SHOULD invalidate the Local
  Mapping.  The iSER layer MUST ensure that all local STag(s)
  associated with the ITT are invalidated before notifying the iSCSI
  layer of the SCSI Response PDU by invoking the Control_Notify
  Operational Primitive qualified with the SCSI Response PDU.

7.3.3.  Task Management Function Request/Response

     Type:  control-type PDU

     PDU-specific qualifiers (for TMF Request):  DataDescriptorOut,
     DataDescriptorIn

  The iSER layer MUST use a Send Message to send the Task Management
  Function Request/Response PDU.  The SendSE Message should be used if
  supported by the RCaP layer (e.g., iWARP).

  For the Task Management Function Request with the TASK REASSIGN
  function, the iSER layer at the initiator MUST do the following:

  *  It MUST use the ITT as specified in the Referenced Task Tag from
     the Task Management Function Request PDU to locate the existing
     STags (if any) in the Local Mappings.

  *  It MUST invalidate the existing STags (if any) and the Local
     Mappings.

  *  It MUST allocate a Read STag for the I/O Buffer and note the Base
     Offset associated with the I/O Buffer as defined by the qualifier
     DataDescriptorIn if the Send_Control Operational Primitive
     invocation is qualified with DataDescriptorIn.

  *  It MUST allocate a Write STag for the I/O Buffer and note the Base
     Offset associated with the I/O Buffer as defined by the qualifier
     DataDescriptorOut if the Send_Control Operational Primitive
     invocation is qualified with DataDescriptorOut.

  *  If STags are allocated, it MUST establish new Local Mapping(s)
     that associate the ITT to the allocated STag(s).

  *  It MUST Advertise the STags and the Base Offsets, if allocated, to
     the target in the iSER header of the Send Message carrying the
     iSCSI PDU, as described in Section 9.2.  The SendSE Message should
     be used if supported by the RCaP layer (e.g., iWARP).



Ko & Nezhinsky               Standards Track                   [Page 49]

RFC 7145                   iSER Specification                 April 2014


  For the Task Management Function Request with the TASK REASSIGN
  function for a SCSI Read or bidirectional command, the iSCSI layer at
  the initiator MUST set ExpDataSN to zero since the data transfer and
  acknowledgements happen transparently to the iSCSI layer at the
  initiator.  This provides the flexibility to the iSCSI layer at the
  target to request transmission of only the unacknowledged data as
  specified in [iSCSI].

  When the iSER layer at the target receives the Task Management
  Function Request with the TASK REASSIGN function, it MUST do the
  following:

  *  It MUST use the ITT as specified in the Referenced Task Tag from
     the Task Management Function Request PDU to locate the Local and
     Remote Mappings (if any).

  *  It MUST invalidate the local STags (if any) associated with the
     ITT.

  *  It MUST replace the Base Offset(s) and the Advertised STag(s) in
     the Remote Mapping with the Base Offset(s) and the Advertised
     STag(s) in the iSER header.  The Write STag is used in the
     handling of the R2T PDU(s) from the iSCSI layer at the target as
     described in Section 7.3.6.  The Read STag is used in the handling
     of the SCSI Data-In PDU(s) from the iSCSI layer at the target as
     described in Section 7.3.5.

7.3.4.  SCSI Data-Out

     Type:  control-type PDU

     PDU-specific qualifiers:  DataDescriptorOut

  The iSCSI layer at the initiator MUST invoke the Send_Control
  Operational Primitive qualified with DataDescriptorOut, which defines
  the initiator's I/O Buffer containing unsolicited SCSI Write data.

  If the amount of unsolicited data to be transferred as SCSI Data-Out
  exceeds TargetRecvDataSegmentLength, then the iSCSI layer at the
  initiator MUST segment the data into multiple iSCSI control-type
  PDUs, where the DataSegmentLength has the value of
  TargetRecvDataSegmentLength in all generated PDUs except the last
  one.  The DataSegmentLength of the last iSCSI control-type PDU
  carrying the unsolicited data can be up to
  TargetRecvDataSegmentLength.  The iSCSI layer at the target MUST
  perform the reassembly function for the unsolicited data.





Ko & Nezhinsky               Standards Track                   [Page 50]

RFC 7145                   iSER Specification                 April 2014


  For unsolicited data, the iSER layer at the initiator MUST use a Send
  Message to send the SCSI Data-Out PDU.  If the F bit is set to 1, the
  SendSE Message should be used if supported by the RCaP layer (e.g.,
  iWARP).

  Note that for solicited data, the SCSI Data-Out PDUs are not used
  since R2T PDUs are not delivered to the iSCSI layer at the initiator;
  instead, R2T PDUs are transformed by the iSER layer at the target
  into RDMA Read operations.  (See Section 7.3.6.)

7.3.5.  SCSI Data-In

     Type:  data-type PDU

     PDU-specific qualifiers:  DataDescriptorIn

  When the iSCSI layer at the target is ready to return the SCSI Read
  data to the initiator, it MUST invoke the Put_Data Operational
  Primitive qualified with DataDescriptorIn, which defines the SCSI
  Data-In buffer.  See Section 7.1 on the general requirement on the
  handling of iSCSI data-type PDUs.  SCSI Data-In PDU(s) are used in
  SCSI Read data transfer as described in Section 9.5.2.

  The iSER layer at the target MUST do the following for each
  invocation of the Put_Data Operational Primitive:

  1. It MUST use the ITT in the SCSI Data-In PDU to locate the remote
     Read STag and the Base Offset in the Remote Mapping.  The Remote
     Mapping was established earlier by the iSER layer at the target
     when the SCSI Read Command was received from the initiator.

  2. It MUST generate and send an RDMA Write Message containing the
     read data to the initiator.

     a. It MUST use the remote Read STag as the Data Sink STag of the
        RDMA Write Message.

     b. It MUST add the Buffer Offset from the SCSI Data-In PDU to the
        Base Offset from the Remote Mapping as the Data Sink Tagged
        Offset of the RDMA Write Message.

     c. It MUST use DataSegmentLength from the SCSI Data-In PDU to
        determine the amount of data to be sent in the RDMA Write
        Message.

  3. It MUST associate the DataSN and ITT from the SCSI Data-In PDU
     with the RDMA Write operation.  If the Put_Data Operational
     Primitive invocation was qualified with Notify_Enable set, then



Ko & Nezhinsky               Standards Track                   [Page 51]

RFC 7145                   iSER Specification                 April 2014


     when the iSER layer at the target receives a completion from the
     RCaP layer for the RDMA Write Message, the iSER layer at the
     target MUST notify the iSCSI layer by invoking the
     Data_Completion_Notify Operational Primitive qualified with the
     DataSN and ITT.  Conversely, if the Put_Data Operational Primitive
     invocation was qualified with Notify_Enable cleared, then the iSER
     layer at the target MUST NOT notify the iSCSI layer on completion
     and MUST NOT invoke the Data_Completion_Notify Operational
     Primitive.

  When the A-bit is set to one in the SCSI Data-In PDU, the iSER layer
  at the target MUST notify the iSCSI layer at the target when the data
  transfer is complete at the initiator.  To perform this additional
  function, the iSER layer at the target can take advantage of the
  operational ErrorRecoveryLevel if previously disclosed by the iSCSI
  layer via an earlier invocation of the Notice_Key_Values Operational
  Primitive.  There are two approaches that can be taken:

  1. If the iSER layer at the target knows that the operational
     ErrorRecoveryLevel is 2, or if the iSER layer at the target does
     not know the operational ErrorRecoveryLevel, then the iSER layer
     at the target MUST issue a zero-length RDMA Read Request Message
     following the RDMA Write Message.  When the iSER layer at the
     target receives a completion for the RDMA Read Request Message
     from the RCaP layer, implying that the RDMA-Capable Controller at
     the initiator has completed processing the RDMA Write Message due
     to the completion ordering semantics of RCaP, the iSER layer at
     the target MUST notify the iSCSI layer at the target by invoking
     the Data_ACK_Notify Operational Primitive qualified with ITT and
     DataSN (see Section 3.2.3).

  2. If the iSER layer at the target knows that the operational
     ErrorRecoveryLevel is 1, then the iSER layer at the target MUST do
     one of the following:

     a. It MUST notify the iSCSI layer at the target by invoking the
        Data_ACK_Notify Operational Primitive qualified with ITT and
        DataSN (see Section 3.2.3) when it receives the local
        completion from the RCaP layer for the RDMA Write Message.
        This is allowed since digest errors do not occur in iSER (see
        Section 10.1.4.2) and a CRC error will cause the connection to
        be terminated and the task to be terminated anyway.  The local
        RDMA Write completion from the RCaP layer guarantees that the
        RCaP layer will not access the I/O Buffer again to transfer the
        data associated with that RDMA Write operation.






Ko & Nezhinsky               Standards Track                   [Page 52]

RFC 7145                   iSER Specification                 April 2014


     b. Alternatively, it MUST use the same procedure for handling the
        data transfer completion at the initiator as for
        ErrorRecoveryLevel 2.

  It should be noted that the iSCSI layer at the target cannot set the
  A-bit to 1 if the ErrorRecoveryLevel=0.

  SCSI status MUST always be returned in a separate SCSI Response PDU.
  The S bit in the SCSI Data-In PDU MUST always be set to zero.  There
  MUST NOT be a "phase collapse" in the SCSI Data-In PDU.

  Since the RDMA Write Message only transfers the data portion of the
  SCSI Data-In PDU but not the control information in the header, such
  as ExpCmdSN, if timely updates of such information are crucial, the
  iSCSI layer at the initiator MAY issue NOP-Out PDUs to request the
  iSCSI layer at the target to respond with the information using
  NOP-In PDUs.

7.3.6.  Ready To Transfer (R2T)

     Type:  data-type PDU

     PDU-specific qualifiers:  DataDescriptorOut

  In order to send an R2T PDU, the iSCSI layer at the target MUST
  invoke the Get_Data Operational Primitive qualified with
  DataDescriptorOut, which defines the I/O Buffer for receiving the
  SCSI Write data from the initiator.  See Section 7.1 on the general
  requirements on the handling of iSCSI data-type PDUs.

