Internet Engineering Task Force (IETF)                    M. Chadalapaka
Request for Comments: 7143                                     Microsoft
Obsoletes: 3720, 3980, 4850, 5048                              J. Satran
Updates: 3721                                             Infinidat Ltd.
Category: Standards Track                                        K. Meth
ISSN: 2070-1721                                                      IBM
                                                               D. Black
                                                                    EMC
                                                             April 2014


      Internet Small Computer System Interface (iSCSI) Protocol
                            (Consolidated)

Abstract

  This document describes a transport protocol for SCSI that works on
  top of TCP.  The iSCSI protocol aims to be fully compliant with the
  standardized SCSI Architecture Model (SAM-2).  RFC 3720 defined the
  original iSCSI protocol.  RFC 3721 discusses iSCSI naming examples
  and discovery techniques.  Subsequently, RFC 3980 added an additional
  naming format to the iSCSI protocol.  RFC 4850 followed up by adding
  a new public extension key to iSCSI.  RFC 5048 offered a number of
  clarifications as well as a few improvements and corrections to the
  original iSCSI protocol.

  This document obsoletes RFCs 3720, 3980, 4850, and 5048 by
  consolidating them into a single document and making additional
  updates to the consolidated specification.  This document also
  updates RFC 3721.  The text in this document thus supersedes the text
  in all the noted RFCs wherever there is a difference in semantics.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7143.






Chadalapaka, et al.          Standards Track                    [Page 1]

RFC 7143                  iSCSI (Consolidated)                April 2014


Copyright Notice

  Copyright (c) 2014 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1. Introduction ...................................................11
  2. Acronyms, Definitions, and Document Summary ....................11
     2.1. Acronyms ..................................................11
     2.2. Definitions ...............................................13
     2.3. Summary of Changes ........................................19
     2.4. Conventions ...............................................20
  3. UML Conventions ................................................20
     3.1. UML Conventions Overview ..................................20
     3.2. Multiplicity Notion .......................................21
     3.3. Class Diagram Conventions .................................22
     3.4. Class Diagram Notation for Associations ...................23
     3.5. Class Diagram Notation for Aggregations ...................24
     3.6. Class Diagram Notation for Generalizations ................25
  4. Overview .......................................................25
     4.1. SCSI Concepts .............................................25
     4.2. iSCSI Concepts and Functional Overview ....................26
          4.2.1. Layers and Sessions ................................27
          4.2.2. Ordering and iSCSI Numbering .......................28
                 4.2.2.1. Command Numbering and Acknowledging .......28
                 4.2.2.2. Response/Status Numbering and
                          Acknowledging .............................32
                 4.2.2.3. Response Ordering .........................32
                          4.2.2.3.1. Need for Response Ordering .....32
                          4.2.2.3.2. Response Ordering Model
                                     Description ....................33
                          4.2.2.3.3. iSCSI Semantics with
                                     the Interface Model ............33
                          4.2.2.3.4. Current List of Fenced
                                     Response Use Cases .............34
                 4.2.2.4. Data Sequencing ...........................35




Chadalapaka, et al.          Standards Track                    [Page 2]

RFC 7143                  iSCSI (Consolidated)                April 2014


          4.2.3. iSCSI Task Management ..............................36
                 4.2.3.1. Task Management Overview ..................36
                 4.2.3.2. Notion of Affected Tasks ..................36
                 4.2.3.3. Standard Multi-Task Abort Semantics .......37
                 4.2.3.4. FastAbort Multi-Task Abort Semantics ......38
                 4.2.3.5. Affected Tasks Shared across
                          Standard and FastAbort Sessions ...........40
                 4.2.3.6. Rationale behind the FastAbort Semantics ..41
          4.2.4. iSCSI Login ........................................42
          4.2.5. iSCSI Full Feature Phase ...........................44
                 4.2.5.1. Command Connection Allegiance .............44
                 4.2.5.2. Data Transfer Overview ....................45
                 4.2.5.3. Tags and Integrity Checks .................46
                 4.2.5.4. SCSI Task Management during iSCSI
                          Full Feature Phase ........................47
          4.2.6. iSCSI Connection Termination .......................47
          4.2.7. iSCSI Names ........................................47
                 4.2.7.1. iSCSI Name Properties .....................48
                 4.2.7.2. iSCSI Name Encoding .......................50
                 4.2.7.3. iSCSI Name Structure ......................51
                 4.2.7.4. Type "iqn." (iSCSI Qualified Name) ........52
                 4.2.7.5. Type "eui." (IEEE EUI-64 Format) ..........53
                 4.2.7.6. Type "naa." (Network Address Authority) ...54
          4.2.8. Persistent State ...................................55
          4.2.9. Message Synchronization and Steering ...............55
                 4.2.9.1. Sync/Steering and iSCSI PDU Length ........56
     4.3. iSCSI Session Types .......................................56
     4.4. SCSI-to-iSCSI Concepts Mapping Model ......................57
          4.4.1. iSCSI Architecture Model ...........................58
          4.4.2. SCSI Architecture Model ............................59
          4.4.3. Consequences of the Model ..........................61
                 4.4.3.1. I_T Nexus State ...........................62
                 4.4.3.2. Reservations ..............................63
     4.5. iSCSI UML Model ...........................................64
     4.6. Request/Response Summary ..................................66
          4.6.1. Request/Response Types Carrying SCSI Payload .......66
                 4.6.1.1. SCSI Command ..............................66
                 4.6.1.2. SCSI Response .............................66
                 4.6.1.3. Task Management Function Request ..........67
                 4.6.1.4. Task Management Function Response .........68
                 4.6.1.5. SCSI Data-Out and SCSI Data-In ............68
                 4.6.1.6. Ready To Transfer (R2T) ...................69
          4.6.2. Requests/Responses Carrying SCSI and iSCSI
                 Payload ............................................69
                 4.6.2.1. Asynchronous Message ......................69






Chadalapaka, et al.          Standards Track                    [Page 3]

RFC 7143                  iSCSI (Consolidated)                April 2014


          4.6.3. Requests/Responses Carrying iSCSI-Only Payload .....69
                 4.6.3.1. Text Requests and Text Responses ..........69
                 4.6.3.2. Login Requests and Login Responses ........70
                 4.6.3.3. Logout Requests and Logout Responses ......71
                 4.6.3.4. SNACK Request .............................71
                 4.6.3.5. Reject ....................................71
                 4.6.3.6. NOP-Out Request and NOP-In Response .......71
  5. SCSI Mode Parameters for iSCSI .................................72
  6. Login and Full Feature Phase Negotiation .......................72
     6.1. Text Format ...............................................73
     6.2. Text Mode Negotiation .....................................76
          6.2.1. List Negotiations ..................................80
          6.2.2. Simple-Value Negotiations ..........................80
     6.3. Login Phase ...............................................81
          6.3.1. Login Phase Start ..................................84
          6.3.2. iSCSI Security Negotiation .........................87
          6.3.3. Operational Parameter Negotiation during
                 the Login Phase ....................................87
          6.3.4. Connection Reinstatement ...........................88
          6.3.5. Session Reinstatement, Closure, and Timeout ........89
                 6.3.5.1. Loss of Nexus Notification ................90
          6.3.6. Session Continuation and Failure ...................90
     6.4. Operational Parameter Negotiation outside the
          Login Phase ...............................................90
  7. iSCSI Error Handling and Recovery ..............................92
     7.1. Overview ..................................................92
          7.1.1. Background .........................................92
          7.1.2. Goals ..............................................92
          7.1.3. Protocol Features and State Expectations ...........93
          7.1.4. Recovery Classes ...................................94
                 7.1.4.1. Recovery Within-command ...................95
                 7.1.4.2. Recovery Within-connection ................96
                 7.1.4.3. Connection Recovery .......................96
                 7.1.4.4. Session Recovery ..........................97
          7.1.5. Error Recovery Hierarchy ...........................97
     7.2. Retry and Reassign in Recovery ............................99
          7.2.1. Usage of Retry .....................................99
          7.2.2. Allegiance Reassignment ...........................100
     7.3. Usage of Reject PDU in Recovery ..........................101
     7.4. Error Recovery Considerations for Discovery Sessions .....102
          7.4.1. ErrorRecoveryLevel for Discovery Sessions .........102
          7.4.2. Reinstatement Semantics for Discovery Sessions ....102
                 7.4.2.1. Unnamed Discovery Sessions ...............103
                 7.4.2.2. Named Discovery Sessions .................103
          7.4.3. Target PDUs during Discovery ......................103






Chadalapaka, et al.          Standards Track                    [Page 4]

RFC 7143                  iSCSI (Consolidated)                April 2014


     7.5. Connection Timeout Management ............................104
          7.5.1. Timeouts on Transport Exception Events ............104
          7.5.2. Timeouts on Planned Decommissioning ...............104
     7.6. Implicit Termination of Tasks ............................104
     7.7. Format Errors ............................................105
     7.8. Digest Errors ............................................106
     7.9. Sequence Errors ..........................................107
     7.10. Message Error Checking ..................................108
     7.11. SCSI Timeouts ...........................................108
     7.12. Negotiation Failures ....................................109
     7.13. Protocol Errors .........................................110
     7.14. Connection Failures .....................................110
     7.15. Session Errors ..........................................111
  8. State Transitions .............................................112
     8.1. Standard Connection State Diagrams .......................112
          8.1.1. State Descriptions for Initiators and Targets .....112
          8.1.2. State Transition Descriptions for
                 Initiators and Targets ............................114
          8.1.3. Standard Connection State Diagram for an
                 Initiator .........................................118
          8.1.4. Standard Connection State Diagram for a Target ....120
     8.2. Connection Cleanup State Diagram for Initiators
          and Targets ..............................................122
          8.2.1. State Descriptions for Initiators and Targets .....124
          8.2.2. State Transition Descriptions for
                 Initiators and Targets ............................124
     8.3. Session State Diagrams ...................................126
          8.3.1. Session State Diagram for an Initiator ............126
          8.3.2. Session State Diagram for a Target ................127
          8.3.3. State Descriptions for Initiators and Targets .....129
          8.3.4. State Transition Descriptions for
                 Initiators and Targets ............................129
  9. Security Considerations .......................................131
     9.1. iSCSI Security Mechanisms ................................132
     9.2. In-Band Initiator-Target Authentication ..................132
          9.2.1. CHAP Considerations ...............................134
          9.2.2. SRP Considerations ................................136
          9.2.3. Kerberos Considerations ...........................136
     9.3. IPsec ....................................................137
          9.3.1. Data Authentication and Integrity .................137
          9.3.2. Confidentiality ...................................138
          9.3.3. Policy, Security Associations, and
                 Cryptographic Key Management ......................139
     9.4. Security Considerations for the X#NodeArchitecture Key ...141
     9.5. SCSI Access Control Considerations .......................143






Chadalapaka, et al.          Standards Track                    [Page 5]

RFC 7143                  iSCSI (Consolidated)                April 2014


  10. Notes to Implementers ........................................143
     10.1. Multiple Network Adapters ...............................143
          10.1.1. Conservative Reuse of ISIDs ......................143
          10.1.2. iSCSI Name, ISID, and TPGT Use ...................144
     10.2. Autosense and Auto Contingent Allegiance (ACA) ..........146
     10.3. iSCSI Timeouts ..........................................146
     10.4. Command Retry and Cleaning Old Command Instances ........147
     10.5. Sync and Steering Layer, and Performance ................147
     10.6. Considerations for State-Dependent Devices and
           Long-Lasting SCSI Operations ............................147
          10.6.1. Determining the Proper ErrorRecoveryLevel ........148
     10.7. Multi-Task Abort Implementation Considerations ..........149
  11. iSCSI PDU Formats ............................................150
     11.1. iSCSI PDU Length and Padding ............................150
     11.2. PDU Template, Header, and Opcodes .......................150
          11.2.1. Basic Header Segment (BHS) .......................152
                 11.2.1.1. I (Immediate) Bit .......................152
                 11.2.1.2. Opcode ..................................152
                 11.2.1.3. F (Final) Bit ...........................154
                 11.2.1.4. Opcode-Specific Fields ..................154
                 11.2.1.5. TotalAHSLength ..........................154
                 11.2.1.6. DataSegmentLength .......................154
                 11.2.1.7. LUN .....................................154
                 11.2.1.8. Initiator Task Tag ......................154
          11.2.2. Additional Header Segment (AHS) ..................155
                 11.2.2.1. AHSType .................................155
                 11.2.2.2. AHSLength ...............................155
                 11.2.2.3. Extended CDB AHS ........................156
                 11.2.2.4. Bidirectional Read Expected Data
                           Transfer Length AHS .....................156
          11.2.3. Header Digest and Data Digest ....................156
          11.2.4. Data Segment .....................................157
     11.3. SCSI Command ............................................158
          11.3.1. Flags and Task Attributes (Byte 1) ...............159
          11.3.2. CmdSN - Command Sequence Number ..................159
          11.3.3. ExpStatSN ........................................160
          11.3.4. Expected Data Transfer Length ....................160
          11.3.5. CDB - SCSI Command Descriptor Block ..............160
          11.3.6. Data Segment - Command Data ......................161
     11.4. SCSI Response ...........................................161
          11.4.1. Flags (Byte 1) ...................................162
          11.4.2. Status ...........................................163
          11.4.3. Response .........................................163
          11.4.4. SNACK Tag ........................................164







Chadalapaka, et al.          Standards Track                    [Page 6]

RFC 7143                  iSCSI (Consolidated)                April 2014


          11.4.5. Residual Count ...................................164
                 11.4.5.1. Field Semantics .........................164
                 11.4.5.2. Residuals Concepts Overview .............164
                 11.4.5.3. SCSI REPORT LUNS Command and
                           Residual Overflow .......................165
          11.4.6. Bidirectional Read Residual Count ................166
          11.4.7. Data Segment - Sense and Response Data Segment ...167
                 11.4.7.1. SenseLength .............................167
                 11.4.7.2. Sense Data ..............................168
          11.4.8. ExpDataSN ........................................168
          11.4.9. StatSN - Status Sequence Number ..................168
          11.4.10. ExpCmdSN - Next Expected CmdSN from This
                   Initiator .......................................169
          11.4.11. MaxCmdSN - Maximum CmdSN from This Initiator ....169
     11.5. Task Management Function Request ........................170
          11.5.1. Function .........................................170
          11.5.2. TotalAHSLength and DataSegmentLength .............173
          11.5.3. LUN ..............................................173
          11.5.4. Referenced Task Tag ..............................173
          11.5.5. RefCmdSN .........................................174
          11.5.6. ExpDataSN ........................................174
     11.6. Task Management Function Response .......................175
          11.6.1. Response .........................................176
          11.6.2. TotalAHSLength and DataSegmentLength .............177
     11.7. SCSI Data-Out and SCSI Data-In ..........................178
          11.7.1. F (Final) Bit ....................................180
          11.7.2. A (Acknowledge) Bit ..............................180
          11.7.3. Flags (Byte 1) ...................................181
          11.7.4. Target Transfer Tag and LUN ......................181
          11.7.5. DataSN ...........................................182
          11.7.6. Buffer Offset ....................................182
          11.7.7. DataSegmentLength ................................182
     11.8. Ready To Transfer (R2T) .................................183
          11.8.1. TotalAHSLength and DataSegmentLength .............184
          11.8.2. R2TSN ............................................184
          11.8.3. StatSN ...........................................185
          11.8.4. Desired Data Transfer Length and Buffer Offset ...185
          11.8.5. Target Transfer Tag ..............................185
     11.9. Asynchronous Message ....................................186
          11.9.1. AsyncEvent .......................................187
          11.9.2. AsyncVCode .......................................189
          11.9.3. LUN ..............................................189
          11.9.4. Sense Data and iSCSI Event Data ..................190
                 11.9.4.1. SenseLength .............................190







Chadalapaka, et al.          Standards Track                    [Page 7]

RFC 7143                  iSCSI (Consolidated)                April 2014


     11.10. Text Request ...........................................191
          11.10.1. F (Final) Bit ...................................192
          11.10.2. C (Continue) Bit ................................192
          11.10.3. Initiator Task Tag ..............................192
          11.10.4. Target Transfer Tag .............................192
          11.10.5. Text ............................................193
     11.11. Text Response ..........................................194
          11.11.1. F (Final) Bit ...................................194
          11.11.2. C (Continue) Bit ................................195
          11.11.3. Initiator Task Tag ..............................195
          11.11.4. Target Transfer Tag .............................195
          11.11.5. StatSN ..........................................196
          11.11.6. Text Response Data ..............................196
     11.12. Login Request ..........................................196
          11.12.1. T (Transit) Bit .................................197
          11.12.2. C (Continue) Bit ................................197
          11.12.3. CSG and NSG .....................................198
          11.12.4. Version .........................................198
                 11.12.4.1. Version-max ............................198
                 11.12.4.2. Version-min ............................198
          11.12.5. ISID ............................................199
          11.12.6. TSIH ............................................200
          11.12.7. Connection ID (CID) .............................200
          11.12.8. CmdSN ...........................................201
          11.12.9. ExpStatSN .......................................201
          11.12.10. Login Parameters ...............................201
     11.13. Login Response .........................................202
          11.13.1. Version-max .....................................202
          11.13.2. Version-active ..................................203
          11.13.3. TSIH ............................................203
          11.13.4. StatSN ..........................................203
          11.13.5. Status-Class and Status-Detail ..................203
          11.13.6. T (Transit) Bit .................................206
          11.13.7. C (Continue) Bit ................................206
          11.13.8. Login Parameters ................................207
     11.14. Logout Request .........................................207
          11.14.1. Reason Code .....................................209
          11.14.2. TotalAHSLength and DataSegmentLength ............209
          11.14.3. CID .............................................210
          11.14.4. ExpStatSN .......................................210
          11.14.5. Implicit Termination of Tasks ...................210
     11.15. Logout Response ........................................211
          11.15.1. Response ........................................212
          11.15.2. TotalAHSLength and DataSegmentLength ............212
          11.15.3. Time2Wait .......................................212
          11.15.4. Time2Retain .....................................212





Chadalapaka, et al.          Standards Track                    [Page 8]

RFC 7143                  iSCSI (Consolidated)                April 2014


     11.16. SNACK Request ..........................................213
          11.16.1. Type ............................................214
          11.16.2. Data Acknowledgment .............................215
          11.16.3. Resegmentation ..................................215
          11.16.4. Initiator Task Tag ..............................216
          11.16.5. Target Transfer Tag or SNACK Tag ................216
          11.16.6. BegRun ..........................................216
          11.16.7. RunLength .......................................216
     11.17. Reject .................................................217
          11.17.1. Reason ..........................................218
          11.17.2. DataSN/R2TSN ....................................219
          11.17.3. StatSN, ExpCmdSN, and MaxCmdSN ..................219
          11.17.4. Complete Header of Bad PDU ......................219
     11.18. NOP-Out ................................................220
          11.18.1. Initiator Task Tag ..............................221
          11.18.2. Target Transfer Tag .............................221
          11.18.3. Ping Data .......................................221
     11.19. NOP-In .................................................222
          11.19.1. Target Transfer Tag .............................223
          11.19.2. StatSN ..........................................223
          11.19.3. LUN .............................................223
  12. iSCSI Security Text Keys and Authentication Methods ..........223
     12.1. AuthMethod ..............................................224
          12.1.1. Kerberos .........................................226
          12.1.2. Secure Remote Password (SRP) .....................226
          12.1.3. Challenge Handshake Authentication
                  Protocol (CHAP) ..................................228
  13. Login/Text Operational Text Keys .............................229
     13.1. HeaderDigest and DataDigest .............................230
     13.2. MaxConnections ..........................................232
     13.3. SendTargets .............................................232
     13.4. TargetName ..............................................232
     13.5. InitiatorName ...........................................233
     13.6. TargetAlias .............................................233
     13.7. InitiatorAlias ..........................................234
     13.8. TargetAddress ...........................................234
     13.9. TargetPortalGroupTag ....................................235
     13.10. InitialR2T .............................................236
     13.11. ImmediateData ..........................................236
     13.12. MaxRecvDataSegmentLength ...............................237
     13.13. MaxBurstLength .........................................238
     13.14. FirstBurstLength .......................................238
     13.15. DefaultTime2Wait .......................................239
     13.16. DefaultTime2Retain .....................................239
     13.17. MaxOutstandingR2T ......................................239
     13.18. DataPDUInOrder .........................................240
     13.19. DataSequenceInOrder ....................................240
     13.20. ErrorRecoveryLevel .....................................241



Chadalapaka, et al.          Standards Track                    [Page 9]

RFC 7143                  iSCSI (Consolidated)                April 2014


     13.21. SessionType ............................................241
     13.22. The Private Extension Key Format .......................242
     13.23. TaskReporting ..........................................242
     13.24. iSCSIProtocolLevel Negotiation .........................243
     13.25. Obsoleted Keys .........................................243
     13.26. X#NodeArchitecture .....................................244
          13.26.1. Definition ......................................244
          13.26.2. Implementation Requirements .....................244
  14. Rationale for Revised IANA Considerations ....................245
  15. IANA Considerations ..........................................246
  16. References ...................................................248
     16.1. Normative References ....................................248
     16.2. Informative References ..................................251
  Appendix A. Examples .............................................254
    A.1. Read Operation Example ....................................254
    A.2. Write Operation Example ...................................255
    A.3. R2TSN/DataSN Use Examples .................................256
         A.3.1. Output (Write) Data DataSN/R2TSN Example ...........256
         A.3.2. Input (Read) Data DataSN Example ...................257
         A.3.3. Bidirectional DataSN Example .......................258
         A.3.4. Unsolicited and Immediate Output (Write) Data
                with DataSN Example ................................259
    A.4. CRC Examples ..............................................259
  Appendix B. Login Phase Examples .................................261
  Appendix C. SendTargets Operation ................................268
  Appendix D. Algorithmic Presentation of Error Recovery
              Classes ..............................................272
    D.1. General Data Structure and Procedure Description ..........273
    D.2. Within-command Error Recovery Algorithms ..................274
         D.2.1. Procedure Descriptions .............................274
         D.2.2. Initiator Algorithms ...............................275
         D.2.3. Target Algorithms ..................................277
    D.3. Within-connection Recovery Algorithms .....................279
         D.3.1. Procedure Descriptions .............................279
         D.3.2. Initiator Algorithms ...............................280
         D.3.3. Target Algorithms ..................................283
    D.4. Connection Recovery Algorithms ............................283
         D.4.1. Procedure Descriptions .............................283
         D.4.2. Initiator Algorithms ...............................284
         D.4.3. Target Algorithms ..................................286
  Appendix E. Clearing Effects of Various Events on Targets ........288
    E.1. Clearing Effects on iSCSI Objects .........................288
    E.2. Clearing Effects on SCSI Objects ..........................293
  Acknowledgments ..................................................294







Chadalapaka, et al.          Standards Track                   [Page 10]

RFC 7143                  iSCSI (Consolidated)                April 2014


1.  Introduction

  The Small Computer System Interface (SCSI) is a popular family of
  protocols for communicating with I/O devices, especially storage
  devices.  SCSI is a client-server architecture.  Clients of a SCSI
  interface are called "initiators".  Initiators issue SCSI "commands"
  to request services from components -- logical units of a server
  known as a "target".  A "SCSI transport" maps the client-server SCSI
  protocol to a specific interconnect.  An initiator is one endpoint of
  a SCSI transport, and a target is the other endpoint.

  The SCSI protocol has been mapped over various transports, including
  Parallel SCSI, Intelligent Peripheral Interface (IPI), IEEE 1394
  (FireWire), and Fibre Channel.  These transports are I/O-specific and
  have limited distance capabilities.

  The iSCSI protocol defined in this document describes a means of
  transporting SCSI packets over TCP/IP, providing for an interoperable
  solution that can take advantage of existing Internet infrastructure,
  Internet management facilities, and address distance limitations.

2.  Acronyms, Definitions, and Document Summary

2.1.  Acronyms

  Acronym     Definition
  --------------------------------------------------------------
  3DES        Triple Data Encryption Standard
  ACA         Auto Contingent Allegiance
  AEN         Asynchronous Event Notification
  AES         Advanced Encryption Standard
  AH          Additional Header (not the IPsec AH!)
  AHS         Additional Header Segment
  API         Application Programming Interface
  ASC         Additional Sense Code
  ASCII       American Standard Code for Information Interchange
  ASCQ        Additional Sense Code Qualifier
  ATA         AT Attachment
  BHS         Basic Header Segment
  CBC         Cipher Block Chaining
  CD          Compact Disk
  CDB         Command Descriptor Block
  CHAP        Challenge Handshake Authentication Protocol
  CID         Connection ID
  CO          Connection Only
  CRC         Cyclic Redundancy Check
  CRL         Certificate Revocation List
  CSG         Current Stage



Chadalapaka, et al.          Standards Track                   [Page 11]

RFC 7143                  iSCSI (Consolidated)                April 2014


  CSM         Connection State Machine
  DES         Data Encryption Standard
  DNS         Domain Name Server
  DOI         Domain of Interpretation
  DVD         Digital Versatile Disk
  EDTL        Expected Data Transfer Length
  ESP         Encapsulating Security Payload
  EUI         Extended Unique Identifier
  FFP         Full Feature Phase
  FFPO        Full Feature Phase Only
  HBA         Host Bus Adapter
  HMAC        Hashed Message Authentication Code
  I_T         Initiator_Target
  I_T_L       Initiator_Target_LUN
  IANA        Internet Assigned Numbers Authority
  IB          InfiniBand
  ID          Identifier
  IDN         Internationalized Domain Name
  IEEE        Institute of Electrical and Electronics Engineers
  IETF        Internet Engineering Task Force
  IKE         Internet Key Exchange
  I/O         Input-Output
  IO          Initialize Only
  IP          Internet Protocol
  IPsec       Internet Protocol Security
  IPv4        Internet Protocol Version 4
  IPv6        Internet Protocol Version 6
  IQN         iSCSI Qualified Name
  iSCSI       Internet SCSI
  iSER        iSCSI Extensions for RDMA (see [RFC7145])
  ISID        Initiator Session ID
  iSNS        Internet Storage Name Service (see [RFC4171])
  ITN         iSCSI Target Name
  ITT         Initiator Task Tag
  KRB5        Kerberos V5
  LFL         Lower Functional Layer
  LTDS        Logical-Text-Data-Segment
  LO          Leading Only
  LU          Logical Unit
  LUN         Logical Unit Number
  MAC         Message Authentication Code
  NA          Not Applicable
  NAA         Network Address Authority
  NIC         Network Interface Card
  NOP         No Operation
  NSG         Next Stage
  OCSP        Online Certificate Status Protocol
  OS          Operating System



Chadalapaka, et al.          Standards Track                   [Page 12]

RFC 7143                  iSCSI (Consolidated)                April 2014


  PDU         Protocol Data Unit
  PKI         Public Key Infrastructure
  R2T         Ready To Transfer
  R2TSN       Ready To Transfer Sequence Number
  RDMA        Remote Direct Memory Access
  RFC         Request For Comments
  SA          Security Association
  SAM         SCSI Architecture Model
  SAM-2       SCSI Architecture Model - 2
  SAN         Storage Area Network
  SAS         Serial Attached SCSI
  SATA        Serial AT Attachment
  SCSI        Small Computer System Interface
  SLP         Service Location Protocol
  SN          Sequence Number
  SNACK       Selective Negative Acknowledgment - also
              Sequence Number Acknowledgement for data
  SPDTL       SCSI-Presented Data Transfer Length
  SPKM        Simple Public-Key Mechanism
  SRP         Secure Remote Password
  SSID        Session ID
  SW          Session-Wide
  TCB         Task Control Block
  TCP         Transmission Control Protocol
  TMF         Task Management Function
  TPGT        Target Portal Group Tag
  TSIH        Target Session Identifying Handle
  TTT         Target Transfer Tag
  UA          Unit Attention
  UFL         Upper Functional Layer
  ULP         Upper Level Protocol
  URN         Uniform Resource Name
  UTF         Universal Transformation Format
  WG          Working Group

2.2.  Definitions

  - Alias: An alias string can also be associated with an iSCSI node.
    The alias allows an organization to associate a user-friendly
    string with the iSCSI name.  However, the alias string is not a
    substitute for the iSCSI name.

  - CID (connection ID): Connections within a session are identified by
    a connection ID.  It is a unique ID for this connection within the
    session for the initiator.  It is generated by the initiator and
    presented to the target during Login Requests and during logouts
    that close connections.




Chadalapaka, et al.          Standards Track                   [Page 13]

RFC 7143                  iSCSI (Consolidated)                April 2014


  - Connection: A connection is a TCP connection.  Communication
    between the initiator and target occurs over one or more TCP
    connections.  The TCP connections carry control messages, SCSI
    commands, parameters, and data within iSCSI Protocol Data Units
    (iSCSI PDUs).

  - I/O Buffer: An I/O Buffer is a buffer that is used in a SCSI read
    or write operation so SCSI data may be sent from or received into
    that buffer.  For a read or write data transfer to take place for a
    task, an I/O Buffer is required on the initiator and at least one
    is required on the target.

  - INCITS: "INCITS" stands for InterNational Committee for Information
    Technology Standards.  The INCITS has a broad standardization scope
    within the field of Information and Communications Technologies
    (ICT), encompassing storage, processing, transfer, display,
    management, organization, and retrieval of information.  INCITS
    serves as ANSI's Technical Advisory Group for the ISO/IEC Joint
    Technical Committee 1 (JTC 1).  See <http://www.incits.org>.

  - InfiniBand: InfiniBand is an I/O architecture originally intended
    to replace Peripheral Component Interconnect (PCI) and address
    high-performance server interconnectivity [IB].

  - iSCSI Device: An iSCSI device is a SCSI device using an iSCSI
    service delivery subsystem.  The Service Delivery Subsystem is
    defined by [SAM2] as a transport mechanism for SCSI commands and
    responses.

  - iSCSI Initiator Name: The iSCSI Initiator Name specifies the
    worldwide unique name of the initiator.

  - iSCSI Initiator Node: An iSCSI initiator node is the "initiator"
    device.  The word "initiator" has been appropriately qualified as
    either a port or a device in the rest of the document when the
    context is ambiguous.  All unqualified usages of "initiator" refer
    to an initiator port (or device), depending on the context.

  - iSCSI Layer: This layer builds/receives iSCSI PDUs and
    relays/receives them to/from one or more TCP connections that form
    an initiator-target "session".

  - iSCSI Name: This is the name of an iSCSI initiator or iSCSI target.

  - iSCSI Node: The iSCSI node represents a single iSCSI initiator or
    iSCSI target, or a single instance of each.  There are one or more
    iSCSI nodes within a Network Entity.  The iSCSI node is accessible
    via one or more Network Portals.  An iSCSI node is identified by



Chadalapaka, et al.          Standards Track                   [Page 14]

RFC 7143                  iSCSI (Consolidated)                April 2014


    its iSCSI name.  The separation of the iSCSI name from the
    addresses used by and for the iSCSI node allows multiple iSCSI
    nodes to use the same address and the same iSCSI node to use
    multiple addresses.

  - iSCSI Target Name: The iSCSI Target Name specifies the worldwide
    unique name of the target.

  - iSCSI Target Node: The iSCSI target node is the "target" device.
    The word "target" has been appropriately qualified as either a port
    or a device in the rest of the document when the context is
    ambiguous.  All unqualified usages of "target" refer to a target
    port (or device), depending on the context.

  - iSCSI Task: An iSCSI task is an iSCSI request for which a response
    is expected.

  - iSCSI Transfer Direction: The iSCSI transfer direction is defined
    with regard to the initiator.  Outbound or outgoing transfers are
    transfers from the initiator to the target, while inbound or
    incoming transfers are from the target to the initiator.

  - ISID: The ISID is the initiator part of the session identifier.  It
    is explicitly specified by the initiator during login.

  - I_T Nexus: According to [SAM2], the I_T nexus is a relationship
    between a SCSI initiator port and a SCSI target port.  For iSCSI,
    this relationship is a session, defined as a relationship between
    an iSCSI initiator's end of the session (SCSI initiator port) and
    the iSCSI target's portal group.  The I_T nexus can be identified
    by the conjunction of the SCSI port names; that is, the I_T nexus
    identifier is the tuple (iSCSI Initiator Name + ',i,' + ISID, iSCSI
    Target Name + ',t,' + Target Portal Group Tag).

  - I_T_L Nexus: An I_T_L nexus is a SCSI concept and is defined as the
    relationship between a SCSI initiator port, a SCSI target port, and
    a Logical Unit (LU).

  - NAA: "NAA" refers to Network Address Authority, a naming format
    defined by the INCITS T11 Fibre Channel protocols [FC-FS3].

  - Network Entity: The Network Entity represents a device or gateway
    that is accessible from the IP network.  A Network Entity must have
    one or more Network Portals, each of which can be used to gain
    access to the IP network by some iSCSI nodes contained in that
    Network Entity.





Chadalapaka, et al.          Standards Track                   [Page 15]

RFC 7143                  iSCSI (Consolidated)                April 2014


  - Network Portal: The Network Portal is a component of a Network
    Entity that has a TCP/IP network address and that may be used by an
    iSCSI node within that Network Entity for the connection(s) within
    one of its iSCSI sessions.  A Network Portal in an initiator is
    identified by its IP address.  A Network Portal in a target is
    identified by its IP address and its listening TCP port.

  - Originator: In a negotiation or exchange, the originator is the
    party that initiates the negotiation or exchange.

  - PDU (Protocol Data Unit): The initiator and target divide their
    communications into messages.  The term "iSCSI Protocol Data Unit"
    (iSCSI PDU) is used for these messages.

  - Portal Groups: iSCSI supports multiple connections within the same
    session; some implementations will have the ability to combine
    connections in a session across multiple Network Portals.  A portal
    group defines a set of Network Portals within an iSCSI Network
    Entity that collectively supports the capability of coordinating a
    session with connections spanning these portals.  Not all Network
    Portals within a portal group need participate in every session
    connected through that portal group.  One or more portal groups may
    provide access to an iSCSI node.  Each Network Portal, as utilized
    by a given iSCSI node, belongs to exactly one portal group within
    that node.

  - Portal Group Tag: This 16-bit quantity identifies a portal group
    within an iSCSI node.  All Network Portals with the same Portal
    Group Tag in the context of a given iSCSI node are in the same
    portal group.

  - Recovery R2T: A recovery R2T is an R2T generated by a target upon
    detecting the loss of one or more Data-Out PDUs through one of the
    following means: a digest error, a sequence error, or a sequence
    reception timeout.  A recovery R2T carries the next unused R2TSN
    but requests all or part of the data burst that an earlier R2T
    (with a lower R2TSN) had already requested.

  - Responder: In a negotiation or exchange, the responder is the party
    that responds to the originator of the negotiation or exchange.

  - SAS: The Serial Attached SCSI (SAS) standard contains both a
    physical layer compatible with Serial ATA, and protocols for
    transporting SCSI commands to SAS devices and ATA commands to SATA
    devices [SAS] [SPL].






Chadalapaka, et al.          Standards Track                   [Page 16]

RFC 7143                  iSCSI (Consolidated)                April 2014


  - SCSI Device: This is the SAM-2 term for an entity that contains one
    or more SCSI ports that are connected to a service delivery
    subsystem and supports a SCSI application protocol.  For example, a
    SCSI initiator device contains one or more SCSI initiator ports and
    zero or more application clients.  A target device contains one or
    more SCSI target ports and one or more device servers and
    associated LUs.  For iSCSI, the SCSI device is the component within
    an iSCSI node that provides the SCSI functionality.  As such, there
    can be at most one SCSI device within a given iSCSI node.  Access
    to the SCSI device can only be achieved in an iSCSI Normal
    operational session.  The SCSI device name is defined to be the
    iSCSI name of the node.

  - SCSI Layer: This builds/receives SCSI CDBs (Command Descriptor
    Blocks) and relays/receives them with the remaining Execute Command
    [SAM2] parameters to/from the iSCSI Layer.

  - Session: The group of TCP connections that link an initiator with a
    target form a session (loosely equivalent to a SCSI I_T nexus).
    TCP connections can be added and removed from a session.  Across
    all connections within a session, an initiator sees one and the
    same target.

  - SCSI Port: This is the SAM-2 term for an entity in a SCSI device
    that provides the SCSI functionality to interface with a service
    delivery subsystem.  For iSCSI, the definitions of the SCSI
    initiator port and the SCSI target port are different.

  - SCSI Initiator Port: This maps to the endpoint of an iSCSI Normal
    operational session.  An iSCSI Normal operational session is
    negotiated through the login process between an iSCSI initiator
    node and an iSCSI target node.  At successful completion of this
    process, a SCSI initiator port is created within the SCSI initiator
    device.  The SCSI initiator port name and SCSI initiator port
    identifier are both defined to be the iSCSI Initiator Name together
    with (a) a label that identifies it as an initiator port
    name/identifier and (b) the ISID portion of the session identifier.

  - SCSI Port Name: This is a name consisting of UTF-8 [RFC3629]
    encoding of Unicode [UNICODE] characters and includes the iSCSI
    name + 'i' or 't' + ISID or Target Portal Group Tag.

  - SCSI-Presented Data Transfer Length (SPDTL): SPDTL is the aggregate
    data length of the data that the SCSI layer logically "presents" to
    the iSCSI layer for a Data-In or Data-Out transfer in the context
    of a SCSI task.  For a bidirectional task, there are two SPDTL
    values -- one for Data-In and one for Data-Out.  Note that the
    notion of "presenting" includes immediate data per the data



Chadalapaka, et al.          Standards Track                   [Page 17]

RFC 7143                  iSCSI (Consolidated)                April 2014


    transfer model in [SAM2] and excludes overlapping data transfers,
    if any, requested by the SCSI layer.

  - SCSI Target Port: This maps to an iSCSI target portal group.

  - SCSI Target Port Name and SCSI Target Port Identifier: These are
    both defined to be the iSCSI Target Name together with (a) a label
    that identifies it as a target port name/identifier and (b) the
    Target Portal Group Tag.

  - SSID (Session ID): A session between an iSCSI initiator and an
    iSCSI target is defined by a session ID that is a tuple composed of
    an initiator part (ISID) and a target part (Target Portal Group
    Tag).  The ISID is explicitly specified by the initiator at session
    establishment.  The Target Portal Group Tag is implied by the
    initiator through the selection of the TCP endpoint at connection
    establishment.  The TargetPortalGroupTag key must also be returned
    by the target as a confirmation during connection establishment.

  - T10: T10 is a technical committee within INCITS that develops
    standards and technical reports on I/O interfaces, particularly the
    series of SCSI (Small Computer System Interface) standards.  See
    <http://www.t10.org>.

  - T11: T11 is a technical committee within INCITS responsible for
    standards development in the areas of Intelligent Peripheral
    Interface (IPI), High-Performance Parallel Interface (HIPPI), and
    Fibre Channel (FC).  See <http://www.t11.org>.

  - Target Portal Group Tag: This is a numerical identifier (16-bit)
    for an iSCSI target portal group.

  - Target Transfer Tag (TTT): The TTT is an iSCSI protocol field used
    in a few iSCSI PDUs (e.g., R2T, NOP-In) that is always sent from
    the target to the initiator first and then quoted as a reference in
    initiator-sent PDUs back to the target relating to the same
    task/exchange.  Therefore, the TTT effectively acts as an opaque
    handle to an existing task/exchange to help the target associate
    the incoming PDUs from the initiator to the proper execution
    context.

  - Third-party: This term is used in this document as a qualifier to
    nexus objects (I_T or I_T_L) and iSCSI sessions, to indicate that
    these objects and sessions reap the side effects of actions that
    take place in the context of a separate iSCSI session.  One example
    of a third-party session is an iSCSI session discovering that its
    I_T_L nexus to a LU got reset due to a LU reset operation
    orchestrated via a separate I_T nexus.



Chadalapaka, et al.          Standards Track                   [Page 18]

RFC 7143                  iSCSI (Consolidated)                April 2014


  - TSIH (Target Session Identifying Handle): This is a target-assigned
    tag for a session with a specific named initiator.  The target
    generates it during session establishment.  Other than defining it
    as a 16-bit binary string, its internal format and content are not
    defined by this protocol but for the value with all bits set to 0
    that is reserved and used by the initiator to indicate a new
    session.  It is given to the target during additional connection
    establishment for the same session.

2.3.  Summary of Changes

  1)  Consolidated RFCs 3720, 3980, 4850, and 5048, and made the
      necessary editorial changes.

  2)  Specified iSCSIProtocolLevel as "1" in Section 13.24 and added a
      related normative reference to [RFC7144].

  3)  Removed markers and related keys.

  4)  Removed SPKM authentication and related keys.

  5)  Added a new Section 13.25 on responding to obsoleted keys.

  6)  Have explicitly allowed initiator+target implementations
      throughout the text.

  7)  Clarified in Section 4.2.7 that implementations SHOULD NOT rely
      on SLP-based discovery.

  8)  Added Unified Modeling Language (UML) diagrams and related
      conventions in Section 3.

  9)  Made FastAbort implementation a "SHOULD" requirement in
      Section 4.2.3.4, rather than the previous "MUST" requirement.

  10) Required in Section 4.2.7.1 that iSCSI Target Name be the same as
      iSCSI Initiator Name for SCSI (composite) devices with both
      roles.

  11) Changed the "MUST NOT" to "should be avoided" in Section 4.2.7.2
      regarding usage of characters such as punctuation marks in iSCSI
      names.

  12) Updated Section 9.3 to require the following: MUST implement
      IPsec, 2400-series RFCs (IPsec v2, IKEv1); and SHOULD implement
      IPsec, 4300-series RFCs (IPsec v3, IKEv2).





Chadalapaka, et al.          Standards Track                   [Page 19]

RFC 7143                  iSCSI (Consolidated)                April 2014


  13) Clarified in Section 10.2 that ACA is a "SHOULD" only for iSCSI
      targets.

  14) Prohibited usage of X# name prefix for new public keys in
      Section 6.2.

  15) Prohibited usage of Y# name prefix for new digest extensions in
      Section 13.1 and Z# name prefix for new authentication method
      extensions in Section 12.1.

  16) Added a "SHOULD" in Section 6.2 that initiators and targets
      support at least six (6) exchanges during text negotiation.

  17) Added a clarification that Appendix C is normative.

  18) Added a normative requirement on [RFC7146] and made a few related
      changes in Section 9.3 to align the text in this document with
      that of [RFC7146].

  19) Added a new Section 9.2.3 covering Kerberos authentication
      considerations.

  20) Added text in Section 9.3.3 noting that OCSP is now allowed for
      checking certificates used with IPsec in addition to the use
      of CRLs.

  21) Added text in Section 9.3.1 specifying that extended sequence
      numbers (ESNs) are now required for ESPv2 (part of IPsec v2).

2.4.  Conventions

  In examples, "I->" and "T->" show iSCSI PDUs sent by the initiator
  and target, respectively.

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [RFC2119].

3.  UML Conventions

3.1.  UML Conventions Overview

  The SCSI Architecture Model (SAM) uses class diagrams and object
  diagrams with notation that is based on the Unified Modeling Language
  [UML].  Therefore, this document also uses UML to model the
  relationships for SCSI and iSCSI objects.





Chadalapaka, et al.          Standards Track                   [Page 20]

RFC 7143                  iSCSI (Consolidated)                April 2014


  A treatise on the graphical notation used in UML is beyond the scope
  of this document.  However, given the use of ASCII drawing for UML
  static class diagrams, a description of the notational conventions
  used in this document is included in the remainder of this section.

3.2.  Multiplicity Notion

  Not specified   The number of instances of an attribute is not
                  specified.

              1   One instance of the class or attribute exists.

           0..*   Zero or more instances of the class or attribute
                  exist.

           1..*   One or more instances of the class or attribute
                  exist.

           0..1   Zero or one instance of the class or attribute
                  exists.

           n..m   n to m instances of the class or attribute exist
                  (e.g., 2..8).

        x, n..m   Multiple disjoint instances of the class or
                  attribute exist (e.g., 2, 8..15).

























Chadalapaka, et al.          Standards Track                   [Page 21]

RFC 7143                  iSCSI (Consolidated)                April 2014


3.3.  Class Diagram Conventions

    +--------------+    +--------------+       +--------------+
    |  Class Name  |    |  Class Name  |       |  Class Name  |
    +--------------+    +--------------+       +--------------+
    |              |    |              |
    +--------------+    +--------------+
    |              |
    +--------------+

    The previous three diagrams are examples of a class with no
    attributes and with no operations.


    +-------------------+    +-------------------+
    |    Class Name     |    |    Class Name     |
    +-------------------+    +-------------------+
    | attribute 01[1]   |    |   attribute 01[1] |
    | attribute 02[1]   |    |   attribute 02[1] |
    +-------------------+    +-------------------+
    |                   |
    +-------------------+

    The preceding two diagrams are examples of a class with attributes
    and with no operations.


    +------------------------+
    |      Class Name        |
    +------------------------+
    |    attribute 01[1..*]  |
    |    attribute 02[1]     |
    +------------------------+
    |    operation 01()      |
    |    operation 02()      |
    +------------------------+

    The preceding diagram is an example of a class with attributes
    that have a specified multiplicity and operations.












Chadalapaka, et al.          Standards Track                   [Page 22]

RFC 7143                  iSCSI (Consolidated)                April 2014


3.4.  Class Diagram Notation for Associations

    +-----------------+
    |     Class A     |
    +-----------------+ association_name   +-----------------+
    | attribute 01[1] |<------------------>|     Class B     |
    | attribute 02[1] | 1..*          0..1 +-----------------+
    +-----------------+                    | attribute 03[1] |
    | operation 1()   |                    +-----------------+
    +-----------------+

    The preceding diagram is an example where Class A knows about
    Class B (i.e., read as "Class A association_name Class B") and
    Class B knows about Class A (i.e., read as "Class B
    association_name Class A").  The use of association_name is
    optional.  The multiplicity notation (1..* and 0..1) indicates the
    number of instances of the object.


    +--------------------+
    |      Class A       |
    +--------------------+              +--------------------+
    | attribute 01[1]    |<-------------|      Class B       |
    | attribute 02[1]    | 1      0..1  +--------------------+
    +--------------------+              | attribute 03[1]    |
    | operation 1()      |              +--------------------+
    +--------------------+

    The preceding diagram is an example where Class B knows about
    Class A (i.e., read as "Class B knows about Class A") but Class A
    does not know about Class B.


    +----------------------+
    |       Class A        |
    +----------------------+            +--------------------+
    |   attribute 01[1]    |----------->|      Class B       |
    |   attribute 02[1]    | 0..*     1 +--------------------+
    +----------------------+            | attribute 03[1]    |
    |    operation 1()     |            +--------------------+
    +----------------------+

    The preceding diagram is an example where Class A knows about
    Class B (i.e., read as "Class A knows about Class B") but Class B
    does not know about Class A.






Chadalapaka, et al.          Standards Track                   [Page 23]

RFC 7143                  iSCSI (Consolidated)                April 2014


3.5.  Class Diagram Notation for Aggregations

    +---------------+             +--------------+
    |  Class whole  |o------------|  Class part  |
    +---------------+             +--------------+

    The preceding diagram is an example where Class whole is an
    aggregate that contains Class part and where Class part may
    continue to exist even if Class whole is removed (i.e., read as
    "the whole contains the part").


    +---------------+             +--------------+
    |  Class whole  |@------------|  Class part  |
    +---------------+             +--------------+

    The preceding diagram is an example where Class whole is an
    aggregate that contains Class part where Class part only belongs
    to one Class whole, and the Class part does not continue to exist
    if the Class whole is removed (i.e., read as "the whole contains
    the part").


    +-------------+
    |             |
    +-------------+
       |       |
       + =(a)= +
       |       |

    The preceding diagram is an example where there is a constraint
    between the associations, where the (a) footnote describes the
    constraint.


















Chadalapaka, et al.          Standards Track                   [Page 24]

RFC 7143                  iSCSI (Consolidated)                April 2014


3.6.  Class Diagram Notation for Generalizations

    +---------------+
    |  Superclass   |
    +-------^-------+
           /_\
            |
    +---------------+
    |    Subclass   |
    +---------------+

    The preceding diagram is an example where the subclass is a kind
    of superclass.  A subclass shares all the attributes and
    operations of the superclass (i.e., the subclass inherits from the
    superclass).

4.  Overview

4.1.  SCSI Concepts

  The SCSI Architecture Model - 2 [SAM2] describes in detail the
  architecture of the SCSI family of I/O protocols.  This section
  provides a brief background of the SCSI architecture and is intended
  to familiarize readers with its terminology.

  At the highest level, SCSI is a family of interfaces for requesting
  services from I/O devices, including hard drives, tape drives, CD and
  DVD drives, printers, and scanners.  In SCSI terminology, an
  individual I/O device is called a "logical unit" (LU).

  SCSI is a client-server architecture.  Clients of a SCSI interface
  are called "initiators".  Initiators issue SCSI "commands" to request
  services from components -- LUs of a server known as a "target".  The
  "device server" on the LU accepts SCSI commands and processes them.

  A "SCSI transport" maps the client-server SCSI protocol to a specific
  interconnect.  The initiator is one endpoint of a SCSI transport.
  The "target" is the other endpoint.  A target can contain multiple
  LUs.  Each LU has an address within a target called a Logical Unit
  Number (LUN).

  A SCSI task is a SCSI command or possibly a linked set of SCSI
  commands.  Some LUs support multiple pending (queued) tasks, but the
  queue of tasks is managed by the LU.  The target uses an initiator-
  provided "task tag" to distinguish between tasks.  Only one command
  in a task can be outstanding at any given time.





Chadalapaka, et al.          Standards Track                   [Page 25]

RFC 7143                  iSCSI (Consolidated)                April 2014


  Each SCSI command results in an optional data phase and a required
  response phase.  In the data phase, information can travel from the
  initiator to the target (e.g., write), from the target to the
  initiator (e.g., read), or in both directions.  In the response
  phase, the target returns the final status of the operation,
  including any errors.

  Command Descriptor Blocks (CDBs) are the data structures used to
  contain the command parameters that an initiator sends to a target.
  The CDB content and structure are defined by [SAM2] and device-type
  specific SCSI standards.

4.2.  iSCSI Concepts and Functional Overview

  The iSCSI protocol is a mapping of the SCSI command, event, and task
  management model (see [SAM2]) over the TCP protocol.  SCSI commands
  are carried by iSCSI requests, and SCSI responses and status are
  carried by iSCSI responses.  iSCSI also uses the request-response
  mechanism for iSCSI protocol mechanisms.

  For the remainder of this document, the terms "initiator" and
  "target" refer to "iSCSI initiator node" and "iSCSI target node",
  respectively (see iSCSI), unless otherwise qualified.

  As its title suggests, Section 4 presents an overview of the iSCSI
  concepts, and later sections in the rest of the specification contain
  the normative requirements -- in many cases covering the same
  concepts discussed in Section 4.  Such normative requirements text
  overrides the overview text in Section 4 if there is a disagreement
  between the two.

  In keeping with similar protocols, the initiator and target divide
  their communications into messages.  This document uses the term
  "iSCSI Protocol Data Unit" (iSCSI PDU) for these messages.

  For performance reasons, iSCSI allows a "phase-collapse".  A command
  and its associated data may be shipped together from initiator to
  target, and data and responses may be shipped together from targets.

  The iSCSI transfer direction is defined with respect to the
  initiator.  Outbound or outgoing transfers are transfers from an
  initiator to a target, while inbound or incoming transfers are from a
  target to an initiator.

  An iSCSI task is an iSCSI request for which a response is expected.






Chadalapaka, et al.          Standards Track                   [Page 26]

RFC 7143                  iSCSI (Consolidated)                April 2014


  In this document, "iSCSI request", "iSCSI command", request, or
  (unqualified) command have the same meaning.  Also, unless otherwise
  specified, status, response, or numbered response have the same
  meaning.

4.2.1.  Layers and Sessions

  The following conceptual layering model is used to specify initiator
  and target actions and the way in which they relate to transmitted
  and received Protocol Data Units:

     - The SCSI layer builds/receives SCSI CDBs (Command Descriptor
       Blocks) and passes/receives them with the remaining Execute
       Command [SAM2] parameters to/from

     - the iSCSI layer that builds/receives iSCSI PDUs and
       relays/receives them to/from one or more TCP connections; the
       group of connections form an initiator-target "session".

  Communication between the initiator and target occurs over one or
  more TCP connections.  The TCP connections carry control messages,
  SCSI commands, parameters, and data within iSCSI Protocol Data Units
  (iSCSI PDUs).  The group of TCP connections that link an initiator
  with a target form a session (equivalent to a SCSI I_T nexus; see
  Section 4.4.2).  A session is defined by a session ID that is
  composed of an initiator part and a target part.  TCP connections can
  be added and removed from a session.  Each connection within a
  session is identified by a connection ID (CID).

  Across all connections within a session, an initiator sees one
  "target image".  All target-identifying elements, such as a LUN, are
  the same.  A target also sees one "initiator image" across all
  connections within a session.  Initiator-identifying elements, such
  as the Initiator Task Tag, are global across the session, regardless
  of the connection on which they are sent or received.

  iSCSI targets and initiators MUST support at least one TCP connection
  and MAY support several connections in a session.  For error recovery
  purposes, targets and initiators that support a single active
  connection in a session SHOULD support two connections during
  recovery.










Chadalapaka, et al.          Standards Track                   [Page 27]

RFC 7143                  iSCSI (Consolidated)                April 2014


4.2.2.  Ordering and iSCSI Numbering

  iSCSI uses command and status numbering schemes and a data sequencing
  scheme.

  Command numbering is session-wide and is used for ordered command
  delivery over multiple connections.  It can also be used as a
  mechanism for command flow control over a session.

  Status numbering is per connection and is used to enable missing
  status detection and recovery in the presence of transient or
  permanent communication errors.

  Data sequencing is per command or part of a command (R2T-triggered
  sequence) and is used to detect missing data and/or R2T PDUs due to
  header digest errors.

  Typically, fields in the iSCSI PDUs communicate the sequence numbers
  between the initiator and target.  During periods when traffic on a
  connection is unidirectional, iSCSI NOP-Out/NOP-In PDUs may be
  utilized to synchronize the command and status ordering counters of
  the target and initiator.

  The iSCSI session abstraction is equivalent to the SCSI I_T nexus,
  and the iSCSI session provides an ordered command delivery from the
  SCSI initiator to the SCSI target.  For detailed design
  considerations that led to the iSCSI session model as it is defined
  here and how it relates the SCSI command ordering features defined in
  SCSI specifications to the iSCSI concepts, see [RFC3783].

4.2.2.1.  Command Numbering and Acknowledging

  iSCSI performs ordered command delivery within a session.  All
  commands (initiator-to-target PDUs) in transit from the initiator to
  the target are numbered.

  iSCSI considers a task to be instantiated on the target in response
  to every request issued by the initiator.  A set of task management
  operations, including abort and reassign (see Section 11.5), may be
  performed on an iSCSI task; however, an abort operation cannot be
  performed on a task management operation, and usage of reassign
  operations has certain constraints.  See Section 11.5.1 for details.

  Some iSCSI tasks are SCSI tasks, and many SCSI activities are related
  to a SCSI task ([SAM2]).  In all cases, the task is identified by the
  Initiator Task Tag for the life of the task.





Chadalapaka, et al.          Standards Track                   [Page 28]

RFC 7143                  iSCSI (Consolidated)                April 2014


  The command number is carried by the iSCSI PDU as the CmdSN (command
  sequence number).  The numbering is session-wide.  Outgoing iSCSI
  PDUs carry this number.  The iSCSI initiator allocates CmdSNs with a
  32-bit unsigned counter (modulo 2**32).  Comparisons and arithmetic
  on CmdSNs use Serial Number Arithmetic as defined in [RFC1982] where
  SERIAL_BITS = 32.

  Commands meant for immediate delivery are marked with an immediate
  delivery flag; they MUST also carry the current CmdSN.  The CmdSN
  MUST NOT advance after a command marked for immediate delivery is
  sent.

  Command numbering starts with the first Login Request on the first
  connection of a session (the leading login on the leading
  connection), and the CmdSN MUST be incremented by 1 in a Serial
  Number Arithmetic sense, as defined in [RFC1982], for every
  non-immediate command issued afterwards.

  If immediate delivery is used with task management commands, these
  commands may reach the target before the tasks on which they are
  supposed to act.  However, their CmdSN serves as a marker of their
  position in the stream of commands.  The initiator and target MUST
  ensure that the SCSI task management functions specified in [SAM2]
  act in accordance with the [SAM2] specification.  For example, both
  commands and responses appear as if delivered in order.  Whenever the
  CmdSN for an outgoing PDU is not specified by an explicit rule, the
  CmdSN will carry the current value of the local CmdSN variable (see
  later in this section).

  The means by which an implementation decides to mark a PDU for
  immediate delivery or by which iSCSI decides by itself to mark a PDU
  for immediate delivery are beyond the scope of this document.

  The number of commands used for immediate delivery is not limited,
  and their delivery to execution is not acknowledged through the
  numbering scheme.  An iSCSI target MAY reject immediate commands,
  e.g., due to lack of resources to accommodate additional commands.
  An iSCSI target MUST be able to handle at least one immediate task
  management command and one immediate non-task-management iSCSI
  command per connection at any time.

  In this document, delivery for execution means delivery to the SCSI
  execution engine or an iSCSI protocol-specific execution engine
  (e.g., for Text Requests with public or private extension keys
  involving an execution component).  With the exception of the
  commands marked for immediate delivery, the iSCSI target layer MUST
  deliver the commands for execution in the order specified by the
  CmdSN.  Commands marked for immediate delivery may be delivered by



Chadalapaka, et al.          Standards Track                   [Page 29]

RFC 7143                  iSCSI (Consolidated)                April 2014


  the iSCSI target layer for execution as soon as detected.  iSCSI may
  avoid delivering some commands to the SCSI target layer if required
  by a prior SCSI or iSCSI action (e.g., a CLEAR TASK SET task
  management request received before all the commands on which it was
  supposed to act).

  On any connection, the iSCSI initiator MUST send the commands in
  increasing order of CmdSN, except for commands that are retransmitted
  due to digest error recovery and connection recovery.

  For the numbering mechanism, the initiator and target maintain the
  following three variables for each session:

     - CmdSN: the current command sequence number, advanced by 1 on
       each command shipped except for commands marked for immediate
       delivery as discussed above.  The CmdSN always contains the
       number to be assigned to the next command PDU.

     - ExpCmdSN: the next expected command by the target.  The target
       acknowledges all commands up to, but not including, this number.
       The initiator treats all commands with a CmdSN less than the
       ExpCmdSN as acknowledged.  The target iSCSI layer sets the
       ExpCmdSN to the largest non-immediate CmdSN that it can deliver
       for execution "plus 1" per [RFC1982].  There MUST NOT be any
       holes in the acknowledged CmdSN sequence.

     - MaxCmdSN: the maximum number to be shipped.  The queuing
       capacity of the receiving iSCSI layer is
       MaxCmdSN - ExpCmdSN + 1.

  The initiator's ExpCmdSN and MaxCmdSN are derived from target-to-
  initiator PDU fields.  Comparisons and arithmetic on the ExpCmdSN and
  MaxCmdSN MUST use Serial Number Arithmetic as defined in [RFC1982]
  where SERIAL_BITS = 32.

  The target MUST NOT transmit a MaxCmdSN that is less than
  ExpCmdSN - 1.  For non-immediate commands, the CmdSN field can take
  any value from the ExpCmdSN to the MaxCmdSN inclusive.  The target
  MUST silently ignore any non-immediate command outside of this range
  or non-immediate duplicates within the range.  The CmdSN carried by
  immediate commands may lie outside the ExpCmdSN-to-MaxCmdSN range.
  For example, if the initiator has previously sent a non-immediate
  command carrying the CmdSN equal to the MaxCmdSN, the target window
  is closed.  For group task management commands issued as immediate
  commands, the CmdSN indicates the scope of the group action (e.g., an
  ABORT TASK SET indicates which commands are to be aborted).





Chadalapaka, et al.          Standards Track                   [Page 30]

RFC 7143                  iSCSI (Consolidated)                April 2014


  MaxCmdSN and ExpCmdSN fields are processed by the initiator as
  follows:

     - If the PDU MaxCmdSN is less than the PDU ExpCmdSN - 1 (in a
       Serial Number Arithmetic sense), they are both ignored.

     - If the PDU MaxCmdSN is greater than the local MaxCmdSN (in a
       Serial Number Arithmetic sense), it updates the local MaxCmdSN;
       otherwise, it is ignored.

     - If the PDU ExpCmdSN is greater than the local ExpCmdSN (in a
       Serial Number Arithmetic sense), it updates the local ExpCmdSN;
       otherwise, it is ignored.

  This sequence is required because updates may arrive out of order
  (e.g., the updates are sent on different TCP connections).

  iSCSI initiators and targets MUST support the command numbering
  scheme.

  A numbered iSCSI request will not change its allocated CmdSN,
  regardless of the number of times and circumstances in which it is
  reissued (see Section 7.2.1).  At the target, the CmdSN is only
  relevant while the command has not created any state related to its
  execution (execution state); afterwards, the CmdSN becomes
  irrelevant.  Testing for the execution state (represented by
  identifying the Initiator Task Tag) MUST precede any other action at
  the target.  If no execution state is found, it is followed by
  ordering and delivery.  If an execution state is found, it is
  followed by delivery if it has not already been delivered.

  If an initiator issues a command retry for a command with CmdSN R on
  a connection when the session CmdSN value is Q, it MUST NOT advance
  the CmdSN past R + 2**31 - 1 unless

     - the connection is no longer operational (i.e., it has returned
       to the FREE state; see Section 8.1.3),

     - the connection has been reinstated (see Section 6.3.4), or

     - a non-immediate command with a CmdSN equal to or greater than Q
       was issued subsequent to the command retry on the same
       connection and the reception of that command is acknowledged by
       the target (see Section 10.4).

  A target command response or Data-In PDU with status MUST NOT precede
  the command acknowledgment.  However, the acknowledgment MAY be
  included in the response or the Data-In PDU.



Chadalapaka, et al.          Standards Track                   [Page 31]

RFC 7143                  iSCSI (Consolidated)                April 2014


4.2.2.2.  Response/Status Numbering and Acknowledging

  Responses in transit from the target to the initiator are numbered.
  The StatSN (status sequence number) is used for this purpose.  The
  StatSN is a counter maintained per connection.  The ExpStatSN is used
  by the initiator to acknowledge status.  The status sequence number
  space is 32-bit unsigned integers, and the arithmetic operations are
  the regular mod(2**32) arithmetic.

  Status numbering starts with the Login Response to the first Login
  Request of the connection.  The Login Response includes an initial
  value for status numbering (any initial value is valid).

  To enable command recovery, the target MAY maintain enough state
  information for data and status recovery after a connection failure.
  A target doing so can safely discard all of the state information
  maintained for recovery of a command after the delivery of the status
  for the command (numbered StatSN) is acknowledged through the
  ExpStatSN.

  A large absolute difference between the StatSN and the ExpStatSN may
  indicate a failed connection.  Initiators MUST undertake recovery
  actions if the difference is greater than an implementation-defined
  constant that MUST NOT exceed 2**31 - 1.

  Initiators and targets MUST support the response-numbering scheme.

4.2.2.3.  Response Ordering

4.2.2.3.1.  Need for Response Ordering

  Whenever an iSCSI session is composed of multiple connections, the
  Response PDUs (task responses or TMF Responses) originating in the
  target SCSI layer are distributed onto the multiple connections by
  the target iSCSI layer according to iSCSI connection allegiance
  rules.  This process generally may not preserve the ordering of the
  responses by the time they are delivered to the initiator SCSI layer.

  Since ordering is not expected across SCSI Response PDUs anyway, this
  approach works fine in the general case.  However, to address the
  special cases where some ordering is desired by the SCSI layer, we
  introduce the notion of a "Response Fence": a Response Fence is
  logically the attribute/property of a SCSI response message handed
  off to a target iSCSI layer that indicates that there are special
  SCSI-level ordering considerations associated with this particular
  response message.  Whenever a Response Fence is set or required on a





Chadalapaka, et al.          Standards Track                   [Page 32]

RFC 7143                  iSCSI (Consolidated)                April 2014


  SCSI response message, we define the semantics in Section 4.2.2.3.2
  with respect to the target iSCSI layer's handling of such SCSI
  response messages.

4.2.2.3.2.  Response Ordering Model Description

  The target SCSI protocol layer hands off the SCSI response messages
  to the target iSCSI layer by invoking the "Send Command Complete"
  protocol data service ([SAM2], Clause 5.4.2) and "Task Management
  Function Executed" ([SAM2], Clause 6.9) service.  On receiving the
  SCSI response message, the iSCSI layer exhibits the Response Fence
  behavior for certain SCSI response messages (Section 4.2.2.3.4
  describes the specific instances where the semantics must be
  realized).

  Whenever the Response Fence behavior is required for a SCSI response
  message, the target iSCSI layer MUST ensure that the following
  conditions are met in delivering the response message to the
  initiator iSCSI layer:

     - A response with a Response Fence MUST be delivered
       chronologically after all the "preceding" responses on the I_T_L
       nexus, if the preceding responses are delivered at all, to the
       initiator iSCSI layer.

     - A response with a Response Fence MUST be delivered
       chronologically prior to all the "following" responses on the
       I_T_L nexus.

  The notions of "preceding" and "following" refer to the order of
  handoff of a response message from the target SCSI protocol layer to
  the target iSCSI layer.

4.2.2.3.3.  iSCSI Semantics with the Interface Model

  Whenever the TaskReporting key (Section 13.23) is negotiated to
  ResponseFence or FastAbort for an iSCSI session and the Response
  Fence behavior is required for a SCSI response message, the target
  iSCSI layer MUST perform the actions described in this section for
  that session.

     a) If it is a single-connection session, no special processing is
        required.  The standard SCSI Response PDU build and dispatch
        process happens.

     b) If it is a multi-connection session, the target iSCSI layer
        takes note of the last-sent and unacknowledged StatSN on each
        of the connections in the iSCSI session, and waits for an



Chadalapaka, et al.          Standards Track                   [Page 33]

RFC 7143                  iSCSI (Consolidated)                April 2014


        acknowledgment (NOP-In PDUs MAY be used to solicit
        acknowledgments as needed in order to accelerate this process)
        of each such StatSN to clear the fence.  The SCSI Response PDU
        requiring the Response Fence behavior MUST NOT be sent to the
        initiator before acknowledgments are received for each of the
        unacknowledged StatSNs.

     c) The target iSCSI layer must wait for an acknowledgment of the
        SCSI Response PDU that carried the SCSI response requiring the
        Response Fence behavior.  The fence MUST be considered cleared
        only after receiving the acknowledgment.

     d) All further status processing for the LU is resumed only after
        clearing the fence.  If any new responses for the I_T_L nexus
        are received from the SCSI layer before the fence is cleared,
        those Response PDUs MUST be held and queued at the iSCSI layer
        until the fence is cleared.

4.2.2.3.4.  Current List of Fenced Response Use Cases

  This section lists the situations in which fenced response behavior
  is REQUIRED in iSCSI target implementations.  Note that the following
  list is an exhaustive enumeration as currently identified -- it is
  expected that as SCSI protocol specifications evolve, the
  specifications will enumerate when response fencing is required on a
  case-by-case basis.

  Whenever the TaskReporting key (Section 13.23) is negotiated to
  ResponseFence or FastAbort for an iSCSI session, the target iSCSI
  layer MUST assume that the Response Fence is required for the
  following SCSI completion messages:

     a) The first completion message carrying the UA after the multi-
        task abort on issuing and third-party sessions.  See
        Section 4.2.3.2 for related TMF discussion.

     b) The TMF Response carrying the multi-task TMF Response on the
        issuing session.

     c) The completion message indicating ACA establishment on the
        issuing session.

     d) The first completion message carrying the ACA ACTIVE status
        after ACA establishment on issuing and third-party sessions.







Chadalapaka, et al.          Standards Track                   [Page 34]

RFC 7143                  iSCSI (Consolidated)                April 2014


     e) The TMF Response carrying the CLEAR ACA response on the issuing
        session.

     f) The response to a PERSISTENT RESERVE OUT/PREEMPT AND ABORT
        command.

  Notes:

     - Due to the absence of ACA-related fencing requirements in
       [RFC3720], initiator implementations SHOULD NOT use ACA on
       multi-connection iSCSI sessions with targets complying only with
       [RFC3720].  This can be determined via TaskReporting key
       (Section 13.23) negotiation -- when the negotiation results in
       either "RFC3720" or "NotUnderstood".

     - Initiators that want to employ ACA on multi-connection iSCSI
       sessions SHOULD first assess response-fencing behavior via
       negotiating for the "ResponseFence" or "FastAbort" value for the
       TaskReporting (Section 13.23) key.

4.2.2.4.  Data Sequencing

  Data and R2T PDUs transferred as part of some command execution MUST
  be sequenced.  The DataSN field is used for data sequencing.  For
  input (read) data PDUs, the DataSN starts with 0 for the first data
  PDU of an input command and advances by 1 for each subsequent data
  PDU.  For output data PDUs, the DataSN starts with 0 for the first
  data PDU of a sequence (the initial unsolicited sequence or any data
  PDU sequence issued to satisfy an R2T) and advances by 1 for each
  subsequent data PDU.  R2Ts are also sequenced per command.  For
  example, the first R2T has an R2TSN of 0 and advances by 1 for each
  subsequent R2T.  For bidirectional commands, the target uses the
  DataSN/R2TSN to sequence Data-In and R2T PDUs in one continuous
  sequence (undifferentiated).  Unlike command and status, data PDUs
  and R2Ts are not acknowledged by a field in regular outgoing PDUs.
  Data-In PDUs can be acknowledged on demand by a special form of the
  SNACK PDU.  Data and R2T PDUs are implicitly acknowledged by status
  for the command.  The DataSN/R2TSN field enables the initiator to
  detect missing data or R2T PDUs.

  For any read or bidirectional command, a target MUST issue less than
  2**32 combined R2T and Data-In PDUs.  Any output data sequence MUST
  contain less than 2**32 Data-Out PDUs.








Chadalapaka, et al.          Standards Track                   [Page 35]

RFC 7143                  iSCSI (Consolidated)                April 2014


4.2.3.  iSCSI Task Management

4.2.3.1.  Task Management Overview

  iSCSI task management features allow an initiator to control the
  active iSCSI tasks on an operational iSCSI session that it has with
  an iSCSI target.  Section 11.5 defines the task management function
  types that this specification defines -- ABORT TASK, ABORT TASK SET,
  CLEAR ACA, CLEAR TASK SET, LOGICAL UNIT RESET, TARGET WARM RESET,
  TARGET COLD RESET, and TASK REASSIGN.

  Out of these function types, ABORT TASK and TASK REASSIGN functions
  manage a single active task, whereas ABORT TASK SET, CLEAR TASK SET,
  LOGICAL UNIT RESET, TARGET WARM RESET, and TARGET COLD RESET
  functions can each potentially affect multiple active tasks.

4.2.3.2.  Notion of Affected Tasks

  This section defines the notion of "affected tasks" in multi-task
  abort scenarios.  Scope definitions in this section apply to both the
  standard multi-task abort semantics (Section 4.2.3.3) and the
  FastAbort multi-task abort semantics behavior (Section 4.2.3.4).

  ABORT TASK SET: All outstanding tasks for the I_T_L nexus identified
     by the LUN field in the ABORT TASK SET TMF Request PDU.

  CLEAR TASK SET: All outstanding tasks in the task set for the LU
     identified by the LUN field in the CLEAR TASK SET TMF Request PDU.
     See [SPC3] for the definition of a "task set".

  LOGICAL UNIT RESET: All outstanding tasks from all initiators for the
     LU identified by the LUN field in the LOGICAL UNIT RESET
     Request PDU.

  TARGET WARM RESET/TARGET COLD RESET: All outstanding tasks from all
     initiators across all LUs to which the TMF-issuing session has
     access on the SCSI target device hosting the iSCSI session.

  Usage: An "ABORT TASK SET TMF Request PDU" in the preceding text is
     an iSCSI TMF Request PDU with the "Function" field set to "ABORT
     TASK SET" as defined in Section 11.5.  Similar usage is employed
     for other scope descriptions.









Chadalapaka, et al.          Standards Track                   [Page 36]

RFC 7143                  iSCSI (Consolidated)                April 2014


4.2.3.3.  Standard Multi-Task Abort Semantics

  All iSCSI implementations MUST support the protocol behavior defined
  in this section as the default behavior.  The execution of ABORT TASK
  SET, CLEAR TASK SET, LOGICAL UNIT RESET, TARGET WARM RESET, and
  TARGET COLD RESET TMF Requests consists of the following sequence of
  actions in the specified order on the specified party.

  The initiator iSCSI layer:

     a) MUST continue to respond to each TTT received for the affected
        tasks.

     b) SHOULD process any responses received for affected tasks in the
        normal fashion.  This is acceptable because the responses are
        guaranteed to have been sent prior to the TMF Response.

     c) SHOULD receive the TMF Response concluding all the tasks in the
        set of affected tasks, unless the initiator has done something
        (e.g., LU reset, connection drop) that may prevent the TMF
        Response from being sent or received.  The initiator MUST thus
        conclude all affected tasks as part of this step in either case
        and MUST discard any TMF Response received after the affected
        tasks are concluded.

  The target iSCSI layer:

     a) MUST wait for responses on currently valid Target Transfer Tags
        of the affected tasks from the issuing initiator.  MAY wait for
        responses on currently valid Target Transfer Tags of the
        affected tasks from third-party initiators.

     b) MUST wait (concurrent with the wait in Step a) for all commands
        of the affected tasks to be received based on the CmdSN
        ordering.  SHOULD NOT wait for new commands on third-party
        affected sessions -- only the instantiated tasks have to be
        considered for the purpose of determining the affected tasks.
        However, in the case of target-scoped requests (i.e., TARGET
        WARM RESET and TARGET COLD RESET), all of the commands that are
        not yet received on the issuing session in the command stream
        can be considered to have been received with no command waiting
        period -- i.e., the entire CmdSN space up to the CmdSN of the
        task management function can be "plugged".

     c) MUST propagate the TMF Request to, and receive the response
        from, the target SCSI layer.





Chadalapaka, et al.          Standards Track                   [Page 37]

RFC 7143                  iSCSI (Consolidated)                April 2014


     d) MUST provide the Response Fence behavior for the TMF Response
        on the issuing session as specified in Section 4.2.2.3.2.

     e) MUST provide the Response Fence behavior on the first post-TMF
        Response on third-party sessions as specified in
        Section 4.2.2.3.3.  If some tasks originate from non-iSCSI
        I_T_L nexuses, then the means by which the target ensures that
        all affected tasks have returned their status to the initiator
        are defined by the specific non-iSCSI transport protocol(s).

  Technically, the TMF servicing is complete in Step d).  Data
  transfers corresponding to terminated tasks may, however, still be in
  progress on third-party iSCSI sessions even at the end of Step e).
  The TMF Response MUST NOT be sent by the target iSCSI layer before
  the end of Step d) and MAY be sent at the end of Step d) despite
  these outstanding data transfers until after Step e).

4.2.3.4.  FastAbort Multi-Task Abort Semantics

  Protocol behavior defined in this section SHOULD be implemented by
  all iSCSI implementations complying with this document, noting that
  some steps below may not be compatible with [RFC3720] semantics.
  However, protocol behavior defined in this section MUST be exhibited
  by iSCSI implementations on an iSCSI session when they negotiate the
  TaskReporting (Section 13.23) key to "FastAbort" on that session.
  The execution of ABORT TASK SET, CLEAR TASK SET, LOGICAL UNIT RESET,
  TARGET WARM RESET, and TARGET COLD RESET TMF Requests consists of the
  following sequence of actions in the specified order on the specified
  party.

  The initiator iSCSI layer:

     a) MUST NOT send any more Data-Out PDUs for affected tasks on the
        issuing connection of the issuing iSCSI session once the TMF is
        sent to the target.

     b) SHOULD process any responses received for affected tasks in the
        normal fashion.  This is acceptable because the responses are
        guaranteed to have been sent prior to the TMF Response.

     c) MUST respond to each Async Message PDU with a Task Termination
        AsyncEvent (5) as defined in Section 11.9.









Chadalapaka, et al.          Standards Track                   [Page 38]

RFC 7143                  iSCSI (Consolidated)                April 2014


     d) MUST treat the TMF Response as terminating all affected tasks
        for which responses have not been received and MUST discard any
        responses for affected tasks received after the TMF Response is
        passed to the SCSI layer (although the semantics defined in
        this section ensure that such an out-of-order scenario will
        never happen with a compliant target implementation).

  The target iSCSI layer:

     a) MUST wait for all commands of the affected tasks to be received
        based on the CmdSN ordering on the issuing session.  SHOULD NOT
        wait for new commands on third-party affected sessions -- only
        the instantiated tasks have to be considered for the purpose of
        determining the affected tasks.  In the case of target-scoped
        requests (i.e., TARGET WARM RESET and TARGET COLD RESET), all
        the commands that are not yet received on the issuing session
        in the command stream can be considered to have been received
        with no command waiting period -- i.e., the entire CmdSN space
        up to the CmdSN of the task management function can be
        "plugged".

     b) MUST propagate the TMF Request to, and receive the response
        from, the target SCSI layer.

     c) MUST leave all active "affected TTTs" (i.e., active TTTs
        associated with affected tasks) valid.

     d) MUST send an Asynchronous Message PDU with AsyncEvent=5
        (Section 11.9) on:

        1) each connection of each third-party session to which at
           least one affected task is allegiant if
           TaskReporting=FastAbort is operational on that third-party
           session, and

        2) each connection except the issuing connection of the issuing
           session that has at least one allegiant affected task.

           If there are multiple affected LUs (say, due to a target
           reset), then one Async Message PDU MUST be sent for each
           such LU on each connection that has at least one allegiant
           affected task.  The LUN field in the Asynchronous Message
           PDU MUST be set to match the LUN for each such LU.

     e) MUST address the Response Fence flag on the TMF Response on the
        issuing session as defined in Section 4.2.2.3.3.





Chadalapaka, et al.          Standards Track                   [Page 39]

RFC 7143                  iSCSI (Consolidated)                April 2014


     f) MUST address the Response Fence flag on the first post-TMF
        Response on third-party sessions as defined in
        Section 4.2.2.3.3.  If some tasks originate from non-iSCSI
        I_T_L nexuses, then the means by which the target ensures that
        all affected tasks have returned their status to the initiator
        are defined by the specific non-iSCSI transport protocol(s).

     g) MUST free up the affected TTTs (and STags for iSER, if
        applicable) and the corresponding buffers, if any, once it
        receives each associated NOP-Out acknowledgment that the
        initiator generated in response to each Async Message.

  Technically, the TMF servicing is complete in Step e).  Data
  transfers corresponding to terminated tasks may, however, still be in
  progress even at the end of Step f).  A TMF Response MUST NOT be sent
  by the target iSCSI layer before the end of Step e) and MAY be sent
  at the end of Step e) despite these outstanding Data transfers until
  Step g).  Step g) specifies an event to free up any such resources
  that may have been reserved to support outstanding data transfers.

4.2.3.5.  Affected Tasks Shared across Standard and FastAbort Sessions

  If an iSCSI target implementation is capable of supporting
  TaskReporting=FastAbort functionality (Section 13.23), it may end up
  in a situation where some sessions have TaskReporting=RFC3720
  operational (RFC 3720 sessions) while some other sessions have
  TaskReporting=FastAbort operational (FastAbort sessions) even while
  accessing a shared set of affected tasks (Section 4.2.3.2).  If the
  issuing session is an RFC 3720 session, the iSCSI target
  implementation is FastAbort-capable, and the third-party affected
  session is a FastAbort session, the following behavior SHOULD be
  exhibited by the iSCSI target layer:

     a) Between Steps c) and d) of the target behavior in
        Section 4.2.3.3, send an Asynchronous Message PDU with
        AsyncEvent=5 (Section 11.9) on each connection of each third-
        party session to which at least one affected task is allegiant.
        If there are multiple affected LUs, then send one Async Message
        PDU for each such LU on each connection that has at least one
        allegiant affected task.  When sent, the LUN field in the
        Asynchronous Message PDU MUST be set to match the LUN for each
        such LU.

     b) After Step e) of the target behavior in Section 4.2.3.3, free
        up the affected TTTs (and STags for iSER, if applicable) and
        the corresponding buffers, if any, once each associated NOP-Out
        acknowledgment is received that the third-party initiator
        generated in response to each Async Message sent in Step a).



Chadalapaka, et al.          Standards Track                   [Page 40]

RFC 7143                  iSCSI (Consolidated)                April 2014


  If the issuing session is a FastAbort session, the iSCSI target
  implementation is FastAbort-capable, and the third-party affected
  session is an RFC 3720 session, the iSCSI target layer MUST NOT send
  Asynchronous Message PDUs on the third-party session to prompt the
  FastAbort behavior.

  If the third-party affected session is a FastAbort session and the
  issuing session is a FastAbort session, the initiator in the third-
  party role MUST respond to each Async Message PDU with AsyncEvent=5
  as defined in Section 11.9.  Note that an initiator MAY thus receive
  these Async Messages on a third-party affected session even if the
  session is a single-connection session.

4.2.3.6.  Rationale behind the FastAbort Semantics

  There are fundamentally three basic objectives behind the semantics
  specified in Sections 4.2.3.3 and 4.2.3.4.

     a) Maintaining an ordered command flow I_T nexus abstraction to
        the target SCSI layer even with multi-connection sessions.

        - Target iSCSI processing of a TMF Request must maintain the
          single flow illusion.  The target behavior in Step b) of
          Section 4.2.3.3 and the target behavior in Step a) of
          Section 4.2.3.4 correspond to this objective.

     b) Maintaining a single ordered response flow I_T nexus
        abstraction to the initiator SCSI layer even with multi-
        connection sessions when one response (i.e., TMF Response)
        could imply the status of other unfinished tasks from the
        initiator's perspective.

        - The target must ensure that the initiator does not see "old"
          task responses (that were placed on the wire chronologically
          earlier than the TMF Response) after seeing the TMF Response.
          The target behavior in Step d) of Section 4.2.3.3 and the
          target behavior in Step e) of Section 4.2.3.4 correspond to
          this objective.

        - Whenever the result of a TMF action is visible across
          multiple I_T_L nexuses, [SAM2] requires the SCSI device
          server to trigger a UA on each of the other I_T_L nexuses.
          Once an initiator is notified of such a UA, the application
          client on the receiving initiator is required to clear its
          task state (Clause 5.5 of [SAM2]) for the affected tasks.  It
          would thus be inappropriate to deliver a SCSI Response for a
          task after the task state is cleared on the initiator, i.e.,
          after the UA is notified.  The UA notification contained in



Chadalapaka, et al.          Standards Track                   [Page 41]

RFC 7143                  iSCSI (Consolidated)                April 2014


          the first SCSI Response PDU on each affected third-party
          I_T_L nexus after the TMF action thus MUST NOT pass the
          affected task responses on any of the iSCSI sessions
          accessing the LU.  The target behavior in Step e) of
          Section 4.2.3.3 and the target behavior in Step f) of
          Section 4.2.3.4 correspond to this objective.

     c) Draining all active TTTs corresponding to affected tasks in a
        deterministic fashion.

        - Data-Out PDUs with stale TTTs arriving after the tasks are
          terminated can create a buffer management problem even for
          traditional iSCSI implementations and is fatal for the
          connection for iSCSI/iSER implementations.  Either the
          termination of affected tasks should be postponed until the
          TTTs are retired (as in Step a) of Section 4.2.3.3), or the
          TTTs and the buffers should stay allocated beyond task
          termination to be deterministically freed up later (as in
          Steps c) and g) of Section 4.2.3.4).

  The only other notable optimization is the plugging.  If all tasks on
  an I_T nexus will be aborted anyway (as with a target reset), there
  is no need to wait to receive all commands to plug the CmdSN holes.
  The target iSCSI layer can simply plug all missing CmdSN slots and
  move on with TMF processing.  The first objective (maintaining a
  single ordered command flow) is still met with this optimization
  because the target SCSI layer only sees ordered commands.

4.2.4.  iSCSI Login

  The purpose of the iSCSI login is to enable a TCP connection for
  iSCSI use, authentication of the parties, negotiation of the
  session's parameters, and marking of the connection as belonging to
  an iSCSI session.

  A session is used to identify to a target all the connections with a
  given initiator that belong to the same I_T nexus.  (For more details
  on how a session relates to an I_T nexus, see Section 4.4.2.)

  The targets listen on a well-known TCP port or other TCP port for
  incoming connections.  The initiator begins the login process by
  connecting to one of these TCP ports.

  As part of the login process, the initiator and target SHOULD
  authenticate each other and MAY set a security association protocol
  for the session.  This can occur in many different ways and is
  subject to negotiation; see Section 12.




Chadalapaka, et al.          Standards Track                   [Page 42]

RFC 7143                  iSCSI (Consolidated)                April 2014


  To protect the TCP connection, an IPsec security association MAY be
  established before the Login Request.  For information on using IPsec
  security for iSCSI, see Section 9, [RFC3723], and [RFC7146].

  The iSCSI Login Phase is carried through Login Requests and
  Responses.  Once suitable authentication has occurred and operational
  parameters have been set, the session transitions to the Full Feature
  Phase and the initiator may start to send SCSI commands.  The
  security policy for whether and by what means a target chooses to
  authorize an initiator is beyond the scope of this document.  For a
  more detailed description of the Login Phase, see Section 6.

  The login PDU includes the ISID part of the session ID (SSID).  The
  target portal group that services the login is implied by the
  selection of the connection endpoint.  For a new session, the TSIH is
  zero.  As part of the response, the target generates a TSIH.