  The iSER layer at the target MUST do the following for each
  invocation of the Get_Data Operational Primitive:

  1. It MUST ensure a valid local STag for the I/O Buffer and a valid
     Local Mapping.  This may involve allocating a valid local STag and
     establishing a Local Mapping.

  2. It MUST use the ITT in the R2T to locate the remote Write STag and
     the Base Offset in the Remote Mapping.  The Remote Mapping was
     established earlier by the iSER layer at the target when the iSER
     Message containing the Advertised Write STag, the Base Offset, and
     the SCSI Command PDU for a SCSI Write or bidirectional command was
     received from the initiator.

  3. If the iSER-ORD value at the target is set to zero, the iSER layer
     at the target MUST terminate the connection and free up the
     resources associated with the connection (as described in Section
     5.2.3) if it received the R2T PDU from the iSCSI layer at the



Ko & Nezhinsky               Standards Track                   [Page 53]

RFC 7145                   iSER Specification                 April 2014


     target.  Upon termination of the connection, the iSER layer at the
     target MUST notify the iSCSI layer at the target by invoking the
     Connection_Terminate_Notify Operational Primitive.

  4. If the iSER-ORD value at the target is set to greater than 0, the
     iSER layer at the target MUST transform the R2T PDU into an RDMA
     Read Request Message.  While transforming the R2T PDU, the iSER
     layer at the target MUST ensure that the number of outstanding
     RDMA Read Request Messages does not exceed the iSER-ORD value.  To
     transform the R2T PDU, the iSER layer at the target:

     a. MUST derive the local STag and local Tagged Offset from the
        DataDescriptorOut that qualified the Get_Data invocation.

     b. MUST use the local STag as the Data Sink STag of the RDMA Read
        Request Message.

     c. MUST use the local Tagged Offset as the Data Sink Tagged Offset
        of the RDMA Read Request Message.

     d. MUST use the Desired Data Transfer Length from the R2T PDU as
        the RDMA Read Message Size of the RDMA Read Request Message.

     e. MUST use the remote Write STag as the Data Source STag of the
        RDMA Read Request Message.

     f. MUST add the Buffer Offset from the R2T PDU to the Base Offset
        from the Remote Mapping as the Data Source Tagged Offset of the
        RDMA Read Request Message.

  5. It MUST associate the R2TSN and ITT from the R2T PDU with the RDMA
     Read operation.  If the Get_Data Operational Primitive invocation
     was qualified with Notify_Enable set, then when the iSER layer at
     the target receives a completion from the RCaP layer for the RDMA
     Read operation, the iSER layer at the target MUST notify the iSCSI
     layer by invoking the Data_Completion_Notify Operational Primitive
     qualified with the R2TSN and ITT.  Conversely, if the Get_Data
     Operational Primitive invocation was qualified with Notify_Enable
     cleared, then the iSER layer at the target MUST NOT notify the
     iSCSI layer on completion and MUST NOT invoke the
     Data_Completion_Notify Operational Primitive.

  When the RCaP layer at the initiator receives a valid RDMA Read
  Request Message, it will return an RDMA Read Response Message
  containing the solicited write data to the target.  When the RCaP
  layer at the target receives the RDMA Read Response Message from the
  initiator, it will place the solicited data in the I/O Buffer
  referenced by the Data Sink STag in the RDMA Read Response Message.



Ko & Nezhinsky               Standards Track                   [Page 54]

RFC 7145                   iSER Specification                 April 2014


  Since the RDMA Read Request Message from the target does not transfer
  the control information in the R2T PDU such as ExpCmdSN, if timely
  updates of such information are crucial, the iSCSI layer at the
  initiator MAY issue NOP-Out PDUs to request the iSCSI layer at the
  target to respond with the information using NOP-In PDUs.

  Similarly, since the RDMA Read Response Message from the initiator
  only transfers the data but not the control information normally
  found in the SCSI Data-Out PDU, such as ExpStatSN, if timely updates
  of such information are crucial, the iSCSI layer at the target MAY
  issue NOP-In PDUs to request the iSCSI layer at the initiator to
  respond with the information using NOP-Out PDUs.

7.3.7.  Asynchronous Message

     Type:  control-type PDU

     PDU-specific qualifiers:  DataDescriptorSense

  The iSCSI layer MUST invoke the Send_Control Operational Primitive
  qualified with DataDescriptorSense, which defines the buffer
  containing the sense and iSCSI event information.  The iSER layer
  MUST use a Send Message to send the Asynchronous Message PDU.  The
  SendSE Message should be used if supported by the RCaP layer (e.g.,
  iWARP).

7.3.8.  Text Request and Text Response

     Type:  control-type PDU

     PDU-specific qualifiers:  DataDescriptorTextOut (for Text
     Request), DataDescriptorIn (for Text Response)

  The iSCSI layer MUST invoke the Send_Control Operational Primitive
  qualified with DataDescriptorTextOut (or DataDescriptorIn), which
  defines the Text Request (or Text Response) buffer.  The iSER layer
  MUST use Send Messages to send the Text Request (or Text Response
  PDUs).  The SendSE Message should be used if supported by the RCaP
  layer (e.g., iWARP).

7.3.9.  Login Request and Login Response

  During the login negotiation, the iSCSI layer interacts with the
  transport layer directly, and the iSER layer is not involved.  See
  Section 5.1 on iSCSI/iSER Connection Setup.  If the underlying
  transport is TCP, the Login Request PDUs and the Login Response PDUs
  are exchanged when the connection between the initiator and the
  target is still in the byte stream mode.



Ko & Nezhinsky               Standards Track                   [Page 55]

RFC 7145                   iSER Specification                 April 2014


  The iSCSI layer MUST NOT send a Login Request (or a Login Response)
  PDU during the Full Feature Phase.  A Login Request (or a Login
  Response) PDU, if used, MUST be treated as an iSCSI protocol error.
  The iSER layer MAY reject such a PDU from the iSCSI layer with an
  appropriate error code.  If a Login Request PDU is received by the
  iSCSI layer at the target, it MUST respond with a Reject PDU with a
  reason code of "protocol error".

7.3.10.  Logout Request and Logout Response

     Type:  control-type PDU

     PDU-specific qualifiers:  None

  The iSER layer MUST use a Send Message to send the Logout Request or
  Logout Response PDU.  The SendSE Message should be used if supported
  by the RCaP layer (e.g., iWARP).  Sections 5.2.1 and 5.2.2 describe
  the handling of the Logout Request and the Logout Response at the
  initiator and the target and the interactions between the initiator
  and the target to terminate a connection.

7.3.11.  SNACK Request

  Since HeaderDigest and DataDigest must be negotiated to "None", there
  are no digest errors when the connection is in iSER-assisted mode.
  Also, since RCaP delivers all messages in the order they were sent,
  there are no sequence errors when the connection is in iSER-assisted
  mode.  Therefore, the iSCSI layer MUST NOT send SNACK Request PDUs.
  A SNACK Request PDU, if used, MUST be treated as an iSCSI protocol
  error.  The iSER layer MAY reject such a PDU from the iSCSI layer
  with an appropriate error code.  If a SNACK Request PDU is received
  by the iSCSI layer at the target, it MUST respond with a Reject PDU
  with a reason code of "protocol error".

7.3.12.  Reject

     Type:  control-type PDU

     PDU-specific qualifiers:  DataDescriptorReject

  The iSCSI layer MUST invoke the Send_Control Operational Primitive
  qualified with DataDescriptorReject, which defines the Reject buffer.
  The iSER layer MUST use a Send Message to send the Reject PDU.  The
  SendSE Message should be used if supported by the RCaP layer (e.g.,
  iWARP).






Ko & Nezhinsky               Standards Track                   [Page 56]

RFC 7145                   iSER Specification                 April 2014


7.3.13.  NOP-Out and NOP-In

     Type:  control-type PDU

     PDU-specific qualifiers:  DataDescriptorNOPOut (for NOP-Out),
     DataDescriptorNOPIn (for NOP-In)

  The iSCSI layer MUST invoke the Send_Control Operational Primitive
  qualified with DataDescriptorNOPOut (or DataDescriptorNOPIn), which
  defines the Ping (or Return Ping) data buffer.  The iSER layer MUST
  use Send Messages to send the NOP-Out (or NOP-In) PDU.  The SendSE
  Message should be used if supported by the RCaP layer (e.g., iWARP).

8.  Flow Control and STag Management

8.1.  Flow Control for RDMA Send Messages

  Send Messages in RCaP are used by the iSER layer to transfer iSCSI
  control-type PDUs.  Each Send Message in RCaP consumes an Untagged
  Buffer at the Data Sink.  However, neither the RCaP layer nor the
  iSER layer provides an explicit flow control mechanism for the Send
  Messages.  Therefore, the iSER layer SHOULD provision enough Untagged
  buffers for handling incoming Send Messages to prevent buffer
  exhaustion at the RCaP layer.  If buffer exhaustion occurs, it may
  result in the termination of the connection.

  An implementation may choose to satisfy the buffer requirement by
  using a common buffer pool shared across multiple connections, with
  usage limits on a per-connection basis and usage limits on the buffer
  pool itself.  In such an implementation, exceeding the buffer usage
  limit for a connection or the buffer pool itself may trigger
  interventions from the iSER layer to replenish the buffer pool and/or
  to isolate the connection causing the problem.

  iSER also provides the MaxOutstandingUnexpectedPDUs key to be used by
  the initiator and the target to declare the maximum number of
  outstanding "unexpected" control-type PDUs that it can receive.  It
  is intended to allow the receiving side to determine the amount of
  buffer resources needed beyond the normal flow control mechanism
  available in iSCSI.

  The buffer resources required at both the initiator and the target as
  a result of control-type PDUs sent by the initiator are described in
  Section 8.1.1.  The buffer resources required at both the initiator
  and target as a result of control-type PDUs sent by the target are
  described in Section 8.1.2.





Ko & Nezhinsky               Standards Track                   [Page 57]

RFC 7145                   iSER Specification                 April 2014


8.1.1.  Flow Control for Control-Type PDUs from the Initiator

  The control-type PDUs that can be sent by an initiator to a target
  can be grouped into the following categories:

  1. Regulated:  Control-type PDUs in this category are regulated by
     the iSCSI CmdSN window mechanism, and the immediate flag is not
     set.