  During session establishment, the target identifies the SCSI
  initiator port (the "I" in the "I_T nexus") through the value pair
  (InitiatorName, ISID).  We describe InitiatorName later in this
  section.  Any persistent state (e.g., persistent reservations) on the
  target that is associated with a SCSI initiator port is identified
  based on this value pair.  Any state associated with the SCSI target
  port (the "T" in the "I_T nexus") is identified externally by the
  TargetName and Target Portal Group Tag (see Section 4.4.1).  The ISID
  is subject to reuse restrictions because it is used to identify a
  persistent state (see Section 4.4.3).

  Before the Full Feature Phase is established, only Login Request and
  Login Response PDUs are allowed.  Login Requests and Responses MUST
  be used exclusively during login.  On any connection, the Login Phase
  MUST immediately follow TCP connection establishment, and a
  subsequent Login Phase MUST NOT occur before tearing down the
  connection.

  A target receiving any PDU except a Login Request before the Login
  Phase is started MUST immediately terminate the connection on which
  the PDU was received.  Once the Login Phase has started, if the
  target receives any PDU except a Login Request, it MUST send a Login
  reject (with Status "invalid during login") and then disconnect.  If
  the initiator receives any PDU except a Login Response, it MUST
  immediately terminate the connection.









Chadalapaka, et al.          Standards Track                   [Page 43]

RFC 7143                  iSCSI (Consolidated)                April 2014


4.2.5.  iSCSI Full Feature Phase

  Once the two sides successfully conclude the login on the first --
  also called the leading -- connection in the session, the iSCSI
  session is in the iSCSI Full Feature Phase.  A connection is in the
  Full Feature Phase if the session is in the Full Feature Phase and
  the connection login has completed successfully.  An iSCSI connection
  is not in the Full Feature Phase when

     a) it does not have an established transport connection, or

     b) when it has a valid transport connection, but a successful
        login was not performed or the connection is currently
        logged out.

  In a normal Full Feature Phase, the initiator may send SCSI commands
  and data to the various LUs on the target by encapsulating them in
  iSCSI PDUs that go over the established iSCSI session.

4.2.5.1.  Command Connection Allegiance

  For any iSCSI request issued over a TCP connection, the corresponding
  response and/or other related PDU(s) MUST be sent over the same
  connection.  We call this "connection allegiance".  If the original
  connection fails before the command is completed, the connection
  allegiance of the command may be explicitly reassigned to a different
  transport connection as described in detail in Section 7.2.

  Thus, if an initiator issues a read command, the target MUST send the
  requested data, if any, followed by the status, to the initiator over
  the same TCP connection that was used to deliver the SCSI command.
  If an initiator issues a write command, the initiator MUST send the
  data, if any, for that command over the same TCP connection that was
  used to deliver the SCSI command.  The target MUST return Ready To
  Transfer (R2T), if any, and the status over the same TCP connection
  that was used to deliver the SCSI command.  Retransmission requests
  (SNACK PDUs), and the data and status that they generate, MUST also
  use the same connection.

  However, consecutive commands that are part of a SCSI linked command-
  chain task (see [SAM2]) MAY use different connections.  Connection
  allegiance is strictly per command and not per task.  During the
  iSCSI Full Feature Phase, the initiator and target MAY interleave
  unrelated SCSI commands, their SCSI data, and responses over the
  session.






Chadalapaka, et al.          Standards Track                   [Page 44]

RFC 7143                  iSCSI (Consolidated)                April 2014


4.2.5.2.  Data Transfer Overview

  Outgoing SCSI data (initiator-to-target user data or command
  parameters) is sent as either solicited data or unsolicited data.
  Solicited data are sent in response to R2T PDUs.  Unsolicited data
  can be sent as part of an iSCSI Command PDU ("immediate data") or in
  separate iSCSI data PDUs.

  Immediate data are assumed to originate at offset 0 in the initiator
  SCSI write-buffer (outgoing data buffer).  All other data PDUs have
  the buffer offset set explicitly in the PDU header.

  An initiator may send unsolicited data up to FirstBurstLength (see
  Section 13.14) as immediate (up to the negotiated maximum PDU
  length), in a separate PDU sequence, or both.  All subsequent data
  MUST be solicited.  The maximum length of an individual data PDU or
  the immediate-part of the first unsolicited burst MAY be negotiated
  at login.

  The maximum amount of unsolicited data that can be sent with a
  command is negotiated at login through the FirstBurstLength (see
  Section 13.14) key.  A target MAY separately enable immediate data
  (through the ImmediateData key) without enabling the more general
  (separate data PDUs) form of unsolicited data (through the
  InitialR2T key).

  Unsolicited data for a write are meant to reduce the effect of
  latency on throughput (no R2T is needed to start sending data).  In
  addition, immediate data is meant to reduce the protocol overhead
  (both bandwidth and execution time).

  An iSCSI initiator MAY choose not to send unsolicited data, only
  immediate data or FirstBurstLength bytes of unsolicited data with a
  command.  If any non-immediate unsolicited data is sent, the total
  unsolicited data MUST be either FirstBurstLength or all of the data,
  if the total amount is less than the FirstBurstLength.

  It is considered an error for an initiator to send unsolicited data
  PDUs to a target that operates in R2T mode (only solicited data are
  allowed).  It is also an error for an initiator to send more
  unsolicited data, whether immediate or as separate PDUs, than
  FirstBurstLength.

  An initiator MUST honor an R2T data request for a valid outstanding
  command (i.e., carrying a valid Initiator Task Tag) and deliver all
  the requested data, provided the command is supposed to deliver





Chadalapaka, et al.          Standards Track                   [Page 45]

RFC 7143                  iSCSI (Consolidated)                April 2014


  outgoing data and the R2T specifies data within the command bounds.
  The initiator action is unspecified for receiving an R2T request that
  specifies data, all or in part, outside of the bounds of the command.

  A target SHOULD NOT silently discard data and then request
  retransmission through R2T.  Initiators SHOULD NOT keep track of the
  data transferred to or from the target (scoreboarding).  SCSI targets
  perform residual count calculation to check how much data was
  actually transferred to or from the device by a command.  This may
  differ from the amount the initiator sent and/or received for reasons
  such as retransmissions and errors.  Read or bidirectional commands
  implicitly solicit the transmission of the entire amount of data
  covered by the command.  SCSI data packets are matched to their
  corresponding SCSI commands by using tags specified in the protocol.

  In addition, iSCSI initiators and targets MUST enforce some ordering
  rules.  When unsolicited data is used, the order of the unsolicited
  data on each connection MUST match the order in which the commands on
  that connection are sent.  Command and unsolicited data PDUs may be
  interleaved on a single connection as long as the ordering
  requirements of each are maintained (e.g., command N + 1 MAY be sent
  before the unsolicited Data-Out PDUs for command N, but the
  unsolicited Data-Out PDUs for command N MUST precede the unsolicited
  Data-Out PDUs of command N + 1).  A target that receives data out of
  order MAY terminate the session.

4.2.5.3.  Tags and Integrity Checks

  Initiator tags for pending commands are unique initiator-wide for a
  session.  Target tags are not strictly specified by the protocol.  It
  is assumed that target tags are used by the target to tag (alone or
  in combination with the LUN) the solicited data.  Target tags are
  generated by the target and "echoed" by the initiator.

  These mechanisms are designed to accomplish efficient data delivery
  along with a large degree of control over the data flow.

  As the Initiator Task Tag is used to identify a task during its
  execution, the iSCSI initiator and target MUST verify that all other
  fields used in task-related PDUs have values that are consistent with
  the values used at the task instantiation, based on the Initiator
  Task Tag (e.g., the LUN used in an R2T PDU MUST be the same as the
  one used in the SCSI Command PDU used to instantiate the task).
  Using inconsistent field values is considered a protocol error.







Chadalapaka, et al.          Standards Track                   [Page 46]

RFC 7143                  iSCSI (Consolidated)                April 2014


4.2.5.4.  SCSI Task Management during iSCSI Full Feature Phase

  SCSI task management assumes that individual tasks and task groups
  can be aborted based solely on the task tags (for individual tasks)
  or the timing of the task management command (for task groups) and
  that the task management action is executed synchronously -- i.e., no
  message involving an aborted task will be seen by the SCSI initiator
  after receiving the task management response.  In iSCSI, initiators
  and targets interact asynchronously over several connections.  iSCSI
  specifies the protocol mechanism and implementation requirements
  needed to present a synchronous SCSI view while using an asynchronous
  iSCSI infrastructure.

4.2.6.  iSCSI Connection Termination

  An iSCSI connection may be terminated via a transport connection
  shutdown or a transport reset.  A transport reset is assumed to be an
  exceptional event.

  Graceful TCP connection shutdowns are done by sending TCP FINs.  A
  graceful transport connection shutdown SHOULD only be initiated by
  either party when the connection is not in the iSCSI Full Feature
  Phase.  A target MAY terminate a Full Feature Phase connection on
  internal exception events, but it SHOULD announce the fact through an
  Asynchronous Message PDU.  Connection termination with outstanding
  commands may require recovery actions.

  If a connection is terminated while in the Full Feature Phase,
  connection cleanup (see Section 7.14) is required prior to recovery.
  By doing connection cleanup before starting recovery, the initiator
  and target will avoid receiving stale PDUs after recovery.

4.2.7.  iSCSI Names

  Both targets and initiators require names for the purpose of
  identification.  In addition, names enable iSCSI storage resources to
  be managed, regardless of location (address).  An iSCSI Node Name is
  also the SCSI device name contained in the iSCSI node.  The iSCSI
  name of a SCSI device is the principal object used in authentication
  of targets to initiators and initiators to targets.  This name is
  also used to identify and manage iSCSI storage resources.

  iSCSI names must be unique within the operation domain of the end
  user.  However, because the operation domain of an IP network is
  potentially worldwide, the iSCSI name formats are architected to be
  worldwide unique.  To assist naming authorities in the construction
  of worldwide unique names, iSCSI provides three name formats for
  different types of naming authorities.



Chadalapaka, et al.          Standards Track                   [Page 47]

RFC 7143                  iSCSI (Consolidated)                April 2014


  iSCSI names are associated with iSCSI nodes, and not iSCSI network
  adapter cards, to ensure that the replacement of network adapter
  cards does not require reconfiguration of all SCSI and iSCSI resource
  allocation information.

  Some SCSI commands require that protocol-specific identifiers be
  communicated within SCSI CDBs.  See Section 2.2 for the definition of
  the SCSI port name/identifier for iSCSI ports.

  An initiator may discover the iSCSI Target Names to which it has
  access, along with their addresses, using the SendTargets Text
  Request, or other techniques discussed in [RFC3721].

  iSCSI equipment that needs discovery functions beyond SendTargets
  SHOULD implement iSNS (see [RFC4171]) for extended discovery
  management capabilities and interoperability.  Although [RFC3721]
  implies an SLP ([RFC2608]) implementation requirement, SLP has not
  been widely implemented or deployed for use with iSCSI in practice.
  iSCSI implementations therefore SHOULD NOT rely on SLP-based
  discovery interoperability.

4.2.7.1.  iSCSI Name Properties

  Each iSCSI node, whether it is an initiator, a target, or both, MUST
  have an iSCSI name.  Whenever an iSCSI node contains an iSCSI
  initiator node and an iSCSI target node, the iSCSI Initiator Name
  MUST be the same as the iSCSI Target Name for the contained Nodes
  such that there is only one iSCSI Node Name for the iSCSI node
  overall.  Note the related requirements in Section 9.2.1 on how to
  map CHAP names to iSCSI names in such a scenario.

  Initiators and targets MUST support the receipt of iSCSI names of up
  to the maximum length of 223 bytes.

  The initiator MUST present both its iSCSI Initiator Name and the
  iSCSI Target Name to which it wishes to connect in the first Login
  Request of a new session or connection.  The only exception is if a
  Discovery session (see Section 4.3) is to be established.  In this
  case, the iSCSI Initiator Name is still required, but the iSCSI
  Target Name MAY be omitted.

  iSCSI names have the following properties:

     - iSCSI names are globally unique.  No two initiators or targets
       can have the same name.

     - iSCSI names are permanent.  An iSCSI initiator node or target
       node has the same name for its lifetime.



Chadalapaka, et al.          Standards Track                   [Page 48]

RFC 7143                  iSCSI (Consolidated)                April 2014


     - iSCSI names do not imply a location or address.  An iSCSI
       initiator or target can move or have multiple addresses.  A
       change of address does not imply a change of name.

     - iSCSI names do not rely on a central name broker; the naming
       authority is distributed.

     - iSCSI names support integration with existing unique naming
       schemes.

     - iSCSI names rely on existing naming authorities.  iSCSI does not
       create any new naming authority.

  The encoding of an iSCSI name has the following properties:

     - iSCSI names have the same encoding method, regardless of the
       underlying protocols.

     - iSCSI names are relatively simple to compare.  The algorithm for
       comparing two iSCSI names for equivalence does not rely on an
       external server.

     - iSCSI names are composed only of printable ASCII and Unicode
       characters.  iSCSI names allow the use of international
       character sets, but uppercase characters are prohibited.  The
       iSCSI stringprep profile [RFC3722] maps uppercase characters to
       lowercase and SHOULD be used to prepare iSCSI names from input
       that may include uppercase characters.  No whitespace characters
       are used in iSCSI names; see [RFC3722] for details.

     - iSCSI names may be transported using both binary and ASCII-based
       protocols.

  An iSCSI name really names a logical software entity and is not tied
  to a port or other hardware that can be changed.  For instance, an
  Initiator Name should name the iSCSI initiator node, not a particular
  NIC or HBA.  When multiple NICs are used, they should generally all
  present the same iSCSI Initiator Name to the targets, because they
  are simply paths to the same SCSI layer.  In most operating systems,
  the named entity is the operating system image.

  Similarly, a target name should not be tied to hardware interfaces
  that can be changed.  A target name should identify the logical
  target and must be the same for the target, regardless of the
  physical portion being addressed.  This assists iSCSI initiators in
  determining that the two targets it has discovered are really two
  paths to the same target.




Chadalapaka, et al.          Standards Track                   [Page 49]

RFC 7143                  iSCSI (Consolidated)                April 2014


  The iSCSI name is designed to fulfill the functional requirements for
  Uniform Resource Names (URNs) [RFC1737].  For example, it is required
  that the name have a global scope, be independent of address or
  location, and be persistent and globally unique.  Names must be
  extensible and scalable with the use of naming authorities.  The name
  encoding should be both human and machine readable.  See [RFC1737]
  for further requirements.

4.2.7.2.  iSCSI Name Encoding

  An iSCSI name MUST be a UTF-8 (see [RFC3629]) encoding of a string of
  Unicode characters with the following properties:

     - It is in Normalization Form C (see "Unicode Normalization Forms"
       [UNICODE]).

     - It only contains characters allowed by the output of the iSCSI
       stringprep template (described in [RFC3722]).

     - The following characters are used for formatting iSCSI names:

          dash ('-'=U+002d)

          dot ('.'=U+002e)

          colon (':'=U+003a)

     - The UTF-8 encoding of the name is not larger than 223 bytes.

  The stringprep process is described in [RFC3454]; iSCSI's use of the
  stringprep process is described in [RFC3722].  The stringprep process
  is a method designed by the Internationalized Domain Name (IDN)
  working group to translate human-typed strings into a format that can
  be compared as opaque strings.  iSCSI names are expected to be used
  by administrators for purposes such as system configuration; for this
  reason, characters that may lead to human confusion among different
  iSCSI names (e.g., punctuation, spacing, diacritical marks) should be
  avoided, even when such characters are allowed as stringprep
  processing output by [RFC3722].  The stringprep process also converts
  strings into equivalent strings of lowercase characters.

  The stringprep process does not need to be implemented if the names
  are generated using only characters allowed as output by the
  stringprep processing specified in [RFC3722].  Those allowed
  characters include all ASCII lowercase and numeric characters, as
  well as lowercase Unicode characters as specified in [RFC3722].  Once
  iSCSI names encoded in UTF-8 are "normalized" as described in this
  section, they may be safely compared byte for byte.



Chadalapaka, et al.          Standards Track                   [Page 50]

RFC 7143                  iSCSI (Consolidated)                April 2014


4.2.7.3.  iSCSI Name Structure

  An iSCSI name consists of two parts -- a type designator followed by
  a unique name string.

  iSCSI uses three existing naming authorities in constructing globally
  unique iSCSI names.  The type designator in an iSCSI name indicates
  the naming authority on which the name is based.  The three iSCSI
  name formats are the following:

     a) iSCSI-Qualified Name: based on domain names to identify a
        naming authority

     b) NAA format Name: based on a naming format defined by [FC-FS3]
        for constructing globally unique identifiers, referred to as
        the Network Address Authority (NAA)

     c) EUI format Name: based on EUI names, where the IEEE
        Registration Authority assists in the formation of worldwide
        unique names (EUI-64 format)

  The corresponding type designator strings currently defined are:

     a) iqn. - iSCSI Qualified name

     b) naa. - Remainder of the string is an INCITS T11-defined Network
        Address Authority identifier, in ASCII-encoded hexadecimal

     c) eui. - Remainder of the string is an IEEE EUI-64 identifier, in
        ASCII-encoded hexadecimal

  These three naming authority designators were considered sufficient
  at the time of writing this document.  The creation of additional
  naming type designators for iSCSI may be considered by the IETF and
  detailed in separate RFCs.
















Chadalapaka, et al.          Standards Track                   [Page 51]

RFC 7143                  iSCSI (Consolidated)                April 2014


  The following table summarizes the current SCSI transport protocols
  and their naming formats.

       SCSI Transport Protocol       Naming Format
    +----------------------------+-------+-----+----+
    |                            | EUI-64| NAA |IQN |
    |----------------------------|-------|-----|----|
    | iSCSI (Internet SCSI)      |   X   |  X  | X  |
    |----------------------------|-------|-----|----|
    | FCP (Fibre Channel)        |       |  X  |    |
    |----------------------------|-------|-----|----|
    | SAS (Serial Attached SCSI) |       |  X  |    |
    +----------------------------+-------+-----+----+

4.2.7.4.  Type "iqn." (iSCSI Qualified Name)

  This iSCSI name type can be used by any organization that owns a
  domain name.  This naming format is useful when an end user or
  service provider wishes to assign iSCSI names for targets and/or
  initiators.

  To generate names of this type, the person or organization generating
  the name must own a registered domain name.  This domain name does
  not have to resolve to an address; it just needs to be reserved to
  prevent others from generating iSCSI names using the same
  domain name.

  Since a domain name can expire, be acquired by another entity, or may
  be used to generate iSCSI names by both owners, the domain name must
  be additionally qualified by a date during which the naming authority
  owned the domain name.  A date code is provided as part of the "iqn."
  format for this reason.

  The iSCSI qualified name string consists of:

     - The string "iqn.", used to distinguish these names from "eui."
       formatted names.

     - A date code, in yyyy-mm format.  This date MUST be a date during
       which the naming authority owned the domain name used in this
       format and SHOULD be the first month in which the domain name
       was owned by this naming authority at 00:01 GMT of the first day
       of the month.  This date code uses the Gregorian calendar.  All
       four digits in the year must be present.  Both digits of the
       month must be present, with January == "01" and December ==
       "12".  The dash must be included.

     - A dot "."



Chadalapaka, et al.          Standards Track                   [Page 52]

RFC 7143                  iSCSI (Consolidated)                April 2014


     - The reverse domain name of the naming authority (person or
       organization) creating this iSCSI name.

     - An optional, colon (:)-prefixed string within the character set
       and length boundaries that the owner of the domain name deems
       appropriate.  This may contain product types, serial numbers,
       host identifiers, or software keys (e.g., it may include colons
       to separate organization boundaries).  With the exception of the
       colon prefix, the owner of the domain name can assign everything
       after the reverse domain name as desired.  It is the
       responsibility of the entity that is the naming authority to
       ensure that the iSCSI names it assigns are worldwide unique.
       For example, "Example Storage Arrays, Inc." might own the domain
       name "example.com".

  The following are examples of iSCSI qualified names that might be
  generated by "EXAMPLE Storage Arrays, Inc."

                   Naming     String defined by
     Type  Date     Auth      "example.com" naming authority
     +--++-----+ +---------+ +--------------------------------+
     | ||      | |         | |                                |

     iqn.2001-04.com.example:storage:diskarrays-sn-a8675309
     iqn.2001-04.com.example
     iqn.2001-04.com.example:storage.tape1.sys1.xyz
     iqn.2001-04.com.example:storage.disk2.sys1.xyz

4.2.7.5.  Type "eui." (IEEE EUI-64 Format)

  The IEEE Registration Authority provides a service for assigning
  globally unique identifiers [EUI].  The EUI-64 format is used to
  build a global identifier in other network protocols.  For example,
  Fibre Channel defines a method of encoding it into a WorldWideName.
  For more information on registering for EUI identifiers, see [OUI].

  The format is "eui." followed by an EUI-64 identifier (16 ASCII-
  encoded hexadecimal digits).

     Example iSCSI name:

        Type   EUI-64 identifier (ASCII-encoded hexadecimal)
        +--++--------------+
        |  ||              |
        eui.02004567A425678D






Chadalapaka, et al.          Standards Track                   [Page 53]

RFC 7143                  iSCSI (Consolidated)                April 2014


  The IEEE EUI-64 iSCSI name format might be used when a manufacturer
  is already registered with the IEEE Registration Authority and uses
  EUI-64 formatted worldwide unique names for its products.

  More examples of name construction are discussed in [RFC3721].

4.2.7.6.  Type "naa." (Network Address Authority)

  The INCITS T11 Framing and Signaling Specification [FC-FS3] defines a
  format called the Network Address Authority (NAA) format for
  constructing worldwide unique identifiers that use various identifier
  registration authorities.  This identifier format is used by the
  Fibre Channel and SAS SCSI transport protocols.  As FC and SAS
  constitute a large fraction of networked SCSI ports, the NAA format
  is a widely used format for SCSI transports.  The objective behind
  iSCSI supporting a direct representation of an NAA format Name is to
  facilitate construction of a target device name that translates
  easily across multiple namespaces for a SCSI storage device
  containing ports served by different transports.  More specifically,
  this format allows implementations wherein one NAA identifier can be
  assigned as the basis for the SCSI device name for a SCSI target with
  both SAS ports and iSCSI ports.

  The iSCSI NAA naming format is "naa.", followed by an NAA identifier
  represented in ASCII-encoded hexadecimal digits.

  An example of an iSCSI name with a 64-bit NAA value follows:

     Type  NAA identifier (ASCII-encoded hexadecimal)
     +--++--------------+
     |  ||              |
     naa.52004567BA64678D

  An example of an iSCSI name with a 128-bit NAA value follows:

     Type  NAA identifier (ASCII-encoded hexadecimal)
     +--++------------------------------+
     |  ||                              |
     naa.62004567BA64678D0123456789ABCDEF

  The iSCSI NAA naming format might be used in an implementation when
  the infrastructure for generating NAA worldwide unique names is
  already in place because the device contains both SAS and iSCSI SCSI
  ports.







Chadalapaka, et al.          Standards Track                   [Page 54]

RFC 7143                  iSCSI (Consolidated)                April 2014


  The NAA identifier formatted in an ASCII-hexadecimal representation
  has a maximum size of 32 characters (128-bit NAA format).  As a
  result, there is no issue with this naming format exceeding the
  maximum size for iSCSI Node Names.

4.2.8.  Persistent State

  iSCSI does not require any persistent state maintenance across
  sessions.  However, in some cases, SCSI requires persistent
  identification of the SCSI initiator port name (see Sections 4.4.2
  and 4.4.3.)

  iSCSI sessions do not persist through power cycles and boot
  operations.

  All iSCSI session and connection parameters are reinitialized on
  session and connection creation.

  Commands persist beyond connection termination if the session
  persists and command recovery within the session is supported.
  However, when a connection is dropped, command execution, as
  perceived by iSCSI (i.e., involving iSCSI protocol exchanges for the
  affected task), is suspended until a new allegiance is established by
  the "TASK REASSIGN" task management function.  See Section 11.5.

4.2.9.  Message Synchronization and Steering

  iSCSI presents a mapping of the SCSI protocol onto TCP.  This
  encapsulation is accomplished by sending iSCSI PDUs of varying
  lengths.  Unfortunately, TCP does not have a built-in mechanism for
  signaling message boundaries at the TCP layer.  iSCSI overcomes this
  obstacle by placing the message length in the iSCSI message header.
  This serves to delineate the end of the current message as well as
  the beginning of the next message.

  In situations where IP packets are delivered in order from the
  network, iSCSI message framing is not an issue and messages are
  processed one after the other.  In the presence of IP packet
  reordering (i.e., frames being dropped), legacy TCP implementations
  store the "out of order" TCP segments in temporary buffers until the
  missing TCP segments arrive, at which time the data must be copied to
  the application buffers.  In iSCSI, it is desirable to steer the SCSI
  data within these out-of-order TCP segments into the preallocated
  SCSI buffers rather than store them in temporary buffers.  This
  decreases the need for dedicated reassembly buffers as well as the
  latency and bandwidth related to extra copies.





Chadalapaka, et al.          Standards Track                   [Page 55]

RFC 7143                  iSCSI (Consolidated)                April 2014


  Relying solely on the "message length" information from the iSCSI
  message header may make it impossible to find iSCSI message
  boundaries in subsequent TCP segments due to the loss of a TCP
  segment that contains the iSCSI message length.  The missing TCP
  segment(s) must be received before any of the following segments can
  be steered to the correct SCSI buffers (due to the inability to
  determine the iSCSI message boundaries).  Since these segments cannot
  be steered to the correct location, they must be saved in temporary
  buffers that must then be copied to the SCSI buffers.

  Different schemes can be used to recover synchronization.  The
  details of any such schemes are beyond this protocol specification,
  but it suffices to note that [RFC4297] provides an overview of the
  direct data placement problem on IP networks, and [RFC5046] specifies
  a protocol extension for iSCSI that facilitates this direct data
  placement objective.  The rest of this document refers to any such
  direct data placement protocol usage as an example of a "Sync and
  Steering layer".

  Under normal circumstances (no PDU loss or data reception out of
  order), iSCSI data steering can be accomplished by using the
  identifying tag and the data offset fields in the iSCSI header in
  addition to the TCP sequence number from the TCP header.  The
  identifying tag helps associate the PDU with a SCSI buffer address,
  while the data offset and TCP sequence number are used to determine
  the offset within the buffer.

4.2.9.1.  Sync/Steering and iSCSI PDU Length

  When a large iSCSI message is sent, the TCP segment(s) that contains
  the iSCSI header may be lost.  The remaining TCP segment(s) up to the
  next iSCSI message must be buffered (in temporary buffers) because
  the iSCSI header that indicates to which SCSI buffers the data are to
  be steered was lost.  To minimize the amount of buffering, it is
  recommended that the iSCSI PDU length be restricted to a small value
  (perhaps a few TCP segments in length).  During login, each end of
  the iSCSI session specifies the maximum iSCSI PDU length it will
  accept.

4.3.  iSCSI Session Types

  iSCSI defines two types of sessions:

     a) Normal operational session - an unrestricted session.







Chadalapaka, et al.          Standards Track                   [Page 56]

RFC 7143                  iSCSI (Consolidated)                April 2014


     b) Discovery session - a session only opened for target discovery.
        The target MUST ONLY accept Text Requests with the SendTargets
        key and a Logout Request with reason "close the session".  All
        other requests MUST be rejected.

  The session type is defined during login with the SessionType=value
  parameter in the login command.

4.4.  SCSI-to-iSCSI Concepts Mapping Model

  The following diagram shows an example of how multiple iSCSI nodes
  (targets in this case) can coexist within the same Network Entity and
  can share Network Portals (IP addresses and TCP ports).  Other more
  complex configurations are also possible.  For detailed descriptions
  of the components of these diagrams, see Section 4.4.1.

                +-----------------------------------+
                | Network Entity (iSCSI Client)     |
                |                                   |
                |          +-------------+          |
                |          | iSCSI Node  |          |
                |          | (Initiator) |          |
                |          +-------------+          |
                |              |      |             |
                | +--------------+ +--------------+ |
                | |Network Portal| |Network Portal| |
                | |   192.0.2.4  | |   192.0.2.5  | |
                +-+--------------+-+--------------+-+
                         |                  |
                         |   IP Networks    |
                         |                  |
                +-+--------------+-+--------------+-+
                | |Network Portal| |Network Portal| |
                | |198.51.100.21 | |198.51.100.3  | |
                | | TCP Port 3260| | TCP Port 3260| |
                | +--------------+ +--------------+ |
                |        |                  |       |
                |         ------------------        |
                |            |          |           |
                | +-------------+ +--------------+  |
                | | iSCSI Node  | | iSCSI Node   |  |
                | | (Target)    | | (Target)     |  |
                | +-------------+ +--------------+  |
                |                                   |
                |   Network Entity (iSCSI Server)   |
                +-----------------------------------+





Chadalapaka, et al.          Standards Track                   [Page 57]

RFC 7143                  iSCSI (Consolidated)                April 2014


4.4.1.  iSCSI Architecture Model

  This section describes the part of the iSCSI Architecture Model that
  has the most bearing on the relationship between iSCSI and the SCSI
  Architecture Model.

     - Network Entity - represents a device or gateway that is
       accessible from the IP network.  A Network Entity must have one
       or more Network Portals (see the "Network Portal" item below),
       each of which can be used by some iSCSI nodes (see the next
       item) contained in that Network Entity to gain access to the IP
       network.

     - iSCSI Node - represents a single iSCSI initiator or iSCSI
       target, or an instance of each.  There are one or more iSCSI
       nodes within a Network Entity.  The iSCSI node is accessible via
       one or more Network Portals (see below).  An iSCSI node is
       identified by its iSCSI name (see Sections 4.2.7 and 13).  The
       separation of the iSCSI name from the addresses used by and for
       the iSCSI node allows multiple iSCSI nodes to use the same
       addresses and allows the same iSCSI node to use multiple
       addresses.

     - An alias string may also be associated with an iSCSI node.  The
       alias allows an organization to associate a user-friendly string
       with the iSCSI name.  However, the alias string is not a
       substitute for the iSCSI name.

     - Network Portal - a component of a Network Entity that has a
       TCP/IP network address and that may be used by an iSCSI node
       within that Network Entity for the connection(s) within one of
       its iSCSI sessions.  In an initiator, it is identified by its IP
       address.  In a target, it is identified by its IP address and
       its listening TCP port.

     - Portal Groups - iSCSI supports multiple connections within the
       same session; some implementations will have the ability to
       combine connections in a session across multiple Network
       Portals.  A portal group defines a set of Network Portals within
       an iSCSI node that collectively supports the capability of
       coordinating a session with connections that span these portals.
       Not all Network Portals within a portal group need to
       participate in every session connected through that portal
       group.  One or more portal groups may provide access to an iSCSI
       node.  Each Network Portal, as utilized by a given iSCSI node,
       belongs to exactly one portal group within that node.  Portal
       groups are identified within an iSCSI node by a Portal Group
       Tag, a simple unsigned integer between 0 and 65535 (see



Chadalapaka, et al.          Standards Track                   [Page 58]

RFC 7143                  iSCSI (Consolidated)                April 2014


       Section 13.9).  All Network Portals with the same Portal Group
       Tag in the context of a given iSCSI node are in the same portal
       group.

       Both iSCSI initiators and iSCSI targets have portal groups,
       though only the iSCSI target portal groups are used directly in
       the iSCSI protocol (e.g., in SendTargets).  For references to
       the initiator portal Groups, see Section 10.1.2.

     - Portals within a portal group should support similar session
       parameters, because they may participate in a common session.

  The following diagram shows an example of one such configuration on a
  target and how a session that shares Network Portals within a portal
  group may be established.

      ----------------------------IP Network---------------------
             |                |                  |
        +----|----------------|----+        +----|---------+
        | +---------+ +---------+  |        | +---------+  |
        | | Network | | Network |  |        | | Network |  |
        | | Portal  | | Portal  |  |        | | Portal  |  |
        | +---------+ +---------+  |        | +---------+  |
        |    |                |    |        |    |         |
        |    |    Portal      |    |        |    | Portal  |
        |    |    Group 1     |    |        |    | Group 2 |
        +--------------------------+        +--------------+
             |                |                  |
    +--------|----------------|------------------|------------------+
    |        |                |                  |                  |
    | +----------------------------+ +----------------------------+ |
    | | iSCSI Session (Target side)| | iSCSI Session (Target side)| |
    | |                            | |                            | |
    | |        (TSIH = 56)         | |        (TSIH = 48)         | |
    | +----------------------------+ +----------------------------+ |
    |                                                               |
    |                      iSCSI Target Node                        |
    |             (within Network Entity, not shown)                |
    +---------------------------------------------------------------+

4.4.2.  SCSI Architecture Model

  This section describes the relationship between the SCSI Architecture
  Model [SAM2] and constructs of the SCSI device, SCSI port and I_T
  nexus, and the iSCSI constructs described in Section 4.4.1.

  This relationship implies implementation requirements in order to
  conform to the SAM-2 model and other SCSI operational functions.



Chadalapaka, et al.          Standards Track                   [Page 59]

RFC 7143                  iSCSI (Consolidated)                April 2014


  These requirements are detailed in Section 4.4.3.

  The following list outlines mappings of SCSI architectural elements
  to iSCSI.

     a) SCSI Device - This is the SAM-2 term for an entity that
        contains one or more SCSI ports that are connected to a service
        delivery subsystem and supports a SCSI application protocol.
        For example, a SCSI initiator device contains one or more SCSI
        initiator ports and zero or more application clients.  A SCSI
        target device contains one or more SCSI target ports and one or
        more LUs.  For iSCSI, the SCSI device is the component within
        an iSCSI node that provides the SCSI functionality.  As such,
        there can be at most one SCSI device within an iSCSI node.
        Access to the SCSI device can only be achieved in an iSCSI
        Normal operational session (see Section 4.3).  The SCSI device
        name is defined to be the iSCSI name of the node and MUST be
        used in the iSCSI protocol.

     b) SCSI Port - This is the SAM-2 term for an entity in a SCSI
        device that provides the SCSI functionality to interface with a
        service delivery subsystem or transport.  For iSCSI, the
        definitions of the SCSI initiator port and the SCSI target port
        are different.

        SCSI initiator port: This maps to one endpoint of an iSCSI
        Normal operational session (see Section 4.3).  An iSCSI Normal
        operational session is negotiated through the login process
        between an iSCSI initiator node and an iSCSI target node.  At
        successful completion of this process, a SCSI initiator port is
        created within the SCSI initiator device.  The SCSI initiator
        port Name and SCSI initiator port Identifier are both defined
        to be the iSCSI Initiator Name together with (a) a label that
        identifies it as an initiator port name/identifier and (b) the
        ISID portion of the session identifier.

        SCSI target port: This maps to an iSCSI target portal group.
        The SCSI Target Port Name and the SCSI Target Port Identifier
        are both defined to be the iSCSI Target Name together with (a)
        a label that identifies it as a target port name/identifier and
        (b) the Target Portal Group Tag.

        The SCSI port name MUST be used in iSCSI.  When used in SCSI
        parameter data, the SCSI port name MUST be encoded as:

        1) the iSCSI name in UTF-8 format, followed by

        2) a comma separator (1 byte), followed by



Chadalapaka, et al.          Standards Track                   [Page 60]

RFC 7143                  iSCSI (Consolidated)                April 2014


        3) the ASCII character 'i' (for SCSI initiator port) or the
           ASCII character 't' (for SCSI target port) (1 byte),
           followed by

        4) a comma separator (1 byte), followed by

        5) a text encoding as a hex-constant (see Section 6.1) of the
           ISID (for SCSI initiator port) or the Target Portal Group
           Tag (for SCSI target port), including the initial 0X or 0x
           and the terminating null (15 bytes for iSCSI initiator port,
           7 bytes for iSCSI target port).

           The ASCII character 'i' or 't' is the label that identifies
           this port as either a SCSI initiator port or a SCSI target
           port.

     c) I_T nexus - This indicates a relationship between a SCSI
        initiator port and a SCSI target port, according to [SAM2].
        For iSCSI, this relationship is a session, defined as a
        relationship between an iSCSI initiator's end of the session
        (SCSI initiator port) and the iSCSI target's portal group.  The
        I_T nexus can be identified by the conjunction of the SCSI port
        names or by the iSCSI session identifier (SSID).  iSCSI defines
        the I_T nexus identifier to be the tuple (iSCSI Initiator Name
        + ",i,0x" + ISID in text format, iSCSI Target Name + ",t,0x" +
        Target Portal Group Tag in text format).  An uppercase hex
        prefix "0X" may alternatively be used in place of "0x".

        NOTE: The I_T nexus identifier is not equal to the SSID.

4.4.3.  Consequences of the Model

  This section describes implementation and behavioral requirements
  that result from the mapping of SCSI constructs to the iSCSI
  constructs defined above.  Between a given SCSI initiator port and a
  given SCSI target port, only one I_T nexus (session) can exist.  No
  more than one nexus relationship (parallel nexus) is allowed by
  [SAM2].  Therefore, at any given time, only one session with the same
  SSID can exist between a given iSCSI initiator node and an iSCSI
  target node.

  These assumptions lead to the following conclusions and requirements:

  ISID RULE: Between a given iSCSI initiator and iSCSI target portal
  group (SCSI target port), there can only be one session with a given
  value for the ISID that identifies the SCSI initiator port.  See
  Section 11.12.5.




Chadalapaka, et al.          Standards Track                   [Page 61]

RFC 7143                  iSCSI (Consolidated)                April 2014


  The structure of the ISID that contains a naming authority component
  (see Section 11.12.5 and [RFC3721]) provides a mechanism to
  facilitate compliance with the ISID RULE.  See Section 10.1.1.

  The iSCSI initiator node should manage the assignment of ISIDs prior
  to session initiation.  The "ISID RULE" does not preclude the use of
  the same ISID from the same iSCSI initiator with different target
  portal groups on the same iSCSI target or on other iSCSI targets (see
  Section 10.1.1).  Allowing this would be analogous to a single SCSI
  initiator port having relationships (nexus) with multiple SCSI target
  ports on the same SCSI target device or SCSI target ports on other
  SCSI target devices.  It is also possible to have multiple sessions
  with different ISIDs to the same target portal group.  Each such
  session would be considered to be with a different initiator even
  when the sessions originate from the same initiator device.  The same
  ISID may be used by a different iSCSI initiator because it is the
  iSCSI name together with the ISID that identifies the SCSI initiator
  port.

  NOTE: A consequence of the ISID RULE and the specification for the
  I_T nexus identifier is that two nexuses with the same identifier
  should never exist at the same time.

  TSIH RULE: The iSCSI target selects a non-zero value for the TSIH at
  session creation (when an initiator presents a 0 value at login).
  After being selected, the same TSIH value MUST be used whenever the
  initiator or target refers to the session and a TSIH is required.

4.4.3.1.  I_T Nexus State

  Certain nexus relationships contain an explicit state (e.g.,
  initiator-specific mode pages) that may need to be preserved by the
  device server [SAM2] in a LU through changes or failures in the iSCSI
  layer (e.g., session failures).  In order for that state to be
  restored, the iSCSI initiator should reestablish its session
  (re-login) to the same target portal group using the previous ISID.
  That is, it should reinstate the session via iSCSI session
  reinstatement (Section 6.3.5) or continue via session continuation
  (Section 6.3.6).  This is because the SCSI initiator port identifier
  and the SCSI target port identifier (or relative target port) form
  the datum that the SCSI LU device server uses to identify the I_T
  nexus.









Chadalapaka, et al.          Standards Track                   [Page 62]

RFC 7143                  iSCSI (Consolidated)                April 2014


4.4.3.2.  Reservations

  There are two reservation management methods defined in the SCSI
  standards: reserve/release reservations, based on the RESERVE and
  RELEASE commands [SPC2]; and persistent reservations, based on the
  PERSISTENT RESERVE IN and PERSISTENT RESERVE OUT commands [SPC3].
  Reserve/release reservations are obsolete [SPC3] and should not be
  used.  Persistent reservations are suggested as an alternative; see
  Annex B of [SPC4].

  State for persistent reservations is required to persist through
  changes and failures at the iSCSI layer that result in I_T nexus
  failures; see [SPC3] for details and specific requirements.

  In contrast, [SPC2] does not specify detailed persistence
  requirements for reserve/release reservation state after an I_T nexus
  failure.  Nonetheless, when reserve/release reservations are
  supported by an iSCSI target, the preferred implementation approach
  is to preserve reserve/release reservation state for iSCSI session
  reinstatement (see Section 6.3.5) or session continuation (see
  Section 6.3.6).

  Two additional caveats apply to reserve/release reservations:

     - Retention of a failed session's reserve/release reservation
       state by an iSCSI target, even after that failed iSCSI session
       is not reinstated or continued, may require an initiator to
       issue a reset (e.g., LOGICAL UNIT RESET; see Section 11.5) in
       order to remove that reservation state.

     - Reserve/release reservations may not behave as expected when
       persistent reservations are also used on the same LU; see the
       discussion of "Exceptions to SPC-2 RESERVE and RELEASE behavior"
       in [SPC4].

















Chadalapaka, et al.          Standards Track                   [Page 63]

RFC 7143                  iSCSI (Consolidated)                April 2014


4.5.  iSCSI UML Model

  This section presents the application of the UML modeling concepts
  discussed in Section 3 to the iSCSI and SCSI Architecture Model
  discussed in Section 4.4.

                      +----------------+
                      | Network Entity |
                      +----------------+
                           @ 1     @ 1
                           |       |
    +----------------------+       |
    |                              |
    |                              | 0..*
    |                   +------------------+
    |                   | iSCSI Node       |
    |                   +------------------+
    |                       @       @
    |                       |       |
    |           +-----------+ =(a)= +-----------+
    |           |                               |
    |           | 0..1                          | 0..1
    | +------------------------+       +----------------------+
    | |    iSCSI Target Node   |       | iSCSI Initiator Node |
    | +------------------------+       +----------------------+
    |             @ 1                            @ 1
    |             +---------------+              |
    |                        1..* |              | 1..*
    |                    +-----------------------------+
    |                    |         Portal Group        |
    |                    +-----------------------------+
    |                                     O 1
    |                                     |
    |                                     | 1..*
    |               1..* +------------------------+
    +--------------------|        Network Portal  |
                         +------------------------+

  (a) Each instance of an iSCSI node class MUST contain one iSCSI
      target node instance, one iSCSI initiator node instance, or both.