  2. Unregulated but Expected:  Control-type PDUs in this category are
     not regulated by the iSCSI CmdSN window mechanism but are expected
     by the target.

  3. Unregulated and Unexpected:  Control-type PDUs in this category
     are not regulated by the iSCSI CmdSN window mechanism and are
     "unexpected" by the target.

8.1.1.1.  Control-Type PDUs from the Initiator in the Regulated Category

  Control-type PDUs that can be sent by the initiator in this category
  are regulated by the iSCSI CmdSN window mechanism, and the immediate
  flag is not set.

  The queuing capacity required of the iSCSI layer at the target is
  described in Section 4.2.2.1 of [iSCSI].  For each of the control-
  type PDUs that can be sent by the initiator in this category, the
  initiator MUST provision for the buffer resources required for the
  corresponding control-type PDU sent as a response from the target.
  The following is a list of the PDUs that can be sent by the initiator
  and the PDUs that are sent by the target in response:

     a. When an initiator sends a SCSI Command PDU, it expects a SCSI
        Response PDU from the target.

     b. When the initiator sends a Task Management Function Request
        PDU, it expects a Task Management Function Response PDU from
        the target.

     c. When the initiator sends a Text Request PDU, it expects a Text
        Response PDU from the target.

     d. When the initiator sends a Logout Request PDU, it expects a
        Logout Response PDU from the target.

     e. When the initiator sends a NOP-Out PDU as a ping request with
        ITT != 0xffffffff and TTT = 0xffffffff, it expects a NOP-In PDU
        from the target with the same ITT and TTT as in the ping
        request.



Ko & Nezhinsky               Standards Track                   [Page 58]

RFC 7145                   iSER Specification                 April 2014


  The response from the target for any of the PDUs enumerated here may
  alternatively be in the form of a Reject PDU sent before the task is
  active, as described in Section 7.3 of [iSCSI].

8.1.1.2.  Control-Type PDUs from the Initiator in the Unregulated but
         Expected Category

  For the control-type PDUs in the Unregulated but Expected category,
  the amount of buffering resources required at the target can be
  predetermined.  The following is a list of the PDUs in this category:

     a. SCSI Data-Out PDUs are used by the initiator to send
        unsolicited data.  The amount of buffer resources required by
        the target can be determined using FirstBurstLength.  Note that
        SCSI Data-Out PDUs are not used for solicited data since the
        R2T PDU, which is used for solicitation, is transformed into
        RDMA Read operations by the iSER layer at the target.  See
        Section 7.3.4.

     b. A NOP-Out PDU with TTT != 0xffffffff is sent as a ping response
        by the initiator to the NOP-In PDU sent as a ping request by
        the target.

8.1.1.3.  Control-Type PDUs from the Initiator in the Unregulated and
         Unexpected Category

  PDUs in the Unregulated and Unexpected category are PDUs with the
  immediate flag set.  The number of PDUs that are in this category and
  can be sent by an initiator is controlled by the value of
  MaxOutstandingUnexpectedPDUs declared by the target.  (See Section
  6.7.)  After a PDU in this category is sent by the initiator, it is
  outstanding until it is retired.  At any time, the number of
  outstanding unexpected PDUs MUST NOT exceed the value of
  MaxOutstandingUnexpectedPDUs declared by the target.

  The target uses the value of MaxOutstandingUnexpectedPDUs that it
  declared to determine the amount of buffer resources required for
  control-type PDUs in this category that can be sent by an initiator.
  For the initiator, for each of the control-type PDUs that can be sent
  in this category, the initiator MUST provision for the buffer
  resources if required for the corresponding control-type PDU that can
  be sent as a response from the target.

  An outstanding PDU in this category is retired as follows.  If the
  CmdSN of the PDU sent by the initiator in this category is x, the PDU
  is outstanding until the initiator sends a non-immediate control-type





Ko & Nezhinsky               Standards Track                   [Page 59]

RFC 7145                   iSER Specification                 April 2014


  PDU on the same connection with CmdSN = y (where y is at least x) and
  the target responds with a control-type PDU on any connection where
  ExpCmdSN is at least y+1.

  When the number of outstanding unexpected control-type PDUs equals
  MaxOutstandingUnexpectedPDUs, the iSCSI layer at the initiator MUST
  NOT generate any unexpected PDUs, which otherwise it would have
  generated, even if the unexpected PDU is intended for immediate
  delivery.

8.1.2.  Flow Control for Control-Type PDUs from the Target

  Control-type PDUs that can be sent by a target and are expected by
  the initiator are listed in the Regulated category.  (See Section
  8.1.1.1.)

  For the control-type PDUs that can be sent by a target and are
  unexpected by the initiator, the number is controlled by
  MaxOutstandingUnexpectedPDUs declared by the initiator.  (See Section
  6.7.)  After a PDU in this category is sent by a target, it is
  outstanding until it is retired.  At any time, the number of
  outstanding unexpected PDUs MUST NOT exceed the value of
  MaxOutstandingUnexpectedPDUs declared by the initiator.  The
  initiator uses the value of MaxOutstandingUnexpectedPDUs that it
  declared to determine the amount of buffer resources required for
  control-type PDUs in this category that can be sent by a target.  The
  following is a list of the PDUs in this category and the conditions
  for retiring the outstanding PDU:

     a. For an Asynchronous Message PDU with StatSN = x, the PDU is
        outstanding until the initiator sends a control-type PDU with
        ExpStatSN set to at least x+1.

     b. For a Reject PDU with StatSN = x, which is sent after a task is
        active, the PDU is outstanding until the initiator sends a
        control-type PDU with ExpStatSN set to at least x+1.

     c. For a NOP-In PDU with ITT = 0xffffffff and StatSN = x, the PDU
        is outstanding until the initiator responds with a control-type
        PDU on the same connection where ExpStatSN is at least x+1.
        But if the NOP-In PDU is sent as a ping request with
        TTT != 0xffffffff, the PDU can also be retired when the
        initiator sends a NOP-Out PDU with the same ITT and TTT as in
        the ping request.  Note that when a target sends a NOP-In PDU
        as a ping request, it must provision a buffer for the NOP-Out
        PDU sent as a ping response from the initiator.





Ko & Nezhinsky               Standards Track                   [Page 60]

RFC 7145                   iSER Specification                 April 2014


  When the number of outstanding unexpected control-type PDUs equals
  MaxOutstandingUnexpectedPDUs, the iSCSI layer at the target MUST NOT
  generate any unexpected PDUs, which otherwise it would have
  generated, even if its intent is to indicate an iSCSI error condition
  (e.g., Asynchronous Message, Reject).  Task timeouts, as in the
  initiator's waiting for a command completion or other connection and
  session-level exceptions, will ensure that correct operational
  behavior will result in these cases despite not generating the PDU.
  This rule overrides any other requirements elsewhere that require
  that a Reject PDU MUST be sent.

  (Implementation note:  SCSI task timeout and recovery can be a
  lengthy process and hence SHOULD be avoided by proper provisioning of
  resources.)

  (Implementation note:  To ensure that the initiator has a means to
  inform the target that outstanding PDUs have been retired, the target
  should reserve the last unexpected control-type PDU allowable by the
  value of MaxOutstandingUnexpectedPDUs declared by the initiator for
  sending a NOP-In ping request with TTT != 0xffffffff to allow the
  initiator to return the NOP-Out ping response with the current
  ExpStatSN.)

8.2.  Flow Control for RDMA Read Resources

  If iSERHelloRequired is negotiated to "Yes", then the total number of
  RDMA Read operations that can be active simultaneously on an
  iSCSI/iSER connection depends on the amount of resources allocated as
  declared in the iSER Hello exchange described in Section 5.1.3.
  Exceeding the number of RDMA Read operations allowed on a connection
  will result in the connection being terminated by the RCaP layer.
  The iSER layer at the target maintains the iSER-ORD to keep track of
  the maximum number of RDMA Read Requests that can be issued by the
  iSER layer on a particular RCaP Stream.

  During connection setup (see Section 5.1), iSER-IRD is known at the
  initiator and iSER-ORD is known at the target after the iSER layers
  at the initiator and the target have respectively allocated the
  connection resources necessary to support RCaP, as directed by the
  Allocate_Connection_Resources Operational Primitive from the iSCSI
  layer before the end of the iSCSI Login Phase.  In the Full Feature
  Phase, if iSERHelloRequired is negotiated to "Yes", then the first
  message sent by the initiator is the iSER Hello Message (see Section
  9.3), which contains the value of iSER-IRD.  In response to the iSER
  Hello Message, the target sends the iSER HelloReply Message (see
  Section 9.4), which contains the value of iSER-ORD.  The iSER layer
  at both the initiator and the target MAY adjust (lower) the resources
  associated with iSER-IRD and iSER-ORD, respectively, to match the



Ko & Nezhinsky               Standards Track                   [Page 61]

RFC 7145                   iSER Specification                 April 2014


  iSER-ORD value declared in the HelloReply Message.  The iSER layer at
  the target MUST control the flow of the RDMA Read Request Messages so
  that it does not exceed the iSER-ORD value at the target.

  If iSERHelloRequired is negotiated to "No", then the maximum number
  of RDMA Read operations that can be active is negotiated via other
  means outside the scope of this document.  For example, in
  InfiniBand, iSER connection setup uses InfiniBand Connection Manager
  (CM) Management Datagrams (MADs), with additional iSER information
  exchanged in the private data.

8.3.  STag Management

  An STag is an identifier of a Tagged Buffer used in an RDMA
  operation.  If the STags are exposed on the wire by being Advertised
  in the iSER header or declared in the header of an RCaP Message, then
  the allocation and the subsequent invalidation of the STags are as
  specified in this document.

8.3.1.  Allocation of STags

  When the iSCSI layer at the initiator invokes the Send_Control
  Operational Primitive to request the iSER layer at the initiator to
  process a SCSI Command, zero, one, or two STags may be allocated by
  the iSER layer.  See Section 7.3.1 for details.  The number of STags
  allocated depends on whether the command is unidirectional or
  bidirectional and whether or not solicited write data transfer is
  involved.