Chadalapaka, et al.          Standards Track                   [Page 64]

RFC 7143                  iSCSI (Consolidated)                April 2014


                   +----------------+
                   | Network Entity |
                   +----------------+
                        @ 1         @ 1
                        |           |              +------------------+
  +---------------------+           |              |   iSCSI Session  |
  |                                 |              +------------------+
  |                                 | 0..*         |     SSID[1]      |
  |                  +--------------------+        |     ISID[1]      |
  |                  |      iSCSI Node    |        +------------------+
  |                  +--------------------+                   @ 1
  |                  | iSCSI Node Name[1] |                   |
  |                  |    Alias [0..1]    |                   | 0..*
  |                  +--------------------+        +------------------+
  |                  |                    |        | iSCSI Connection |
  |                  +--------------------+        +------------------+
  |                         @ 1         @ 1        |      CID[1]      |
  |                         |           |          +------------------+
  |           +-------------+ ==(b)==   +---------+              0..* |
  |           | 1                                 | 1                 |
  | +------------------------+             +------------------------+ |
  | |   iSCSI Target Node    |             | iSCSI Initiator Node   | |
  | +------------------------+             +------------------------+ |
  | | iSCSI Target Name [1]  |             |iSCSI Initiator Name [1]| |
  | +------------------------+             +------------------------+ |
  |            @ 1                                    @ 1             |
  |            | 1..*                                 | 1..*          |
  | +--------------------------+           +------------------------+ |
  | |   Target Portal Group    |           | Initiator Portal Group | |
  | +--------------------------+           +------------------------+ |
  | |Target Portal Group Tag[1]|           | Portal Group Tag[1]    | |
  | +--------------------------+           +------------------------+ |
  |            o 1                                    o 1             |
  |            +------------+              +----------+               |
  |                    1..* |              | 1..*                     |
  |                +-------------------------+                        |
  |                |          Network Portal |                        |
  |                +-------------------------+                        |
  |          1..*  |         IP Address [1]  | 1                      |
  +----------------|         TCP Port [0..1] |<-----------------------+
                   +-------------------------+

  (b) Each instance of an iSCSI node class MUST contain one iSCSI
      target node instance, one iSCSI initiator node instance, or both.
      However, in all scenarios, note that an iSCSI node MUST only have
      a single iSCSI name.  Note the related requirement in
      Section 4.2.7.1.




Chadalapaka, et al.          Standards Track                   [Page 65]

RFC 7143                  iSCSI (Consolidated)                April 2014


4.6.  Request/Response Summary

  This section lists and briefly describes all the iSCSI PDU types
  (requests and responses).

  All iSCSI PDUs are built as a set of one or more header segments
  (basic and auxiliary) and zero or one data segments.  The header
  group and the data segment may each be followed by a CRC (digest).

  The basic header segment has a fixed length of 48 bytes.

4.6.1.  Request/Response Types Carrying SCSI Payload

4.6.1.1.  SCSI Command

  This request carries the SCSI CDB and all the other SCSI Execute
  Command [SAM2] procedure call IN arguments, such as task attributes,
  Expected Data Transfer Length for one or both transfer directions
  (the latter for bidirectional commands), and a task tag (as part of
  the I_T_L_x nexus).  The I_T_L nexus is derived by the initiator and
  target from the LUN field in the request, and the I_T nexus is
  implicit in the session identification.

  In addition, the SCSI Command PDU carries information required for
  the proper operation of the iSCSI protocol -- the command sequence
  number (CmdSN) and the expected status sequence number (ExpStatSN) on
  the connection it is issued.

  All or part of the SCSI output (write) data associated with the SCSI
  command may be sent as part of the SCSI Command PDU as a data
  segment.

4.6.1.2.  SCSI Response

  The SCSI Response carries all the SCSI Execute Command procedure call
  (see [SAM2]) OUT arguments and the SCSI Execute Command procedure
  call return value.

  The SCSI Response contains the residual counts from the operation, if
  any; an indication of whether the counts represent an overflow or an
  underflow; and the SCSI status if the status is valid or a response
  code (a non-zero return value for the Execute Command procedure call)
  if the status is not valid.

  For a valid status that indicates that the command has been processed
  but resulted in an exception (e.g., a SCSI CHECK CONDITION), the PDU
  data segment contains the associated sense data.  The use of
  Autosense ([SAM2]) is REQUIRED by iSCSI.



Chadalapaka, et al.          Standards Track                   [Page 66]

RFC 7143                  iSCSI (Consolidated)                April 2014


  Some data segment content may also be associated (in the data
  segment) with a non-zero response code.

  In addition, the SCSI Response PDU carries information required for
  the proper operation of the iSCSI protocol:

     - ExpDataSN - the number of Data-In PDUs that a target has sent
       (to enable the initiator to check that all have arrived)

     - StatSN - the status sequence number on this connection

     - ExpCmdSN - the next expected command sequence number at the
       target

     - MaxCmdSN - the maximum CmdSN acceptable at the target from this
       initiator

4.6.1.3.  Task Management Function Request

  The Task Management Function Request provides an initiator with a way
  to explicitly control the execution of one or more SCSI tasks or
  iSCSI functions.  The PDU carries a function identifier (i.e., which
  task management function to perform) and enough information to
  unequivocally identify the task or task set on which to perform the
  action, even if the task(s) to act upon has not yet arrived or has
  been discarded due to an error.

  The referenced tag identifies an individual task if the function
  refers to an individual task.

  The I_T_L nexus identifies task sets.  In iSCSI, the I_T_L nexus is
  identified by the LUN and the session identification (the session
  identifies an I_T nexus).

  For task sets, the CmdSN of the Task Management Function Request
  helps identify the tasks upon which to act, namely all tasks
  associated with a LUN and having a CmdSN preceding the Task
  Management Function Request CmdSN.

  For a task management function, the coordination between responses to
  the tasks affected and the Task Management Function Response is done
  by the target.









Chadalapaka, et al.          Standards Track                   [Page 67]

RFC 7143                  iSCSI (Consolidated)                April 2014


4.6.1.4.  Task Management Function Response

  The Task Management Function Response carries an indication of
  function completion for a Task Management Function Request, including
  how it completed (response and qualifier) and additional information
  for failure responses.

  After the Task Management Function Response indicates task management
  function completion, the initiator will not receive any additional
  responses from the affected tasks.

4.6.1.5.  SCSI Data-Out and SCSI Data-In

  SCSI Data-Out and SCSI Data-In are the main vehicles by which SCSI
  data payload is carried between the initiator and target.  Data
  payload is associated with a specific SCSI command through the
  Initiator Task Tag.  For target convenience, outgoing solicited data
  also carries a Target Transfer Tag (copied from R2T) and the LUN.
  Each PDU contains the payload length and the data offset relative to
  the buffer address contained in the SCSI Execute Command procedure
  call.

  In each direction, the data transfer is split into "sequences".  An
  end-of-sequence is indicated by the F bit.

  An outgoing sequence is either unsolicited (only the first sequence
  can be unsolicited) or consists of all the Data-Out PDUs sent in
  response to an R2T.

  Input sequences enable the switching of direction for bidirectional
  commands as required.

  For input, the target may request positive acknowledgment of input
  data.  This is limited to sessions that support error recovery and is
  implemented through the A bit in the SCSI Data-In PDU header.

  Data-In and Data-Out PDUs also carry the DataSN to enable the
  initiator and target to detect missing PDUs (discarded due to an
  error).

  In addition, the StatSN is carried by the Data-In PDUs.

  To enable a SCSI command to be processed while involving a minimum
  number of messages, the last SCSI Data-In PDU passed for a command
  may also contain the status if the status indicates termination with
  no exceptions (no sense or response involved).





Chadalapaka, et al.          Standards Track                   [Page 68]

RFC 7143                  iSCSI (Consolidated)                April 2014


4.6.1.6.  Ready To Transfer (R2T)

  R2T is the mechanism by which the SCSI target "requests" the
  initiator for output data.  R2T specifies to the initiator the offset
  of the requested data relative to the buffer address from the Execute
  Command procedure call and the length of the solicited data.

  To help the SCSI target associate the resulting Data-Out with an R2T,
  the R2T carries a Target Transfer Tag that will be copied by the
  initiator in the solicited SCSI Data-Out PDUs.  There are no
  protocol-specific requirements with regard to the value of these
  tags, but it is assumed that together with the LUN, they will enable
  the target to associate data with an R2T.

  R2T also carries information required for proper operation of the
  iSCSI protocol, such as:

     - R2TSN (to enable an initiator to detect a missing R2T)

     - StatSN

     - ExpCmdSN

     - MaxCmdSN

4.6.2.  Requests/Responses Carrying SCSI and iSCSI Payload

4.6.2.1.  Asynchronous Message

  Asynchronous Message PDUs are used to carry SCSI asynchronous event
  notifications (AENs) and iSCSI asynchronous messages.

  When carrying an AEN, the event details are reported as sense data in
  the data segment.

4.6.3.  Requests/Responses Carrying iSCSI-Only Payload

4.6.3.1.  Text Requests and Text Responses

  Text Requests and Responses are designed as a parameter negotiation
  vehicle and as a vehicle for future extension.

  In the data segment, Text Requests/Responses carry text information
  using a simple "key=value" syntax.







Chadalapaka, et al.          Standards Track                   [Page 69]

RFC 7143                  iSCSI (Consolidated)                April 2014


  Text Requests/Responses may form extended sequences using the same
  Initiator Task Tag.  The initiator uses the F (Final) flag bit in the
  Text Request header to indicate its readiness to terminate a
  sequence.  The target uses the F bit in the Text Response header to
  indicate its consent to sequence termination.

  Text Requests and Responses also use the Target Transfer Tag to
  indicate continuation of an operation or a new beginning.  A target
  that wishes to continue an operation will set the Target Transfer Tag
  in a Text Response to a value different from the default 0xffffffff.
  An initiator willing to continue will copy this value into the Target
  Transfer Tag of the next Text Request.  If the initiator wants to
  restart the current target negotiation (start fresh), it will set the
  Target Transfer Tag to 0xffffffff.

  Although a complete exchange is always started by the initiator,
  specific parameter negotiations may be initiated by the initiator or
  target.

4.6.3.2.  Login Requests and Login Responses

  Login Requests and Responses are used exclusively during the Login
  Phase of each connection to set up the session and connection
  parameters.  (The Login Phase consists of a sequence of Login
  Requests and Responses carrying the same Initiator Task Tag.)

  A connection is identified by an arbitrarily selected connection ID
  (CID) that is unique within a session.

  Similar to the Text Requests and Responses, Login Requests/Responses
  carry key=value text information with a simple syntax in the data
  segment.

  The Login Phase proceeds through several stages (security
  negotiation, operational parameter negotiation) that are selected
  with two binary coded fields in the header -- the Current Stage (CSG)
  and the Next Stage (NSG) -- with the appearance of the latter being
  signaled by the "Transit" flag (T).

  The first Login Phase of a session plays a special role, called the
  leading login, which determines some header fields (e.g., the version
  number, the maximum number of connections, and the session
  identification).

  The CmdSN initial value is also set by the leading login.

  The StatSN for each connection is initiated by the connection login.




Chadalapaka, et al.          Standards Track                   [Page 70]

RFC 7143                  iSCSI (Consolidated)                April 2014


  A Login Request may indicate an implied logout (cleanup) of the
  connection to be logged in (a connection restart) by using the same
  connection ID (CID) as an existing connection as well as the same
  session-identifying elements of the session to which the old
  connection was associated.

4.6.3.3.  Logout Requests and Logout Responses

  Logout Requests and Responses are used for the orderly closing of
  connections for recovery or maintenance.  The Logout Request may be
  issued following a target prompt (through an Asynchronous Message) or
  at an initiator's initiative.  When issued on the connection to be
  logged out, no other request may follow it.

  The Logout Response indicates that the connection or session cleanup
  is completed and no other responses will arrive on the connection (if
  received on the logging-out connection).  In addition, the Logout
  Response indicates how long the target will continue to hold
  resources for recovery (e.g., command execution that continues on a
  new connection) in the Time2Retain field and how long the initiator
  must wait before proceeding with recovery in the Time2Wait field.

4.6.3.4.  SNACK Request

  With the SNACK Request, the initiator requests retransmission of
  numbered responses or data from the target.  A single SNACK Request
  covers a contiguous set of missing items, called a run, of a given
  type of items.  The type is indicated in a type field in the PDU
  header.  The run is composed of an initial item (StatSN, DataSN,
  R2TSN) and the number of missed Status, Data, or R2T PDUs.  For long
  Data-In sequences, the target may request (at predefined minimum
  intervals) a positive acknowledgment for the data sent.  A SNACK
  Request with a type field that indicates ACK and the number of
  Data-In PDUs acknowledged conveys this positive acknowledgment.

4.6.3.5.  Reject

  Reject enables the target to report an iSCSI error condition (e.g.,
  protocol, unsupported option) that uses a Reason field in the PDU
  header and includes the complete header of the bad PDU in the Reject
  PDU data segment.

4.6.3.6.  NOP-Out Request and NOP-In Response

  This request/response pair may be used by an initiator and target as
  a "ping" mechanism to verify that a connection/session is still
  active and all of its components are operational.  Such a ping may be




Chadalapaka, et al.          Standards Track                   [Page 71]

RFC 7143                  iSCSI (Consolidated)                April 2014


  triggered by the initiator or target.  The triggering party indicates
  that it wants a reply by setting a value different from the default
  0xffffffff in the corresponding Initiator/Target Transfer Tag.

  NOP-In/NOP-Out may also be used in "unidirectional" fashion to convey
  to the initiator/target command, status, or data counter values when
  there is no other "carrier" and there is a need to update the
  initiator/target.

5.  SCSI Mode Parameters for iSCSI

  There are no iSCSI-specific mode pages.

6.  Login and Full Feature Phase Negotiation

  iSCSI parameters are negotiated at session or connection
  establishment by using Login Requests and Responses (see
  Section 4.2.4) and during the Full Feature Phase (Section 4.2.5) by
  using Text Requests and Responses.  In both cases, the mechanism used
  is an exchange of iSCSI-text-key=value pairs.  For brevity,
  iSCSI-text-keys are called just "keys" in the rest of this document.

  Keys are either declarative or require negotiation, and the key
  description indicates whether the key is declarative or requires
  negotiation.

  For the declarative keys, the declaring party sets a value for the
  key.  The key specification indicates whether the key can be declared
  by the initiator, the target, or both.

  For the keys that require negotiation, one of the parties (the
  proposing party) proposes a value or set of values by including the
  key=value in the data part of a Login or Text Request or Response.
  The other party (the accepting party) makes a selection based on the
  value or list of values proposed and includes the selected value in a
  key=value in the data part of the following Login or Text Response or
  Request.  For most of the keys, both the initiator and target can be
  proposing parties.

  The login process proceeds in two stages -- the security negotiation
  stage and the operational parameter negotiation stage.  Both stages
  are optional, but at least one of them has to be present to enable
  setting some mandatory parameters.

  If present, the security negotiation stage precedes the operational
  parameter negotiation stage.





Chadalapaka, et al.          Standards Track                   [Page 72]

RFC 7143                  iSCSI (Consolidated)                April 2014


  Progression from stage to stage is controlled by the T (Transit) bit
  in the Login Request/Response PDU header.  Through the T bit set
  to 1, the initiator indicates that it would like to transition.  The
  target agrees to the transition (and selects the next stage) when
  ready.  A field in the Login PDU header indicates the current stage
  (CSG), and during transition, another field indicates the next stage
  (NSG) proposed (initiator) and selected (target).

  The text negotiation process is used to negotiate or declare
  operational parameters.  The negotiation process is controlled by the
  F (Final) bit in the PDU header.  During text negotiations, the F bit
  is used by the initiator to indicate that it is ready to finish the
  negotiation and by the target to acquiesce the end of negotiation.

  Since some key=value pairs may not fit entirely in a single PDU, the
  C (Continue) bit is used (both in Login and Text) to indicate that
  "more follows".

  The text negotiation uses an additional mechanism by which a target
  may deliver larger amounts of data to an inquiring initiator.  The
  target sets a Target Task Tag to be used as a bookmark that, when
  returned by the initiator, means "go on".  If reset to a "neutral
  value", it means "forget about the rest".

  This section details the types of keys and values used, the syntax
  rules for parameter formation, and the negotiation schemes to be used
  with different types of parameters.

6.1.  Text Format

  The initiator and target send a set of key=value pairs encoded in
  UTF-8 Unicode.  All the text keys and text values specified in this
  document are case sensitive; they are to be presented and interpreted
  as they appear in this document without change of case.

  The following character symbols are used in this document for text
  items (the hexadecimal values represent Unicode code points):

  (a-z, A-Z) (0x61-0x7a, 0x41-0x5a) - letters
                  (0-9) (0x30-0x39) - digits
                         " " (0x20) - space
                         "." (0x2e) - dot
                         "-" (0x2d) - minus
                         "+" (0x2b) - plus
                         "@" (0x40) - commercial at
                         "_" (0x5f) - underscore
                         "=" (0x3d) - equal
                         ":" (0x3a) - colon



Chadalapaka, et al.          Standards Track                   [Page 73]

RFC 7143                  iSCSI (Consolidated)                April 2014


                         "/" (0x2f) - solidus or slash
                         "[" (0x5b) - left bracket
                         "]" (0x5d) - right bracket
                        null (0x00) - null separator
                         "," (0x2c) - comma
                         "~" (0x7e) - tilde

  Key=value pairs may span PDU boundaries.  An initiator or target that
  sends partial key=value text within a PDU indicates that more text
  follows by setting the C bit in the Text or Login Request or the Text
  or Login Response to 1.  Data segments in a series of PDUs that have
  the C bit set to 1 and end with a PDU that has the C bit set to 0, or
  that include a single PDU that has the C bit set to 0, have to be
  considered as forming a single logical-text-data-segment (LTDS).

  Every key=value pair, including the last or only pair in a LTDS, MUST
  be followed by one null (0x00) delimiter.

  A key-name is whatever precedes the first "=" in the key=value pair.
  The term "key" is used frequently in this document in place of
  "key-name".

  A value is whatever follows the first "=" in the key=value pair up to
  the end of the key=value pair, but not including the null delimiter.

  The following definitions will be used in the rest of this document:

     - standard-label: A string of one or more characters that consists
       of letters, digits, dot, minus, plus, commercial at, or
       underscore.  A standard-label MUST begin with a capital letter
       and must not exceed 63 characters.

     - key-name: A standard-label.

     - text-value: A string of zero or more characters that consists of
       letters, digits, dot, minus, plus, commercial at, underscore,
       slash, left bracket, right bracket, or colon.

     - iSCSI-name-value: A string of one or more characters that
       consists of minus, dot, colon, or any character allowed by the
       output of the iSCSI stringprep template as specified in
       [RFC3722] (see also Section 4.2.7.2).

     - iSCSI-local-name-value: A UTF-8 string; no null characters are
       allowed in the string.  This encoding is to be used for
       localized (internationalized) aliases.

     - boolean-value: The string "Yes" or "No".



Chadalapaka, et al.          Standards Track                   [Page 74]

RFC 7143                  iSCSI (Consolidated)                April 2014


     - hex-constant: A hexadecimal constant encoded as a string that
       starts with "0x" or "0X" followed by one or more digits or the
       letters a, b, c, d, e, f, A, B, C, D, E, or F.  Hex-constants
       are used to encode numerical values or binary strings.  When
       used to encode numerical values, the excessive use of leading 0
       digits is discouraged.  The string following 0X (or 0x)
       represents a base16 number that starts with the most significant
       base16 digit, followed by all other digits in decreasing order
       of significance and ending with the least significant base16
       digit.  When used to encode binary strings, hexadecimal
       constants have an implicit byte-length that includes four bits
       for every hexadecimal digit of the constant, including leading
       zeroes.  For example, a hex-constant of n hexadecimal digits has
       a byte-length of (the integer part of) (n + 1)/2.

     - decimal-constant: An unsigned decimal number with the digit 0 or
       a string of one or more digits that starts with a non-zero
       digit.  Decimal-constants are used to encode numerical values or
       binary strings.  Decimal-constants can only be used to encode
       binary strings if the string length is explicitly specified.
       There is no implicit length for decimal strings.
       Decimal-constants MUST NOT be used for parameter values if the
       values can be equal to or greater than 2**64 (numerical) or for
       binary strings that can be longer than 64 bits.

     - base64-constant: Base64 constant encoded as a string that starts
       with "0b" or "0B" followed by 1 or more digits, letters, plus
       sign, slash, or equals sign.  The encoding is done according to
       [RFC4648].

     - numerical-value: An unsigned integer always less than 2**64
       encoded as a decimal-constant or a hex-constant.  Unsigned
       integer arithmetic applies to numerical-values.

     - large-numerical-value: An unsigned integer that can be larger
       than or equal to 2**64 encoded as a hex-constant or
       base64-constant.  Unsigned integer arithmetic applies to large-
       numerical-values.

     - numerical-range: Two numerical-values separated by a tilde,
       where the value to the right of the tilde must not be lower than
       the value to the left.

     - regular-binary-value: A binary string not longer than 64 bits
       encoded as a decimal-constant, hex-constant, or base64-constant.
       The length of the string is either specified by the key
       definition or is the implicit byte-length of the encoded string.




Chadalapaka, et al.          Standards Track                   [Page 75]

RFC 7143                  iSCSI (Consolidated)                April 2014


     - large-binary-value: A binary string longer than 64 bits encoded
       as a hex-constant or base64-constant.  The length of the string
       is either specified by the key definition or is the implicit
       byte-length of the encoded string.

     - binary-value: A regular-binary-value or a large-binary-value.
       Operations on binary values are key-specific.

     - simple-value: Text-value, iSCSI-name-value, boolean-value,
       numerical-value, a numerical-range, or a binary-value.

     - list-of-values: A sequence of text-values separated by a comma.

  If not otherwise specified, the maximum length of a simple-value (not
  its encoded representation) is 255 bytes, not including the delimiter
  (comma or zero byte).

  Any iSCSI target or initiator MUST support receiving at least
  8192 bytes of key=value data in a negotiation sequence.  When
  proposing or accepting authentication methods that explicitly require
  support for very long authentication items, the initiator and target
  MUST support receiving at least 64 kilobytes of key=value data.

6.2.  Text Mode Negotiation

  During login, and thereafter, some session or connection parameters
  are either declared or negotiated through an exchange of textual
  information.

  The initiator starts the negotiation and/or declaration through a
  Text or Login Request and indicates when it is ready for completion
  (by setting the F bit to 1 and keeping it at 1 in a Text Request, or
  the T bit in the Login Request).  As negotiation text may span PDU
  boundaries, a Text or Login Request or a Text or Login Response PDU
  that has the C bit set to 1 MUST NOT have the F bit or T bit set
  to 1.

  A target receiving a Text or Login Request with the C bit set to 1
  MUST answer with a Text or Login Response with no data segment
  (DataSegmentLength 0).  An initiator receiving a Text or Login
  Response with the C bit set to 1 MUST answer with a Text or Login
  Request with no data segment (DataSegmentLength 0).

  A target or initiator SHOULD NOT use a Text or Login Response or a
  Text or Login Request with no data segment (DataSegmentLength 0)
  unless explicitly required by a general or a key-specific negotiation
  rule.




Chadalapaka, et al.          Standards Track                   [Page 76]

RFC 7143                  iSCSI (Consolidated)                April 2014


  There MUST NOT be more than one outstanding Text Request, or Text
  Response PDU on an iSCSI connection.  An outstanding PDU in this
  context is one that has not been acknowledged by the remote iSCSI
  side.

  The format of a declaration is:

     Declarer-> <key>=<valuex>

  The general format of text negotiation is:

     Proposer-> <key>=<valuex>

     Acceptor-> <key>={<valuey>|NotUnderstood|Irrelevant|Reject}

  Thus, a declaration is a one-way textual exchange (unless the key is
  not understood by the receiver), while a negotiation is a two-way
  exchange.

  The proposer or declarer can be either the initiator or the target,
  and the acceptor can be either the target or initiator, respectively.
  Targets are not limited to respond to key=value pairs as proposed by
  the initiator.  The target may propose key=value pairs of its own.

  All negotiations are explicit (i.e., the result MUST only be based on
  newly exchanged or declared values).  There are no implicit
  proposals.  If a proposal is not made, then a reply cannot be
  expected.  Conservative design also requires that default values
  should not be relied upon when the use of some other value has
  serious consequences.

  The value proposed or declared can be a numerical-value, a numerical-
  range defined by the lower and upper value with both integers
  separated by a tilde, a binary value, a text-value, an iSCSI-name-
  value, an iSCSI-local-name-value, a boolean-value (Yes or No), or a
  list of comma-separated text-values.  A range, a large-numerical-
  value, an iSCSI-name-value, and an iSCSI-local-name-value MAY ONLY be
  used if explicitly allowed.  An accepted value can be a numerical-
  value, a large-numerical-value, a text-value, or a boolean-value.

  If a specific key is not relevant for the current negotiation, the
  acceptor may answer with the constant "Irrelevant" for all types of
  negotiations.  However, the negotiation is not considered to have
  failed if the answer is "Irrelevant".  The "Irrelevant" answer is
  meant for those cases in which several keys are presented by a
  proposing party but the selection made by the acceptor for one of the





Chadalapaka, et al.          Standards Track                   [Page 77]

RFC 7143                  iSCSI (Consolidated)                April 2014


  keys makes other keys irrelevant.  The following example illustrates
  the use of "Irrelevant":

     I->T InitialR2T=No,ImmediateData=Yes,FirstBurstLength=4192
     T->I InitialR2T=Yes,ImmediateData=No,FirstBurstLength=Irrelevant
     I->T X-rdname-vkey1=(bla,alb,None), X-rdname-vkey2=(bla,alb)
     T->I X-rdname-vkey1=None, X-rdname-vkey2=Irrelevant

  Any key not understood by the acceptor may be ignored by the acceptor
  without affecting the basic function.  However, the answer for a key
  that is not understood MUST be key=NotUnderstood.  Note that
  NotUnderstood is a valid answer for both declarative and negotiated
  keys.  The general iSCSI philosophy is that comprehension precedes
  processing for any iSCSI key.  A proposer of an iSCSI key, negotiated
  or declarative, in a text key exchange MUST thus be able to properly
  handle a NotUnderstood response.

  The proper way to handle a NotUnderstood response depends on where
  the key is specified and whether the key is declarative or
  negotiated.  An iSCSI implementation MUST comprehend all text keys
  defined in this document.  Returning a NotUnderstood response on any
  of these text keys therefore MUST be considered a protocol error and
  handled accordingly.  For all other "later" keys, i.e., text keys
  defined in later specifications, a NotUnderstood answer concludes the
  negotiation for a negotiated key, whereas for a declarative key a
  NotUnderstood answer simply informs the declarer of a lack of
  comprehension by the receiver.

  In either case, a NotUnderstood answer always requires that the
  protocol behavior associated with that key not be used within the
  scope of the key (connection/session) by either side.

  The constants "None", "Reject", "Irrelevant", and "NotUnderstood" are
  reserved and MUST ONLY be used as described here.  Violation of this
  rule is a protocol error (in particular, the use of "Reject",
  "Irrelevant", and "NotUnderstood" as proposed values).

  "Reject" or "Irrelevant" are legitimate negotiation options where
  allowed, but their excessive use is discouraged.  A negotiation is
  considered complete when the acceptor has sent the key value pair
  even if the value is "Reject", "Irrelevant", or "NotUnderstood".
  Sending the key again would be a renegotiation and is forbidden for
  many keys.








Chadalapaka, et al.          Standards Track                   [Page 78]

RFC 7143                  iSCSI (Consolidated)                April 2014


  If the acceptor sends "Reject" as an answer, the negotiated key is
  left at its current value (or default if no value was set).  If the
  current value is not acceptable to the proposer on the connection or
  to the session in which it is sent, the proposer MAY choose to
  terminate the connection or session.

  All keys in this document MUST be supported by iSCSI initiators and
  targets when used as specified here.  If used as specified, these
  keys MUST NOT be answered with NotUnderstood.

  Implementers may introduce new private keys by prefixing them with X-
  followed by their (reverse) domain name, or with new public keys
  registered with IANA.  For example, the entity owning the domain
  example.com can issue:

     X-com.example.bar.foo.do_something=3

  Each new public key in the course of standardization MUST define the
  acceptable responses to the key, including NotUnderstood as
  appropriate.  Unlike [RFC3720], note that this document prohibits the
  X# prefix for new public keys.  Based on iSCSI implementation
  experience, we know that there is no longer a need for a standard
  name prefix for keys that allow a NotUnderstood response.  Note that
  NotUnderstood will generally have to be allowed for new public keys
  for backwards compatibility, as well as for private X- keys.  Thus,
  the name prefix "X#" in new public key-names does not carry any
  significance.  To avoid confusion, new public key-names MUST NOT
  begin with an "X#" prefix.

  Implementers MAY also introduce new values, but ONLY for new keys or
  authentication methods (see Section 12) or digests (see
  Section 13.1).

  Whenever parameter actions or acceptance are dependent on other
  parameters, the dependency rules and parameter sequence must be
  specified with the parameters.

  In the Login Phase (see Section 6.3), every stage is a separate
  negotiation.  In the Full Feature Phase, a Text Request/Response
  sequence is a negotiation.  Negotiations MUST be handled as atomic
  operations.  For example, all negotiated values go into effect after
  the negotiation concludes in agreement or are ignored if the
  negotiation fails.

  Some parameters may be subject to integrity rules (e.g., parameter-x
  must not exceed parameter-y, or parameter-u not 1 implies that
  parameter-v be Yes).  Whenever required, integrity rules are
  specified with the keys.  Checking for compliance with the integrity



Chadalapaka, et al.          Standards Track                   [Page 79]

RFC 7143                  iSCSI (Consolidated)                April 2014


  rule must only be performed after all the parameters are available
  (the existent and the newly negotiated).  An iSCSI target MUST
  perform integrity checking before the new parameters take effect.  An
  initiator MAY perform integrity checking.

  An iSCSI initiator or target MAY terminate a negotiation that does
  not terminate within an implementation-specific reasonable time or
  number of exchanges but SHOULD allow at least six (6) exchanges.

6.2.1.  List Negotiations

  In list negotiation, the originator sends a list of values (which may
  include "None"), in order of preference.

  The responding party MUST respond with the same key and the first
  value that it supports (and is allowed to use for the specific
  originator) selected from the originator list.

  The constant "None" MUST always be used to indicate a missing
  function.  However, "None" is only a valid selection if it is
  explicitly proposed.  When "None" is proposed as a selection item in
  a negotiation for a key, it indicates to the responder that not
  supporting any functionality related to that key is legal, and if
  "None" is the negotiation result for such a key, it means that key-
  specific semantics are not operational for the negotiation scope
  (connection or session) of that key.

  If an acceptor does not understand any particular value in a list, it
  MUST ignore it.  If an acceptor does not support, does not
  understand, or is not allowed to use any of the proposed options with
  a specific originator, it may use the constant "Reject" or terminate
  the negotiation.  The selection of a value not proposed MUST be
  handled by the originator as a protocol error.

6.2.2.  Simple-Value Negotiations

  For simple-value negotiations, the accepting party MUST answer with
  the same key.  The value it selects becomes the negotiation result.

  Proposing a value not admissible (e.g., not within the specified
  bounds) MAY be answered with the constant "Reject"; otherwise, the
  acceptor MUST select an admissible value.

  The selection, by the acceptor, of a value not admissible under the
  selection rules is considered a protocol error.  The selection rules
  are key-specific.





Chadalapaka, et al.          Standards Track                   [Page 80]

RFC 7143                  iSCSI (Consolidated)                April 2014


  For a numerical range, the value selected MUST be an integer within
  the proposed range or "Reject" (if the range is unacceptable).

  For Boolean negotiations (i.e., keys taking the values "Yes" or
  "No"), the accepting party MUST answer with the same key and the
  result of the negotiation when the received value does not determine
  that result by itself.  The last value transmitted becomes the
  negotiation result.  The rules for selecting the value with which to
  answer are expressed as Boolean functions of the value received, and
  the value that the accepting party would have selected if given a
  choice.

  Specifically, the two cases in which answers are OPTIONAL are:

     - The Boolean function is "AND" and the value "No" is received.
       The outcome of the negotiation is "No".

     - The Boolean function is "OR" and the value "Yes" is received.
       The outcome of the negotiation is "Yes".

  Responses are REQUIRED in all other cases, and the value chosen and
  sent by the acceptor becomes the outcome of the negotiation.

6.3.  Login Phase

  The Login Phase establishes an iSCSI connection between an initiator
  and a target; it also creates a new session or associates the
  connection to an existing session.  The Login Phase sets the iSCSI
  protocol parameters and security parameters, and authenticates the
  initiator and target to each other.

  The Login Phase is only implemented via Login Requests and Responses.
  The whole Login Phase is considered as a single task and has a single
  Initiator Task Tag (similar to the linked SCSI commands).

  There MUST NOT be more than one outstanding Login Request or Login
  Response on an iSCSI connection.  An outstanding PDU in this context
  is one that has not been acknowledged by the remote iSCSI side.

  The default MaxRecvDataSegmentLength is used during login.











Chadalapaka, et al.          Standards Track                   [Page 81]

RFC 7143                  iSCSI (Consolidated)                April 2014


  The Login Phase sequence of requests and responses proceeds as
  follows:

     - Login initial request

     - Login partial response (optional)

     - More Login Requests and Responses (optional)

     - Login Final-Response (mandatory)

  The initial Login Request of any connection MUST include the
  InitiatorName key=value pair.  The initial Login Request of the first
  connection of a session MAY also include the SessionType key=value
  pair.  For any connection within a session whose type is not
  "Discovery", the first Login Request MUST also include the TargetName
  key=value pair.

  The Login Final-Response accepts or rejects the Login Request.

  The Login Phase MAY include a SecurityNegotiation stage and a
  LoginOperationalNegotiation stage and MUST include at least one of
  them, but the included stage MAY be empty except for the mandatory
  names.

  The Login Requests and Responses contain a field (CSG) that indicates
  the current negotiation stage (SecurityNegotiation or
  LoginOperationalNegotiation).  If both stages are used, the
  SecurityNegotiation MUST precede the LoginOperationalNegotiation.

  Some operational parameters can be negotiated outside the login
  through Text Requests and Responses.

  Authentication-related security keys (Section 12) MUST be completely
  negotiated within the Login Phase.  The use of underlying IPsec
  security is specified in Section 9.3, in [RFC3723], and in [RFC7146].
  iSCSI support for security within the protocol only consists of
  authentication in the Login Phase.

  In some environments, a target or an initiator is not interested in
  authenticating its counterpart.  It is possible to bypass
  authentication through the Login Request and Response.

  The initiator and target MAY want to negotiate iSCSI authentication
  parameters.  Once this negotiation is completed, the channel is
  considered secure.





Chadalapaka, et al.          Standards Track                   [Page 82]

RFC 7143                  iSCSI (Consolidated)                April 2014


  Most of the negotiation keys are only allowed in a specific stage.
  The keys used during the SecurityNegotiation stage are listed in
  Section 12, and the keys used during the LoginOperationalNegotiation
  stage are discussed in Section 13.  Only a limited set of keys
  (marked as Any-Stage in Section 13) may be used in either of the two
  stages.

  Any given Login Request or Response belongs to a specific stage; this
  determines the negotiation keys allowed with the request or response.
  Sending a key that is not allowed in the current stage is considered
  a protocol error.

  Stage transition is performed through a command exchange
  (request/response) that carries the T bit and the same CSG code.
  During this exchange, the next stage is selected by the target via
  the Next Stage code (NSG).  The selected NSG MUST NOT exceed the
  value stated by the initiator.  The initiator can request a
  transition whenever it is ready, but a target can only respond with a
  transition after one is proposed by the initiator.

  In a negotiation sequence, the T bit settings in one Login Request-
  Login Response pair have no bearing on the T bit settings of the next
  pair.  An initiator that has the T bit set to 1 in one pair and is
  answered with a T bit setting of 0 may issue the next request with
  the T bit set to 0.

  When a transition is requested by the initiator and acknowledged by
  the target, both the initiator and target switch to the selected
  stage.

  Targets MUST NOT submit parameters that require an additional
  initiator Login Request in a Login Response with the T bit set to 1.

  Stage transitions during login (including entering and exit) are only
  possible as outlined in the following table:

    +-----------------------------------------------------------+
    |From      To ->  | Security    | Operational | FullFeature |
    | |               |             |             |             |
    | V               |             |             |             |
    +-----------------------------------------------------------+
    | (start)         | yes         | yes         | no          |
    +-----------------------------------------------------------+
    | Security        | no          | yes         | yes         |
    +-----------------------------------------------------------+
    | Operational     | no          | no          | yes         |
    +-----------------------------------------------------------+




Chadalapaka, et al.          Standards Track                   [Page 83]

RFC 7143                  iSCSI (Consolidated)                April 2014


  The Login Final-Response that accepts a Login Request can only come
  as a response to a Login Request with the T bit set to 1, and both
  the request and response MUST indicate FullFeaturePhase as the next
  phase via the NSG field.

  Neither the initiator nor the target should attempt to declare or
  negotiate a parameter more than once during login, except for
  responses to specific keys that explicitly allow repeated key
  declarations (e.g., TargetAddress).  An attempt to
  renegotiate/redeclare parameters not specifically allowed MUST be
  detected by the initiator and target.  If such an attempt is detected
  by the target, the target MUST respond with a Login reject (initiator
  error); if detected by the initiator, the initiator MUST drop the
  connection.

6.3.1.  Login Phase Start

  The Login Phase starts with a Login Request from the initiator to the
  target.  The initial Login Request includes:

     - Protocol version supported by the initiator

     - iSCSI Initiator Name and iSCSI Target Name

     - ISID, TSIH, and connection IDs

     - Negotiation stage that the initiator is ready to enter
























Chadalapaka, et al.          Standards Track                   [Page 84]

RFC 7143                  iSCSI (Consolidated)                April 2014


  A login may create a new session, or it may add a connection to an
  existing session.  Between a given iSCSI initiator node (selected
  only by an InitiatorName) and a given iSCSI target defined by an
  iSCSI TargetName and a Target Portal Group Tag, the login results are
  defined by the following table:

   +----------------------------------------------------------------+
   |ISID    | TSIH        | CID    |   Target Action                |
   +----------------------------------------------------------------+
   |new     | non-zero    | any    |   fail the login               |
   |        |             |        |   ("session does not exist")   |
   +----------------------------------------------------------------+
   |new     | zero        | any    |   instantiate a new session    |
   +----------------------------------------------------------------+
   |existing| zero        | any    |   do session reinstatement     |
   |        |             |        |   (see Section 6.3.5)          |
   +----------------------------------------------------------------+
   |existing| non-zero    | new    |   add a new connection to      |
   |        | existing    |        |   the session                  |
   +----------------------------------------------------------------+
   |existing| non-zero    |existing|   do connection reinstatement  |
   |        | existing    |        |   (see Section 7.1.4.3)        |
   +----------------------------------------------------------------+
   |existing| non-zero    | any    |   fail the login               |
   |        | new         |        |   ("session does not exist")   |
   +----------------------------------------------------------------+

  The determination of "existing" or "new" is made by the target.

  Optionally, the Login Request may include:

     - Security parameters OR

     - iSCSI operational parameters AND/OR

     - The next negotiation stage that the initiator is ready to
       enter

  The target can answer the login in the following ways:

     - Login Response with Login reject.  This is an immediate
       rejection from the target that causes the connection to
       terminate and the session to terminate if this is the first (or
       only) connection of a new session.  The T bit, the CSG field,
       and the NSG field are reserved.






Chadalapaka, et al.          Standards Track                   [Page 85]

RFC 7143                  iSCSI (Consolidated)                April 2014


     - Login Response with Login accept as the Final-Response (T bit
       set to 1 and the NSG in both request and response is set to
       FullFeaturePhase).  The response includes the protocol version
       supported by the target and the session ID and may include iSCSI
       operational or security parameters (that depend on the current
       stage).

     - Login Response with Login accept as a partial response (NSG not
       set to FullFeaturePhase in both request and response) that
       indicates the start of a negotiation sequence.  The response
       includes the protocol version supported by the target and either
       security or iSCSI parameters (when no security mechanism is
       chosen) supported by the target.

  If the initiator decides to forego the SecurityNegotiation stage, it
  issues the Login with the CSG set to LoginOperationalNegotiation, and
  the target may reply with a Login Response that indicates that it is
  unwilling to accept the connection (see Section 11.13) without
  SecurityNegotiation and will terminate the connection with a response
  of Authentication failure (see Section 11.13.5).

  If the initiator is willing to negotiate iSCSI security, but is
  unwilling to make the initial parameter proposal and may accept a
  connection without iSCSI security, it issues the Login with the T bit
  set to 1, the CSG set to SecurityNegotiation, and the NSG set to
  LoginOperationalNegotiation.  If the target is also ready to skip
  security, the Login Response only contains the TargetPortalGroupTag
  key (see Section 13.9), the T bit set to 1, the CSG set to
  SecurityNegotiation, and the NSG set to LoginOperationalNegotiation.

  An initiator that chooses to operate without iSCSI security and with
  all the operational parameters taking the default values issues the
  Login with the T bit set to 1, the CSG set to
  LoginOperationalNegotiation, and the NSG set to FullFeaturePhase.  If
  the target is also ready to forego security and can finish its
  LoginOperationalNegotiation, the Login Response has the T bit set to
  1, the CSG set to LoginOperationalNegotiation, and the NSG set to
  FullFeaturePhase in the next stage.

  During the Login Phase, the iSCSI target MUST return the
  TargetPortalGroupTag key with the first Login Response PDU with which
  it is allowed to do so (i.e., the first Login Response issued after
  the first Login Request with the C bit set to 0) for all session
  types.  The TargetPortalGroupTag key value indicates the iSCSI portal
  group servicing the Login Request PDU.  If the reconfiguration of
  iSCSI portal groups is a concern in a given environment, the iSCSI
  initiator should use this key to ascertain that it had indeed
  initiated the Login Phase with the intended target portal group.



Chadalapaka, et al.          Standards Track                   [Page 86]

RFC 7143                  iSCSI (Consolidated)                April 2014


6.3.2.  iSCSI Security Negotiation

  The security exchange sets the security mechanism and authenticates
  the initiator and the target to each other.  The exchange proceeds
  according to the authentication method chosen in the negotiation
  phase and is conducted using the key=value parameters carried in the
  Login Requests and Responses.

  An initiator-directed negotiation proceeds as follows:

     - The initiator sends a Login Request with an ordered list of the
       options it supports (authentication algorithm).  The options are
       listed in the initiator's order of preference.  The initiator
       MAY also send private or public extension options.

     - The target MUST reply with the first option in the list it
       supports and is allowed to use for the specific initiator,
       unless it does not support any, in which case it MUST answer
       with "Reject" (see Section 6.2).  The parameters are encoded in
       UTF-8 as key=value.  For security parameters, see Section 12.

     - When the initiator considers itself ready to conclude the
       SecurityNegotiation stage, it sets the T bit to 1 and the NSG to
       what it would like the next stage to be.  The target will then
       set the T bit to 1 and set the NSG to the next stage in the
       Login Response when it finishes sending its security keys.  The
       next stage selected will be the one the target selected.  If the
       next stage is FullFeaturePhase, the target MUST reply with a
       Login Response with the TSIH value.

  If the security negotiation fails at the target, then the target MUST
  send the appropriate Login Response PDU.  If the security negotiation
  fails at the initiator, the initiator SHOULD close the connection.

  It should be noted that the negotiation might also be directed by the
  target if the initiator does support security but is not ready to
  direct the negotiation (propose options); see Appendix B for an
  example.

6.3.3.  Operational Parameter Negotiation during the Login Phase

  Operational parameter negotiation during the Login Phase MAY be done:

     - starting with the first Login Request if the initiator does not
       propose any security/integrity option.

     - starting immediately after the security negotiation if the
       initiator and target perform such a negotiation.



Chadalapaka, et al.          Standards Track                   [Page 87]

RFC 7143                  iSCSI (Consolidated)                April 2014


  Operational parameter negotiation MAY involve several Login Request-
  Login Response exchanges started and terminated by the initiator.
  The initiator MUST indicate its intent to terminate the negotiation
  by setting the T bit to 1; the target sets the T bit to 1 on the last
  response.

  Even when the initiator indicates its intent to switch stages by
  setting the T bit to 1 in a Login Request, the target MAY respond
  with a Login Response with the T bit set to 0.  In that case, the
  initiator SHOULD continue to set the T bit to 1 in subsequent Login
  Requests (even empty requests) that it sends, until the target sends
  a Login Response with the T bit set to 1 or sends a key that requires
  the initiator to set the T bit to 0.

  Some session-specific parameters can only be specified during the
  Login Phase of the first connection of a session (i.e., begun by a
  Login Request that contains a zero-valued TSIH) -- the leading Login
  Phase (e.g., the maximum number of connections that can be used for
  this session).

  A session is operational once it has at least one connection in the
  Full Feature Phase.  New or replacement connections can only be added
  to a session after the session is operational.

  For operational parameters, see Section 13.

6.3.4.  Connection Reinstatement

  Connection reinstatement is the process of an initiator logging in
  with an ISID-TSIH-CID combination that is possibly active from the
  target's perspective, which causes the implicit logging out of the
  connection corresponding to the CID and reinstatement of a new Full
  Feature Phase iSCSI connection in its place (with the same CID).
  Thus, the TSIH in the Login Request PDU MUST be non-zero, and the CID
  does not change during a connection reinstatement.  The Login Request
  performs the logout function of the old connection if an explicit
  logout was not performed earlier.  In sessions with a single
  connection, this may imply the opening of a second connection with
  the sole purpose of cleaning up the first.  Targets MUST support
  opening a second connection even when they do not support multiple
  connections in the Full Feature Phase if ErrorRecoveryLevel is 2 and
  SHOULD support opening a second connection if ErrorRecoveryLevel is
  less than 2.

  If the operational ErrorRecoveryLevel is 2, connection reinstatement
  enables future task reassignment.  If the operational
  ErrorRecoveryLevel is less than 2, connection reinstatement is the




Chadalapaka, et al.          Standards Track                   [Page 88]

RFC 7143                  iSCSI (Consolidated)                April 2014


  replacement of the old CID without enabling task reassignment.  In
  this case, all the tasks that were active on the old CID must be
  immediately terminated without further notice to the initiator.

  The initiator connection state MUST be CLEANUP_WAIT (Section 8.1.3)
  when the initiator attempts a connection reinstatement.

  In practical terms, in addition to the implicit logout of the old
  connection, reinstatement is equivalent to a new connection login.

6.3.5.  Session Reinstatement, Closure, and Timeout

  Session reinstatement is the process of an initiator logging in with
  an ISID that is possibly active from the target's perspective for
  that initiator, thus implicitly logging out the session that
  corresponds to the ISID and reinstating a new iSCSI session in its
  place (with the same ISID).  Therefore, the TSIH in the Login PDU
  MUST be zero to signal session reinstatement.  Session reinstatement
  causes all the tasks that were active on the old session to be
  immediately terminated by the target without further notice to the
  initiator.

  The initiator session state MUST be FAILED (Section 8.3) when the
  initiator attempts a session reinstatement.

  Session closure is an event defined to be one of the following:

     - a successful "session close" logout.

     - a successful "connection close" logout for the last Full Feature
       Phase connection when no other connection in the session is
       waiting for cleanup (Section 8.2) and no tasks in the session
       are waiting for reassignment.

  Session timeout is an event defined to occur when the last connection
  state timeout expires and no tasks are waiting for reassignment.
  This takes the session to the FREE state (see the session state
  diagrams in Section 8.3).













Chadalapaka, et al.          Standards Track                   [Page 89]

RFC 7143                  iSCSI (Consolidated)                April 2014


6.3.5.1.  Loss of Nexus Notification

  The iSCSI layer provides the SCSI layer with the "I_T nexus loss"
  notification when any one of the following events happens:

     - successful completion of session reinstatement

     - session closure event

     - session timeout event

  Certain SCSI object clearing actions may result due to the
  notification in the SCSI end nodes, as documented in Appendix E.

6.3.6.  Session Continuation and Failure

  Session continuation is the process by which the state of a
  preexisting session continues to be used by connection reinstatement
  (Section 6.3.4) or by adding a connection with a new CID.  Either of
  these actions associates the new transport connection with the
  session state.

  Session failure is an event where the last Full Feature Phase
  connection reaches the CLEANUP_WAIT state (Section 8.2) or completes
  a successful recovery logout, thus causing all active tasks (that are
  formerly allegiant to the connection) to start waiting for task
  reassignment.

6.4.  Operational Parameter Negotiation outside the Login Phase

  Some operational parameters MAY be negotiated outside (after) the
  Login Phase.

  Parameter negotiation in the Full Feature Phase is done through Text
  Requests and Responses.  Operational parameter negotiation MAY
  involve several Text Request-Text Response exchanges, all of which
  use the same Initiator Task Tag; the initiator always starts and
  terminates each of these exchanges.  The initiator MUST indicate its
  intent to finish the negotiation by setting the F bit to 1; the
  target sets the F bit to 1 on the last response.

  If the target responds to a Text Request with the F bit set to 1 with
  a Text Response with the F bit set to 0, the initiator should keep
  sending the Text Request (even empty requests) with the F bit set to
  1 while it still wants to finish the negotiation, until it receives
  the Text Response with the F bit set to 1.  Responding to a Text
  Request with the F bit set to 1 with an empty (no key=value pairs)
  response with the F bit set to 0 is discouraged.



Chadalapaka, et al.          Standards Track                   [Page 90]

RFC 7143                  iSCSI (Consolidated)                April 2014


  Even when the initiator indicates its intent to finish the
  negotiation by setting the F bit to 1 in a Text Request, the target
  MAY respond with a Text Response with the F bit set to 0.  In that
  case, the initiator SHOULD continue to set the F bit to 1 in
  subsequent Text Requests (even empty requests) that it sends, until
  the target sends the final Text Response with the F bit set to 1.
  Note that in the same case of a Text Request with the F bit set to 1,
  the target SHOULD NOT respond with an empty (no key=value pairs) Text
  Response with the F bit set to 0, because such a response may cause
  the initiator to abandon the negotiation.

  Targets MUST NOT submit parameters that require an additional
  initiator Text Request in a Text Response with the F bit set to 1.

  In a negotiation sequence, the F bit settings in one Text Request-
  Text Response pair have no bearing on the F bit settings of the next
  pair.  An initiator that has the F bit set to 1 in a request and is
  being answered with an F bit setting of 0 may issue the next request
  with the F bit set to 0.

  Whenever the target responds with the F bit set to 0, it MUST set the
  Target Transfer Tag to a value other than the default 0xffffffff.

  An initiator MAY reset an operational parameter negotiation by
  issuing a Text Request with the Target Transfer Tag set to the value
  0xffffffff after receiving a response with the Target Transfer Tag
  set to a value other than 0xffffffff.  A target may reset an
  operational parameter negotiation by answering a Text Request with a
  Reject PDU.

  Neither the initiator nor the target should attempt to declare or
  negotiate a parameter more than once during any negotiation sequence,
  except for responses to specific keys that explicitly allow repeated
  key declarations (e.g., TargetAddress).  If such an attempt is
  detected by the target, the target MUST respond with a Reject PDU
  with a reason of "Protocol Error".  The initiator MUST reset the
  negotiation as outlined above.

  Parameters negotiated by a text exchange negotiation sequence only
  become effective after the negotiation sequence is completed.











Chadalapaka, et al.          Standards Track                   [Page 91]

RFC 7143                  iSCSI (Consolidated)                April 2014


7.  iSCSI Error Handling and Recovery

7.1.  Overview

7.1.1.  Background

  The following two considerations prompted the design of much of the
  error recovery functionality in iSCSI:

     - An iSCSI PDU may fail the digest check and be dropped, despite
       being received by the TCP layer.  The iSCSI layer must
       optionally be allowed to recover such dropped PDUs.

     - A TCP connection may fail at any time during the data transfer.
       All the active tasks must optionally be allowed to be continued
       on a different TCP connection within the same session.

  Implementations have considerable flexibility in deciding what degree
  of error recovery to support, when to use it, and by which mechanisms
  to achieve the required behavior.  Only the externally visible
  actions of the error recovery mechanisms must be standardized to
  ensure interoperability.

  This section describes a general model for recovery in support of
  interoperability.  See Appendix D for further details on how the
  described model may be implemented.  Compliant implementations do not
  have to match the implementation details of this model as presented,
  but the external behavior of such implementations must correspond to
  the externally observable characteristics of the presented model.

7.1.2.  Goals

  The major design goals of the iSCSI error recovery scheme are as
  follows:

     - Allow iSCSI implementations to meet different requirements by
       defining a collection of error recovery mechanisms from which
       implementations may choose.

     - Ensure interoperability between any two implementations
       supporting different sets of error recovery capabilities.

     - Define the error recovery mechanisms to ensure command ordering
       even in the face of errors, for initiators that demand ordering.

     - Do not make additions in the fast path, but allow moderate
       complexity in the error recovery path.




Chadalapaka, et al.          Standards Track                   [Page 92]

RFC 7143                  iSCSI (Consolidated)                April 2014


     - Prevent both the initiator and target from attempting to recover
       the same set of PDUs at the same time.  For example, there must
       be a clear "error recovery functionality distribution" between
       the initiator and target.

7.1.3.  Protocol Features and State Expectations

  The initiator mechanisms defined in connection with error recovery
  are:

     a) NOP-Out to probe sequence numbers of the target (Section 11.18)

     b) Command retry (Section 7.2.1)

     c) Recovery R2T support (Section 7.8)

     d) Requesting retransmission of status/data/R2T using the SNACK
        facility (Section 11.16)

     e) Acknowledging the receipt of the data (Section 11.16)

     f) Reassigning the connection allegiance of a task to a different
        TCP connection (Section 7.2.2)

     g) Terminating the entire iSCSI session to start afresh
        (Section 7.1.4.4)

  The target mechanisms defined in connection with error recovery are:

     a) NOP-In to probe sequence numbers of the initiator
        (Section 11.19)

     b) Requesting retransmission of data using the recovery R2T
        feature (Section 7.8)

     c) SNACK support (Section 11.16)

     d) Requesting that parts of read data be acknowledged
        (Section 11.7.2)

     e) Allegiance reassignment support (Section 7.2.2)

     f) Terminating the entire iSCSI session to force the initiator to
        start over (Section 7.1.4.4)

  For any outstanding SCSI command, it is assumed that iSCSI, in
  conjunction with SCSI at the initiator, is able to keep enough
  information to be able to rebuild the command PDU and that outgoing



Chadalapaka, et al.          Standards Track                   [Page 93]

RFC 7143                  iSCSI (Consolidated)                April 2014


  data is available (in host memory) for retransmission while the
  command is outstanding.  It is also assumed that at the target,
  incoming data (read data) MAY be kept for recovery, or it can be
  reread from a device server.

  It is further assumed that a target will keep the "status and sense"
  for a command it has executed if it supports status retransmission.

  A target that agrees to support data retransmission is expected to be
  prepared to retransmit the outgoing data (i.e., Data-In) on request
  until either the status for the completed command is acknowledged or
  the data in question has been separately acknowledged.

7.1.4.  Recovery Classes

  iSCSI enables the following classes of recovery (in the order of
  increasing scope of affected iSCSI tasks):

     - within a command (i.e., without requiring command restart)

     - within a connection (i.e., without requiring the connection to
       be rebuilt, but perhaps requiring command restart)

     - connection recovery (i.e., perhaps requiring connections to be
       rebuilt and commands to be reissued)

     - session recovery

  The recovery scenarios detailed in the rest of this section are
  representative rather than exclusive.  In every case, they detail the
  lowest recovery class that MAY be attempted.  The implementer is left
  to decide under which circumstances to escalate to the next recovery
  class and/or what recovery classes to implement.  Both the iSCSI
  target and initiator MAY escalate the error handling to an error
  recovery class, which impacts a larger number of iSCSI tasks in any
  of the cases identified in the following discussion.

  In all classes, the implementer has the choice of deferring errors to
  the SCSI initiator (with an appropriate response code), in which case
  the task, if any, has to be removed from the target and all the side
  effects, such as ACA, must be considered.

  The use of within-connection and within-command recovery classes MUST
  NOT be attempted before the connection is in the Full Feature Phase.







Chadalapaka, et al.          Standards Track                   [Page 94]

RFC 7143                  iSCSI (Consolidated)                April 2014


  In the detailed description of the recovery classes, the mandating
  terms (MUST, SHOULD, MAY, etc.) indicate normative actions to be
  executed if the recovery class is supported (see Section 7.1.5 for
  the related negotiation semantics) and used.

7.1.4.1.  Recovery Within-command

  At the target, the following cases lend themselves to within-command
  recovery:

     Lost data PDU - realized through one of the following:

     a) Data digest error - dealt with as specified in Section 7.8,
        using the option of a recovery R2T

     b) Sequence reception timeout (no data or partial-data-and-no-
        F-bit) - considered an implicit sequence error and dealt with
        as specified in Section 7.9, using the option of a recovery R2T

     c) Header digest error, which manifests as a sequence reception
        timeout or a sequence error - dealt with as specified in
        Section 7.9, using the option of a recovery R2T

  At the initiator, the following cases lend themselves to within-
  command recovery:

     Lost data PDU or lost R2T - realized through one of the following:

     a) Data digest error - dealt with as specified in Section 7.8,
        using the option of a SNACK

     b) Sequence reception timeout (no status) or response reception
        timeout - dealt with as specified in Section 7.9, using the
        option of a SNACK

     c) Header digest error, which manifests as a sequence reception
        timeout or a sequence error - dealt with as specified in
        Section 7.9, using the option of a SNACK

  To avoid a race with the target, which may already have a recovery
  R2T or a termination response on its way, an initiator SHOULD NOT
  originate a SNACK for an R2T based on its internal timeouts (if any).
  Recovery in this case is better left to the target.

  The timeout values used by the initiator and target are outside the
  scope of this document.  A sequence reception timeout is generally a
  large enough value to allow the data sequence transfer to be
  complete.



Chadalapaka, et al.          Standards Track                   [Page 95]

RFC 7143                  iSCSI (Consolidated)                April 2014


7.1.4.2.  Recovery Within-connection

  At the initiator, the following cases lend themselves to within-
  connection recovery:

     a) Requests not acknowledged for a long time.  Requests are
        acknowledged explicitly through the ExpCmdSN or implicitly by
        receiving data and/or status.  The initiator MAY retry
        non-acknowledged commands as specified in Section 7.2.

     b) Lost iSCSI numbered response.  It is recognized by either
        identifying a data digest error on a Response PDU or a Data-In
        PDU carrying the status, or receiving a Response PDU with a
        higher StatSN than expected.  In the first case, digest error
        handling is done as specified in Section 7.8, using the option
        of a SNACK.  In the second case, sequence error handling is
        done as specified in Section 7.9, using the option of a SNACK.

  At the target, the following cases lend themselves to within-
  connection recovery:

     - Status/Response not acknowledged for a long time.  The target
       MAY issue a NOP-In (with a valid Target Transfer Tag or
       otherwise) that carries the next status sequence number it is
       going to use in the StatSN field.  This helps the initiator
       detect any missing StatSN(s) and issue a SNACK for the status.

  The timeout values used by the initiator and the target are outside
  the scope of this document.

7.1.4.3.  Connection Recovery

  At an iSCSI initiator, the following cases lend themselves to
  connection recovery:

     a) TCP connection failure: The initiator MUST close the
        connection.  It then MUST either implicitly or explicitly log
        out the failed connection with the reason code "remove the
        connection for recovery" and reassign connection allegiance for
        all commands still in progress associated with the failed
        connection on one or more connections (some or all of which MAY
        be newly established connections) using the "TASK REASSIGN"
        task management function (see Section 11.5.1).  For an
        initiator, a command is in progress as long as it has not
        received a response or a Data-In PDU including status.






Chadalapaka, et al.          Standards Track                   [Page 96]

RFC 7143                  iSCSI (Consolidated)                April 2014


        Note: The logout function is mandatory.  However, a new
        connection establishment is only mandatory if the failed
        connection was the last or only connection in the session.

     b) Receiving an Asynchronous Message that indicates that one or
        all connections in a session have been dropped.  The initiator
        MUST handle it as a TCP connection failure for the
        connection(s) referred to in the message.

  At an iSCSI target, the following cases lend themselves to connection
  recovery:

     - TCP connection failure: The target MUST close the connection
       and, if more than one connection is available, the target SHOULD
       send an Asynchronous Message that indicates that it has dropped
       the connection.  Then, the target will wait for the initiator to
       continue recovery.

7.1.4.4.  Session Recovery

  Session recovery should be performed when all other recovery attempts
  have failed.  Very simple initiators and targets MAY perform session
  recovery on all iSCSI errors and rely on recovery on the SCSI layer
  and above.

  Session recovery implies the closing of all TCP connections,
  internally aborting all executing and queued tasks for the given
  initiator at the target, terminating all outstanding SCSI commands
  with an appropriate SCSI service response at the initiator, and
  restarting a session on a new set of connection(s) (TCP connection
  establishment and login on all new connections).

  For possible clearing effects of session recovery on SCSI and iSCSI
  objects, refer to Appendix E.

7.1.5.  Error Recovery Hierarchy

  The error recovery classes described so far are organized into a
  hierarchy for ease in understanding and to limit the complexity of
  the implementation.  With a few well-defined recovery levels,
  interoperability is easier to achieve.  The attributes of this
  hierarchy are as follows:

     a) Each level is a superset of the capabilities of the previous
        level.  For example, Level 1 support implies supporting all
        capabilities of Level 0 and more.





Chadalapaka, et al.          Standards Track                   [Page 97]

RFC 7143                  iSCSI (Consolidated)                April 2014


     b) As a corollary, supporting a higher error recovery level means
        increased sophistication and possibly an increase in resource
        requirements.

     c) Supporting error recovery level "n" is advertised and
        negotiated by each iSCSI entity by exchanging the text key
        "ErrorRecoveryLevel=n".  The lower of the two exchanged values
        is the operational ErrorRecoveryLevel for the session.

  The following diagram represents the error recovery hierarchy.

                           +
                          / \
                         / 2 \      <-- Connection recovery
                        +-----+
                       /   1   \    <-- Digest failure recovery
                      +---------+
                     /     0     \  <-- Session failure recovery
                    +-------------+

  The following table lists the error recovery (ER) capabilities
  expected from the implementations that support each error recovery
  level.

   +-------------------+--------------------------------------------+
   |ErrorRecoveryLevel | Associated Error Recovery Capabilities     |
   +-------------------+--------------------------------------------+
   |        0          | Session recovery class                     |
   |                   | (Session Recovery)                         |
   +-------------------+--------------------------------------------+
   |        1          | Digest failure recovery (see Note below)   |
   |                   | plus the capabilities of ER Level 0        |
   +-------------------+--------------------------------------------+
   |        2          | Connection recovery class                  |
   |                   | (Connection Recovery)                      |
   |                   | plus the capabilities of ER Level 1        |
   +-------------------+--------------------------------------------+

  Note: Digest failure recovery is comprised of two recovery classes:
  the Within-connection recovery class (recovery within-connection) and
  the Within-command recovery class (recovery within-command).

  When a defined value of ErrorRecoveryLevel is proposed by an
  originator in a text negotiation, the originator MUST support the
  functionality defined for the proposed value and, additionally,
  functionality corresponding to any defined value numerically less
  than the proposed value.  When a defined value of ErrorRecoveryLevel




Chadalapaka, et al.          Standards Track                   [Page 98]

RFC 7143                  iSCSI (Consolidated)                April 2014


  is returned by a responder in a text negotiation, the responder MUST
  support the functionality corresponding to the ErrorRecoveryLevel it
  is accepting.

  When either party attempts to use error recovery functionality beyond
  what is negotiated, the recovery attempts MAY fail, unless an
  a priori agreement outside the scope of this document exists between
  the two parties to provide such support.

  Implementations MUST support error recovery level "0", while the rest
  are OPTIONAL to implement.  In implementation terms, the above
  striation means that the following incremental sophistication with
  each level is required:

   +-------------------+--------------------------------------------+
   | Level Transition  | Incremental Requirement                    |
   +-------------------+--------------------------------------------+
   |        0->1       | PDU retransmissions on the same connection |
   +-------------------+--------------------------------------------+
   |        1->2       | Retransmission across connections and      |
   |                   | allegiance reassignment                    |
   +-------------------+--------------------------------------------+

7.2.  Retry and Reassign in Recovery

  This section summarizes two important and somewhat related iSCSI
  protocol features used in error recovery.

7.2.1.  Usage of Retry

  By resending the same iSCSI Command PDU ("retry") in the absence of a
  command acknowledgment (by way of an ExpCmdSN update) or a response,
  an initiator attempts to "plug" (what it thinks are) the
  discontinuities in CmdSN ordering on the target end.  Discarded
  command PDUs, due to digest errors, may have created these
  discontinuities.

  Retry MUST NOT be used for reasons other than plugging command
  sequence gaps and, in particular, cannot be used for requesting PDU
  retransmissions from a target.  Any such PDU retransmission requests
  for a currently allegiant command in progress may be made using the
  SNACK mechanism described in Section 11.16, although the usage of
  SNACK is OPTIONAL.








Chadalapaka, et al.          Standards Track                   [Page 99]

RFC 7143                  iSCSI (Consolidated)                April 2014


  If initiators, as part of plugging command sequence gaps as described
  above, inadvertently issue retries for allegiant commands already in
  progress (i.e., targets did not see the discontinuities in CmdSN
  ordering), the duplicate commands are silently ignored by targets as
  specified in Section 4.2.2.1.

  When an iSCSI command is retried, the command PDU MUST carry the
  original Initiator Task Tag and the original operational attributes
  (e.g., flags, function names, LUN, CDB, etc.) as well as the original
  CmdSN.  The command being retried MUST be sent on the same connection
  as the original command, unless the original connection was already
  successfully logged out.

7.2.2.  Allegiance Reassignment

  By issuing a "TASK REASSIGN" task management request
  (Section 11.5.1), the initiator signals its intent to continue an
  already active command (but with no current connection allegiance) as
  part of connection recovery.  This means that a new connection
  allegiance is requested for the command, which seeks to associate it
  to the connection on which the task management request is being
  issued.  Before the allegiance reassignment is attempted for a task,
  an implicit or explicit Logout with the reason code "remove the
  connection for recovery" (see Section 11.14.1) MUST be successfully
  completed for the previous connection to which the task was
  allegiant.

  In reassigning connection allegiance for a command, the target SHOULD
  continue the command from its current state.  For example, when
  reassigning read commands, the target SHOULD take advantage of the
  ExpDataSN field provided by the Task Management Function Request
  (which must be set to 0 if there was no data transfer) and bring the
  read command to completion by sending the remaining data and sending
  (or resending) the status.  The ExpDataSN acknowledges all data sent
  up to, but not including, the Data-In PDU and/or R2T with the DataSN
  (or R2TSN) equal to the ExpDataSN.  However, targets may choose to
  send/receive all unacknowledged data or all of the data on a
  reassignment of connection allegiance if unable to recover or
  maintain accurate state.  Initiators MUST NOT subsequently request
  data retransmission through Data SNACK for PDUs numbered less than
  the ExpDataSN (i.e., prior to the acknowledged sequence number).  For
  all types of commands, a reassignment request implies that the task
  is still considered in progress by the initiator, and the target must
  conclude the task appropriately if the target returns the "Function
  complete" response to the reassignment request.  This might possibly
  involve retransmission of data/R2T/status PDUs as necessary but MUST
  involve the (re)transmission of the status PDU.




Chadalapaka, et al.          Standards Track                  [Page 100]

RFC 7143                  iSCSI (Consolidated)                April 2014


  It is OPTIONAL for targets to support the allegiance reassignment.
  This capability is negotiated via the ErrorRecoveryLevel text key
  during the login time.  When a target does not support allegiance
  reassignment, it MUST respond with a task management response code of
  "Task allegiance reassignment not supported".  If allegiance
  reassignment is supported by the target but the task is still
  allegiant to a different connection, or a successful recovery Logout
  of the previously allegiant connection was not performed, the target
  MUST respond with a task management response code of "Task still
  allegiant".

  If allegiance reassignment is supported by the target, the task
  management response to the reassignment request MUST be issued before
  the reassignment becomes effective.

  If a SCSI command that involves data input is reassigned, any SNACK
  Tag it holds for a final response from the original connection is
  deleted, and the default value of 0 MUST be used instead.

7.3.  Usage of Reject PDU in Recovery

  Targets MUST NOT implicitly terminate an active task by sending a
  Reject PDU for any PDU exchanged during the life of the task.  If the
  target decides to terminate the task, a Response PDU (SCSI, Text,
  Task, etc.) must be returned by the target to conclude the task.  If
  the task had never been active before the Reject (i.e., the Reject is
  on the command PDU), targets should not send any further responses
  because the command itself is being discarded.

  The above rule means that the initiator can eventually expect a
  response on receiving Rejects, if the received Reject is for a PDU
  other than the command PDU itself.  The non-command Rejects only have
  diagnostic value in logging the errors, and they can be used for
  retransmission decisions by the initiators.

  The CmdSN of the rejected command PDU (if it is a non-immediate
  command) MUST NOT be considered received by the target (i.e., a
  command sequence gap must be assumed for the CmdSN), even though the
  CmdSN of the rejected command PDU may be reliably ascertained.  Upon
  receiving the Reject, the initiator MUST plug the CmdSN gap in order
  to continue to use the session.  The gap may be plugged by either
  transmitting a command PDU with the same CmdSN or aborting the task
  (see Section 7.11 for information regarding how an abort may plug a
  CmdSN gap).







Chadalapaka, et al.          Standards Track                  [Page 101]

RFC 7143                  iSCSI (Consolidated)                April 2014


  When a data PDU is rejected and its DataSN can be ascertained, a
  target MUST advance the ExpDataSN for the current data burst if a
  recovery R2T is being generated.  The target MAY advance its
  ExpDataSN if it does not attempt to recover the lost data PDU.

7.4.  Error Recovery Considerations for Discovery Sessions

7.4.1.  ErrorRecoveryLevel for Discovery Sessions

  The negotiation of the key ErrorRecoveryLevel is not required for
  Discovery sessions -- i.e., for sessions that negotiated
  "SessionType=Discovery" -- because the default value of 0 is
  necessary and sufficient for Discovery sessions.  It is, however,
  possible that some legacy iSCSI implementations might attempt to
  negotiate the ErrorRecoveryLevel key on Discovery sessions.  When
  such a negotiation attempt is made by the remote side, a compliant
  iSCSI implementation MUST propose a value of 0 (zero) in response.
  The operational ErrorRecoveryLevel for Discovery sessions thus MUST
  be 0.  This naturally follows from the functionality constraints that
  Section 4.3 imposes on Discovery sessions.

7.4.2.  Reinstatement Semantics for Discovery Sessions

  Discovery sessions are intended to be relatively short-lived.
  Initiators are not expected to establish multiple Discovery sessions
  to the same iSCSI Network Portal.  An initiator may use the same
  iSCSI Initiator Name and ISID when establishing different unique
  sessions with different targets and/or different portal groups.  This
  behavior is discussed in Section 10.1.1 and is, in fact, encouraged
  as conservative reuse of ISIDs.

  The ISID RULE in Section 4.4.3 states that there must not be more
  than one session with a matching 4-tuple: <InitiatorName, ISID,
  TargetName, TargetPortalGroupTag>.  While the spirit of the ISID RULE
  applies to Discovery sessions the same as it does for Normal
  sessions, note that some Discovery sessions differ from the Normal
  sessions in two important aspects:

     a) Because Appendix C allows a Discovery session to be established
        without specifying a TargetName key in the Login Request PDU
        (let us call such a session an "Unnamed" Discovery session),
        there is no target node context to enforce the ISID RULE.

     b) Portal groups are defined only in the context of a target node.
        When the TargetName key is NULL-valued (i.e., not specified),
        the TargetPortalGroupTag thus cannot be ascertained to enforce
        the ISID RULE.




Chadalapaka, et al.          Standards Track                  [Page 102]

RFC 7143                  iSCSI (Consolidated)                April 2014


  The following two sections describe Unnamed Discovery sessions and
  Named Discovery sessions, respectively.

7.4.2.1.  Unnamed Discovery Sessions

  For Unnamed Discovery sessions, neither the TargetName nor the
  TargetPortalGroupTag is available to the targets in order to enforce
  the ISID RULE.  Therefore, the following rule applies.

  UNNAMED ISID RULE: Targets MUST enforce the uniqueness of the
  following 4-tuple for Unnamed Discovery sessions: <InitiatorName,
  ISID, NULL, TargetAddress>.  The following semantics are implied by
  this uniqueness requirement.

  Targets SHOULD allow concurrent establishment of one Discovery
  session with each of its Network Portals by the same initiator port
  with a given iSCSI Node Name and an ISID.  Each of the concurrent
  Discovery sessions, if established by the same initiator port to
  other Network Portals, MUST be treated as independent sessions --
  i.e., one session MUST NOT reinstate the other.

  A new Unnamed Discovery session that has a matching <InitiatorName,
  ISID, NULL, TargetAddress> to an existing Discovery session MUST
  reinstate the existing Unnamed Discovery session.  Note thus that
  only an Unnamed Discovery session may reinstate another Unnamed
  Discovery session.

7.4.2.2.  Named Discovery Sessions

  For Named Discovery sessions, the TargetName key is specified by the
  initiator, and thus the target can unambiguously ascertain the
  TargetPortalGroupTag as well.  Since all the four elements of the
  4-tuple are known, the ISID RULE MUST be enforced by targets with no
  changes from Section 4.4.3 semantics.  A new session with a matching
  <InitiatorName, ISID, TargetName, TargetPortalGroupTag> thus will
  reinstate an existing session.  Note in this case that any new iSCSI
  session (Discovery or Normal) with the matching 4-tuple may reinstate
  an existing Named Discovery iSCSI session.

7.4.3.  Target PDUs during Discovery

  Targets SHOULD NOT send any responses other than a Text Response and
  Logout Response on a Discovery session, once in the Full Feature
  Phase.

  Implementation Note: A target may simply drop the connection in a
  Discovery session when it would have requested a Logout via an Async
  Message on Normal sessions.



Chadalapaka, et al.          Standards Track                  [Page 103]

RFC 7143                  iSCSI (Consolidated)                April 2014


7.5.  Connection Timeout Management

  iSCSI defines two session-global timeout values (in seconds) --
  Time2Wait and Time2Retain -- that are applicable when an iSCSI Full
  Feature Phase connection is taken out of service either intentionally
  or by an exception.  Time2Wait is the initial "respite time" before
  attempting an explicit/implicit Logout for the CID in question or
  task reassignment for the affected tasks (if any).  Time2Retain is
  the maximum time after the initial respite interval that the task
  and/or connection state(s) is/are guaranteed to be maintained on the
  target to cater to a possible recovery attempt.  Recovery attempts
  for the connection and/or task(s) SHOULD NOT be made before
  Time2Wait seconds but MUST be completed within Time2Retain seconds
  after that initial Time2Wait waiting period.

7.5.1.  Timeouts on Transport Exception Events

  A transport connection shutdown or a transport reset without any
  preceding iSCSI protocol interactions informing the endpoints of the
  fact causes a Full Feature Phase iSCSI connection to be abruptly
  terminated.  The timeout values to be used in this case are the
  negotiated values of DefaultTime2Wait (Section 13.15) and
  DefaultTime2Retain (Section 13.16) text keys for the session.

7.5.2.  Timeouts on Planned Decommissioning

  Any planned decommissioning of a Full Feature Phase iSCSI connection
  is preceded by either a Logout Response PDU or an Async Message PDU.
  The Time2Wait and Time2Retain field values (Section 11.15) in a
  Logout Response PDU, and the Parameter2 and Parameter3 fields of an
  Async Message (AsyncEvent types "drop the connection" or "drop all
  the connections"; see Section 11.9.1), specify the timeout values to
  be used in each of these cases.

  These timeout values are only applicable for the affected connection
  and the tasks active on that connection.  These timeout values have
  no bearing on initiator timers (if any) that are already running on
  connections or tasks associated with that session.

7.6.  Implicit Termination of Tasks

  A target implicitly terminates the active tasks due to iSCSI protocol
  dynamics in the following cases:

     a) When a connection is implicitly or explicitly logged out with
        the reason code "close the connection" and there are active
        tasks allegiant to that connection.




Chadalapaka, et al.          Standards Track                  [Page 104]

RFC 7143                  iSCSI (Consolidated)                April 2014


     b) When a connection fails and eventually the connection state
        times out (state transition M1 in Section 8.2.2), and there are
        active tasks allegiant to that connection.

     c) When a successful Logout with the reason code "remove the
        connection for recovery" is performed while there are active
        tasks allegiant to that connection, and those tasks eventually
        time out after the Time2Wait and Time2Retain periods without
        allegiance reassignment.

     d) When a connection is implicitly or explicitly logged out with
        the reason code "close the session" and there are active tasks
        in that session.

  If the tasks terminated in cases a), b), c), and d) above are SCSI
  tasks, they must be internally terminated as if with CHECK CONDITION
  status.  This status is only meaningful for appropriately handling
  the internal SCSI state and SCSI side effects with respect to
  ordering, because this status is never communicated back as a
  terminating status to the initiator.  However, additional actions may
  have to be taken at the SCSI level, depending on the SCSI context as
  defined by the SCSI standards (e.g., queued commands and ACA; UA for
  the next command on the I_T nexus in cases a), b), and c); etc. --
  see [SAM2] and [SPC3]).

7.7.  Format Errors

  The following two explicit violations of PDU layout rules are format
  errors:

     a) Illegal contents of any PDU header field except the Opcode
        (legal values are specified in Section 11).

     b) Inconsistent field contents (consistent field contents are
        specified in Section 11).

  Format errors indicate a major implementation flaw in one of the
  parties.

  When a target or an initiator receives an iSCSI PDU with a format
  error, it MUST immediately terminate all transport connections in the
  session with either a connection close or a connection reset, and
  escalate the format error to session recovery (see Section 7.1.4.4).

  All initiator-detected PDU construction errors MUST be considered as
  format errors.  Some examples of such errors are:

     - NOP-In with a valid TTT but an invalid LUN



Chadalapaka, et al.          Standards Track                  [Page 105]

RFC 7143                  iSCSI (Consolidated)                April 2014


     - NOP-In with a valid ITT (i.e., a NOP-In response) and also a
       valid TTT

     - SCSI Response PDU with Status=CHECK CONDITION, but
       DataSegmentLength = 0

7.8.  Digest Errors

  The discussion below regarding the legal choices in handling digest
  errors excludes session recovery as an explicit option, but either
  party detecting a digest error may choose to escalate the error to
  session recovery.

  When a target or an initiator receives any iSCSI PDU with a header
  digest error, it MUST either discard the header and all data up to
  the beginning of a later PDU or close the connection.  Because the
  digest error indicates that the length field of the header may have
  been corrupted, the location of the beginning of a later PDU needs to
  be reliably ascertained by other means, such as the operation of a
  Sync and Steering layer.

  When a target receives any iSCSI PDU with a payload digest error, it
  MUST answer with a Reject PDU with a reason code of Data-Digest-Error
  and discard the PDU.

  - If the discarded PDU is a solicited or unsolicited iSCSI data PDU
    (for immediate data in a command PDU, the non-data PDU rule below
    applies), the target MUST do one of the following:

    a) Request retransmission with a recovery R2T.

    b) Terminate the task with a SCSI Response PDU with a CHECK
       CONDITION Status and an iSCSI Condition of "Protocol Service CRC
       error" (Section 11.4.7.2).  If the target chooses to implement
       this option, it MUST wait to receive all the data (signaled by a
       data PDU with the Final bit set for all outstanding R2Ts) before
       sending the SCSI Response PDU.  A task management command (such
       as an ABORT TASK) from the initiator during this wait may also
       conclude the task.

  - No further action is necessary for targets if the discarded PDU is
    a non-data PDU.  In the case of immediate data being present on a
    discarded command, the immediate data is implicitly recovered when
    the task is retried (see Section 7.2.1), followed by the entire
    data transfer for the task.

  When an initiator receives any iSCSI PDU with a payload digest error,
  it MUST discard the PDU.



Chadalapaka, et al.          Standards Track                  [Page 106]

RFC 7143                  iSCSI (Consolidated)                April 2014


     - If the discarded PDU is an iSCSI data PDU, the initiator MUST do
       one of the following:

       a) Request the desired data PDU through SNACK.  In response to
          the SNACK, the target MUST either resend the data PDU or
          reject the SNACK with a Reject PDU with a reason code of
          "SNACK reject", in which case:

          a.1) If the status has not already been sent for the command,
               the target MUST terminate the command with a CHECK
               CONDITION Status and an iSCSI Condition of "SNACK
               rejected" (Section 11.4.7.2).

          a.2) If the status was already sent, no further action is
               necessary for the target.  The initiator in this case
               MUST wait for the status to be received and then discard
               it, so as to internally signal the completion with CHECK
               CONDITION Status and an iSCSI Condition of "Protocol
               Service CRC error" (Section 11.4.7.2).

       b) Abort the task and terminate the command with an error.

     - If the discarded PDU is a response PDU or an unsolicited PDU
       (e.g., Async, Reject), the initiator MUST do one of the
       following:

       a) Request PDU retransmission with a status of SNACK.

       b) Log out the connection for recovery, and continue the tasks
          on a different connection instance as described in
          Section 7.2.

       c) Log out to close the connection (abort all the commands
          associated with the connection).

     Note that an unsolicited PDU carries the next StatSN value on an
     iSCSI connection, thereby advancing the StatSN.  When an initiator
     discards one of these PDUs due to a payload digest error, the
     entire PDU, including the header, MUST be discarded.
     Consequently, the initiator MUST treat the exception like a loss
     of any other solicited response PDU.

7.9.  Sequence Errors

  When an initiator receives an iSCSI R2T/data PDU with an out-of-order
  R2TSN/DataSN or a SCSI Response PDU with an ExpDataSN that implies
  missing data PDU(s), it means that the initiator must have detected a
  header or payload digest error on one or more earlier R2T/data PDUs.



Chadalapaka, et al.          Standards Track                  [Page 107]

RFC 7143                  iSCSI (Consolidated)                April 2014


  The initiator MUST address these implied digest errors as described
  in Section 7.8.  When a target receives a data PDU with an out-of-
  order DataSN, it means that the target must have hit a header or
  payload digest error on at least one of the earlier data PDUs.  The
  target MUST address these implied digest errors as described in
  Section 7.8.

  When an initiator receives an iSCSI status PDU with an out-of-order
  StatSN that implies missing responses, it MUST address the one or
  more missing status PDUs as described in Section 7.8.  As a side
  effect of receiving the missing responses, the initiator may discover
  missing data PDUs.  If the initiator wants to recover the missing
  data for a command, it MUST NOT acknowledge the received responses
  that start from the StatSN of the relevant command until it has
  completed receiving all the data PDUs of the command.

  When an initiator receives duplicate R2TSNs (due to proactive
  retransmission of R2Ts by the target) or duplicate DataSNs (due to
  proactive SNACKs by the initiator), it MUST discard the duplicates.

7.10.  Message Error Checking

  In iSCSI implementations to date, there has been some uncertainty
  regarding the extent to which incoming messages have to be checked
  for protocol errors, beyond what is strictly required for processing
  the inbound message.  This section addresses this question.

  Unless this document requires it, an iSCSI implementation is not
  required to do an exhaustive protocol conformance check on an
  incoming iSCSI PDU.  The iSCSI implementation in particular is not
  required to double-check the remote iSCSI implementation's
  conformance to protocol requirements.

7.11.  SCSI Timeouts

  An iSCSI initiator MAY attempt to plug a command sequence gap on the
  target end (in the absence of an acknowledgment of the command by way
  of the ExpCmdSN) before the ULP timeout by retrying the
  unacknowledged command, as described in Section 7.2.

  On a ULP timeout for a command (that carried a CmdSN of n), if the
  iSCSI initiator intends to continue the session it MUST abort the
  command by using either an appropriate Task Management Function
  Request for the specific command or a "close the connection" logout.







Chadalapaka, et al.          Standards Track                  [Page 108]

RFC 7143                  iSCSI (Consolidated)                April 2014


  When using an ABORT TASK, if the ExpCmdSN is still less than (n + 1),
  the target may see the abort request while missing the original
  command itself, due to one of the following reasons:

     - The original command was dropped due to digest error.

     - The connection on which the original command was sent was
       successfully logged out.  On logout, the unacknowledged commands
       issued on the connection being logged out are discarded.

  If the abort request is received and the original command is missing,
  targets MUST consider the original command with that RefCmdSN as
  received and issue a task management response with the response code
  "Function complete".  This response concludes the task on both ends.
  If the abort request is received and the target can determine (based
  on the Referenced Task Tag) that the command was received and
  executed, and also that the response was sent prior to the abort,
  then the target MUST respond with the response code "Task Does Not
  Exist".

7.12.  Negotiation Failures

  Text Request and Response sequences, when used to set/negotiate
  operational parameters, constitute the negotiation/parameter setting.
  A negotiation failure is considered to be one or more of the
  following:

     - For a negotiated key, none of the choices are acceptable to one
       of the sides in the negotiation.

     - For a declarative key, the declared value is not acceptable to
       the other side in the negotiation.

     - The Text Request timed out and possibly terminated.

     - The Text Request was answered with a Reject PDU.

  The following two rules should be used to address negotiation
  failures:

     a) During login, any failure in negotiation MUST be considered a
        login process failure; the Login Phase, along with the
        connection, MUST be terminated.  If the target detects the
        failure, it must terminate the login with the appropriate Login
        response code.






Chadalapaka, et al.          Standards Track                  [Page 109]

RFC 7143                  iSCSI (Consolidated)                April 2014


     b) A failure in negotiation during the Full Feature Phase will
        terminate the entire negotiation sequence, which may consist of
        a series of Text Requests that use the same Initiator Task Tag.
        The operational parameters of the session or the connection
        MUST continue to be the values agreed upon during an earlier
        successful negotiation (i.e., any partial results of this
        unsuccessful negotiation MUST NOT take effect and MUST be
        discarded).