  When the iSCSI layer at the initiator invokes the Send_Control
  Operational Primitive to request the iSER layer at the initiator to
  process a Task Management Function Request with the TASK REASSIGN
  function, besides allocating zero, one, or two STags, the iSER layer
  MUST invalidate the existing STags (if any) associated with the ITT.
  See Section 7.3.3 for details.

  The iSER layer at the target allocates a local Data Sink STag when
  the iSCSI layer at the target invokes the Get_Data Operational
  Primitive to request the iSER layer to process an R2T PDU.  See
  Section 7.3.6 for details.

8.3.2.  Invalidation of STags

  The invalidation of the STags at the initiator at the completion of a
  unidirectional or bidirectional command when the associated SCSI
  Response PDU is sent by the target is described in Section 7.3.2.





Ko & Nezhinsky               Standards Track                   [Page 62]

RFC 7145                   iSER Specification                 April 2014


  When a unidirectional or bidirectional command concludes without the
  associated SCSI Response PDU being sent by the target, the iSCSI
  layer at the initiator MUST request the iSER layer at the initiator
  to invalidate the STags by invoking the Deallocate_Task_Resources
  Operational Primitive qualified with ITT.  In response, the iSER
  layer at the initiator MUST locate the STags (if any) in the Local
  Mapping.  The iSER layer at the initiator MUST invalidate the STags
  (if any) and the Local Mapping.

  For an RDMA Read operation used to realize a SCSI Write data
  transfer, the iSER layer at the target SHOULD invalidate the Data
  Sink STag at the conclusion of the RDMA Read operation referencing
  the Data Sink STag (to permit the immediate reuse of buffer
  resources).

  For an RDMA Write operation used to realize a SCSI Read data
  transfer, the Data Source STag at the target is not declared to the
  initiator and is not exposed on the wire.  Invalidation of the STag
  is thus not specified.

  When a unidirectional or bidirectional command concludes without the
  associated SCSI Response PDU being sent by the target, the iSCSI
  layer at the target MUST request the iSER layer at the target to
  invalidate the STags by invoking the Deallocate_Task_Resources
  Operational Primitive qualified with ITT.  In response, the iSER
  layer at the target MUST locate the local STags (if any) in the Local
  Mapping.  The iSER layer at the target MUST invalidate the local
  STags (if any) and the Local Mapping.























Ko & Nezhinsky               Standards Track                   [Page 63]

RFC 7145                   iSER Specification                 April 2014


9.  iSER Control and Data Transfer

  For iSCSI data-type PDUs (see Section 7.1), the iSER layer uses RDMA
  Read and RDMA Write operations to transfer the solicited data.  For
  iSCSI control-type PDUs (see Section 7.2), the iSER layer uses Send
  Messages of RCaP.

9.1.  iSER Header Format

  An iSER header MUST be present in every Send Message of RCaP.  The
  iSER header is located in the first 28 bytes of the message payload
  of the Send Message of RCaP, as shown in Figure 2.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Opcode|                  Opcode Specific Fields               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                    Opcode Specific Fields (32 bits)           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                    Opcode Specific Fields (64 bits)           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                    Opcode Specific Fields (32 bits)           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                    Opcode Specific Fields (64 bits)           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    Figure 2: iSER Header Format

  Opcode - Operation Code: 4 bits

        The Opcode field identifies the type of iSER Messages:

             0001b = iSCSI control-type PDU

             0010b = iSER Hello Message

             0011b = iSER HelloReply Message

             All other Opcodes are unassigned.









Ko & Nezhinsky               Standards Track                   [Page 64]

RFC 7145                   iSER Specification                 April 2014


9.2.  iSER Header Format for iSCSI Control-Type PDU

  The iSER layer uses Send Messages of RCaP to transfer iSCSI control-
  type PDUs (see Section 7.2).  The message payload of each of the Send
  Messages of RCaP used for transferring an iSER Message contains an
  iSER Header followed by an iSCSI control-type PDU.

  The iSER header in a Send Message of RCaP carrying an iSCSI control-
  type PDU MUST have the format as described in Figure 3.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       |W|R|                                                   |
  | 0001b |S|S|                  Reserved                         |
  |       |V|V|                                                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                            Write STag                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                         Write Base Offset                     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             Read STag                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                         Read Base Offset                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Figure 3: iSER Header Format for iSCSI Control-Type PDU

  WSV - Write STag Valid flag: 1 bit

     This flag indicates the validity of the Write STag field and the
     Write Base Offset field of the iSER Header.  If set to one, the
     Write STag field and the Write Base Offset field in this iSER
     Header are valid.  If set to zero, the Write STag field and the
     Write Base Offset field in this iSER Header MUST be ignored at the
     receiver.  The Write STag Valid flag is set to one when there is
     solicited data to be transferred for a SCSI Write or bidirectional
     command, or when there are non-immediate unsolicited and solicited
     data to be transferred for the referenced task specified in a Task
     Management Function Request with the TASK REASSIGN function.

  RSV - Read STag Valid flag: 1 bit

     This flag indicates the validity of the Read STag field and the
     Read Base Offset field of the iSER Header.  If set to one, the
     Read STag field and the Read Base Offset field in this iSER Header



Ko & Nezhinsky               Standards Track                   [Page 65]

RFC 7145                   iSER Specification                 April 2014


     are valid.  If set to zero, the Read STag field and the Read Base
     Offset field in this iSER Header MUST be ignored at the receiver.
     The Read STag Valid flag is set to one for a SCSI Read or
     bidirectional command, or a Task Management Function Request with
     the TASK REASSIGN function.

  Write STag - Write Steering Tag: 32 bits

     This field contains the Write STag when the Write STag Valid flag
     is set to one.  For a SCSI Write or bidirectional command, the
     Write STag is used to Advertise the initiator's I/O Buffer
     containing the solicited data.  For a Task Management Function
     Request with the TASK REASSIGN function, the Write STag is used to
     Advertise the initiator's I/O Buffer containing the non-immediate
     unsolicited data and solicited data.  This Write STag is used as
     the Data Source STag in the resultant RDMA Read operation(s).
     When the Write STag Valid flag is set to zero, this field MUST be
     set to zero and ignored on receive.

  Write Base Offset: 64 bits

     This field contains the Base Offset associated with the I/O Buffer
     for the SCSI Write command when the Write STag Valid flag is set
     to one.  When the Write STag Valid flag is set to zero, this field
     MUST be set to zero and ignored on receive.

  Read STag - Read Steering Tag: 32 bits

     This field contains the Read STag when the Read STag Valid flag is
     set to one.  The Read STag is used to Advertise the initiator's
     Read I/O Buffer of a SCSI Read or bidirectional command, or a Task
     Management Function Request with the TASK REASSIGN function.  This
     Read STag is used as the Data Sink STag in the resultant RDMA
     Write operation(s).  When the Read STag Valid flag is zero, this
     field MUST be set to zero and ignored on receive.

  Read Base Offset: 64 bits

     This field contains the Base Offset associated with the I/O Buffer
     for the SCSI Read command when the Read STag Valid flag is set to
     one.  When the Read STag Valid flag is set to zero, this field
     MUST be set to zero and ignored on receive.

  Reserved:

     Reserved fields MUST be set to zero on transmit and MUST be
     ignored on receive.




Ko & Nezhinsky               Standards Track                   [Page 66]

RFC 7145                   iSER Specification                 April 2014


9.3.  iSER Header Format for iSER Hello Message

  An iSER Hello Message MUST only contain the iSER header, which MUST
  have the format as described in Figure 4.  If iSERHelloRequired is
  negotiated to "Yes", then iSER Hello Message is the first iSER
  Message sent on the RCaP Stream from the iSER layer at the initiator
  to the iSER layer at the target.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |       |       |       |       |                               |
     | 0010b | Rsvd  | MaxVer| MinVer|           iSER-IRD            |
     |       |       |       |       |                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                           Reserved                            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     |                           Reserved                            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                           Reserved                            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     |                           Reserved                            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

           Figure 4: iSER Header Format for iSER Hello Message

  MaxVer - Maximum Version: 4 bits

     This field specifies the maximum version of the iSER protocol
     supported.  It MUST be set to 10 to indicate the version of the
     specification described in this document.

  MinVer - Minimum Version: 4 bits

     This field specifies the minimum version of the iSER protocol
     supported.  It MUST be set to 10 to indicate the version of the
     specification described in this document.

  iSER-IRD: 16 bits

     This field contains the value of the iSER-IRD at the initiator.

  Reserved (Rsvd):

     Reserved fields MUST be set to zero on transmit and MUST be
     ignored on receive.



Ko & Nezhinsky               Standards Track                   [Page 67]

RFC 7145                   iSER Specification                 April 2014


9.4.  iSER Header Format for iSER HelloReply Message

  An iSER HelloReply Message MUST only contain the iSER header, which
  MUST have the format as described in Figure 5.  If iSERHelloRequired
  is negotiated to "Yes", then the iSER HelloReply Message is the first
  iSER Message sent on the RCaP Stream from the iSER layer at the
  target to the iSER layer at the initiator.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       |     |R|       |       |                               |
  | 0011b |Rsvd |E| MaxVer| CurVer|           iSER-ORD            |
  |       |     |J|       |       |                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                           Reserved                            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                           Reserved                            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                           Reserved                            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                           Reserved                            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Figure 5: iSER Header Format for iSER HelloReply Message

  REJ - Reject flag: 1 bit

     This flag indicates whether the target is rejecting this
     connection.  If set to one, the target is rejecting the
     connection.

  MaxVer - Maximum Version: 4 bits

     This field specifies the maximum version of the iSER protocol
     supported.  It MUST be set to 10 to indicate the version of the
     specification described in this document.

  CurVer - Current Version: 4 bits

     This field specifies the current version of the iSER protocol
     supported.  It MUST be set to 10 to indicate the version of the
     specification described in this document.






Ko & Nezhinsky               Standards Track                   [Page 68]

RFC 7145                   iSER Specification                 April 2014


  iSER-ORD: 16 bits

     This field contains the value of the iSER-ORD at the target.

  Reserved (Rsvd):

     Reserved fields MUST be set to zero on transmit and MUST be
     ignored on receive.