7.13.  Protocol Errors

  Mapping framed messages over a "streaming" connection such as TCP
  makes the proposed mechanisms vulnerable to simple software framing
  errors.  On the other hand, the introduction of framing mechanisms to
  limit the effects of these errors may be onerous on performance for
  simple implementations.  Command sequence numbers and the mechanisms
  for dropping and reestablishing connections (discussed earlier in
  Section 7 and its subsections) help handle this type of mapping
  errors.

  All violations of iSCSI PDU exchange sequences specified in this
  document are also protocol errors.  This category of errors can only
  be addressed by fixing the implementations; iSCSI defines Reject and
  response codes to enable this.

7.14.  Connection Failures

  iSCSI can keep a session in operation if it is able to keep/establish
  at least one TCP connection between the initiator and the target in a
  timely fashion.  Targets and/or initiators may recognize a failing
  connection by either transport-level means (TCP), a gap in the
  command sequence number, a response stream that is not filled for a
  long time, or a failing iSCSI NOP (acting as a ping).  The latter MAY
  be used periodically to increase the speed and likelihood of
  detecting connection failures.  As an example for transport-level
  means, initiators and targets MAY also use the keep-alive option (see
  [RFC1122]) on the TCP connection to enable early link failure
  detection on otherwise idle links.













Chadalapaka, et al.          Standards Track                  [Page 110]

RFC 7143                  iSCSI (Consolidated)                April 2014


  On connection failure, the initiator and target MUST do one of the
  following:

     a) Attempt connection recovery within the session (Connection
        Recovery).

     b) Log out the connection with the reason code "close the
        connection" (Section 11.14.5), reissue missing commands, and
        implicitly terminate all active commands.  This option requires
        support for the Within-connection recovery class (recovery
        within-connection).

     c) Perform session recovery (Session Recovery).

  Either side may choose to escalate to session recovery (via the
  initiator dropping all the connections or via an Async Message that
  announces the similar intent from a target), and the other side MUST
  give it precedence.  On a connection failure, a target MUST terminate
  and/or discard all of the active immediate commands, regardless of
  which of the above options is used (i.e., immediate commands are not
  recoverable across connection failures).

7.15.  Session Errors

  If all of the connections of a session fail and cannot be
  reestablished in a short time, or if initiators detect protocol
  errors repeatedly, an initiator may choose to terminate a session and
  establish a new session.

  In this case, the initiator takes the following actions:

     - Resets or closes all the transport connections.

     - Terminates all outstanding requests with an appropriate response
       before initiating a new session.  If the same I_T nexus is
       intended to be reestablished, the initiator MUST employ session
       reinstatement (see Section 6.3.5).

  When the session timeout (the connection state timeout for the last
  failed connection) happens on the target, it takes the following
  actions:

     - Resets or closes the TCP connections (closes the session).

     - Terminates all active tasks that were allegiant to the
       connection(s) that constituted the session.





Chadalapaka, et al.          Standards Track                  [Page 111]

RFC 7143                  iSCSI (Consolidated)                April 2014


  A target MUST also be prepared to handle a session reinstatement
  request from the initiator that may be addressing session errors.

8.  State Transitions

  iSCSI connections and iSCSI sessions go through several well-defined
  states from the time they are created to the time they are cleared.

  The connection state transitions are described in two separate but
  dependent sets of state diagrams for ease in understanding.  The
  first set of diagrams, "standard connection state diagrams",
  describes the connection state transitions when the iSCSI connection
  is not waiting for, or undergoing, a cleanup by way of an explicit or
  implicit logout.  The second set, "connection cleanup state diagram",
  describes the connection state transitions while performing the iSCSI
  connection cleanup.  While the first set has two diagrams -- one each
  for initiator and target -- the second set has a single diagram
  applicable to both initiators and targets.

  The "session state diagram" describes the state transitions an iSCSI
  session would go through during its lifetime, and it depends on the
  states of possibly multiple iSCSI connections that participate in the
  session.

  States and transitions are described in text, tables, and diagrams.
  The diagrams are used for illustration.  The text and the tables are
  the governing specification.

8.1.  Standard Connection State Diagrams

8.1.1.  State Descriptions for Initiators and Targets

  State descriptions for the standard connection state diagram are as
  follows:

  S1: FREE

      - initiator: State on instantiation, or after successful
        connection closure.

      - target: State on instantiation, or after successful
        connection closure.









Chadalapaka, et al.          Standards Track                  [Page 112]

RFC 7143                  iSCSI (Consolidated)                April 2014


  S2: XPT_WAIT

      - initiator: Waiting for a response to its transport
        connection establishment request.

      - target: Illegal.

  S3: XPT_UP

      - initiator: Illegal.

      - target: Waiting for the login process to commence.

  S4: IN_LOGIN

      - initiator: Waiting for the login process to conclude,
        possibly involving several PDU exchanges.

      - target: Waiting for the login process to conclude,
        possibly involving several PDU exchanges.

  S5: LOGGED_IN

      - initiator: In the Full Feature Phase, waiting for all
        internal, iSCSI, and transport events.

      - target: In the Full Feature Phase, waiting for all internal,
        iSCSI, and transport events.

  S6: IN_LOGOUT

      - initiator: Waiting for a Logout Response.

      - target: Waiting for an internal event signaling completion
        of logout processing.

  S7: LOGOUT_REQUESTED

      - initiator: Waiting for an internal event signaling
        readiness to proceed with Logout.

      - target: Waiting for the Logout process to start after
        having requested a Logout via an Async Message.








Chadalapaka, et al.          Standards Track                  [Page 113]

RFC 7143                  iSCSI (Consolidated)                April 2014


  S8: CLEANUP_WAIT

      - initiator: Waiting for the context and/or resources to
        initiate the cleanup processing for this CSM.

      - target: Waiting for the cleanup process to start for this CSM.

8.1.2.  State Transition Descriptions for Initiators and Targets

  T1:

      - initiator: Transport connect request was made (e.g., TCP SYN
        sent).

      - target: Illegal.

  T2:

      - initiator: Transport connection request timed out, a
        transport reset was received, or an internal event of
        receiving a Logout Response (success) on another connection
        for a "close the session" Logout Request was received.

      - target: Illegal.

  T3:

      - initiator: Illegal.

      - target: Received a valid transport connection request that
        establishes the transport connection.

  T4:

      - initiator: Transport connection established, thus
        prompting the initiator to start the iSCSI Login.

      - target: Initial iSCSI Login Request was received.

  T5:

      - initiator: The final iSCSI Login Response with a Status-Class
        of zero was received.

      - target: The final iSCSI Login Request to conclude the
        Login Phase was received, thus prompting the target to send
        the final iSCSI Login Response with a Status-Class of zero.




Chadalapaka, et al.          Standards Track                  [Page 114]

RFC 7143                  iSCSI (Consolidated)                April 2014


  T6:

      - initiator: Illegal.

      - target: Timed out waiting for an iSCSI Login, transport
        disconnect indication was received, transport reset was
        received, or an internal event indicating a transport
        timeout was received.  In all these cases, the connection is
        to be closed.

  T7:

      - initiator: One of the following events caused the transition:

        a) The final iSCSI Login Response was received with a
           non-zero Status-Class.

        b) Login timed out.

        c) A transport disconnect indication was received.

        d) A transport reset was received.

        e) An internal event indicating a transport timeout was
           received.

        f) An internal event of receiving a Logout Response
           (success) on another connection for a "close the
           session" Logout Request was received.

      In all these cases, the transport connection is closed.

      - target: One of the following events caused the transition:

        a) The final iSCSI Login Request to conclude the Login
           Phase was received, prompting the target to send the
           final iSCSI Login Response with a non-zero Status-Class.

        b) Login timed out.

        c) A transport disconnect indication was received.

        d) A transport reset was received.

        e) An internal event indicating a transport timeout was
           received.





Chadalapaka, et al.          Standards Track                  [Page 115]

RFC 7143                  iSCSI (Consolidated)                April 2014


        f) On another connection, a "close the session" Logout Request
           was received.

      In all these cases, the connection is to be closed.

  T8:

      - initiator: An internal event of receiving a Logout
        Response (success) on another connection for a "close the
        session" Logout Request was received, thus closing this
        connection and requiring no further cleanup.

      - target: An internal event of sending a Logout Response
        (success) on another connection for a "close the session"
        Logout Request was received, or an internal event of a
        successful connection/session reinstatement was received,
        thus prompting the target to close this connection cleanly.

  T9, T10:

      - initiator: An internal event that indicates the readiness
        to start the Logout process was received, thus prompting an
        iSCSI Logout to be sent by the initiator.

      - target: An iSCSI Logout Request was received.

  T11, T12:

      - initiator: An Async PDU with AsyncEvent "Request Logout"
        was received.

      - target: An internal event that requires the decommissioning
        of the connection was received, thus causing an Async PDU with
        an AsyncEvent "Request Logout" to be sent.

  T13:

      - initiator: An iSCSI Logout Response (success) was received,
        or an internal event of receiving a Logout Response (success)
        on another connection for a "close the session" Logout Request
        was received.

      - target: An internal event was received that indicates
        successful processing of the Logout, which prompts an iSCSI
        Logout Response (success) to be sent; an internal event of
        sending a Logout Response (success) on another connection
        for a "close the session" Logout Request was received; or




Chadalapaka, et al.          Standards Track                  [Page 116]

RFC 7143                  iSCSI (Consolidated)                April 2014


        an internal event of a successful connection/session
        reinstatement was received.  In all these cases, the
        transport connection is closed.

  T14:

      - initiator: An Async PDU with AsyncEvent "Request Logout"
        was received again.

      - target: Illegal.

  T15, T16:

      - initiator: One or more of the following events caused this
        transition:

        a) An internal event that indicates a transport connection
           timeout was received, thus prompting a transport reset
           or transport connection closure.

        b) A transport reset was received.

        c) A transport disconnect indication was received.

        d) An Async PDU with AsyncEvent "Drop connection" (for this
           CID) was received.

        e) An Async PDU with AsyncEvent "Drop all connections" was
           received.

      - target: One or more of the following events caused this
        transition:

        a) Internal event that indicates that a transport connection
           timeout was received, thus prompting a transport reset
           or transport connection closure.

        b) An internal event of a failed connection/session
           reinstatement was received.

        c) A transport reset was received.

        d) A transport disconnect indication was received.

        e) An internal emergency cleanup event was received, which
           prompts an Async PDU with AsyncEvent "Drop connection" (for
           this CID), or event "Drop all connections".




Chadalapaka, et al.          Standards Track                  [Page 117]

RFC 7143                  iSCSI (Consolidated)                April 2014


  T17:

      - initiator: One or more of the following events caused this
        transition:

        a) A Logout Response (failure, i.e., a non-zero status)
           was received, or Logout timed out.

        b) Any of the events specified for T15 and T16 occurred.

      - target: One or more of the following events caused this
        transition:

        a) An internal event that indicates a failure of the
           Logout processing was received, which prompts a
           Logout Response (failure, i.e., a non-zero status)
           to be sent.

        b) Any of the events specified for T15 and T16 occurred.

  T18:

      - initiator: An internal event of receiving a Logout
        Response (success) on another connection for a "close the
        session" Logout Request was received.

      - target: An internal event of sending a Logout Response
        (success) on another connection for a "close the session"
        Logout Request was received, or an internal event of a
        successful connection/session reinstatement was received.
        In both these cases, the connection is closed.

  The CLEANUP_WAIT state (S8) implies that there are possible iSCSI
  tasks that have not reached conclusion and are still considered
  busy.

8.1.3.  Standard Connection State Diagram for an Initiator

  Symbolic names for states:

     S1: FREE

     S2: XPT_WAIT

     S4: IN_LOGIN

     S5: LOGGED_IN




Chadalapaka, et al.          Standards Track                  [Page 118]

RFC 7143                  iSCSI (Consolidated)                April 2014


     S6: IN_LOGOUT

     S7: LOGOUT_REQUESTED

     S8: CLEANUP_WAIT

  States S5, S6, and S7 constitute the Full Feature Phase operation of
  the connection.

  The state diagram is as follows:

                       -------<-------------+
           +--------->/ S1    \<----+       |
        T13|       +->\       /<-+   \      |
           |      /    ---+---    \   \     |
           |     /        |     T2 \   |    |
           |  T8 |        |T1       |  |    |
           |     |        |        /   |T7  |
           |     |        |       /    |    |
           |     |        |      /     |    |
           |     |        V     /     /     |
           |     |     ------- /     /      |
           |     |    / S2    \     /       |
           |     |    \       /    /        |
           |     |     ---+---    /         |
           |     |        |T4    /          |
           |     |        V     /           | T18
           |     |     ------- /            |
           |     |    / S4    \             |
           |     |    \       /             |
           |     |     ---+---              |         T15
           |     |        |T5      +--------+---------+
           |     |        |       /T16+-----+------+  |
           |     |        |      /   -+-----+--+   |  |
           |     |        |     /   /  S7   \  |T12|  |
           |     |        |    / +->\       /<-+   V  V
           |     |        |   / /    -+-----       -------
           |     |        |  / /T11   |T10        /  S8   \
           |     |        V / /       V  +----+   \       /
           |     |      ---+-+-      ----+--  |    -------
           |     |     / S5    \T9  / S6    \<+      ^
           |     +-----\       /--->\       / T14    |
           |            -------      --+---+---------+T17
           +---------------------------+







Chadalapaka, et al.          Standards Track                  [Page 119]

RFC 7143                  iSCSI (Consolidated)                April 2014


  The following state transition table represents the above diagram.
  Each row represents the starting state for a given transition, which,
  after taking a transition marked in a table cell, would end in the
  state represented by the column of the cell.  For example, from
  state S1, the connection takes the T1 transition to arrive at
  state S2.  The fields marked "-" correspond to undefined transitions.

     +----+---+---+---+---+----+---+
     |S1  |S2 |S4 |S5 |S6 |S7  |S8 |
  ---+----+---+---+---+---+----+---+
   S1| -  |T1 | - | - | - | -  | - |
  ---+----+---+---+---+---+----+---+
   S2|T2  |-  |T4 | - | - | -  | - |
  ---+----+---+---+---+---+----+---+
   S4|T7  |-  |-  |T5 | - | -  | - |
  ---+----+---+---+---+---+----+---+
   S5|T8  |-  |-  | - |T9 |T11 |T15|
  ---+----+---+---+---+---+----+---+
   S6|T13 |-  |-  | - |T14|-   |T17|
  ---+----+---+---+---+---+----+---+
   S7|T18 |-  |-  | - |T10|T12 |T16|
  ---+----+---+---+---+---+----+---+
   S8| -  |-  |-  | - | - | -  | - |
  ---+----+---+---+---+---+----+---+

8.1.4.  Standard Connection State Diagram for a Target

  Symbolic names for states:

     S1: FREE

     S3: XPT_UP

     S4: IN_LOGIN

     S5: LOGGED_IN

     S6: IN_LOGOUT

     S7: LOGOUT_REQUESTED

     S8: CLEANUP_WAIT

  States S5, S6, and S7 constitute the Full Feature Phase operation of
  the connection.






Chadalapaka, et al.          Standards Track                  [Page 120]

RFC 7143                  iSCSI (Consolidated)                April 2014


  The state diagram is as follows:

                          -------<-------------+
              +--------->/ S1    \<----+       |
           T13|       +->\       /<-+   \      |
              |      /    ---+---    \   \     |
              |     /        |     T6 \   |    |
              |  T8 |        |T3       |  |    |
              |     |        |        /   |T7  |
              |     |        |       /    |    |
              |     |        |      /     |    |
              |     |        V     /     /     |
              |     |     ------- /     /      |
              |     |    / S3    \     /       |
              |     |    \       /    /        | T18
              |     |     ---+---    /         |
              |     |        |T4    /          |
              |     |        V     /           |
              |     |     ------- /            |
              |     |    / S4    \             |
              |     |    \       /             |
              |     |     ---+---         T15  |
              |     |        |T5      +--------+---------+
              |     |        |       /T16+-----+------+  |
              |     |        |      /  -+-----+---+   |  |
              |     |        |     /   /  S7   \  |T12|  |
              |     |        |    / +->\       /<-+   V  V
              |     |        |   / /    -+-----       -------
              |     |        |  / /T11   |T10        /  S8   \
              |     |        V / /       V           \       /
              |     |      ---+-+-      -------       -------
              |     |     / S5    \T9  / S6    \        ^
              |     +-----\       /--->\       /        |
              |            -------      --+---+---------+T17
              +---------------------------+
















Chadalapaka, et al.          Standards Track                  [Page 121]

RFC 7143                  iSCSI (Consolidated)                April 2014


  The following state transition table represents the above diagram and
  follows the conventions described for the initiator diagram.

     +----+---+---+---+---+----+---+
     |S1  |S3 |S4 |S5 |S6 |S7  |S8 |
  ---+----+---+---+---+---+----+---+
   S1| -  |T3 | - | - | - | -  | - |
  ---+----+---+---+---+---+----+---+
   S3|T6  |-  |T4 | - | - | -  | - |
  ---+----+---+---+---+---+----+---+
   S4|T7  |-  |-  |T5 | - | -  | - |
  ---+----+---+---+---+---+----+---+
   S5|T8  |-  |-  | - |T9 |T11 |T15|
  ---+----+---+---+---+---+----+---+
   S6|T13 |-  |-  | - |-  |-   |T17|
  ---+----+---+---+---+---+----+---+
   S7|T18 |-  |-  | - |T10|T12 |T16|
  ---+----+---+---+---+---+----+---+
   S8| -  |-  |-  | - | - | -  | - |
  ---+----+---+---+---+---+----+---+

8.2.  Connection Cleanup State Diagram for Initiators and Targets

  Symbolic names for states:

     R1: CLEANUP_WAIT (same as S8)

     R2: IN_CLEANUP

     R3: FREE (same as S1)

  Whenever a connection state machine in cleanup (let's call it CSM-C)
  enters the CLEANUP_WAIT state (S8), it must go through the state
  transitions described in the connection cleanup state diagram, using
  either a) a separate Full Feature Phase connection (let's call it
  CSM-E, for explicit) in the LOGGED_IN state in the same session or
  b) a new transport connection (let's call it CSM-I, for implicit) in
  the FREE state that is to be added to the same session.  In the CSM-E
  case, an explicit logout for the CID that corresponds to CSM-C (as
  either a connection or session logout) needs to be performed to
  complete the cleanup.  In the CSM-I case, an implicit logout for the
  CID that corresponds to CSM-C needs to be performed by way of
  connection reinstatement (Section 6.3.4) for that CID.  In either
  case, the protocol exchanges on CSM-E or CSM-I determine the state
  transitions for CSM-C.  Therefore, this cleanup state diagram is only
  applicable to the instance of the connection in cleanup (i.e.,
  CSM-C).  In the case of an implicit logout, for example, CSM-C




Chadalapaka, et al.          Standards Track                  [Page 122]

RFC 7143                  iSCSI (Consolidated)                April 2014


  reaches FREE (R3) at the time CSM-I reaches LOGGED_IN.  In the case
  of an explicit logout, CSM-C reaches FREE (R3) when CSM-E receives a
  successful Logout Response while continuing to be in the LOGGED_IN
  state.

  An initiator must initiate an explicit or implicit connection logout
  for a connection in the CLEANUP_WAIT state, if the initiator intends
  to continue using the associated iSCSI session.

  The following state diagram applies to both initiators and targets.
  (M1, M2, M3, and M4 are defined in Section 8.2.2.)

                          ---------
                         / R1      \
                     +---\         /<-+
                    /     ----+----    \
                   /          |         \ M3
                M1 |          |M2        |
                   |          |         /
                   |          |        /
                   |          |       /
                   |          V      /
                   |       ---------/
                   |      / R2      \
                   |      \         /
                   |       ---------
                   |          |
                   |          |M4
                   |          |
                   |          |
                   |          |
                   |          V
                   |       --------
                   |      / R3     \
                   +----->\        /
                           --------















Chadalapaka, et al.          Standards Track                  [Page 123]

RFC 7143                  iSCSI (Consolidated)                April 2014


  The following state transition table represents the above diagram and
  follows the same conventions as in earlier sections.

       +----+----+----+
       |R1  |R2  |R3  |
  -----+----+----+----+
   R1  | -  |M2  |M1  |
  -----+----+----+----+
   R2  |M3  | -  |M4  |
  -----+----+----+----+
   R3  | -  | -  | -  |
  -----+----+----+----+

8.2.1.  State Descriptions for Initiators and Targets

  R1: CLEANUP_WAIT (same as S8)

      - initiator: Waiting for the internal event to initiate the
        cleanup processing for CSM-C.

      - target: Waiting for the cleanup process to start for CSM-C.

  R2: IN_CLEANUP

      - initiator: Waiting for the connection cleanup process to
        conclude for CSM-C.

      - target: Waiting for the connection cleanup process to conclude
        for CSM-C.

  R3: FREE (same as S1)

      - initiator: End state for CSM-C.

      - target: End state for CSM-C.

8.2.2.  State Transition Descriptions for Initiators and Targets

  M1: One or more of the following events was received:

      - initiator:

        * An internal event that indicates connection state timeout.

        * An internal event of receiving a successful Logout Response
          on a different connection for a "close the session" Logout.





Chadalapaka, et al.          Standards Track                  [Page 124]

RFC 7143                  iSCSI (Consolidated)                April 2014


      - target:

        * An internal event that indicates connection state timeout.

        * An internal event of sending a Logout Response (success) on a
          different connection for a "close the session" Logout
          Request.

  M2: An implicit/explicit logout process was initiated by the
      initiator.

      - In CSM-I usage:

        * initiator: An internal event requesting the connection (or
          session) reinstatement was received, thus prompting a
          connection (or session) reinstatement Login to be sent,
          transitioning CSM-I to state IN_LOGIN.

        * target: A connection/session reinstatement Login was received
          while in state XPT_UP.

      - In CSM-E usage:

        * initiator: An internal event was received that indicates that
          an explicit logout was sent for this CID in state LOGGED_IN.

        * target: An explicit logout was received for this CID in state
          LOGGED_IN.

  M3: Logout failure was detected.

      - In CSM-I usage:

        * initiator: CSM-I failed to reach LOGGED_IN and arrived into
          FREE instead.

        * target: CSM-I failed to reach LOGGED_IN and arrived into FREE
          instead.

      - In CSM-E usage:

        * initiator: either CSM-E moved out of LOGGED_IN, or Logout
          timed out and/or aborted, or Logout Response (failure) was
          received.







Chadalapaka, et al.          Standards Track                  [Page 125]

RFC 7143                  iSCSI (Consolidated)                April 2014


        * target: either CSM-E moved out of LOGGED_IN, Logout timed out
          and/or aborted, or an internal event that indicates that a
          failed Logout processing was received.  A Logout Response
          (failure) was sent in the last case.

  M4: Successful implicit/explicit logout was performed.

      - In CSM-I usage:

        * initiator: CSM-I reached state LOGGED_IN, or an internal
          event of receiving a Logout Response (success) on another
          connection for a "close the session" Logout Request was
          received.

        * target: CSM-I reached state LOGGED_IN, or an internal event
          of sending a Logout Response (success) on a different
          connection for a "close the session" Logout Request was
          received.

      - In CSM-E usage:

        * initiator: CSM-E stayed in LOGGED_IN and received a Logout
          Response (success), or an internal event of receiving a
          Logout Response (success) on another connection for a "close
          the session" Logout Request was received.

        * target: CSM-E stayed in LOGGED_IN and an internal event
          indicating a successful Logout processing was received, or an
          internal event of sending a Logout Response (success) on a
          different connection for a "close the session" Logout Request
          was received.

8.3.  Session State Diagrams

8.3.1.  Session State Diagram for an Initiator

  Symbolic names for states:

     Q1: FREE

     Q3: LOGGED_IN

     Q4: FAILED

  State Q3 represents the Full Feature Phase operation of the session.






Chadalapaka, et al.          Standards Track                  [Page 126]

RFC 7143                  iSCSI (Consolidated)                April 2014


  The state diagram is as follows.  (N1, N3, N4, N5, and N6 are defined
  in Section 8.3.4.)

                                  ---------
                                 / Q1      \
                     +---------->\         /<-+
                    /             ----+----   |
                   /                  |       |N3
               N6  |                  |N1     |
                   |                  |       |
                   |       N4         |       |
                   | +------------+   |      /
                   | |            |   |     /
                   | |            |   |    /
                   | |            V   V   /
                 --+-+---         -------+-
                / Q4     \ N5    / Q3      \
                \        /<------\         /
                 --------         ---------

  The state transition table is as follows:

       +---+---+---+
       |Q1 |Q3 |Q4 |
  -----+---+---+---+
   Q1  | - |N1 | - |
  -----+---+---+---+
   Q3  |N3 | - |N5 |
  -----+---+---+---+
   Q4  |N6 |N4 | - |
  -----+---+---+---+

8.3.2.  Session State Diagram for a Target

  Symbolic names for states:

     Q1: FREE

     Q2: ACTIVE

     Q3: LOGGED_IN

     Q4: FAILED

     Q5: IN_CONTINUE

  State Q3 represents the Full Feature Phase operation of the session.




Chadalapaka, et al.          Standards Track                  [Page 127]

RFC 7143                  iSCSI (Consolidated)                April 2014


  The state diagram is as follows:

                                          ---------
                    +------------------->/ Q1      \
                   /     +-------------->\         /<-+
                   |     |                ---+-----   |
                   |     |                 ^ |        |N3
                N6 |     |N11            N9| V N1     |
                   |     |                 +--------  |
                   |     |                / Q2      \ |
                   |     |                \         / |
                   |  ---+-----            +--+-----  |
                   | / Q5      \              |       |
                   | \         / N10          |       |
                   |  -+-+----+-----------+   | N2   /
                   |   ^ |                |   |     /
                   | N7| |N8              |   |    /
                   |   | |                |   V   /
                 --+---+-V                V------+-
                / Q4      \ N5           / Q3      \
                \         /<-------------\         /
                 ---------                ---------

  The state transition table is as follows:

       +----+----+----+----+----+
       |Q1  |Q2  |Q3  |Q4  |Q5  |
  -----+----+----+----+----+----+
   Q1  | -  |N1  | -  | -  | -  |
  -----+----+----+----+----+----+
   Q2  |N9  | -  |N2  | -  | -  |
  -----+----+----+----+----+----+
   Q3  |N3  | -  | -  |N5  | -  |
  -----+----+----+----+----+----+
   Q4  |N6  | -  | -  | -  |N7  |
  -----+----+----+----+----+----+
   Q5  |N11 | -  |N10 |N8  | -  |
  -----+----+----+----+----+----+













Chadalapaka, et al.          Standards Track                  [Page 128]

RFC 7143                  iSCSI (Consolidated)                April 2014


8.3.3.  State Descriptions for Initiators and Targets

  Q1: FREE

      - initiator: State on instantiation or after cleanup.

      - target: State on instantiation or after cleanup.

  Q2: ACTIVE

      - initiator: Illegal.

      - target: The first iSCSI connection in the session transitioned
        to IN_LOGIN, waiting for it to complete the login process.

  Q3: LOGGED_IN

      - initiator: Waiting for all session events.

      - target: Waiting for all session events.

  Q4: FAILED

      - initiator: Waiting for session recovery or session
        continuation.

      - target: Waiting for session recovery or session continuation.

  Q5: IN_CONTINUE

      - initiator: Illegal.

      - target: Waiting for session continuation attempt to reach a
        conclusion.

8.3.4.  State Transition Descriptions for Initiators and Targets

  N1:

      - initiator: At least one transport connection reached the
        LOGGED_IN state.

      - target: The first iSCSI connection in the session had reached
        the IN_LOGIN state.







Chadalapaka, et al.          Standards Track                  [Page 129]

RFC 7143                  iSCSI (Consolidated)                April 2014


  N2:

      - initiator: Illegal.

      - target: At least one iSCSI connection reached the LOGGED_IN
        state.

  N3:

      - initiator: Graceful closing of the session via session closure
        (Section 6.3.6).

      - target: Graceful closing of the session via session closure
        (Section 6.3.6) or a successful session reinstatement cleanly
        closed the session.

  N4:

      - initiator: A session continuation attempt succeeded.

      - target: Illegal.

  N5:
      - initiator: Session failure (Section 6.3.6) occurred.

      - target: Session failure (Section 6.3.6) occurred.

  N6:

      - initiator: Session state timeout occurred, or a session
        reinstatement cleared this session instance.  This results in
        the freeing of all associated resources, and the session state
        is discarded.

      - target: Session state timeout occurred, or a session
        reinstatement cleared this session instance.  This results in
        the freeing of all associated resources, and the session state
        is discarded.

  N7:

      - initiator: Illegal.

      - target: A session continuation attempt was initiated.







Chadalapaka, et al.          Standards Track                  [Page 130]

RFC 7143                  iSCSI (Consolidated)                April 2014


  N8:

      - initiator: Illegal.

      - target: The last session continuation attempt failed.

  N9:

      - initiator: Illegal.

      - target: Login attempt on the leading connection failed.

  N10:

      - initiator: Illegal.

      - target: A session continuation attempt succeeded.

  N11:

      - initiator: Illegal.

      - target: A successful session reinstatement cleanly closed the
        session.

9.  Security Considerations

  Historically, native storage systems have not had to consider
  security, because their environments offered minimal security risks.
  That is, these environments consisted of storage devices either
  directly attached to hosts or connected via a Storage Area Network
  (SAN) distinctly separate from the communications network.  The use
  of storage protocols, such as SCSI, over IP networks requires that
  security concerns be addressed.  iSCSI implementations must provide
  means of protection against active attacks (e.g., pretending to be
  another identity; message insertion, deletion, modification, and
  replaying) and passive attacks (e.g., eavesdropping, gaining
  advantage by analyzing the data sent over the line).

  Although technically possible, iSCSI SHOULD NOT be configured without
  security, specifically in-band authentication; see Section 9.2.
  iSCSI configured without security should be confined to closed
  environments that have very limited and well-controlled security
  risks.  [RFC3723] specifies the mechanisms that must be used in order
  to mitigate risks fully described in that document.

  The following section describes the security mechanisms provided by
  an iSCSI implementation.



Chadalapaka, et al.          Standards Track                  [Page 131]

RFC 7143                  iSCSI (Consolidated)                April 2014


9.1.  iSCSI Security Mechanisms

  The entities involved in iSCSI security are the initiator, target,
  and the IP communication endpoints.  iSCSI scenarios in which
  multiple initiators or targets share a single communication endpoint
  are expected.  To accommodate such scenarios, iSCSI supports two
  separate security mechanisms: in-band authentication between the
  initiator and the target at the iSCSI connection level (carried out
  by exchange of iSCSI Login PDUs), and packet protection (integrity,
  authentication, and confidentiality) by IPsec at the IP level.  The
  two security mechanisms complement each other.  The in-band
  authentication provides end-to-end trust (at login time) between the
  iSCSI initiator and the target, while IPsec provides a secure channel
  between the IP communication endpoints.  iSCSI can be used to access
  sensitive information for which significant security protection is
  appropriate.  As further specified in the rest of this security
  considerations section, both iSCSI security mechanisms are mandatory
  to implement (MUST).  The use of in-band authentication is strongly
  recommended (SHOULD).  In contrast, the use of IPsec is optional
  (MAY), as the security risks that it addresses may only be present
  over a subset of the networks used by an iSCSI connection or a
  session; a specific example is that when an iSCSI session spans data
  centers, IPsec VPN gateways at the data center boundaries to protect
  the WAN connectivity between data centers may be appropriate in
  combination with in-band iSCSI authentication.

  Further details on typical iSCSI scenarios and the relationship
  between the initiators, targets, and the communication endpoints can
  be found in [RFC3723].

9.2.  In-Band Initiator-Target Authentication

  During login, the target MAY authenticate the initiator and the
  initiator MAY authenticate the target.  The authentication is
  performed on every new iSCSI connection by an exchange of iSCSI Login
  PDUs using a negotiated authentication method.

  The authentication method cannot assume an underlying IPsec
  protection, because IPsec is optional to use.  An attacker should
  gain as little advantage as possible by inspecting the authentication
  phase PDUs.  Therefore, a method using cleartext (or equivalent)
  passwords MUST NOT be used; on the other hand, identity protection is
  not strictly required.

  The authentication mechanism protects against an unauthorized login
  to storage resources by using a false identity (spoofing).  Once the
  authentication phase is completed, if the underlying IPsec is not
  used, all PDUs are sent and received in the clear.  The



Chadalapaka, et al.          Standards Track                  [Page 132]

RFC 7143                  iSCSI (Consolidated)                April 2014


  authentication mechanism alone (without underlying IPsec) should only
  be used when there is no risk of eavesdropping or of message
  insertion, deletion, modification, and replaying.

  Section 12 defines several authentication methods and the exact steps
  that must be followed in each of them, including the iSCSI-text-keys
  and their allowed values in each step.  Whenever an iSCSI initiator
  gets a response whose keys, or their values, are not according to the
  step definition, it MUST abort the connection.

  Whenever an iSCSI target gets a request or response whose keys, or
  their values, are not according to the step definition, it MUST
  answer with a Login reject with the "Initiator Error" or "Missing
  Parameter" status.  These statuses are not intended for
  cryptographically incorrect values such as the CHAP response, for
  which the "Authentication Failure" status MUST be specified.  The
  importance of this rule can be illustrated in CHAP with target
  authentication (see Section 12.1.3), where the initiator would have
  been able to conduct a reflection attack by omitting its response key
  (CHAP_R), using the same CHAP challenge as the target and reflecting
  the target's response back to the target.  In CHAP, this is prevented
  because the target must answer the missing CHAP_R key with a
  Login reject with the "Missing Parameter" status.

  For some of the authentication methods, a key specifies the identity
  of the iSCSI initiator or target for authentication purposes.  The
  value associated with that key MAY be different from the iSCSI name
  and SHOULD be configurable (CHAP_N: see Section 12.1.3; SRP_U: see
  Section 12.1.2).  For this reason, iSCSI implementations SHOULD
  manage authentication in a way that impersonation across iSCSI names
  via these authentication identities is not possible.  Specifically,
  implementations SHOULD allow configuration of an authentication
  identity for a Name if different, and authentication credentials for
  that identity.  During the login time, implementations SHOULD verify
  the Name-to-identity relationship in addition to authenticating the
  identity through the negotiated authentication method.

  When an iSCSI session has multiple TCP connections, either
  concurrently or sequentially, the authentication method and
  identities should not vary among the connections.  Therefore, all
  connections in an iSCSI session SHOULD use the same authentication
  method, iSCSI name, and authentication identity (for authentication
  methods that use an authentication identity).  Implementations SHOULD
  check this and cause an authentication failure on a new connection
  that uses a different authentication method, iSCSI name, or
  authentication identity from those already used in the session.  In





Chadalapaka, et al.          Standards Track                  [Page 133]

RFC 7143                  iSCSI (Consolidated)                April 2014


  addition, implementations SHOULD NOT support both authenticated and
  unauthenticated TCP connections in the same iSCSI session, added
  either concurrently or sequentially to the session.

9.2.1.  CHAP Considerations

  Compliant iSCSI initiators and targets MUST implement the CHAP
  authentication method [RFC1994] (according to Section 12.1.3,
  including the target authentication option).

  When CHAP is performed over a non-encrypted channel, it is vulnerable
  to an off-line dictionary attack.  Implementations MUST support the
  use of up to 128-bit random CHAP secrets, including the means to
  generate such secrets and to accept them from an external generation
  source.  Implementations MUST NOT provide secret generation (or
  expansion) means other than random generation.

  An administrative entity of an environment in which CHAP is used with
  a secret that has less than 96 random bits MUST enforce IPsec
  encryption (according to the implementation requirements in
  Section 9.3.2) to protect the connection.  Moreover, in this case,
  IKE authentication with group pre-shared cryptographic keys SHOULD
  NOT be used unless it is not essential to protect group members
  against off-line dictionary attacks by other members.

  CHAP secrets MUST be an integral number of bytes (octets).  A
  compliant implementation SHOULD NOT continue with the login step in
  which it should send a CHAP response (CHAP_R; see Section 12.1.3)
  unless it can verify that the CHAP secret is at least 96 bits or that
  IPsec encryption is being used to protect the connection.

  Any CHAP secret used for initiator authentication MUST NOT be
  configured for authentication of any target, and any CHAP secret used
  for target authentication MUST NOT be configured for authentication
  of any initiator.  If the CHAP response received by one end of an
  iSCSI connection is the same as the CHAP response that the receiving
  endpoint would have generated for the same CHAP challenge, the
  response MUST be treated as an authentication failure and cause the
  connection to close (this ensures that the same CHAP secret is not
  used for authentication in both directions).  Also, if an iSCSI
  implementation can function as both initiator and target, different
  CHAP secrets and identities MUST be configured for these two roles.
  The following is an example of the attacks prevented by the above
  requirements:

     a) "Rogue" wants to impersonate "Storage" to Alice and knows that
        a single secret is used for both directions of Storage-Alice
        authentication.



Chadalapaka, et al.          Standards Track                  [Page 134]

RFC 7143                  iSCSI (Consolidated)                April 2014


     b) Rogue convinces Alice to open two connections to itself and
        identifies itself as Storage on both connections.

     c) Rogue issues a CHAP challenge on Connection 1, waits for Alice
        to respond, and then reflects Alice's challenge as the initial
        challenge to Alice on Connection 2.

     d) If Alice doesn't check for the reflection across connections,
        Alice's response on Connection 2 enables Rogue to impersonate
        Storage on Connection 1, even though Rogue does not know the
        Alice-Storage CHAP secret.

  Originators MUST NOT reuse the CHAP challenge sent by the responder
  for the other direction of a bidirectional authentication.
  Responders MUST check for this condition and close the iSCSI TCP
  connection if it occurs.

  The same CHAP secret SHOULD NOT be configured for authentication of
  multiple initiators or multiple targets, as this enables any of them
  to impersonate any other one of them, and compromising one of them
  enables the attacker to impersonate any of them.  It is recommended
  that iSCSI implementations check for the use of identical CHAP
  secrets by different peers when this check is feasible and take
  appropriate measures to warn users and/or administrators when this is
  detected.

  When an iSCSI initiator or target authenticates itself to
  counterparts in multiple administrative domains, it SHOULD use a
  different CHAP secret for each administrative domain to avoid
  propagating security compromises across domains.

  Within a single administrative domain:

     - A single CHAP secret MAY be used for authentication of an
       initiator to multiple targets.

     - A single CHAP secret MAY be used for an authentication of a
       target to multiple initiators when the initiators use an
       external server (e.g., RADIUS [RFC2865]) to verify the target's
       CHAP responses and do not know the target's CHAP secret.

  If an external response verification server (e.g., RADIUS) is not
  used, employing a single CHAP secret for authentication of a target
  to multiple initiators requires that all such initiators know that
  target's secret.  Any of these initiators can impersonate the target
  to any other such initiator, and compromise of such an initiator
  enables an attacker to impersonate the target to all such initiators.
  Targets SHOULD use separate CHAP secrets for authentication to each



Chadalapaka, et al.          Standards Track                  [Page 135]

RFC 7143                  iSCSI (Consolidated)                April 2014


  initiator when such risks are of concern; in this situation, it may
  be useful to configure a separate logical iSCSI target with its own
  iSCSI Node Name for each initiator or group of initiators among which
  such separation is desired.

  The above requirements strengthen the security properties of CHAP
  authentication for iSCSI by comparison to the basic CHAP
  authentication mechanism [RFC1994].  It is very important to adhere
  to these requirements, especially the requirements for strong (large
  randomly generated) CHAP secrets, as iSCSI implementations and
  deployments that fail to use strong CHAP secrets are likely to be
  highly vulnerable to off-line dictionary attacks on CHAP secrets.

  Replacement of CHAP with a better authentication mechanism is
  anticipated in a future version of iSCSI.  The FC-SP-2 standard
  [FC-SP-2] has specified the Extensible Authentication Protocol -
  Generalized Pre-Shared Key (EAP-GPSK) authentication mechanism
  [RFC5433] as an alternative to (and possible future replacement for)
  Fibre Channel's similar usage of strengthened CHAP.  Another possible
  replacement for CHAP is a secure password mechanism, e.g., an updated
  version of iSCSI's current SRP authentication mechanism.

9.2.2.  SRP Considerations

  The strength of the SRP authentication method (specified in
  [RFC2945]) is dependent on the characteristics of the group being
  used (i.e., the prime modulus N and generator g).  As described in
  [RFC2945], N is required to be a Sophie Germain prime (of the form
  N = 2q + 1, where q is also prime) and the generator g is a primitive
  root of GF(N).  In iSCSI authentication, the prime modulus N MUST be
  at least 768 bits.

  The list of allowed SRP groups is provided in [RFC3723].

9.2.3.  Kerberos Considerations

  iSCSI uses raw Kerberos V5 [RFC4120] for authenticating a client
  (iSCSI initiator) principal to a service (iSCSI target) principal.
  Note that iSCSI does not use the Generic Security Service Application
  Program Interface (GSS-API) [RFC2743] or the Kerberos V5 GSS-API
  security mechanism [RFC4121].  This means that iSCSI implementations
  supporting the KRB5 AuthMethod (Section 12.1) are directly involved
  in the Kerberos protocol.  When Kerberos V5 is used for
  authentication, the following actions MUST be performed as specified
  in [RFC4120]:

     - The target MUST validate KRB_AP_REQ to ensure that the initiator
       can be trusted.



Chadalapaka, et al.          Standards Track                  [Page 136]

RFC 7143                  iSCSI (Consolidated)                April 2014


     - When mutual authentication is selected, the initiator MUST
       validate KRB_AP_REP to determine the outcome of mutual
       authentication.

  As Kerberos V5 is capable of providing mutual authentication,
  implementations SHOULD support mutual authentication by default for
  login authentication.

  Note, however, that Kerberos authentication only assures that the
  server (iSCSI target) can be trusted by the Kerberos client
  (initiator) and vice versa; an initiator should employ appropriately
  secured service discovery techniques (e.g., iSNS; see Section 4.2.7)
  to ensure that it is talking to the intended target principal.

  iSCSI does not use Kerberos v5 for either integrity or
  confidentiality protection of the iSCSI protocol.  iSCSI uses IPsec
  for those purposes as specified in Section 9.3.

9.3.  IPsec

  iSCSI uses the IPsec mechanism for packet protection (cryptographic
  integrity, authentication, and confidentiality) at the IP level
  between the iSCSI communicating endpoints.  The following sections
  describe the IPsec protocols that must be implemented for data
  authentication and integrity; confidentiality; and cryptographic key
  management.

  An iSCSI initiator or target may provide the required IPsec support
  fully integrated or in conjunction with an IPsec front-end device.
  In the latter case, the compliance requirements with regard to IPsec
  support apply to the "combined device".  Only the "combined device"
  is to be considered an iSCSI device.

  Detailed considerations and recommendations for using IPsec for iSCSI
  are provided in [RFC3723] as updated by [RFC7146].  The IPsec
  requirements are reproduced here for convenience and are intended to
  match those in [RFC7146]; in the event of a discrepancy, the
  requirements in [RFC7146] apply.

9.3.1.  Data Authentication and Integrity

  Data authentication and integrity are provided by a cryptographic
  keyed Message Authentication Code in every sent packet.  This code
  protects against message insertion, deletion, and modification.
  Protection against message replay is realized by using a sequence
  counter.





Chadalapaka, et al.          Standards Track                  [Page 137]

RFC 7143                  iSCSI (Consolidated)                April 2014


  An iSCSI-compliant initiator or target MUST provide data
  authentication and integrity by implementing IPsec v2 [RFC2401] with
  ESPv2 [RFC2406] in tunnel mode, SHOULD provide data authentication
  and integrity by implementing IPsec v3 [RFC4301] with ESPv3 [RFC4303]
  in tunnel mode, and MAY provide data authentication and integrity by
  implementing either IPsec v2 or v3 with the appropriate version of
  ESP in transport mode.  The IPsec implementation MUST fulfill the
  following iSCSI-specific requirements:

     - HMAC-SHA1 MUST be implemented in the specific form of
       HMAC-SHA-1-96 [RFC2404].

     - AES CBC MAC with XCBC extensions using 128-bit keys SHOULD be
       implemented [RFC3566].

     - Implementations that support IKEv2 [RFC5996] SHOULD also
       implement AES Galois Message Authentication Code (GMAC)
       [RFC4543] using 128-bit keys.

  The ESP anti-replay service MUST also be implemented.

  At the high speeds at which iSCSI is expected to operate, a single
  IPsec SA could rapidly exhaust the ESP 32-bit sequence number space,
  requiring frequent rekeying of the SA, as rollover of the ESP
  sequence number within a single SA is prohibited for both ESPv2
  [RFC2406] and ESPv3 [RFC4303].  In order to provide the means to
  avoid this potentially undesirable frequent rekeying, implementations
  that are capable of operating at speeds of 1 gigabit/second or higher
  MUST implement extended (64-bit) sequence numbers for ESPv2 (and
  ESPv3, if supported) and SHOULD use extended sequence numbers for all
  iSCSI traffic.  Extended sequence number negotiation as part of
  security association establishment is specified in [RFC4304] for
  IKEv1 and [RFC5996] for IKEv2.

9.3.2.  Confidentiality

  Confidentiality is provided by encrypting the data in every packet.
  When confidentiality is used, it MUST be accompanied by data
  authentication and integrity to provide comprehensive protection
  against eavesdropping and against message insertion, deletion,
  modification, and replaying.

  An iSCSI-compliant initiator or target MUST provide confidentiality
  by implementing IPsec v2 [RFC2401] with ESPv2 [RFC2406] in tunnel
  mode, SHOULD provide confidentiality by implementing IPsec v3
  [RFC4301] with ESPv3 [RFC4303] in tunnel mode, and MAY provide





Chadalapaka, et al.          Standards Track                  [Page 138]

RFC 7143                  iSCSI (Consolidated)                April 2014


  confidentiality by implementing either IPsec v2 or v3 with the
  appropriate version of ESP in transport mode, with the following
  iSCSI-specific requirements that apply to IPsec v2 and IPsec v3:

     - 3DES in CBC mode MAY be implemented [RFC2451].

     - AES in CBC mode with 128-bit keys MUST be implemented [RFC3602];
       other key sizes MAY be supported.

     - AES in Counter mode MAY be implemented [RFC3686].

     - Implementations that support IKEv2 [RFC5996] SHOULD also
       implement AES Galois/Counter Mode (GCM) with 128-bit keys
       [RFC4106]; other key sizes MAY be supported.

  Due to its inherent weakness, DES in CBC mode MUST NOT be used.

  The NULL encryption algorithm MUST also be implemented.

9.3.3.  Policy, Security Associations, and Cryptographic Key Management

  A compliant iSCSI implementation MUST meet the cryptographic key
  management requirements of the IPsec protocol suite.  Authentication,
  security association negotiation, and cryptographic key management
  MUST be provided by implementing IKE [RFC2409] using the IPsec DOI
  [RFC2407] and SHOULD be provided by implementing IKEv2 [RFC5996],
  with the following iSCSI-specific requirements:

     a) Peer authentication using a pre-shared cryptographic key MUST
        be supported.  Certificate-based peer authentication using
        digital signatures MAY be supported.  For IKEv1 ([RFC2409]),
        peer authentication using the public key encryption methods
        outlined in Sections 5.2 and 5.3 of [RFC2409] SHOULD NOT be
        used.

     b) When digital signatures are used to achieve authentication, an
        IKE negotiator SHOULD use IKE Certificate Request Payload(s) to
        specify the certificate authority.  IKE negotiators SHOULD
        check certificate validity via the pertinent Certificate
        Revocation List (CRL) or via the use of the Online Certificate
        Status Protocol (OCSP) [RFC6960] before accepting a PKI
        certificate for use in IKE authentication procedures.  OCSP
        support within the IKEv2 protocol is specified in [RFC4806].
        These checks may not be needed in environments where a small
        number of certificates are statically configured as trust
        anchors.





Chadalapaka, et al.          Standards Track                  [Page 139]

RFC 7143                  iSCSI (Consolidated)                April 2014


     c) Conformant iSCSI implementations of IKEv1 MUST support Main
        Mode and SHOULD support Aggressive Mode.  Main Mode with a
        pre-shared key authentication method SHOULD NOT be used when
        either the initiator or the target uses dynamically assigned
        addresses.  While in many cases pre-shared keys offer good
        security, situations in which dynamically assigned addresses
        are used force the use of a group pre-shared key, which creates
        vulnerability to a man-in-the-middle attack.

     d) In the IKEv1 Phase 2 Quick Mode, in exchanges for creating the
        Phase 2 SA, the Identification Payload MUST be present.

     e) The following identification type requirements apply to IKEv1:
        ID_IPV4_ADDR, ID_IPV6_ADDR (if the protocol stack supports
        IPv6), and ID_FQDN Identification Types MUST be supported;
        ID_USER_FQDN SHOULD be supported.  The IP Subnet, IP Address
        Range, ID_DER_ASN1_DN, and ID_DER_ASN1_GN Identification Types
        SHOULD NOT be used.  The ID_KEY_ID Identification Type MUST NOT
        be used.

     f) If IKEv2 is supported, the following identification
        requirements apply:  ID_IPV4_ADDR, ID_IPV6_ADDR (if the
        protocol stack supports IPv6), and ID_FQDN Identification Types
        MUST be supported; ID_RFC822_ADDR SHOULD be supported.  The
        ID_DER_ASN1_DN and ID_DER_ASN1_GN Identification Types SHOULD
        NOT be used.  The ID_KEY_ID Identification Type MUST NOT be
        used.

  The reasons for the "MUST NOT" and "SHOULD NOT" for identification
  type requirements in preceding bullets e) and f) are:

     - IP Subnet and IP Address Range are too broad to usefully
       identify an iSCSI endpoint.

     - The DN and GN types are X.500 identities; it is usually better
       to use an identity from subjectAltName in a PKI certificate.

     - ID_KEY_ID is not interoperable as specified.

  Manual cryptographic keying MUST NOT be used, because it does not
  provide the necessary rekeying support.

  When Diffie-Hellman (DH) groups are used, a DH group of at least
  2048 bits SHOULD be offered as a part of all proposals to create
  IPsec security associations to protect iSCSI traffic, with both IKEv1
  and IKEv2.





Chadalapaka, et al.          Standards Track                  [Page 140]

RFC 7143                  iSCSI (Consolidated)                April 2014


  When IPsec is used, the receipt of an IKEv1 Phase 2 delete message or
  an IKEv2 INFORMATIONAL exchange that deletes the SA SHOULD NOT be
  interpreted as a reason for tearing down the iSCSI TCP connection.
  If additional traffic is sent on it, a new IKE SA will be created to
  protect it.

  The method used by the initiator to determine whether the target
  should be connected using IPsec is regarded as an issue of IPsec
  policy administration and thus not defined in the iSCSI standard.

  The method used by an initiator that supports both IPsec v2 and v3 to
  determine which versions of IPsec are supported by the target is also
  regarded as an issue of IPsec policy administration and thus not
  defined in the iSCSI standard.  If both IPsec v2 and v3 are supported
  by both the initiator and target, the use of IPsec v3 is recommended.

  If an iSCSI target is discovered via a SendTargets request in a
  Discovery session not using IPsec, the initiator should assume that
  it does not need IPsec to establish a session to that target.  If an
  iSCSI target is discovered using a Discovery session that does use
  IPsec, the initiator SHOULD use IPsec when establishing a session to
  that target.

9.4.  Security Considerations for the X#NodeArchitecture Key

  The security considerations in this section are specific to the
  X#NodeArchitecture discussed in Section 13.26.

  This extension key transmits specific implementation details about
  the node that sends it; such details may be considered sensitive in
  some environments.  For example, if a certain software or firmware
  version is known to contain security weaknesses, announcing the
  presence of that version via this key may not be desirable.  The
  countermeasures for this security concern are:

     a) sending less detailed information in the key values,

     b) not sending the extension key, or

     c) using IPsec ([RFC4303]) to provide confidentiality for the
        iSCSI connection on which the key is sent.

  To support the first and second countermeasures, all implementations
  of this extension key MUST provide an administrative mechanism to
  disable sending the key.  In addition, all implementations SHOULD
  provide an administrative mechanism to configure a verbosity level of
  the key value, thereby controlling the amount of information sent.




Chadalapaka, et al.          Standards Track                  [Page 141]

RFC 7143                  iSCSI (Consolidated)                April 2014


  For example, a lower verbosity level might enable transmission of
  node architecture component names only, but no version numbers.  The
  choice of which countermeasure is most appropriate depends on the
  environment.  However, sending less detailed information in the key
  values may be an acceptable countermeasure in many environments,
  since it provides a compromise between sending too much information
  and the other more complete countermeasures of not sending the key at
  all or using IPsec.

  In addition to security considerations involving transmission of the
  key contents, any logging method(s) used for the key values MUST keep
  the information secure from intruders.  For all implementations, the
  requirements to address this security concern are as follows:

     a) Display of the log MUST only be possible with administrative
        rights to the node.

     b) Options to disable logging to disk and to keep logs for a fixed
        duration SHOULD be provided.

  Finally, it is important to note that different nodes may have
  different levels of risk, and these differences may affect the
  implementation.  The components of risk include assets, threats, and
  vulnerabilities.  Consider the following example iSCSI nodes, which
  demonstrate differences in assets and vulnerabilities of the nodes,
  and, as a result, differences in implementation:

     a) One iSCSI target based on a special-purpose operating system:
        Since the iSCSI target controls access to the data storage
        containing company assets, the asset level is seen as very
        high.  Also, because of the special-purpose operating system,
        in which vulnerabilities are less well known, the vulnerability
        level is viewed as low.

     b) Multiple iSCSI initiators in a blade farm, each running a
        general-purpose operating system: The asset level of each node
        is viewed as low, since blades are replaceable and low cost.
        However, the vulnerability level is viewed as high, since there
        may be many well-known vulnerabilities to that general-purpose
        operating system.  For this target, an appropriate
        implementation might be the logging of received key values but
        no transmission of the key.  For this initiator, an appropriate
        implementation might be transmission of the key but no logging
        of received key values.







Chadalapaka, et al.          Standards Track                  [Page 142]

RFC 7143                  iSCSI (Consolidated)                April 2014


9.5.  SCSI Access Control Considerations

  iSCSI is a SCSI transport protocol and as such does not apply any
  access controls on SCSI-level operations such as SCSI task management
  functions (e.g., LU reset; see Section 11.5.1).  SCSI-level access
  controls (e.g., ACCESS CONTROL OUT; see [SPC3]) have to be
  appropriately deployed in practice to address SCSI-level security
  considerations, in addition to security via iSCSI connection and
  packet protection mechanisms that were already discussed in preceding
  sections.

10.  Notes to Implementers

  This section notes some of the performance and reliability
  considerations of the iSCSI protocol.  This protocol was designed to
  allow efficient silicon and software implementations.  The iSCSI task
  tag mechanism was designed to enable Direct Data Placement (DDP -- a
  DMA form) at the iSCSI level or lower.

  The guiding assumption made throughout the design of this protocol is
  that targets are resource constrained relative to initiators.

  Implementers are also advised to consider the implementation
  consequences of the iSCSI-to-SCSI mapping model as outlined in
  Section 4.4.3.

10.1.  Multiple Network Adapters

  The iSCSI protocol allows multiple connections, not all of which need
  to go over the same network adapter.  If multiple network connections
  are to be utilized with hardware support, the iSCSI protocol command-
  data-status allegiance to one TCP connection ensures that there is no
  need to replicate information across network adapters or otherwise
  require them to cooperate.

  However, some task management commands may require some loose form of
  cooperation or replication at least on the target.

10.1.1.  Conservative Reuse of ISIDs

  Historically, the SCSI model (and implementations and applications
  based on that model) has assumed that SCSI ports are static, physical
  entities.  Recent extensions to the SCSI model have taken advantage
  of persistent worldwide unique names for these ports.  In iSCSI,
  however, the SCSI initiator ports are the endpoints of dynamically
  created sessions, so the presumptions of "static and physical" do not
  apply.  In any case, the "model" sections (particularly,




Chadalapaka, et al.          Standards Track                  [Page 143]

RFC 7143                  iSCSI (Consolidated)                April 2014


  Section 4.4.1) provide for persistent, reusable names for the
  iSCSI-type SCSI initiator ports even though there does not need to be
  any physical entity bound to these names.

  To both minimize the disruption of legacy applications and better
  facilitate the SCSI features that rely on persistent names for SCSI
  ports, iSCSI implementations SHOULD attempt to provide a stable
  presentation of SCSI initiator ports (both to the upper OS layers and
  the targets to which they connect).  This can be achieved in an
  initiator implementation by conservatively reusing ISIDs.  In other
  words, the same ISID should be used in the login process to multiple
  target portal groups (of the same iSCSI target or different iSCSI
  targets).  The ISID RULE (Section 4.4.3) only prohibits reuse to the
  same target portal group.  It does not "preclude" reuse to other
  target portal groups.  The principle of conservative reuse
  "encourages" reuse to other target portal groups.  When a SCSI target
  device sees the same (InitiatorName, ISID) pair in different sessions
  to different target portal groups, it can identify the underlying
  SCSI initiator port on each session as the same SCSI port.  In
  effect, it can recognize multiple paths from the same source.

10.1.2.  iSCSI Name, ISID, and TPGT Use

  The designers of the iSCSI protocol are aware that legacy SCSI
  transports rely on initiator identity to assign access to storage
  resources.  Although newer techniques that simplify access control
  are available, support for configuration and authentication schemes
  that are based on initiator identity is deemed important in order to
  support legacy systems and administration software.  iSCSI thus
  supports the notion that it should be possible to assign access to
  storage resources based on "initiator device" identity.

  When there are multiple hardware or software components coordinated
  as a single iSCSI node, there must be some (logical) entity that
  represents the iSCSI node that makes the iSCSI Node Name available to
  all components involved in session creation and login.  Similarly,
  this entity that represents the iSCSI node must be able to coordinate
  session identifier resources (the ISID for initiators) to enforce
  both the ISID RULE and the TSIH RULE (see Section 4.4.3).

  For targets, because of the closed environment, implementation of
  this entity should be straightforward.  However, vendors of iSCSI
  hardware (e.g., NICs or HBAs) intended for targets SHOULD provide
  mechanisms for configuration of the iSCSI Node Name across the portal
  groups instantiated by multiple instances of these components within
  a target.





Chadalapaka, et al.          Standards Track                  [Page 144]

RFC 7143                  iSCSI (Consolidated)                April 2014


  However, complex targets making use of multiple Target Portal Group
  Tags may reconfigure them to achieve various quality goals.  The
  initiators have two mechanisms at their disposal to discover and/or
  check reconfiguring targets -- the Discovery session type and a key
  returned by the target during login to confirm the TPGT.  An
  initiator should attempt to "rediscover" the target configuration
  whenever a session is terminated unexpectedly.

  For initiators, in the long term, it is expected that operating
  system vendors will take on the role of this entity and provide
  standard APIs that can inform components of their iSCSI Node Name and
  can configure and/or coordinate ISID allocation, use, and reuse.

  Recognizing that such initiator APIs are not available today, other
  implementations of the role of this entity are possible.  For
  example, a human may instantiate the (common) node name as part of
  the installation process of each iSCSI component involved in session
  creation and login.  This may be done by pointing the component to
  either a vendor-specific location for this datum or a system-wide
  location.  The structure of the ISID namespace (see Section 11.12.5
  and [RFC3721]) facilitates implementation of the ISID coordination by
  allowing each component vendor to independently (of other vendor's
  components) coordinate allocation, use, and reuse of its own
  partition of the ISID namespace in a vendor-specific manner.
  Partitioning of the ISID namespace within initiator portal groups
  managed by that vendor allows each such initiator portal group to act
  independently of all other portal groups when selecting an ISID for a
  login; this facilitates enforcement of the ISID RULE (see
  Section 4.4.3) at the initiator.

  A vendor of iSCSI hardware (e.g., NICs or HBAs) intended for use in
  initiators MUST implement a mechanism for configuring the iSCSI Node
  Name.  Vendors and administrators must ensure that iSCSI Node Names
  are worldwide unique.  It is therefore important that when one
  chooses to reuse the iSCSI Node Name of a disabled unit one does not
  reassign that name to the original unit unless its worldwide
  uniqueness can be ascertained again.

  In addition, a vendor of iSCSI hardware must implement a mechanism to
  configure and/or coordinate ISIDs for all sessions managed by
  multiple instances of that hardware within a given iSCSI node.  Such
  configuration might be either permanently preassigned at the factory
  (in a necessarily globally unique way), statically assigned (e.g.,
  partitioned across all the NICs at initialization in a locally unique
  way), or dynamically assigned (e.g., on-line allocator, also in a
  locally unique way).  In the latter two cases, the configuration may





Chadalapaka, et al.          Standards Track                  [Page 145]

RFC 7143                  iSCSI (Consolidated)                April 2014


  be via public APIs (perhaps driven by an independent vendor's
  software, such as the OS vendor) or private APIs driven by the
  vendor's own software.

  The process of name assignment and coordination has to be as
  encompassing and automated as possible, as years of legacy usage have
  shown that it is highly error-prone.  It should be mentioned that
  today SCSI has alternative schemes of access control that can be used
  by all transports, and their security is not dependent on strict
  naming coordination.

10.2.  Autosense and Auto Contingent Allegiance (ACA)

  "Autosense" refers to the automatic return of sense data to the
  initiator in cases where a command did not complete successfully.
  iSCSI initiators and targets MUST support and use Autosense.

  ACA helps preserve ordered command execution in the presence of
  errors.  As there can be many commands in-flight between an initiator
  and a target, SCSI initiator functionality in some operating systems
  depends on ACA to enforce ordered command execution during error
  recovery, and hence iSCSI initiator implementations for those
  operating systems need to support ACA.  In order to support error
  recovery for these operating systems and iSCSI initiators, iSCSI
  targets SHOULD support ACA.

10.3.  iSCSI Timeouts

  iSCSI recovery actions are often dependent on iSCSI timeouts being
  recognized and acted upon before SCSI timeouts.  Determining the
  right timeouts to use for various iSCSI actions (command
  acknowledgments expected, status acknowledgments, etc.) is very much
  dependent on infrastructure (e.g., hardware, links, TCP/IP stack,
  iSCSI driver).  As a guide, the implementer may use an average
  NOP-Out/NOP-In turnaround delay multiplied by a "safety factor"
  (e.g., 4) as a good estimate for the basic delay of the iSCSI stack
  for a given connection.  The safety factor should account for network
  load variability.  For connection teardown, the implementer may want
  to also consider TCP common practice for the given infrastructure.

  Text negotiations MAY also be subject to either time limits or limits
  in the number of exchanges.  Those limits SHOULD be generous enough
  to avoid affecting interoperability (e.g., allowing each key to be
  negotiated on a separate exchange).

  The relationship between iSCSI timeouts and SCSI timeouts should also
  be considered.  SCSI timeouts should be longer than iSCSI timeouts
  plus the time required for iSCSI recovery whenever iSCSI recovery is



Chadalapaka, et al.          Standards Track                  [Page 146]

RFC 7143                  iSCSI (Consolidated)                April 2014


  planned.  Alternatively, an implementer may choose to interlock iSCSI
  timeouts and recovery with SCSI timeouts so that SCSI recovery will
  become active only where iSCSI is not planned to, or failed to,
  recover.

  The implementer may also want to consider the interaction between
  various iSCSI exception events -- such as a digest failure -- and
  subsequent timeouts.  When iSCSI error recovery is active, a digest
  failure is likely to result in discovering a missing command or data
  PDU.  In these cases, an implementer may want to lower the timeout
  values to enable faster initiation for recovery procedures.

10.4.  Command Retry and Cleaning Old Command Instances

  To avoid having old, retried command instances appear in a valid
  command window after a command sequence number wraparound, the
  protocol requires (see Section 4.2.2.1) that on every connection on
  which a retry has been issued a non-immediate command be issued and
  acknowledged within an interval of 2**31 - 1 commands from the CmdSN
  of the retried command.  This requirement can be fulfilled by an
  implementation in several ways.

  The simplest technique to use is to send a (non-retry) non-immediate
  SCSI command (or a NOP if no SCSI command is available for a while)
  after every command retry on the connection on which the retry was
  attempted.  Because errors are deemed rare events, this technique is
  probably the most effective, as it does not involve additional checks
  at the initiator when issuing commands.

10.5.  Sync and Steering Layer, and Performance

  While a Sync and Steering layer is optional, an initiator/target that
  does not have it working against a target/initiator that demands sync
  and steering may experience performance degradation caused by packet
  reordering and loss.  Providing a sync and steering mechanism is
  recommended for all high-speed implementations.

10.6.  Considerations for State-Dependent Devices and Long-Lasting SCSI
      Operations

  Sequential access devices operate on the principle that the position
  of the device is based on the last command processed.  As such,
  command processing order, and knowledge of whether or not the
  previous command was processed, are of the utmost importance to
  maintain data integrity.  For example, inadvertent retries of SCSI
  commands when it is not known if the previous SCSI command was
  processed is a potential data integrity risk.




Chadalapaka, et al.          Standards Track                  [Page 147]

RFC 7143                  iSCSI (Consolidated)                April 2014


  For a sequential access device, consider the scenario in which a SCSI
  SPACE command to backspace one filemark is issued and then reissued
  due to no status received for the command.  If the first SPACE
  command was actually processed, the reissued SPACE command, if
  processed, will cause the position to change.  Thus, a subsequent
  write operation will write data to the wrong position, and any
  previous data at that position will be overwritten.

  For a medium changer device, consider the scenario in which an
  EXCHANGE MEDIUM command (the SOURCE ADDRESS and DESTINATION ADDRESS
  are the same, thus performing a swap) is issued and then reissued due
  to no status received for the command.  If the first EXCHANGE MEDIUM
  command was actually processed, the reissued EXCHANGE MEDIUM command,
  if processed, will perform the swap again.  The net effect is that no
  swap was performed, thus putting data integrity at risk.

  All commands that change the state of the device (e.g., SPACE
  commands for sequential access devices and EXCHANGE MEDIUM commands
  for medium changer devices) MUST be issued as non-immediate commands
  for deterministic and ordered delivery to iSCSI targets.

  For many of those state-changing commands, the execution model also
  assumes that the command is executed exactly once.  Devices
  implementing READ POSITION and LOCATE provide a means for SCSI-level
  command recovery, and new tape-class devices should support those
  commands.  In their absence, a retry at the SCSI level is difficult,
  and error recovery at the iSCSI level is advisable.

  Devices operating on long-latency delivery subsystems and performing
  long-lasting SCSI operations may need mechanisms that enable
  connection replacement while commands are running (e.g., during an
  extended copy operation).

10.6.1.  Determining the Proper ErrorRecoveryLevel

  The implementation and use of a specific ErrorRecoveryLevel should be
  determined based on the deployment scenarios of a given iSCSI
  implementation.  Generally, the following factors must be considered
  before deciding on the proper level of recovery:

     a) Application resilience to I/O failures.

     b) Required level of availability in the face of transport
        connection failures.







Chadalapaka, et al.          Standards Track                  [Page 148]

RFC 7143                  iSCSI (Consolidated)                April 2014


     c) Probability of transport-layer "checksum escape" (message error
        undetected by TCP checksum -- see [RFC3385] for related
        discussion).  This in turn decides the iSCSI digest failure
        frequency and thus the criticality of iSCSI-level error
        recovery.  The details of estimating this probability are
        outside the scope of this document.

  A consideration of the above factors for SCSI tape devices as an
  example suggests that implementations SHOULD use ErrorRecoveryLevel=1
  when transport connection failure is not a concern and SCSI-level
  recovery is unavailable, and ErrorRecoveryLevel=2 when there is a
  high likelihood of connection failure during a backup/retrieval.

  For extended copy operations, implementations SHOULD use
  ErrorRecoveryLevel=2 whenever there is a relatively high likelihood
  of connection failure.

10.7.  Multi-Task Abort Implementation Considerations

  Multi-task abort operations are typically issued in emergencies, such
  as clearing a device lock-up, HA failover/failback, etc.  In these
  circumstances, it is desirable to rapidly go through the error-
  handling process as opposed to the target waiting on multiple third-
  party initiators that may not even be functional anymore --
  especially if this emergency is triggered because of one such
  initiator failure.  Therefore, both iSCSI target and initiator
  implementations SHOULD support FastAbort multi-task abort semantics
  (Section 4.2.3.4).

  Note that in both standard semantics (Section 4.2.3.3) and FastAbort
  semantics (Section 4.2.3.4) there may be outstanding data transfers
  even after the TMF completion is reported on the issuing session.  In
  the case of iSCSI/iSER [RFC7145], these would be tagged data
  transfers for STags not owned by any active tasks.  Whether or not
  real buffers support these data transfers is implementation
  dependent.  However, the data transfers logically MUST be silently
  discarded by the target iSCSI layer in all cases.  A target MAY, on
  an implementation-defined internal timeout, also choose to drop the
  connections on which it did not receive the expected Data-Out
  sequences (Section 4.2.3.3) or NOP-Out acknowledgments
  (Section 4.2.3.4) so as to reclaim the associated buffer, STag, and
  TTT resources as appropriate.









Chadalapaka, et al.          Standards Track                  [Page 149]

RFC 7143                  iSCSI (Consolidated)                April 2014


11.  iSCSI PDU Formats

  All multi-byte integers that are specified in formats defined in this
  document are to be represented in network byte order (i.e.,
  big-endian).  Any field that appears in this document assumes that
  the most significant byte is the lowest numbered byte and the most
  significant bit (within byte or field) is the lowest numbered bit
  unless specified otherwise.

  Any compliant sender MUST set all bits not defined and all reserved
  fields to 0, unless specified otherwise.  Any compliant receiver MUST
  ignore any bit not defined and all reserved fields unless specified
  otherwise.  Receipt of reserved code values in defined fields MUST be
  reported as a protocol error.

  Reserved fields are marked by the word "reserved", some abbreviation
  of "reserved", or by "." for individual bits when no other form of
  marking is technically feasible.

11.1.  iSCSI PDU Length and Padding

  iSCSI PDUs are padded to the closest integer number of 4-byte words.
  The padding bytes SHOULD be sent as 0.

11.2.  PDU Template, Header, and Opcodes

  All iSCSI PDUs have one or more header segments and, optionally, a
  data segment.  After the entire header segment group, a header digest
  MAY follow.  The data segment MAY also be followed by a data digest.

  The Basic Header Segment (BHS) is the first segment in all of the
  iSCSI PDUs.  The BHS is a fixed-length 48-byte header segment.  It
  MAY be followed by Additional Header Segments (AHS), a Header-Digest,
  a Data Segment, and/or a Data-Digest.

















Chadalapaka, et al.          Standards Track                  [Page 150]

RFC 7143                  iSCSI (Consolidated)                April 2014


  The overall structure of an iSCSI PDU is as follows:

  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0/ Basic Header Segment (BHS)                                    /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
  48/ Additional Header Segment 1 (AHS) (optional)                  /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
    / Additional Header Segment 2 (AHS) (optional)                  /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
    +---------------+---------------+---------------+---------------+
    / Additional Header Segment n (AHS) (optional)                  /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
   k/ Header-Digest (optional)                                      /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
   l/ Data Segment (optional)                                       /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
   m/ Data-Digest (optional)                                        /
   +/                                                               /
    +---------------+---------------+---------------+---------------+

  All PDU segments and digests are padded to the closest integer number
  of 4-byte words.  For example, all PDU segments and digests start at
  a 4-byte word boundary, and the padding ranges from 0 to 3 bytes.
  The padding bytes SHOULD be sent as 0.

  iSCSI Response PDUs do not have AH Segments.
















Chadalapaka, et al.          Standards Track                  [Page 151]

RFC 7143                  iSCSI (Consolidated)                April 2014


11.2.1.  Basic Header Segment (BHS)

  The BHS is 48 bytes long.  The Opcode and DataSegmentLength fields
  appear in all iSCSI PDUs.  In addition, when used, the Initiator Task
  Tag and Logical Unit Number always appear in the same location in the
  header.

  The format of the BHS is:

  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0|.|I| Opcode    |F| Opcode-specific fields                      |
    +---------------+---------------+---------------+---------------+
   4|TotalAHSLength | DataSegmentLength                             |
    +---------------+---------------+---------------+---------------+
   8| LUN or Opcode-specific fields                                 |
    +                                                               +
  12|                                                               |
    +---------------+---------------+---------------+---------------+
  16| Initiator Task Tag                                            |
    +---------------+---------------+---------------+---------------+
  20/ Opcode-specific fields                                        /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
  48

11.2.1.1.  I (Immediate) Bit

  For Request PDUs, the I bit set to 1 is an immediate delivery marker.

11.2.1.2.  Opcode

  The Opcode indicates the type of iSCSI PDU the header encapsulates.

  The Opcodes are divided into two categories: initiator Opcodes and
  target Opcodes.  Initiator Opcodes are in PDUs sent by the initiator
  (Request PDUs).  Target Opcodes are in PDUs sent by the target
  (Response PDUs).

  Initiators MUST NOT use target Opcodes, and targets MUST NOT use
  initiator Opcodes.








Chadalapaka, et al.          Standards Track                  [Page 152]

RFC 7143                  iSCSI (Consolidated)                April 2014


  Initiator Opcodes defined in this specification are:

     0x00 NOP-Out

     0x01 SCSI Command (encapsulates a SCSI Command Descriptor
          Block)

     0x02 SCSI Task Management Function Request

     0x03 Login Request

     0x04 Text Request

     0x05 SCSI Data-Out (for write operations)

     0x06 Logout Request

     0x10 SNACK Request

     0x1c-0x1e Vendor-specific codes

  Target Opcodes are:

     0x20 NOP-In

     0x21 SCSI Response - contains SCSI status and possibly sense
          information or other response information

     0x22 SCSI Task Management Function Response

     0x23 Login Response

     0x24 Text Response

     0x25 SCSI Data-In (for read operations)

     0x26 Logout Response

     0x31 Ready To Transfer (R2T) - sent by target when it is ready
          to receive data

     0x32 Asynchronous Message - sent by target to indicate certain
          special conditions

     0x3c-0x3e Vendor-specific codes

     0x3f Reject




Chadalapaka, et al.          Standards Track                  [Page 153]

RFC 7143                  iSCSI (Consolidated)                April 2014


  All other Opcodes are unassigned.

11.2.1.3.  F (Final) Bit

  When set to 1 it indicates the final (or only) PDU of a sequence.

11.2.1.4.  Opcode-Specific Fields

  These fields have different meanings for different Opcode types.

11.2.1.5.  TotalAHSLength

  This is the total length of all AHS header segments in units of
  4-byte words, including padding, if any.

  The TotalAHSLength is only used in PDUs that have an AHS and MUST be
  0 in all other PDUs.

11.2.1.6.  DataSegmentLength

  This is the data segment payload length in bytes (excluding padding).
  The DataSegmentLength MUST be 0 whenever the PDU has no data segment.

11.2.1.7.  LUN

  Some Opcodes operate on a specific LU.  The Logical Unit Number (LUN)
  field identifies which LU.  If the Opcode does not relate to a LU,
  this field is either ignored or may be used in an Opcode-specific
  way.  The LUN field is 64 bits and should be formatted in accordance
  with [SAM2].  For example, LUN[0] from [SAM2] is BHS byte 8 and so on
  up to LUN[7] from [SAM2], which is BHS byte 15.

11.2.1.8.  Initiator Task Tag

  The initiator assigns a task tag to each iSCSI task it issues.  While
  a task exists, this tag MUST uniquely identify the task session-wide.
  SCSI may also use the Initiator Task Tag as part of the SCSI task
  identifier when the timespan during which an iSCSI Initiator Task Tag
  must be unique extends over the timespan during which a SCSI task tag
  must be unique.  However, the iSCSI Initiator Task Tag must exist and
  be unique even for untagged SCSI commands.

  An ITT value of 0xffffffff is reserved and MUST NOT be assigned for a
  task by the initiator.  The only instance in which it may be seen on
  the wire is in a target-initiated NOP-In PDU (Section 11.19) and in
  the initiator response to that PDU, if necessary.





Chadalapaka, et al.          Standards Track                  [Page 154]

RFC 7143                  iSCSI (Consolidated)                April 2014


11.2.2.  Additional Header Segment (AHS)

  The general format of an AHS is:

  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0| AHSLength                     | AHSType       | AHS-Specific  |
    +---------------+---------------+---------------+---------------+
   4/ AHS-Specific                                                  /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
   x

11.2.2.1.  AHSType

  The AHSType field is coded as follows:

     bit 0-1 - Reserved

     bit 2-7 - AHS code

     0 - Reserved

     1 - Extended CDB

     2 - Bidirectional Read Expected Data Transfer Length

     3 - 63 Reserved

11.2.2.2.  AHSLength

  This field contains the effective length in bytes of the AHS,
  excluding AHSType and AHSLength and padding, if any.  The AHS is
  padded to the smallest integer number of 4-byte words (i.e., from 0
  up to 3 padding bytes).














Chadalapaka, et al.          Standards Track                  [Page 155]

RFC 7143                  iSCSI (Consolidated)                April 2014


11.2.2.3.  Extended CDB AHS

  The format of the Extended CDB AHS is:

  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0| AHSLength (CDBLength - 15)    | 0x01          |  Reserved     |
    +---------------+---------------+---------------+---------------+
   4/ ExtendedCDB...+padding                                        /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
   x

  This type of AHS MUST NOT be used if the CDBLength is less than 17.

  The length includes the reserved byte 3.

11.2.2.4.  Bidirectional Read Expected Data Transfer Length AHS

  The format of the Bidirectional Read Expected Data Transfer Length
  AHS is:

  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0| AHSLength (0x0005)            | 0x02          | Reserved      |
    +---------------+---------------+---------------+---------------+
   4| Bidirectional Read Expected Data Transfer Length              |
    +---------------+---------------+---------------+---------------+
   8

11.2.3.  Header Digest and Data Digest

  Optional header and data digests protect the integrity of the header
  and data, respectively.  The digests, if present, are located,
  respectively, after the header and PDU-specific data and cover,
  respectively, the header and the PDU data, each including the padding
  bytes, if any.

  The existence and type of digests are negotiated during the Login
  Phase.







Chadalapaka, et al.          Standards Track                  [Page 156]

RFC 7143                  iSCSI (Consolidated)                April 2014


  The separation of the header and data digests is useful in iSCSI
  routing applications, in which only the header changes when a message
  is forwarded.  In this case, only the header digest should be
  recalculated.

  Digests are not included in data or header length fields.

  A zero-length Data Segment also implies a zero-length Data-Digest.

11.2.4.  Data Segment

  The (optional) Data Segment contains PDU-associated data.  Its
  payload effective length is provided in the BHS field --
  DataSegmentLength.  The Data Segment is also padded to an integer
  number of 4-byte words.




































Chadalapaka, et al.          Standards Track                  [Page 157]

RFC 7143                  iSCSI (Consolidated)                April 2014


11.3.  SCSI Command

  The format of the SCSI Command PDU is:

  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0|.|I| 0x01      |F|R|W|. .|ATTR | Reserved                      |
    +---------------+---------------+---------------+---------------+
   4|TotalAHSLength | DataSegmentLength                             |
    +---------------+---------------+---------------+---------------+
   8| Logical Unit Number (LUN)                                     |
    +                                                               +
  12|                                                               |
    +---------------+---------------+---------------+---------------+
  16| Initiator Task Tag                                            |
    +---------------+---------------+---------------+---------------+
  20| Expected Data Transfer Length                                 |
    +---------------+---------------+---------------+---------------+
  24| CmdSN                                                         |
    +---------------+---------------+---------------+---------------+
  28| ExpStatSN                                                     |
    +---------------+---------------+---------------+---------------+
  32/ SCSI Command Descriptor Block (CDB)                           /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
  48/ AHS (optional)                                                /
    +---------------+---------------+---------------+---------------+
   x/ Header-Digest (optional)                                      /
    +---------------+---------------+---------------+---------------+
   y/ (DataSegment, Command Data) (optional)                        /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
   z/ Data-Digest (optional)                                        /
    +---------------+---------------+---------------+---------------+















Chadalapaka, et al.          Standards Track                  [Page 158]

RFC 7143                  iSCSI (Consolidated)                April 2014


11.3.1.  Flags and Task Attributes (Byte 1)

  The flags for a SCSI Command PDU are:

     bit 0    (F) is set to 1 when no unsolicited SCSI Data-Out PDUs
              follow this PDU.  When F = 1 for a write and if Expected
              Data Transfer Length is larger than the
              DataSegmentLength, the target may solicit additional data
              through R2T.

     bit 1    (R) is set to 1 when the command is expected to input
              data.

     bit 2    (W) is set to 1 when the command is expected to output
              data.

     bit 3-4  Reserved.

     bit 5-7  contains Task Attributes.

  Task Attributes (ATTR) have one of the following integer values (see
  [SAM2] for details):

       0 - Untagged

       1 - Simple

       2 - Ordered

       3 - Head of queue

       4 - ACA

     5-7 - Reserved

  At least one of the W and F bits MUST be set to 1.

  Either or both of R and W MAY be 1 when the Expected Data Transfer
  Length and/or the Bidirectional Read Expected Data Transfer Length
  are 0, but they MUST NOT both be 0 when the Expected Data Transfer
  Length and/or Bidirectional Read Expected Data Transfer Length are
  not 0 (i.e., when some data transfer is expected, the transfer
  direction is indicated by the R and/or W bit).

11.3.2.  CmdSN - Command Sequence Number

  The CmdSN enables ordered delivery across multiple connections in a
  single session.



Chadalapaka, et al.          Standards Track                  [Page 159]

RFC 7143                  iSCSI (Consolidated)                April 2014


11.3.3.  ExpStatSN

  Command responses up to ExpStatSN - 1 (modulo 2**32) have been
  received (acknowledges status) on the connection.

11.3.4.  Expected Data Transfer Length

  For unidirectional operations, the Expected Data Transfer Length
  field contains the number of bytes of data involved in this SCSI
  operation.  For a unidirectional write operation (W flag set to 1 and
  R flag set to 0), the initiator uses this field to specify the number
  of bytes of data it expects to transfer for this operation.  For a
  unidirectional read operation (W flag set to 0 and R flag set to 1),
  the initiator uses this field to specify the number of bytes of data
  it expects the target to transfer to the initiator.  It corresponds
  to the SAM-2 byte count.

  For bidirectional operations (both R and W flags are set to 1), this
  field contains the number of data bytes involved in the write
  transfer.  For bidirectional operations, an additional header segment
  MUST be present in the header sequence that indicates the
  Bidirectional Read Expected Data Transfer Length.  The Expected Data
  Transfer Length field and the Bidirectional Read Expected Data
  Transfer Length field correspond to the SAM-2 byte count.

  If the Expected Data Transfer Length for a write and the length of
  the immediate data part that follows the command (if any) are the
  same, then no more data PDUs are expected to follow.  In this case,
  the F bit MUST be set to 1.

  If the Expected Data Transfer Length is higher than the
  FirstBurstLength (the negotiated maximum amount of unsolicited data
  the target will accept), the initiator MUST send the maximum amount
  of unsolicited data OR ONLY the immediate data, if any.

  Upon completion of a data transfer, the target informs the initiator
  (through residual counts) of how many bytes were actually processed
  (sent and/or received) by the target.

11.3.5.  CDB - SCSI Command Descriptor Block

  There are 16 bytes in the CDB field to accommodate the commonly used
  CDBs.  Whenever the CDB is larger than 16 bytes, an Extended CDB AHS
  MUST be used to contain the CDB spillover.







Chadalapaka, et al.          Standards Track                  [Page 160]

RFC 7143                  iSCSI (Consolidated)                April 2014


11.3.6.  Data Segment - Command Data

  Some SCSI commands require additional parameter data to accompany the
  SCSI command.  This data may be placed beyond the boundary of the
  iSCSI header in a data segment.  Alternatively, user data (e.g., from
  a write operation) can be placed in the data segment (both cases are
  referred to as immediate data).  These data are governed by the rules
  for solicited vs. unsolicited data outlined in Section 4.2.5.2.

11.4.  SCSI Response

  The format of the SCSI Response PDU is:

  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0|.|.| 0x21      |1|. .|o|u|O|U|.| Response      | Status        |
    +---------------+---------------+---------------+---------------+
   4|TotalAHSLength | DataSegmentLength                             |
    +---------------+---------------+---------------+---------------+
   8| Reserved                                                      |
    +                                                               +
  12|                                                               |
    +---------------+---------------+---------------+---------------+
  16| Initiator Task Tag                                            |
    +---------------+---------------+---------------+---------------+
  20| SNACK Tag or Reserved                                         |
    +---------------+---------------+---------------+---------------+
  24| StatSN                                                        |
    +---------------+---------------+---------------+---------------+
  28| ExpCmdSN                                                      |
    +---------------+---------------+---------------+---------------+
  32| MaxCmdSN                                                      |
    +---------------+---------------+---------------+---------------+
  36| ExpDataSN or Reserved                                         |
    +---------------+---------------+---------------+---------------+
  40| Bidirectional Read Residual Count or Reserved                 |
    +---------------+---------------+---------------+---------------+
  44| Residual Count or Reserved                                    |
    +---------------+---------------+---------------+---------------+
  48| Header-Digest (optional)                                      |
    +---------------+---------------+---------------+---------------+
    / Data Segment (optional)                                       /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
    | Data-Digest (optional)                                        |
    +---------------+---------------+---------------+---------------+



Chadalapaka, et al.          Standards Track                  [Page 161]

RFC 7143                  iSCSI (Consolidated)                April 2014


11.4.1.  Flags (Byte 1)

  bit 1-2     Reserved.

  bit 3 - (o) set for Bidirectional Read Residual Overflow.  In this
              case, the Bidirectional Read Residual Count indicates the
              number of bytes that were not transferred to the
              initiator because the initiator's Bidirectional Read
              Expected Data Transfer Length was not sufficient.

  bit 4 - (u) set for Bidirectional Read Residual Underflow.  In this
              case, the Bidirectional Read Residual Count indicates the
              number of bytes that were not transferred to the
              initiator out of the number of bytes expected to be
              transferred.

  bit 5 - (O) set for Residual Overflow.  In this case, the Residual
              Count indicates the number of bytes that were not
              transferred because the initiator's Expected Data
              Transfer Length was not sufficient.  For a bidirectional
              operation, the Residual Count contains the residual for
              the write operation.

  bit 6 - (U) set for Residual Underflow.  In this case, the Residual
              Count indicates the number of bytes that were not
              transferred out of the number of bytes that were expected
              to be transferred.  For a bidirectional operation, the
              Residual Count contains the residual for the write
              operation.

  bit 7 - (0) Reserved.