9.5.  SCSI Data Transfer Operations

  The iSER layer at the initiator and the iSER layer at the target
  handle each SCSI Write, SCSI Read, and bidirectional operation as
  described below.

9.5.1.  SCSI Write Operation

  The iSCSI layer at the initiator MUST invoke the Send_Control
  Operational Primitive to request the iSER layer at the initiator to
  send the SCSI Write Command.  The iSER layer at the initiator MUST
  request the RCaP layer to transmit a Send Message with the message
  payload consisting of the iSER header followed by the SCSI Command
  PDU and immediate data (if any).  The SendSE Message should be used
  if supported by the RCaP layer (e.g., iWARP).  If there is solicited
  data, the iSER layer MUST Advertise the Write STag and the Base
  Offset in the iSER header of the Send Message, as described in
  Section 9.2.  Upon receiving the Send Message, the iSER layer at the
  target MUST notify the iSCSI layer at the target by invoking the
  Control_Notify Operational Primitive qualified with the SCSI Command
  PDU.  See Section 7.3.1 for details on the handling of the SCSI Write
  Command.

  For the non-immediate unsolicited data, the iSCSI layer at the
  initiator MUST invoke a Send_Control Operational Primitive qualified
  with the SCSI Data-Out PDU.  Upon receiving each Send Message
  containing the non-immediate unsolicited data, the iSER layer at the
  target MUST notify the iSCSI layer at the target by invoking the
  Control_Notify Operational Primitive qualified with the SCSI Data-Out
  PDU.  See Section 7.3.4 for details on the handling of the SCSI Data-
  Out PDU.

  For the solicited data, when the iSCSI layer at the target has an I/O
  Buffer available, it MUST invoke the Get_Data Operational Primitive
  qualified with the R2T PDU.  See Section 7.3.6 for details on the
  handling of the R2T PDU.






Ko & Nezhinsky               Standards Track                   [Page 69]

RFC 7145                   iSER Specification                 April 2014


  When the data transfer associated with this SCSI Write operation is
  complete, the iSCSI layer at the target MUST invoke the Send_Control
  Operational Primitive when it is ready to send the SCSI Response PDU.
  Upon receiving a Send Message containing the SCSI Response PDU, the
  iSER layer at the initiator MUST notify the iSCSI layer at the
  initiator by invoking the Control_Notify Operational Primitive
  qualified with the SCSI Response PDU.  See Section 7.3.2 for details
  on the handling of the SCSI Response PDU.

9.5.2.  SCSI Read Operation

  The iSCSI layer at the initiator MUST invoke the Send_Control
  Operational Primitive to request the iSER layer at the initiator to
  send the SCSI Read Command.  The iSER layer at the initiator MUST
  request the RCaP layer to transmit a Send Message with the message
  payload consisting of the iSER header followed by the SCSI Command
  PDU.  The SendSE Message should be used if supported by the RCaP
  layer (e.g., iWARP).  The iSER layer at the initiator MUST Advertise
  the Read STag and the Base Offset in the iSER header of the Send
  Message, as described in Section 9.2.  Upon receiving the Send
  Message, the iSER layer at the target MUST notify the iSCSI layer at
  the target by invoking the Control_Notify Operational Primitive
  qualified with the SCSI Command PDU.  See Section 7.3.1 for details
  on the handling of the SCSI Read Command.

  When the requested SCSI data is available in the I/O Buffer, the
  iSCSI layer at the target MUST invoke the Put_Data Operational
  Primitive qualified with the SCSI Data-In PDU.  See Section 7.3.5 for
  details on the handling of the SCSI Data-In PDU.

  When the data transfer associated with this SCSI Read operation is
  complete, the iSCSI layer at the target MUST invoke the Send_Control
  Operational Primitive when it is ready to send the SCSI Response PDU.
  The SendInvSE Message should be used if supported by the RCaP layer
  (e.g., iWARP).  Upon receiving the Send Message containing the SCSI
  Response PDU, the iSER layer at the initiator MUST notify the iSCSI
  layer at the initiator by invoking the Control_Notify Operational
  Primitive qualified with the SCSI Response PDU.  See Section 7.3.2
  for details on the handling of the SCSI Response PDU.

9.5.3.  Bidirectional Operation

  The initiator and the target handle the SCSI Write and the SCSI Read
  portions of this bidirectional operation the same as described in
  Sections 9.5.1 and 9.5.2, respectively.






Ko & Nezhinsky               Standards Track                   [Page 70]

RFC 7145                   iSER Specification                 April 2014


10.  iSER Error Handling and Recovery

  RCaP provides the iSER layer with reliable in-order delivery.
  Therefore, the error management needs of an iSER-assisted connection
  are somewhat different than those of a Traditional iSCSI connection.

10.1.  Error Handling

  iSER error handling is described in the following sections,
  classified loosely based on the sources of errors:

  1. Those originating at the transport layer (e.g., TCP).

  2. Those originating at the RCaP layer.

  3. Those originating at the iSER layer.

  4. Those originating at the iSCSI layer.

10.1.1.  Errors in the Transport Layer

  If the transport layer is TCP, then TCP packets with detected errors
  are silently dropped by the TCP layer and result in retransmission at
  the TCP layer.  This has no impact on the iSER layer.  However,
  connection loss (e.g., link failure) and unexpected termination
  (e.g., TCP graceful or abnormal close without the iSCSI Logout
  exchanges) at the transport layer will cause the iSCSI/iSER
  connection to be terminated as well.

10.1.1.1.  Failure in the Transport Layer Before RCaP Mode is Enabled

  If the connection is lost or terminated before the iSCSI layer
  invokes the Allocate_Connection_Resources Operational Primitive, the
  login process is terminated and no further action is required.

  If the connection is lost or terminated after the iSCSI layer has
  invoked the Allocate_Connection_Resources Operational Primitive, then
  the iSCSI layer MUST request the iSER layer to deallocate all
  connection resources by invoking the Deallocate_Connection_Resources
  Operational Primitive.











Ko & Nezhinsky               Standards Track                   [Page 71]

RFC 7145                   iSER Specification                 April 2014


10.1.1.2.  Failure in the Transport Layer After RCaP Mode is Enabled

  If the connection is lost or terminated after the iSCSI layer has
  invoked the Enable_Datamover Operational Primitive, the iSER layer
  MUST notify the iSCSI layer of the connection loss by invoking the
  Connection_Terminate_Notify Operational Primitive.  Prior to invoking
  the Connection_Terminate_Notify Operational Primitive, the iSER layer
  MUST perform the actions described in Section 5.2.3.2.

10.1.2.  Errors in the RCaP Layer

  The RCaP layer does not have error recovery operations built in.  If
  errors are detected at the RCaP layer, the RCaP layer will terminate
  the RCaP Stream and the associated connection.

10.1.2.1.  Errors Detected in the Local RCaP Layer

  If an error is encountered at the local RCaP layer, the RCaP layer
  MAY send a Send Message to the Remote Peer to report the error if
  possible.  (For iWARP, see [RDMAP] for the list of errors where a
  Terminate Message is sent.)  The RCaP layer is responsible for
  terminating the connection.  After the RCaP layer notifies the iSER
  layer that the connection is terminated, the iSER layer MUST notify
  the iSCSI layer by invoking the Connection_Terminate_Notify
  Operational Primitive.  Prior to invoking the
  Connection_Terminate_Notify Operational Primitive, the iSER layer
  MUST perform the actions described in Section 5.2.3.2.

10.1.2.2.  Errors Detected in the RCaP Layer at the Remote Peer

  If an error is encountered at the RCaP layer at the Remote Peer, the
  RCaP layer at the Remote Peer may send a Send Message to report the
  error if possible.  If it is unable to send a Send Message, the
  connection is terminated.  This is treated the same as a failure in
  the transport layer after RDMA is enabled, as described in Section
  10.1.1.2.

  If an error is encountered at the RCaP layer at the Remote Peer and
  it is able to send a Send Message, the RCaP layer at the Remote Peer
  is responsible for terminating the connection.  After the local RCaP
  layer notifies the iSER layer that the connection is terminated, the
  iSER layer MUST notify the iSCSI layer by invoking the
  Connection_Terminate_Notify Operational Primitive.  Prior to invoking
  the Connection_Terminate_Notify Operational Primitive, the iSER layer
  MUST perform the actions described in Section 5.2.3.2.






Ko & Nezhinsky               Standards Track                   [Page 72]

RFC 7145                   iSER Specification                 April 2014


10.1.3.  Errors in the iSER Layer

  The error handling due to errors at the iSER layer is described in
  the following sections.

10.1.3.1.  Insufficient Connection Resources to Support RCaP at
          Connection Setup

  After the iSCSI layer at the initiator invokes the
  Allocate_Connection_Resources Operational Primitive during the iSCSI
  login negotiation phase, if the iSER layer at the initiator fails to
  allocate the connection resources necessary to support RCaP, it MUST
  return a status of failure to the iSCSI layer at the initiator.  The
  iSCSI layer at the initiator MUST terminate the connection as
  described in Section 5.2.3.1.

  After the iSCSI layer at the target invokes the
  Allocate_Connection_Resources Operational Primitive during the iSCSI
  login negotiation phase, if the iSER layer at the target fails to
  allocate the connection resources necessary to support RCaP, it MUST
  return a status of failure to the iSCSI layer at the target.  The
  iSCSI layer at the target MUST send a Login Response with a Status-
  Class of 0x03 (Target Error), and a Status-Code of 0x02 (Out of
  Resources).  The iSCSI layers at the initiator and the target MUST
  terminate the connection as described in Section 5.2.3.1.

10.1.3.2.  iSER Negotiation Failures

  If iSERHelloRequired is negotiated to "Yes" and the RCaP or iSER
  related parameters declared by the initiator in the iSER Hello
  Message are unacceptable to the iSER layer at the target, the iSER
  layer at the target MUST set the Reject (REJ) flag, as described in
  Section 9.4, in the iSER HelloReply Message.  The following are the
  cases when the iSER layer MUST set the REJ flag to 1 in the
  HelloReply Message:

  *  The initiator-declared iSER-IRD value is greater than 0, and the
     target-declared iSER-ORD value is 0.

  *  The initiator-supported and the target-supported iSER protocol
     versions do not overlap.

  After requesting the RCaP layer to send the iSER HelloReply Message,
  the handling of the error situation is the same as that for iSER
  format errors as described in Section 10.1.3.3.






Ko & Nezhinsky               Standards Track                   [Page 73]

RFC 7145                   iSER Specification                 April 2014


10.1.3.3.  iSER Format Errors

  The following types of errors in an iSER header are considered format
  errors:

  *  Illegal contents of any iSER header field

  *  Inconsistent field contents in an iSER header

  *  Length error for an iSER Hello or HelloReply Message (see Sections
     9.3 and 9.4)

  When a format error is detected, the following events MUST occur in
  the specified sequence:

  1. The iSER layer MUST request the RCaP layer to terminate the RCaP
     Stream.  The RCaP layer MUST terminate the associated connection.

  2.  The iSER layer MUST notify the iSCSI layer of the connection
     termination by invoking the Connection_Terminate_Notify
     Operational Primitive.  Prior to invoking the
     Connection_Terminate_Notify Operational Primitive, the iSER layer
     MUST perform the actions described in Section 5.2.3.2.

10.1.3.4.  iSER Protocol Errors

  If iSERHelloRequired is negotiated to "Yes", then the first iSER
  Message sent by the iSER layer at the initiator MUST be the iSER
  Hello Message (see Section 9.3).  In this case the first iSER Message
  sent by the iSER layer at the target MUST be the iSER HelloReply
  Message (see Section 9.4).  Failure to send the iSER Hello or
  HelloReply Message, as indicated by the wrong Opcode in the iSER
  header, is a protocol error.  Conversely, if the iSER Hello Message
  is sent by the iSER layer at the initiator when iSERHelloRequired is
  negotiated to "No", the iSER layer at the target MAY treat this as a
  protocol error or respond with an iSER HelloReply Message.  The
  handling of iSER protocol errors is the same as that for iSER format
  errors as described in Section 10.1.3.3.

  If the sending side of an iSER-enabled connection acts in a manner
  not permitted by the negotiated or declared login/text operational
  key values as described in Section 6, this is a protocol error and
  the receiving side MAY handle this the same as for iSER format errors
  as described in Section 10.1.3.3.







Ko & Nezhinsky               Standards Track                   [Page 74]

RFC 7145                   iSER Specification                 April 2014


10.1.4.  Errors in the iSCSI Layer

  The error handling due to errors at the iSCSI layer is described in
  the following sections.  For error recovery, see Section 10.2.

10.1.4.1.  iSCSI Format Errors

  When an iSCSI format error is detected, the iSCSI layer MUST request
  the iSER layer to terminate the RCaP Stream by invoking the
  Connection_Terminate Operational Primitive.  For more details on
  connection termination, see Section 5.2.3.1.

10.1.4.2.  iSCSI Digest Errors

  In the iSER-assisted mode, the iSCSI layer will not see any digest
  error because both the HeaderDigest and the DataDigest keys are
  negotiated to "None".

10.1.4.3.  iSCSI Sequence Errors

  For Traditional iSCSI, sequence errors are caused by dropped PDUs due
  to header or data digest errors.  Since digests are not used in iSER-
  assisted mode and the RCaP layer will deliver all messages in the
  order they were sent, sequence errors will not occur in iSER-assisted
  mode.

10.1.4.4.  iSCSI Protocol Error

  When the iSCSI layer handles certain protocol errors by dropping the
  connection, the error handling is the same as that for iSCSI format
  errors as described in Section 10.1.4.1.

  When the iSCSI layer uses the iSCSI Reject PDU and response codes to
  handle certain other protocol errors, no special handling at the iSER
  layer is required.

10.1.4.5.  SCSI Timeouts and Session Errors

  This is handled at the iSCSI layer, and no special handling at the
  iSER layer is required.

10.1.4.6.  iSCSI Negotiation Failures

  For negotiation failures that happen during the Login Phase at the
  initiator after the iSCSI layer has invoked the
  Allocate_Connection_Resources Operational Primitive and before the
  Enable_Datamover Operational Primitive has been invoked, the iSCSI
  layer MUST request the iSER layer to deallocate all connection



Ko & Nezhinsky               Standards Track                   [Page 75]

RFC 7145                   iSER Specification                 April 2014


  resources by invoking the Deallocate_Connection_Resources Operational
  Primitive.  The iSCSI layer at the initiator MUST terminate the
  connection.

  For negotiation failures during the Login Phase at the target, the
  iSCSI layer can use a Login Response with a Status-Class other than 0
  (success) to terminate the Login Phase.  If the iSCSI layer has
  invoked the Allocate_Connection_Resources Operational Primitive and
  has not yet invoked the Enable_Datamover Operational Primitive, the
  iSCSI layer at the target MUST request the iSER layer at the target
  to deallocate all connection resources by invoking the
  Deallocate_Connection_Resources Operational Primitive.  The iSCSI
  layer at both the initiator and the target MUST terminate the
  connection.

  During the iSCSI Login Phase, if the iSCSI layer at the initiator
  receives a Login Response from the target with a Status-Class other
  than 0 (Success) after the iSCSI layer at the initiator has invoked
  the Allocate_Connection_Resources Operational Primitive, the iSCSI
  layer MUST request the iSER layer to deallocate all connection
  resources by invoking the Deallocate_Connection_Resources Operational
  Primitive.  The iSCSI layer MUST terminate the connection in this
  case.

  For negotiation failures during the Full Feature Phase, the error
  handling is left to the iSCSI layer and no special handling at the
  iSER layer is required.

10.2.  Error Recovery

  Error recovery requirements of iSCSI/iSER are the same as that of
  Traditional iSCSI.  All three ErrorRecoveryLevels as defined in
  [iSCSI] are supported in iSCSI/iSER.

  *  For ErrorRecoveryLevel 0, session recovery is handled by iSCSI and
     no special handling by the iSER layer is required.

  *  For ErrorRecoveryLevel 1, see Section 10.2.1 on PDU Recovery.

  *  For ErrorRecoveryLevel 2, see Section 10.2.2 on Connection
     Recovery.

  The iSCSI layer may invoke the Notice_Key_Values Operational
  Primitive during connection setup to request the iSER layer to take
  note of the value of the operational ErrorRecoveryLevel, as described
  in Sections 5.1.1 and 5.1.2.





Ko & Nezhinsky               Standards Track                   [Page 76]

RFC 7145                   iSER Specification                 April 2014


10.2.1.  PDU Recovery

  As described in Sections 10.1.4.2 and 10.1.4.3, digest and sequence
  errors will not occur in the iSER-assisted mode.  If the RCaP layer
  detects an error, it will close the iSCSI/iSER connection, as
  described in Section 10.1.2.  Therefore, PDU recovery is not useful
  in the iSER-assisted mode.

  The iSCSI layer at the initiator SHOULD disable iSCSI timeout-driven
  PDU retransmissions.

10.2.2.  Connection Recovery

  The iSCSI layer at the initiator MAY reassign connection allegiance
  for non-immediate commands that are still in progress and are
  associated with the failed connection by using a Task Management
  Function Request with the TASK REASSIGN function.  See Section 7.3.3
  for more details.

  When the iSCSI layer at the initiator does a task reassignment for a
  SCSI Write command, it MUST qualify the Send_Control Operational
  Primitive invocation with DataDescriptorOut, which defines the I/O
  Buffer for both the non-immediate unsolicited data and the solicited
  data.  This allows the iSCSI layer at the target to use recovery R2Ts
  to request data originally sent as unsolicited and solicited from the
  initiator.

  When the iSCSI layer at the target accepts a reassignment request for
  a SCSI Read command, it MUST request the iSER layer to process SCSI
  Data-In for all unacknowledged data by invoking the Put_Data
  Operational Primitive.  See Section 7.3.5 on the handling of SCSI
  Data-In.

  When the iSCSI layer at the target accepts a reassignment request for
  a SCSI Write command, it MUST request the iSER layer to process a
  recovery R2T for any non-immediate unsolicited data and any solicited
  data sequences that have not been received by invoking the Get_Data
  Operational Primitive.  See Section 7.3.6 on the handling of Ready To
  Transfer (R2T).

  The iSCSI layer at the target MUST NOT issue recovery R2Ts on an
  iSCSI/iSER connection for a task for which the connection allegiance
  was never reassigned.  The iSER layer at the target MAY reject such a
  recovery R2T received via the Get_Data Operational Primitive
  invocation from the iSCSI layer at the target, with an appropriate
  error code.





Ko & Nezhinsky               Standards Track                   [Page 77]

RFC 7145                   iSER Specification                 April 2014


  The iSER layer at the target will process the requests invoked by the
  Put_Data and Get_Data Operational Primitives for a reassigned task in
  the same way as for the original commands.

11.  Security Considerations

  When iSER is layered on top of an RCaP layer and provides the RDMA
  extensions to the iSCSI protocol, the security considerations of iSER
  are the same as that of the underlying RCaP layer.  For iWARP, this
  is described in [RDMAP] and [RDDPSEC], plus the updates to both of
  those RFCs that are contained in [IPSEC-IPS].

  Since iSER-assisted iSCSI protocol is still functionally iSCSI from a
  security considerations perspective, all of the iSCSI security
  requirements as described in [iSCSI] apply.  If iSER is layered on
  top of a non-IP-based RCaP layer, all the security protocol
  mechanisms applicable to that RCaP layer are also applicable to an
  iSCSI/iSER connection.  If iSER is layered on top of a non-IP
  protocol, the IPsec mechanism as specified in [iSCSI] MUST be
  implemented at any point where the iSER protocol enters the IP
  network (e.g., via gateways), and the non-IP protocol SHOULD
  implement (optional to use) a packet-by-packet security protocol
  equal in strength to the IPsec mechanism specified by [iSCSI].

  In order to protect target RCaP connection resources from possible
  resource exhaustion attacks, allocation of such resources for a new
  connection MUST be delayed until it is reasonably certain that the
  new connection is not part of a resource exhaustion attack (e.g.,
  until after the SecurityNegotiation stage of Login); see Section
  5.1.2.

  A valid STag exposes I/O Buffer resources to the network for access
  via the RCaP.  The security measures for the RCAP and iSER described
  in the above paragraphs can be used to protect data in an I/O buffer
  from undesired disclosure or modification, and these measures are of
  heightened importance for implementations that retain (e.g., cache)
  STags for use in multiple tasks (e.g., iSCSI I/O operations) because
  the resources are exposed to the network for a longer period of time.

  A complementary means of controlling I/O Buffer resource exposure is
  invalidation of the STag after completion of the associated task, as
  specified in Section 1.5.1.  The use of Send with Invalidate messages
  (which cause remote STag invalidation) is OPTIONAL, therefore the
  iSER layer MUST NOT rely on use of a Send with Invalidate by its
  Remote Peer to cause local STag invalidation.  If an STag is expected
  to be invalid after completion of a task, the iSER layer MUST check
  the STag and invalidate it if it is still valid.




Ko & Nezhinsky               Standards Track                   [Page 78]

RFC 7145                   iSER Specification                 April 2014


12.  IANA Considerations

  IANA has added the following entries to the "iSCSI Login/Text Keys"
  registry:

     MaxAHSLength, RFC 7145

     TaggedBufferForSolicitedDataOnly, RFC 7145

     iSERHelloRequired, RFC 7145

  IANA has updated the following entries in the "iSCSI Login/Text Keys"
  registry to reference this RFC.

     InitiatorRecvDataSegmentLength

     MaxOutstandingUnexpectedPDUs

     RDMAExtensions

     TargetRecvDataSegmentLength

  IANA has also changed the reference to RFC 5046 for the "iSCSI
  Login/Text Keys" registry to refer to this RFC.

  IANA has updated the registrations of the iSER Opcodes 1-3 in the
  "iSER Opcodes" registry to reference this RFC.  IANA has also changed
  the reference to RFC 5046 for the "iSER Opcodes" registry to refer to
  this RFC.

13.  References

13.1.  Normative References

  [RFC5046]   Ko, M., Chadalapaka, M., Hufferd, J., Elzur, U., Shah,
              H., and P. Thaler, "Internet Small Computer System
              Interface (iSCSI) Extensions for Remote Direct Memory
              Access (RDMA)", RFC 5046, October 2007.

  [iSCSI]     Chadalapaka, M., Satran, J., Meth, K., and D. Black,
              "Internet Small Computer System Interface (iSCSI)
              Protocol (Consolidated)", RFC 7143, April 2014.

  [RDMAP]     Recio, R., Metzler, B., Culley, P., Hilland, J., and D.
              Garcia, "A Remote Direct Memory Access Protocol
              Specification", RFC 5040, October 2007.





Ko & Nezhinsky               Standards Track                   [Page 79]

RFC 7145                   iSER Specification                 April 2014


  [DDP]       Shah, H., Pinkerton, J., Recio, R., and P. Culley,
              "Direct Data Placement over Reliable Transports", RFC
              5041, October 2007.

  [MPA]       Culley, P., Elzur, U., Recio, R., Bailey, S., and J.
              Carrier, "Marker PDU Aligned Framing for TCP
              Specification", RFC 5044, October 2007.

  [RDDPSEC]   Pinkerton, J. and E. Deleganes, "Direct Data Placement
              Protocol (DDP) / Remote Direct Memory Access Protocol
              (RDMAP) Security", RFC 5042, October 2007.

  [TCP]       Postel, J., "Transmission Control Protocol", STD 7, RFC
              793, September 1981.

  [RFC2119]   Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

  [IPSEC-IPS] Black, D. and P. Koning, "Securing Block Storage
              Protocols over IP: RFC 3723 Requirements Update for IPsec
              v3", RFC 7146, April 2014.

13.2.  Informative References

  [SAM5]      INCITS Technical Committee T10, "SCSI Architecture Model
              - 5 (SAM-5)", T10/BSR INCITS 515 rev 04, Committee Draft.

  [iSCSI-SAM] Knight, F. and M. Chadalapaka, "Internet Small Computer
              System Interface (iSCSI) SCSI Features Update", RFC 7144,
              April 2014.

  [DA]        Chadalapaka, M., Hufferd, J., Satran, J., and H. Shah,
              "DA: Datamover Architecture for the Internet Small
              Computer System Interface (iSCSI)", RFC 5047, October
              2007.

  [IB]        InfiniBand Architecture Specification Volume 1 Release
              1.2, October 2004

  [IPoIB]     Chu, J. and V. Kashyap, "Transmission of IP over
              InfiniBand (IPoIB)", RFC 4391, April 2006.










Ko & Nezhinsky               Standards Track                   [Page 80]

RFC 7145                   iSER Specification                 April 2014


Appendix A.  Summary of Changes from RFC 5046

  All changes are backward compatible with RFC 5046 except for item #8,
  which reflects all known implementations of iSER, each of which has
  implemented this change, despite its absence in RFC 5046.  As a
  result, a hypothetical implementation based on RFC 5046 will not
  interoperate with an implementation based on this version of the
  specification.

  1.  Removed the requirement that a connection be opened in "normal"
      TCP mode and transitioned to zero-copy mode.  This allows the
      specification to conform to existing implementations for both
      InfiniBand and iWARP.  Changes were made in Sections 1, 3.1.6,
      4.2, 5.1, 5.1.1, 5.1.2, 5.1.3, 10.1.3.4, and 11.

  2.  Added a clause in Section 6.2 to clarify that
      MaxRecvDataSegmentLength must be ignored if it is declared in the
      Login Phase.

  3.  Added a clause in Section 6.2 to clarify that the initiator must
      not send more than InitiatorMaxRecvDataSegmentLength worth of
      data when a NOP-Out request is sent with a valid Initiator Task
      Tag.  Since InitiatorMaxRecvDataSegmentLength can be smaller than
      TargetMaxRecvDataSegmentLength, returning the original data in
      the NOP-Out request in this situation can overflow the receive
      buffer unless the length of the data sent with the NOP-Out
      request is less than InitiatorMaxRecvDataSegmentLength.

  4.  Added a SHOULD negotiate recommendation for
      MaxOutstandingUnexpectedPDUs in Section 6.7.

  5.  Added MaxAHSLength key in Section 6.8 to set a limit on the AHS
      Length.  This is useful when posting receive buffers in knowing
      what the maximum possible message length is in a PDU that
      contains AHS.

  6.  Added TaggedBufferForSolicitedDataOnly key in Section 6.9 to
      indicate how the memory region will be used.  An initiator can
      treat the memory regions intended for unsolicited and solicited
      data differently and can use different registration modes.  In
      contrast, RFC 5046 treats the memory occupied by the data as a
      contiguous (or virtually contiguous, by means of scatter-gather
      mechanisms) and homogenous region.  Adding a new key will allow
      different memory models to be accommodated.  Changes were also
      made in Section 7.3.1.






Ko & Nezhinsky               Standards Track                   [Page 81]

RFC 7145                   iSER Specification                 April 2014


  7.  Added iSERHelloRequired key in Section 6.10 to allow an initiator
      to allocate connection resources after the login process by
      requiring the use of the iSER Hello messages before sending iSCSI
      PDUs.  The default is "No" since iSER Hello messages have not
      been implemented and are not in use.  Changes were made in
      Sections 5.1.1, 5.1.2, 5.1.3, 8.2, 9.3, 9.4, 10.1.3.2, and
      10.1.3.4.

  8.  Added two 64-bit fields in iSER header in Section 9.2 for the
      Read Base Offset and the Write Base Offset to accommodate a non-
      zero Base Offset.  This allows one implementation such as the
      Open Fabrics Enterprise Distribution (OFED) stack to be used in
      both the InfiniBand and the iWARP environment.

      Changes were made in the definitions of Base Offset,
      Advertisement, and Tagged Buffer.  Changes were also made in
      Sections 1.5.1, 1.6, 1.7, 7.3.1, 7.3.3, 7.3.5, 7.3.6, 9.1, 9.3,
      9.4, 9.5.1, and 9.5.2.  This change is not backward compatible
      with RFC 5046, but it was part of all known implementations of
      iSER at the time this document was developed.

  9.  Remove iWARP-specific behavior.  Changes were made in the
      definitions of RDMA Operation and Send Message Type.

      Clarifications were added in Section 1.5.2 on the use of SendSE
      and SendInvSE.  These clarifications reflect a removal of the
      requirements in RFC 5046 for the use of these messages, as
      implementations have not followed RFC 5046 in this area.  Changes
      affecting Send with Invalidate were made in Sections 1.5.1, 1.6,
      1.7, 4.1, and 7.3.2.  Changes affecting Terminate were made in
      Sections 10.1.2.1 and 10.1.2.2.  Changes were made in Appendix B
      to remove iWARP headers.

  10. Removed denial-of-service descriptions for the initiator in
      Section 5.1.1 since they are applicable for the target only.

  11. Clarified in Section 1.5.1 that STag invalidation is the
      initiator's responsibility for security reasons, and the
      initiator cannot rely on the target using an Invalidate version
      of Send.  Added text in Section 11 on Stag invalidation.











Ko & Nezhinsky               Standards Track                   [Page 82]

RFC 7145                   iSER Specification                 April 2014


Appendix B.  Message Format for iSER

  This section is for information only and is NOT part of the standard.

B.1.  iWARP Message Format for iSER Hello Message

  The following figure depicts an iSER Hello Message encapsulated in an
  iWARP SendSE Message.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |         MPA Header            |  DDP Control  | RDMA Control  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                        Reserved                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       (Send) Queue Number                     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                 (Send) Message Sequence Number                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      (Send) Message Offset                    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | 0010b | Zeros | 0001b | 0001b |           iSER-IRD            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                           All Zeros                           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                           All Zeros                           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                           All Zeros                           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                           All Zeros                           |

  |                           MPA CRC                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Figure 6: SendSE Message Containing an iSER Hello Message













Ko & Nezhinsky               Standards Track                   [Page 83]

RFC 7145                   iSER Specification                 April 2014


B.2.  iWARP Message Format for iSER HelloReply Message

  The following figure depicts an iSER HelloReply Message encapsulated
  in an iWARP SendSE Message.  The Reject (REJ) flag is set to zero.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |         MPA Header            |  DDP Control  | RDMA Control  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                        Reserved                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       (Send) Queue Number                     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                 (Send) Message Sequence Number                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      (Send) Message Offset                    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | 0011b |Zeros|0| 0001b | 0001b |           iSER-ORD            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                           All Zeros                           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                           All Zeros                           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                           All Zeros                           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                           All Zeros                           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                           MPA CRC                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Figure 7: SendSE Message Containing an iSER HelloReply Message

















Ko & Nezhinsky               Standards Track                   [Page 84]

RFC 7145                   iSER Specification                 April 2014


B.3.  iSER Header Format for SCSI Read Command PDU

  The following figure depicts a SCSI Read Command PDU embedded in an
  iSER Message.  For this particular example, in the iSER header, the
  Write STag Valid flag is set to zero, the Read STag Valid flag is set
  to one, the Write STag field is set to all zeros, the Write Base
  Offset field is set to all zeros, the Read STag field contains a
  valid Read STag, and the Read Base Offset field contains a valid Base
  Offset for the Read Tagged Buffer.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | 0001b |0|1|                  All zeros                        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         All Zeros                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                         All Zeros                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         Read STag                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                       Read Base Offset                        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       SCSI Read Command PDU                   |
  //                                                             //
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

       Figure 8: iSER Header Format for SCSI Read Command PDU




















Ko & Nezhinsky               Standards Track                   [Page 85]

RFC 7145                   iSER Specification                 April 2014


B.4.  iSER Header Format for SCSI Write Command PDU

  The following figure depicts a SCSI Write Command PDU embedded in an
  iSER Message.  For this particular example, in the iSER header, the
  Write STag Valid flag is set to one, the Read STag Valid flag is set
  to zero, the Write STag field contains a valid Write STag, the Write
  Base Offset field contains a valid Base Offset for the Write Tagged
  Buffer, the Read STag field is set to all zeros since it is not used,
  and the Read Base Offset field is set to all zeros.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | 0001b |1|0|                  All zeros                        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                        Write STag                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                      Write Base Offset                        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         All Zeros                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                         All Zeros                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       SCSI Write Command PDU                  |
  //                                                             //
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Figure 9: iSER Header Format for SCSI Write Command PDU




















Ko & Nezhinsky               Standards Track                   [Page 86]

RFC 7145                   iSER Specification                 April 2014


B.5.  iSER Header Format for SCSI Response PDU

  The following figure depicts a SCSI Response PDU embedded in an iSER
  Message:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | 0001b |0|0|                  All Zeros                        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                           All Zeros                           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                           All Zeros                           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                           All Zeros                           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                           All Zeros                           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       SCSI Response PDU                       |
  //                                                             //
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

          Figure 10: iSER Header Format for SCSI Response PDU

























Ko & Nezhinsky               Standards Track                   [Page 87]

RFC 7145                   iSER Specification                 April 2014


Appendix C.  Architectural Discussion of iSER over InfiniBand

  This section explains how an InfiniBand network (with Gateways) would
  be structured.  It is informational only and is intended to provide
  insight on how iSER is used in an InfiniBand environment.

C.1.  Host Side of iSCSI and iSER Connections in InfiniBand

  Figure 11 defines the topologies in which iSCSI and iSER will be able
  to operate on an InfiniBand Network.

  +---------+ +---------+ +---------+ +---------+ +--- -----+
  |  Host   | |  Host   | |   Host  | |   Host  | |   Host  |
  |         | |         | |         | |         | |         |
  +---+-+---+ +---+-+---+ +---+-+---+ +---+-+---+ +---+-+---+
  |HCA| |HCA| |HCA| |HCA| |HCA| |HCA| |HCA| |HCA| |HCA| |HCA|
  +-v-+ +-v-+ +-v-+ +-v-+ +-v-+ +-v-+ +-v-+ +-v-+ +-v-+ +-v-+
    |----+------|-----+-----|-----+-----|-----+-----|-----+---> To IB
  IB|        IB |        IB |        IB |        IB |    SubNet2 SWTCH
  +-v-----------v-----------v-----------v-----------v---------+
  |                  InfiniBand Switch for Subnet1            |
  +---+-----+--------+-----+--------+-----+------------v------+
      | TCA |        | TCA |        | TCA |            |
      +-----+        +-----+        +-----+            | IB
     /  IB   \      /  IB   \      /       \     +--+--v--+--+
    |  iSER   |    |  iSER   |    |  IPoIB  |    |  | TCA |  |
    | Gateway |    | Gateway |    | Gateway |    |  +-----+  |
    |   to    |    |   to    |    |   to    |    | Storage   |
    |  iSCSI  |    |  iSER   |    |   IP    |    | Controller|
    |   TCP   |    |  iWARP  |    |Ethernet |    +-----+-----+
    +---v-----|    +---v-----|    +----v----+
        | EN           | EN            | EN
        +--------------+---------------+----> to IP based storage
          Ethernet links that carry iSCSI or iWARP

               Figure 11: iSCSI and iSER on IB

  In Figure 11, the Host systems are connected via the InfiniBand Host
  Channel Adapters (HCAs) to the InfiniBand links.  With the use of IB
  switch(es), the InfiniBand links connect the HCA to InfiniBand Target
  Channel Adapters (TCAs) located in gateways or Storage Controllers.
  An iSER-capable IB-IP Gateway converts the iSER Messages encapsulated
  in IB protocols to either standard iSCSI, or iSER Messages for iWARP.
  An [IPoIB] Gateway converts the InfiniBand [IPoIB] protocol to IP
  protocol, and in the iSCSI case, permits iSCSI to be operated on an
  IB Network between the Hosts and the [IPoIB] Gateway.





Ko & Nezhinsky               Standards Track                   [Page 88]

RFC 7145                   iSER Specification                 April 2014


C.2.  Storage Side of iSCSI and iSER Mixed Network Environment

  Figure 12 shows a storage controller that has three different portal
  groups: one supporting only iSCSI (TPG-4), one supporting iSER/iWARP
  or iSCSI (TPG-2), and one supporting iSER/IB (TPG-1).  Here, "TPG"
  stands for "Target Portal Group".

                 |                |                |
                 |                |                |
           +--+--v--+----------+--v--+----------+--v--+--+
           |  | IB  |          |iWARP|          | EN  |  |
           |  |     |          | TCP |          | NIC |  |
           |  |(TCA)|          | RNIC|          |     |  |
           |  +-----|          +-----+          +-----+  |
           |   TPG-1            TPG-2            TPG-4   |
           |  9.1.3.3          9.1.2.4          9.1.2.6  |
           |                                             |
           |                  Storage Controller         |
           |                                             |
           +---------------------------------------------+

  Figure 12: Storage Controller with TCP, iWARP, and IB Connections

  The normal iSCSI portal group advertising processes (via the Service
  Location Protocol (SLP), Internet Storage Name Service (iSNS), or
  SendTargets) are available to a Storage Controller.

C.3.  Discovery Processes for an InfiniBand Host

  An InfiniBand Host system can gather portal group IP addresses from
  SLP, iSNS, or the SendTargets discovery processes by using TCP/IP via
  [IPoIB].  After obtaining one or more remote portal IP addresses, the
  Initiator uses the standard IP mechanisms to resolve the IP address
  to a local outgoing interface and the destination hardware address
  (Ethernet MAC or InfiniBand Global Identifier (GID) of the target or
  a gateway leading to the target).  If the resolved interface is an
  [IPoIB] network interface, then the target portal can be reached
  through an InfiniBand fabric.  In this case, the Initiator can
  establish an iSCSI/TCP or iSCSI/iSER session with the Target over
  that InfiniBand interface, using the hardware address (InfiniBand
  GID) obtained through the standard Address Resolution Protocol (ARP)
  processes.

  If more than one IP address is obtained through the discovery
  process, the Initiator should select a Target IP address that is on
  the same IP subnet as the Initiator, if one exists.  This will avoid
  a potential overhead of going through a gateway when a direct path
  exists.



Ko & Nezhinsky               Standards Track                   [Page 89]

RFC 7145                   iSER Specification                 April 2014


  In addition, a user can configure manual static IP route entries if a
  particular path to the target is preferred.

C.4.  IBTA Connection Specifications

  It is outside the scope of this document, but it is expected that the
  InfiniBand Trade Association (IBTA) has or will define:

  *  The iSER ServiceID

  *  A means for permitting a Host to establish a connection with a
     peer InfiniBand end-node, and that peer indicating when that end-
     node supports iSER, so the Host would be able to fall back to
     iSCSI/TCP over [IPoIB].

  *  A means for permitting the Host to establish connections with IB
     iSER connections on storage controllers or IB iSER-connected
     Gateways in preference to IPoIB-connected Gateways/Bridges or
     connections to Target Storage Controllers that also accept iSCSI
     via [IPoIB].

  *  A means for combining the IB ServiceID for iSER and the IP port
     number such that the IB Host can use normal IB connection
     processes, yet ensure that the iSER target peer can actually
     connect to the required IP port number.

Appendix D.  Acknowledgments

  The authors acknowledge the following individuals for identifying
  implementation issues and/or suggesting resolutions to the issues
  clarified in this document: Robert Russell, Arne Redlich, David
  Black, Mallikarjun Chadalapaka, Tom Talpey, Felix Marti, Robert
  Sharp, Caitlin Bestler, Hemal Shah, Spencer Dawkins, Pete Resnick,
  Ted Lemon, Pete McCann, and Steve Kent.  Credit also goes to the
  authors of the original iSER Specification [RFC5046], including
  Michael Ko, Mallikarjun Chadalapaka, John Hufferd, Uri Elzur, Hemal
  Shah, and Patricia Thaler.  This document benefited from all of their
  contributions.













Ko & Nezhinsky               Standards Track                   [Page 90]

RFC 7145                   iSER Specification                 April 2014


Authors' Addresses

  Michael Ko

  EMail: [email protected]


  Alexander Nezhinsky
  Mellanox Technologies
  13 Zarchin St.
  Raanana 43662
  Israel

  Phone: +972-74-712-9000
  EMail: [email protected], [email protected]




































Ko & Nezhinsky               Standards Track                   [Page 91]