  Bits O and U and bits o and u are mutually exclusive (i.e., having
  both o and u or O and U set to 1 is a protocol error).

  For a response other than "Command Completed at Target", bits 3-6
  MUST be 0.














Chadalapaka, et al.          Standards Track                  [Page 162]

RFC 7143                  iSCSI (Consolidated)                April 2014


11.4.2.  Status

  The Status field is used to report the SCSI status of the command (as
  specified in [SAM2]) and is only valid if the response code is
  Command Completed at Target.

  Some of the status codes defined in [SAM2] are:

     0x00 GOOD

     0x02 CHECK CONDITION

     0x08 BUSY

     0x18 RESERVATION CONFLICT

     0x28 TASK SET FULL

     0x30 ACA ACTIVE

     0x40 TASK ABORTED

  See [SAM2] for the complete list and definitions.

  If a SCSI device error is detected while data from the initiator is
  still expected (the command PDU did not contain all the data and the
  target has not received a data PDU with the Final bit set), the
  target MUST wait until it receives a data PDU with the F bit set in
  the last expected sequence before sending the Response PDU.

11.4.3.  Response

  This field contains the iSCSI service response.

  iSCSI service response codes defined in this specification are:

     0x00 - Command Completed at Target

     0x01 - Target Failure

     0x80-0xff - Vendor specific

  All other response codes are reserved.

  The Response field is used to report a service response.  The mapping
  of the response code into a SCSI service response code value, if
  needed, is outside the scope of this document.  However, in symbolic
  terms, response value 0x00 maps to the SCSI service response (see



Chadalapaka, et al.          Standards Track                  [Page 163]

RFC 7143                  iSCSI (Consolidated)                April 2014


  [SAM2] and [SPC3]) of TASK COMPLETE or LINKED COMMAND COMPLETE.  All
  other Response values map to the SCSI service response of SERVICE
  DELIVERY OR TARGET FAILURE.

  If a SCSI Response PDU does not arrive before the session is
  terminated, the SCSI service response is SERVICE DELIVERY OR TARGET
  FAILURE.

  A non-zero response field indicates a failure to execute the command,
  in which case the Status and Flag fields are undefined and MUST be
  ignored on reception.

11.4.4.  SNACK Tag

  This field contains a copy of the SNACK Tag of the last SNACK Tag
  accepted by the target on the same connection and for the command for
  which the response is issued.  Otherwise, it is reserved and should
  be set to 0.

  After issuing a R-Data SNACK, the initiator must discard any SCSI
  status unless contained in a SCSI Response PDU carrying the same
  SNACK Tag as the last issued R-Data SNACK for the SCSI command on the
  current connection.

  For a detailed discussion on R-Data SNACK, see Section 11.16.3.

11.4.5.  Residual Count

11.4.5.1.  Field Semantics

  The Residual Count field MUST be valid in the case where either the U
  bit or the O bit is set.  If neither bit is set, the Residual Count
  field MUST be ignored on reception and SHOULD be set to 0 when
  sending.  Targets may set the residual count, and initiators may use
  it when the response code is Command Completed at Target (even if the
  status returned is not GOOD).  If the O bit is set, the Residual
  Count indicates the number of bytes that were not transferred because
  the initiator's Expected Data Transfer Length was not sufficient.  If
  the U bit is set, the Residual Count indicates the number of bytes
  that were not transferred out of the number of bytes expected to be
  transferred.

11.4.5.2.  Residuals Concepts Overview

  "SCSI-Presented Data Transfer Length (SPDTL)" is the term this
  document uses (see Section 2.2 for definition) to represent the
  aggregate data length that the target SCSI layer attempts to transfer
  using the local iSCSI layer for a task.  "Expected Data Transfer



Chadalapaka, et al.          Standards Track                  [Page 164]

RFC 7143                  iSCSI (Consolidated)                April 2014


  Length (EDTL)" is the iSCSI term that represents the length of data
  that the iSCSI layer expects to transfer for a task.  EDTL is
  specified in the SCSI Command PDU.

  When SPDTL = EDTL for a task, the target iSCSI layer completes the
  task with no residuals.  Whenever SPDTL differs from EDTL for a task,
  that task is said to have a residual.

  If SPDTL > EDTL for a task, iSCSI Overflow MUST be signaled in the
  SCSI Response PDU as specified in Section 11.4.5.1.  The Residual
  Count MUST be set to the numerical value of (SPDTL - EDTL).

  If SPDTL < EDTL for a task, iSCSI Underflow MUST be signaled in the
  SCSI Response PDU as specified in Section 11.4.5.1.  The Residual
  Count MUST be set to the numerical value of (EDTL - SPDTL).

  Note that the Overflow and Underflow scenarios are independent of
  Data-In and Data-Out.  Either scenario is logically possible in
  either direction of data transfer.

11.4.5.3.  SCSI REPORT LUNS Command and Residual Overflow

  This section discusses the residual overflow issues, citing the
  example of the SCSI REPORT LUNS command.  Note, however, that there
  are several SCSI commands (e.g., INQUIRY) with ALLOCATION LENGTH
  fields following the same underlying rules.  The semantics in the
  rest of the section apply to all such SCSI commands.

  The specification of the SCSI REPORT LUNS command requires that the
  SCSI target limit the amount of data transferred to a maximum size
  (ALLOCATION LENGTH) provided by the initiator in the REPORT LUNS CDB.

  If the Expected Data Transfer Length (EDTL) in the iSCSI header of
  the SCSI Command PDU for a REPORT LUNS command is set to at least as
  large as that ALLOCATION LENGTH, the SCSI-layer truncation prevents
  an iSCSI Residual Overflow from occurring.  A SCSI initiator can
  detect that such truncation has occurred via other information at the
  SCSI layer.  The rest of the section elaborates on this required
  behavior.

  The SCSI REPORT LUNS command requests a target SCSI layer to return a
  LU inventory (LUN list) to the initiator SCSI layer (see Clause 6.21
  of [SPC3]).  The size of this LUN list may not be known to the
  initiator SCSI layer when it issues the REPORT LUNS command; to avoid
  transferring more LUN list data than the initiator is prepared for,
  the REPORT LUNS CDB contains an ALLOCATION LENGTH field to specify
  the maximum amount of data to be transferred to the initiator for
  this command.  If the initiator SCSI layer has underestimated the



Chadalapaka, et al.          Standards Track                  [Page 165]

RFC 7143                  iSCSI (Consolidated)                April 2014


  number of LUs at the target, it is possible that the complete LU
  inventory does not fit in the specified ALLOCATION LENGTH.  In this
  situation, Clause 4.3.4.6 of [SPC3] requires that the target SCSI
  layer "shall terminate transfers to the Data-In Buffer" when the
  number of bytes specified by the ALLOCATION LENGTH field have been
  transferred.

  Therefore, in response to a REPORT LUNS command, the SCSI layer at
  the target presents at most ALLOCATION LENGTH bytes of data (LU
  inventory) to iSCSI for transfer to the initiator.  For a REPORT LUNS
  command, if the iSCSI EDTL is at least as large as the ALLOCATION
  LENGTH, the SCSI truncation ensures that the EDTL will accommodate
  all of the data to be transferred.  If all of the LU inventory data
  presented to the iSCSI layer -- i.e., the data remaining after any
  SCSI truncation -- is transferred to the initiator by the iSCSI
  layer, an iSCSI Residual Overflow has not occurred and the iSCSI (O)
  bit MUST NOT be set in the SCSI Response or final SCSI Data-Out PDU.
  Note that this behavior is implied in Section 11.4.5.1, along with
  the specification of the REPORT LUNS command in [SPC3].  However, if
  the iSCSI EDTL is larger than the ALLOCATION LENGTH in this scenario,
  note that the iSCSI Underflow MUST be signaled in the SCSI Response
  PDU.  An iSCSI Underflow MUST also be signaled when the iSCSI EDTL is
  equal to the ALLOCATION LENGTH but the LU inventory data presented to
  the iSCSI layer is smaller than the ALLOCATION LENGTH.

  The LUN LIST LENGTH field in the LU inventory (the first field in the
  inventory) is not affected by truncation of the inventory to fit in
  ALLOCATION LENGTH; this enables a SCSI initiator to determine that
  the received inventory is incomplete by noticing that the LUN LIST
  LENGTH in the inventory is larger than the ALLOCATION LENGTH that was
  sent in the REPORT LUNS CDB.  A common initiator behavior in this
  situation is to reissue the REPORT LUNS command with a larger
  ALLOCATION LENGTH.

11.4.6.  Bidirectional Read Residual Count

  The Bidirectional Read Residual Count field MUST be valid in the case
  where either the u bit or the o bit is set.  If neither bit is set,
  the Bidirectional Read Residual Count field is reserved.  Targets may
  set the Bidirectional Read Residual Count, and initiators may use it
  when the response code is Command Completed at Target.  If the o bit
  is set, the Bidirectional Read Residual Count indicates the number of
  bytes that were not transferred to the initiator because the
  initiator's Bidirectional Read Expected Data Transfer Length was not
  sufficient.  If the u bit is set, the Bidirectional Read Residual
  Count indicates the number of bytes that were not transferred to the
  initiator out of the number of bytes expected to be transferred.




Chadalapaka, et al.          Standards Track                  [Page 166]

RFC 7143                  iSCSI (Consolidated)                April 2014


11.4.7.  Data Segment - Sense and Response Data Segment

  iSCSI targets MUST support and enable Autosense.  If Status is CHECK
  CONDITION (0x02), then the data segment MUST contain sense data for
  the failed command.

  For some iSCSI responses, the response data segment MAY contain some
  response-related information (e.g., for a target failure, it may
  contain a vendor-specific detailed description of the failure).

  If the DataSegmentLength is not 0, the format of the data segment is
  as follows:

  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0|SenseLength                    | Sense Data                    |
    +---------------+---------------+---------------+---------------+
   x/ Sense Data                                                    /
    +---------------+---------------+---------------+---------------+
   y/ Response Data                                                 /
    /                                                               /
    +---------------+---------------+---------------+---------------+

11.4.7.1.  SenseLength

  This field indicates the length of Sense Data.























Chadalapaka, et al.          Standards Track                  [Page 167]

RFC 7143                  iSCSI (Consolidated)                April 2014


11.4.7.2.  Sense Data

  The Sense Data contains detailed information about a CHECK CONDITION.
  [SPC3] specifies the format and content of the Sense Data.

  Certain iSCSI conditions result in the command being terminated at
  the target (response code of Command Completed at Target) with a SCSI
  CHECK CONDITION Status as outlined in the next table:

  +--------------------------+-----------+---------------------------+
  | iSCSI Condition          |Sense      | Additional Sense Code and |
  |                          |Key        | Qualifier                 |
  +--------------------------+-----------+---------------------------+
  | Unexpected unsolicited   |Aborted    | ASC = 0x0c ASCQ = 0x0c    |
  | data                     |Command-0B | Write Error               |
  +--------------------------+-----------+---------------------------+
  | Incorrect amount of data |Aborted    | ASC = 0x0c ASCQ = 0x0d    |
  |                          |Command-0B | Write Error               |
  +--------------------------+-----------+---------------------------+
  | Protocol Service CRC     |Aborted    | ASC = 0x47 ASCQ = 0x05    |
  | error                    |Command-0B | CRC Error Detected        |
  +--------------------------+-----------+---------------------------+
  | SNACK rejected           |Aborted    | ASC = 0x11 ASCQ = 0x13    |
  |                          |Command-0B | Read Error                |
  +--------------------------+-----------+---------------------------+

  The target reports the "Incorrect amount of data" condition if,
  during data output, the total data length to output is greater than
  FirstBurstLength and the initiator sent unsolicited non-immediate
  data but the total amount of unsolicited data is different than
  FirstBurstLength.  The target reports the same error when the amount
  of data sent as a reply to an R2T does not match the amount
  requested.

11.4.8.  ExpDataSN

  This field indicates the number of Data-In (read) PDUs the target has
  sent for the command.

  This field MUST be 0 if the response code is not Command Completed at
  Target or the target sent no Data-In PDUs for the command.

11.4.9.  StatSN - Status Sequence Number

  The StatSN is a sequence number that the target iSCSI layer generates
  per connection and that in turn enables the initiator to acknowledge
  status reception.  The StatSN is incremented by 1 for every
  response/status sent on a connection, except for responses sent as a



Chadalapaka, et al.          Standards Track                  [Page 168]

RFC 7143                  iSCSI (Consolidated)                April 2014


  result of a retry or SNACK.  In the case of responses sent due to a
  retransmission request, the StatSN MUST be the same as the first time
  the PDU was sent, unless the connection has since been restarted.

11.4.10.  ExpCmdSN - Next Expected CmdSN from This Initiator

  The ExpCmdSN is a sequence number that the target iSCSI returns to
  the initiator to acknowledge command reception.  It is used to update
  a local variable with the same name.  An ExpCmdSN equal to
  MaxCmdSN + 1 indicates that the target cannot accept new commands.

11.4.11.  MaxCmdSN - Maximum CmdSN from This Initiator

  The MaxCmdSN is a sequence number that the target iSCSI returns to
  the initiator to indicate the maximum CmdSN the initiator can send.
  It is used to update a local variable with the same name.  If the
  MaxCmdSN is equal to ExpCmdSN - 1, this indicates to the initiator
  that the target cannot receive any additional commands.  When the
  MaxCmdSN changes at the target while the target has no pending PDUs
  to convey this information to the initiator, it MUST generate a
  NOP-In to carry the new MaxCmdSN.






























Chadalapaka, et al.          Standards Track                  [Page 169]

RFC 7143                  iSCSI (Consolidated)                April 2014


11.5.  Task Management Function Request

  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0|.|I| 0x02      |1| Function    | Reserved                      |
    +---------------+---------------+---------------+---------------+
   4|TotalAHSLength | DataSegmentLength                             |
    +---------------+---------------+---------------+---------------+
   8| Logical Unit Number (LUN) or Reserved                         |
    +                                                               +
  12|                                                               |
    +---------------+---------------+---------------+---------------+
  16| Initiator Task Tag                                            |
    +---------------+---------------+---------------+---------------+
  20| Referenced Task Tag or 0xffffffff                             |
    +---------------+---------------+---------------+---------------+
  24| CmdSN                                                         |
    +---------------+---------------+---------------+---------------+
  28| ExpStatSN                                                     |
    +---------------+---------------+---------------+---------------+
  32| RefCmdSN or Reserved                                          |
    +---------------+---------------+---------------+---------------+
  36| ExpDataSN or Reserved                                         |
    +---------------+---------------+---------------+---------------+
  40/ Reserved                                                      /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
  48| Header-Digest (optional)                                      |
    +---------------+---------------+---------------+---------------+

11.5.1.  Function

  The task management functions provide an initiator with a way to
  explicitly control the execution of one or more tasks (SCSI and iSCSI
  tasks).  The task management function codes are listed below.  For a
  more detailed description of SCSI task management, see [SAM2].

     1  ABORT TASK - aborts the task identified by the Referenced Task
        Tag field.

     2  ABORT TASK SET - aborts all tasks issued via this session on
        the LU.

     3  CLEAR ACA - clears the Auto Contingent Allegiance condition.





Chadalapaka, et al.          Standards Track                  [Page 170]

RFC 7143                  iSCSI (Consolidated)                April 2014


     4  CLEAR TASK SET - aborts all tasks in the appropriate task set
        as defined by the TST field in the Control mode page
        (see [SPC3]).

     5  LOGICAL UNIT RESET

     6  TARGET WARM RESET

     7  TARGET COLD RESET

     8  TASK REASSIGN - reassigns connection allegiance for the task
        identified by the Initiator Task Tag field to this connection,
        thus resuming the iSCSI exchanges for the task.

  Values 9-12 are assigned in [RFC7144].  All other possible values for
  the Function field are unassigned.

  For all these functions, the Task Management Function Response MUST
  be returned as detailed in Section 11.6.  All these functions apply
  to the referenced tasks, regardless of whether they are proper SCSI
  tasks or tagged iSCSI operations.  Task management requests must act
  on all the commands from the same session having a CmdSN lower than
  the task management CmdSN.  LOGICAL UNIT RESET, TARGET WARM RESET,
  and TARGET COLD RESET may affect commands from other sessions or
  commands from the same session, regardless of their CmdSN value.

  If the task management request is marked for immediate delivery, it
  must be considered immediately for execution, but the operations
  involved (all or part of them) may be postponed to allow the target
  to receive all relevant tasks.  According to [SAM2], for all the
  tasks covered by the task management response (i.e., with a CmdSN
  lower than the task management command CmdSN), except for the task
  management response to a TASK REASSIGN, additional responses MUST NOT
  be delivered to the SCSI layer after the task management response.
  The iSCSI initiator MAY deliver to the SCSI layer all responses
  received before the task management response (i.e., it is a matter of
  implementation if the SCSI responses that are received before the
  task management response but after the task management request was
  issued are delivered to the SCSI layer by the iSCSI layer in the
  initiator).  The iSCSI target MUST ensure that no responses for the
  tasks covered by a task management function are delivered to the
  iSCSI initiator after the task management response, except for a task
  covered by a TASK REASSIGN.

  For ABORT TASK SET and CLEAR TASK SET, the issuing initiator MUST
  continue to respond to all valid Target Transfer Tags (received via
  R2T, Text Response, NOP-In, or SCSI Data-In PDUs) related to the
  affected task set, even after issuing the task management request.



Chadalapaka, et al.          Standards Track                  [Page 171]

RFC 7143                  iSCSI (Consolidated)                April 2014


  The issuing initiator SHOULD, however, terminate (i.e., by setting
  the F bit to 1) these response sequences as quickly as possible.  The
  target for its part MUST wait for responses on all affected Target
  Transfer Tags before acting on either of these two task management
  requests.  If all or part of the response sequence is not received
  (due to digest errors) for a valid TTT, the target MAY treat it as a
  case of a within-command error recovery class (see Section 7.1.4.1)
  if it is supporting ErrorRecoveryLevel >= 1 or, alternatively, may
  drop the connection to complete the requested task set function.

  If an ABORT TASK is issued for a task created by an immediate
  command, then the RefCmdSN MUST be that of the task management
  request itself (i.e., the CmdSN and RefCmdSN are equal); otherwise,
  the RefCmdSN MUST be set to the CmdSN of the task to be aborted
  (lower than the CmdSN).

  If the connection is still active (i.e., it is not undergoing an
  implicit or explicit logout), an ABORT TASK MUST be issued on the
  same connection to which the task to be aborted is allegiant at the
  time the task management request is issued.  If the connection is
  implicitly or explicitly logged out (i.e., no other request will be
  issued on the failing connection and no other response will be
  received on the failing connection), then an ABORT TASK function
  request may be issued on another connection.  This task management
  request will then establish a new allegiance for the command to be
  aborted as well as abort it (i.e., the task to be aborted will not
  have to be retried or reassigned, and its status, if sent but not
  acknowledged, will be resent followed by the task management
  response).

  At the target, an ABORT TASK function MUST NOT be executed on a task
  management request; such a request MUST result in a task management
  response of "Function rejected".

  For the LOGICAL UNIT RESET function, the target MUST behave as
  dictated by the Logical Unit Reset function in [SAM2].

  The implementation of the TARGET WARM RESET function and the TARGET
  COLD RESET function is OPTIONAL and, when implemented, should act as
  described below.  The TARGET WARM RESET is also subject to SCSI
  access controls on the requesting initiator as defined in [SPC3].
  When authorization fails at the target, the appropriate response as
  described in Section 11.6.1 MUST be returned by the target.  The
  TARGET COLD RESET function is not subject to SCSI access controls,
  but its execution privileges may be managed by iSCSI mechanisms such
  as login authentication.





Chadalapaka, et al.          Standards Track                  [Page 172]

RFC 7143                  iSCSI (Consolidated)                April 2014


  When executing the TARGET WARM RESET and TARGET COLD RESET functions,
  the target cancels all pending operations on all LUs known by the
  issuing initiator.  Both functions are equivalent to the TARGET RESET
  function specified by [SAM2].  They can affect many other initiators
  logged in with the servicing SCSI target port.

  Additionally, the target MUST treat the TARGET COLD RESET function as
  a power-on event, thus terminating all of its TCP connections to all
  initiators (all sessions are terminated).  For this reason, the
  service response (defined by [SAM2]) for this SCSI task management
  function may not be reliably delivered to the issuing initiator port.

  For the TASK REASSIGN function, the target should reassign the
  connection allegiance to this new connection (and thus resume iSCSI
  exchanges for the task).  TASK REASSIGN MUST ONLY be received by the
  target after the connection on which the command was previously
  executing has been successfully logged out.  The task management
  response MUST be issued before the reassignment becomes effective.

  For additional usage semantics, see Section 7.2.

  At the target, a TASK REASSIGN function request MUST NOT be executed
  to reassign the connection allegiance of a Task Management Function
  Request, an active text negotiation task, or a Logout task; such a
  request MUST result in a task management response of "Function
  rejected".

  TASK REASSIGN MUST be issued as an immediate command.

11.5.2.  TotalAHSLength and DataSegmentLength

  For this PDU, TotalAHSLength and DataSegmentLength MUST be 0.

11.5.3.  LUN

  This field is required for functions that address a specific LU
  (ABORT TASK, CLEAR TASK SET, ABORT TASK SET, CLEAR ACA, LOGICAL UNIT
  RESET) and is reserved in all others.

11.5.4.  Referenced Task Tag

  This is the Initiator Task Tag of the task to be aborted for the
  ABORT TASK function or reassigned for the TASK REASSIGN function.
  For all the other functions, this field MUST be set to the reserved
  value 0xffffffff.






Chadalapaka, et al.          Standards Track                  [Page 173]

RFC 7143                  iSCSI (Consolidated)                April 2014


11.5.5.  RefCmdSN

  If an ABORT TASK is issued for a task created by an immediate
  command, then the RefCmdSN MUST be that of the task management
  request itself (i.e., the CmdSN and RefCmdSN are equal).

  For an ABORT TASK of a task created by a non-immediate command, the
  RefCmdSN MUST be set to the CmdSN of the task identified by the
  Referenced Task Tag field.  Targets must use this field as described
  in Section 11.6.1 when the task identified by the Referenced Task Tag
  field is not with the target.

  Otherwise, this field is reserved.

11.5.6.  ExpDataSN

  For recovery purposes, the iSCSI target and initiator maintain a data
  acknowledgment reference number -- the first input DataSN number
  unacknowledged by the initiator.  When issuing a new command, this
  number is set to 0.  If the function is TASK REASSIGN, which
  establishes a new connection allegiance for a previously issued read
  or bidirectional command, the ExpDataSN will contain an updated data
  acknowledgment reference number or the value 0; the latter indicates
  that the data acknowledgment reference number is unchanged.  The
  initiator MUST discard any data PDUs from the previous execution that
  it did not acknowledge, and the target MUST transmit all Data-In PDUs
  (if any) starting with the data acknowledgment reference number.  The
  number of retransmitted PDUs may or may not be the same as the
  original transmission, depending on if there was a change in
  MaxRecvDataSegmentLength in the reassignment.  The target MAY also
  send no more Data-In PDUs if all data has been acknowledged.

  The value of ExpDataSN MUST be 0 or higher than the DataSN of the
  last acknowledged Data-In PDU, but not larger than DataSN + 1 of the
  last Data-IN PDU sent by the target.  Any other value MUST be ignored
  by the target.

  For other functions, this field is reserved.













Chadalapaka, et al.          Standards Track                  [Page 174]

RFC 7143                  iSCSI (Consolidated)                April 2014


11.6.  Task Management Function Response

  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0|.|.| 0x22      |1| Reserved    | Response      | Reserved      |
    +---------------+---------------+---------------+---------------+
   4|TotalAHSLength | DataSegmentLength                             |
    +---------------------------------------------------------------+
   8/ Reserved                                                      /
    /                                                               /
    +---------------+---------------+---------------+---------------+
  16| Initiator Task Tag                                            |
    +---------------+---------------+---------------+---------------+
  20| Reserved                                                      |
    +---------------+---------------+---------------+---------------+
  24| StatSN                                                        |
    +---------------+---------------+---------------+---------------+
  28| ExpCmdSN                                                      |
    +---------------+---------------+---------------+---------------+
  32| MaxCmdSN                                                      |
    +---------------+---------------+---------------+---------------+
  36/ Reserved                                                      /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
  48| Header-Digest (optional)                                      |
    +---------------+---------------+---------------+---------------+

  For the functions ABORT TASK, ABORT TASK SET, CLEAR ACA, CLEAR TASK
  SET, LOGICAL UNIT RESET, TARGET COLD RESET, TARGET WARM RESET, and
  TASK REASSIGN, the target performs the requested task management
  function and sends a task management response back to the initiator.
  For TASK REASSIGN, the new connection allegiance MUST ONLY become
  effective at the target after the target issues the task management
  response.















Chadalapaka, et al.          Standards Track                  [Page 175]

RFC 7143                  iSCSI (Consolidated)                April 2014


11.6.1.  Response

  The target provides a response, which may take on the following
  values:

      0 - Function complete
      1 - Task does not exist
      2 - LUN does not exist
      3 - Task still allegiant
      4 - Task allegiance reassignment not supported
      5 - Task management function not supported
      6 - Function authorization failed
    255 - Function rejected

  In addition to the above values, the value 7 is defined by [RFC7144].

  For a discussion on the usage of response codes 3 and 4, see
  Section 7.2.2.

  For the TARGET COLD RESET and TARGET WARM RESET functions, the target
  cancels all pending operations across all LUs known to the issuing
  initiator.  For the TARGET COLD RESET function, the target MUST then
  close all of its TCP connections to all initiators (terminates all
  sessions).

  The mapping of the response code into a SCSI service response code
  value, if needed, is outside the scope of this document.  However, in
  symbolic terms, Response values 0 and 1 map to the SCSI service
  response of FUNCTION COMPLETE.  Response value 2 maps to the SCSI
  service response of INCORRECT LOGICAL UNIT NUMBER.  All other
  Response values map to the SCSI service response of FUNCTION
  REJECTED.  If a Task Management Function Response PDU does not arrive
  before the session is terminated, the SCSI service response is
  SERVICE DELIVERY OR TARGET FAILURE.

  The response to ABORT TASK SET and CLEAR TASK SET MUST only be issued
  by the target after all of the commands affected have been received
  by the target, the corresponding task management functions have been
  executed by the SCSI target, and the delivery of all responses
  delivered until the task management function completion has been
  confirmed (acknowledged through the ExpStatSN) by the initiator on
  all connections of this session.  For the exact timeline of events,
  refer to Sections 4.2.3.3 and 4.2.3.4.








Chadalapaka, et al.          Standards Track                  [Page 176]

RFC 7143                  iSCSI (Consolidated)                April 2014


  For the ABORT TASK function,

     a) if the Referenced Task Tag identifies a valid task leading to a
        successful termination, then targets must return the "Function
        complete" response.

     b) if the Referenced Task Tag does not identify an existing task
        but the CmdSN indicated by the RefCmdSN field in the Task
        Management Function Request is within the valid CmdSN window
        and less than the CmdSN of the Task Management Function Request
        itself, then targets must consider the CmdSN as received and
        return the "Function complete" response.

     c) if the Referenced Task Tag does not identify an existing task
        and the CmdSN indicated by the RefCmdSN field in the Task
        Management Function Request is outside the valid CmdSN window,
        then targets must return the "Task does not exist" response.

  For response semantics on function types that can potentially impact
  multiple active tasks on the target, see Section 4.2.3.

11.6.2.  TotalAHSLength and DataSegmentLength

  For this PDU, TotalAHSLength and DataSegmentLength MUST be 0.



























Chadalapaka, et al.          Standards Track                  [Page 177]

RFC 7143                  iSCSI (Consolidated)                April 2014


11.7.  SCSI Data-Out and SCSI Data-In

  The SCSI Data-Out PDU for write operations has the following format:

  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0|.|.| 0x05      |F| Reserved                                    |
    +---------------+---------------+---------------+---------------+
   4|TotalAHSLength | DataSegmentLength                             |
    +---------------+---------------+---------------+---------------+
   8| LUN or Reserved                                               |
    +                                                               +
  12|                                                               |
    +---------------+---------------+---------------+---------------+
  16| Initiator Task Tag                                            |
    +---------------+---------------+---------------+---------------+
  20| Target Transfer Tag or 0xffffffff                             |
    +---------------+---------------+---------------+---------------+
  24| Reserved                                                      |
    +---------------+---------------+---------------+---------------+
  28| ExpStatSN                                                     |
    +---------------+---------------+---------------+---------------+
  32| Reserved                                                      |
    +---------------+---------------+---------------+---------------+
  36| DataSN                                                        |
    +---------------+---------------+---------------+---------------+
  40| Buffer Offset                                                 |
    +---------------+---------------+---------------+---------------+
  44| Reserved                                                      |
    +---------------+---------------+---------------+---------------+
  48| Header-Digest (optional)                                      |
    +---------------+---------------+---------------+---------------+
    / DataSegment                                                   /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
    | Data-Digest (optional)                                        |
    +---------------+---------------+---------------+---------------+












Chadalapaka, et al.          Standards Track                  [Page 178]

RFC 7143                  iSCSI (Consolidated)                April 2014


  The SCSI Data-In PDU for read operations has the following format:

  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0|.|.| 0x25      |F|A|0 0 0|O|U|S| Reserved      |Status or Rsvd |
    +---------------+---------------+---------------+---------------+
   4|TotalAHSLength | DataSegmentLength                             |
    +---------------+---------------+---------------+---------------+
   8| LUN or Reserved                                               |
    +                                                               +
  12|                                                               |
    +---------------+---------------+---------------+---------------+
  16| Initiator Task Tag                                            |
    +---------------+---------------+---------------+---------------+
  20| Target Transfer Tag or 0xffffffff                             |
    +---------------+---------------+---------------+---------------+
  24| StatSN or Reserved                                            |
    +---------------+---------------+---------------+---------------+
  28| ExpCmdSN                                                      |
    +---------------+---------------+---------------+---------------+
  32| MaxCmdSN                                                      |
    +---------------+---------------+---------------+---------------+
  36| DataSN                                                        |
    +---------------+---------------+---------------+---------------+
  40| Buffer Offset                                                 |
    +---------------+---------------+---------------+---------------+
  44| Residual Count                                                |
    +---------------+---------------+---------------+---------------+
  48| Header-Digest (optional)                                      |
    +---------------+---------------+---------------+---------------+
    / DataSegment                                                   /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
    | Data-Digest (optional)                                        |
    +---------------+---------------+---------------+---------------+

  Status can accompany the last Data-In PDU if the command did not end
  with an exception (i.e., the status is "good status" -- GOOD,
  CONDITION MET, or INTERMEDIATE-CONDITION MET).  The presence of
  status (and of a residual count) is signaled via the S flag bit.
  Although targets MAY choose to send even non-exception status in
  separate responses, initiators MUST support non-exception status in
  Data-In PDUs.






Chadalapaka, et al.          Standards Track                  [Page 179]

RFC 7143                  iSCSI (Consolidated)                April 2014


11.7.1.  F (Final) Bit

  For outgoing data, this bit is 1 for the last PDU of unsolicited data
  or the last PDU of a sequence that answers an R2T.

  For incoming data, this bit is 1 for the last input (read) data PDU
  of a sequence.  Input can be split into several sequences, each
  having its own F bit.  Splitting the data stream into sequences does
  not affect DataSN counting on Data-In PDUs.  It MAY be used as a
  "change direction" indication for bidirectional operations that need
  such a change.

  DataSegmentLength MUST NOT exceed MaxRecvDataSegmentLength for the
  direction it is sent, and the total of all the DataSegmentLength of
  all PDUs in a sequence MUST NOT exceed MaxBurstLength (or
  FirstBurstLength for unsolicited data).  However, the number of
  individual PDUs in a sequence (or in total) may be higher than the
  ratio of MaxBurstLength (or FirstBurstLength) to
  MaxRecvDataSegmentLength (as PDUs may be limited in length by the
  capabilities of the sender).  Using a DataSegmentLength of 0 may
  increase beyond what is reasonable for the number of PDUs and should
  therefore be avoided.

  For bidirectional operations, the F bit is 1 for both the end of the
  input sequences and the end of the output sequences.

11.7.2.  A (Acknowledge) Bit

  For sessions with ErrorRecoveryLevel=1 or higher, the target sets
  this bit to 1 to indicate that it requests a positive acknowledgment
  from the initiator for the data received.  The target should use the
  A bit moderately; it MAY only set the A bit to 1 once every
  MaxBurstLength bytes, or on the last Data-In PDU that concludes the
  entire requested read data transfer for the task from the target's
  perspective, and it MUST NOT do so more frequently.  The target MUST
  NOT set to 1 the A bit for sessions with ErrorRecoveryLevel=0.  The
  initiator MUST ignore the A bit set to 1 for sessions with
  ErrorRecoveryLevel=0.

  On receiving a Data-In PDU with the A bit set to 1 on a session with
  ErrorRecoveryLevel greater than 0, if there are no holes in the read
  data until that Data-In PDU, the initiator MUST issue a SNACK of type
  DataACK, except when it is able to acknowledge the status for the
  task immediately via the ExpStatSN on other outbound PDUs if the
  status for the task is also received.  In the latter case
  (acknowledgment through the ExpStatSN), sending a SNACK of type
  DataACK in response to the A bit is OPTIONAL, but if it is done, it
  must not be sent after the status acknowledgment through the



Chadalapaka, et al.          Standards Track                  [Page 180]

RFC 7143                  iSCSI (Consolidated)                April 2014


  ExpStatSN.  If the initiator has detected holes in the read data
  prior to that Data-In PDU, it MUST postpone issuing the SNACK of type
  DataACK until the holes are filled.  An initiator also MUST NOT
  acknowledge the status for the task before those holes are filled.  A
  status acknowledgment for a task that generated the Data-In PDUs is
  considered by the target as an implicit acknowledgment of the Data-In
  PDUs if such an acknowledgment was requested by the target.

11.7.3.  Flags (Byte 1)

  The last SCSI data packet sent from a target to an initiator for a
  SCSI command that completed successfully (with a status of GOOD,
  CONDITION MET, INTERMEDIATE, or INTERMEDIATE-CONDITION MET) may also
  optionally contain the Status for the data transfer.  In this case,
  Sense Data cannot be sent together with the Command Status.  If the
  command is completed with an error, then the response and sense data
  MUST be sent in a SCSI Response PDU (i.e., MUST NOT be sent in a SCSI
  data packet).  For bidirectional commands, the status MUST be sent in
  a SCSI Response PDU.

     bit 2-4          - Reserved.

     bit 5-6          - used the same as in a SCSI Response.  These
                        bits are only valid when S is set to 1.  For
                        details, see Section 11.4.1.

     bit 7 S (status) - set to indicate that the Command Status field
                        contains status.  If this bit is set to 1, the
                        F bit MUST also be set to 1.

  The fields StatSN, Status, and Residual Count only have meaningful
  content if the S bit is set to 1.  The values for these fields are
  defined in Section 11.4.

11.7.4.  Target Transfer Tag and LUN

  On outgoing data, the Target Transfer Tag is provided to the target
  if the transfer is honoring an R2T.  In this case, the Target
  Transfer Tag field is a replica of the Target Transfer Tag provided
  with the R2T.

  On incoming data, the Target Transfer Tag and LUN MUST be provided by
  the target if the A bit is set to 1; otherwise, they are reserved.
  The Target Transfer Tag and LUN are copied by the initiator into the
  SNACK of type DataACK that it issues as a result of receiving a SCSI
  Data-In PDU with the A bit set to 1.





Chadalapaka, et al.          Standards Track                  [Page 181]

RFC 7143                  iSCSI (Consolidated)                April 2014


  The Target Transfer Tag values are not specified by this protocol,
  except that the value 0xffffffff is reserved and means that the
  Target Transfer Tag is not supplied.  If the Target Transfer Tag is
  provided, then the LUN field MUST hold a valid value and be
  consistent with whatever was specified with the command; otherwise,
  the LUN field is reserved.

11.7.5.  DataSN

  For input (read) or bidirectional Data-In PDUs, the DataSN is the
  input PDU number within the data transfer for the command identified
  by the Initiator Task Tag.

  R2T and Data-In PDUs, in the context of bidirectional commands, share
  the numbering sequence (see Section 4.2.2.4).

  For output (write) data PDUs, the DataSN is the Data-Out PDU number
  within the current output sequence.  Either the current output
  sequence is identified by the Initiator Task Tag (for unsolicited
  data) or it is a data sequence generated for one R2T (for data
  solicited through R2T).

11.7.6.  Buffer Offset

  The Buffer Offset field contains the offset of this PDU payload data
  within the complete data transfer.  The sum of the buffer offset and
  length should not exceed the expected transfer length for the
  command.

  The order of data PDUs within a sequence is determined by
  DataPDUInOrder.  When set to Yes, it means that PDUs have to be in
  increasing buffer offset order and overlays are forbidden.

  The ordering between sequences is determined by DataSequenceInOrder.
  When set to Yes, it means that sequences have to be in increasing
  buffer offset order and overlays are forbidden.

11.7.7.  DataSegmentLength

  This is the data payload length of a SCSI Data-In or SCSI Data-Out
  PDU.  The sending of 0-length data segments should be avoided, but
  initiators and targets MUST be able to properly receive 0-length data
  segments.

  The data segments of Data-In and Data-Out PDUs SHOULD be filled to
  the integer number of 4-byte words (real payload), unless the F bit
  is set to 1.




Chadalapaka, et al.          Standards Track                  [Page 182]

RFC 7143                  iSCSI (Consolidated)                April 2014


11.8.  Ready To Transfer (R2T)

  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0|.|.| 0x31      |1| Reserved                                    |
    +---------------+---------------+---------------+---------------+
   4|TotalAHSLength | DataSegmentLength                             |
    +---------------+---------------+---------------+---------------+
   8| LUN                                                           |
    +                                                               +
  12|                                                               |
    +---------------+---------------+---------------+---------------+
  16| Initiator Task Tag                                            |
    +---------------+---------------+---------------+---------------+
  20| Target Transfer Tag                                           |
    +---------------+---------------+---------------+---------------+
  24| StatSN                                                        |
    +---------------+---------------+---------------+---------------+
  28| ExpCmdSN                                                      |
    +---------------+---------------+---------------+---------------+
  32| MaxCmdSN                                                      |
    +---------------+---------------+---------------+---------------+
  36| R2TSN                                                         |
    +---------------+---------------+---------------+---------------+
  40| Buffer Offset                                                 |
    +---------------+---------------+---------------+---------------+
  44| Desired Data Transfer Length                                  |
    +---------------------------------------------------------------+
  48| Header-Digest (optional)                                      |
    +---------------+---------------+---------------+---------------+

  When an initiator has submitted a SCSI command with data that passes
  from the initiator to the target (write), the target may specify
  which blocks of data it is ready to receive.  The target may request
  that the data blocks be delivered in whichever order is convenient
  for the target at that particular instant.  This information is
  passed from the target to the initiator in the Ready To Transfer
  (R2T) PDU.

  In order to allow write operations without an explicit initial R2T,
  the initiator and target MUST have negotiated the key InitialR2T to
  No during login.

  An R2T MAY be answered with one or more SCSI Data-Out PDUs with a
  matching Target Transfer Tag.  If an R2T is answered with a single
  Data-Out PDU, the buffer offset in the data PDU MUST be the same as



Chadalapaka, et al.          Standards Track                  [Page 183]

RFC 7143                  iSCSI (Consolidated)                April 2014


  the one specified by the R2T, and the data length of the data PDU
  MUST be the same as the Desired Data Transfer Length specified in the
  R2T.  If the R2T is answered with a sequence of data PDUs, the buffer
  offset and length MUST be within the range of those specified by the
  R2T, and the last PDU MUST have the F bit set to 1.  If the last PDU
  (marked with the F bit) is received before the Desired Data Transfer
  Length is transferred, a target MAY choose to reject that PDU with
  the "Protocol Error" reason code.  DataPDUInOrder governs the
  Data-Out PDU ordering.  If DataPDUInOrder is set to Yes, the buffer
  offsets and lengths for consecutive PDUs MUST form a continuous
  non-overlapping range, and the PDUs MUST be sent in increasing offset
  order.

  The target may send several R2T PDUs.  It therefore can have a number
  of pending data transfers.  The number of outstanding R2T PDUs is
  limited by the value of the negotiated key MaxOutstandingR2T.  Within
  a task, outstanding R2Ts MUST be fulfilled by the initiator in the
  order in which they were received.

  R2T PDUs MAY also be used to recover Data-Out PDUs.  Such an R2T
  (Recovery-R2T) is generated by a target upon detecting the loss of
  one or more Data-Out PDUs due to:

     - Digest error

     - Sequence error

     - Sequence reception timeout

  A Recovery-R2T carries the next unused R2TSN but requests part of or
  the entire data burst that an earlier R2T (with a lower R2TSN) had
  already requested.

  DataSequenceInOrder governs the buffer offset ordering in consecutive
  R2Ts.  If DataSequenceInOrder is Yes, then consecutive R2Ts MUST
  refer to continuous non-overlapping ranges, except for Recovery-R2Ts.

11.8.1.  TotalAHSLength and DataSegmentLength

  For this PDU, TotalAHSLength and DataSegmentLength MUST be 0.

11.8.2.  R2TSN

  R2TSN is the R2T PDU input PDU number within the command identified
  by the Initiator Task Tag.

  For bidirectional commands, R2T and Data-In PDUs share the input PDU
  numbering sequence (see Section 4.2.2.4).



Chadalapaka, et al.          Standards Track                  [Page 184]

RFC 7143                  iSCSI (Consolidated)                April 2014


11.8.3.  StatSN

  The StatSN field will contain the next StatSN.  The StatSN for this
  connection is not advanced after this PDU is sent.

11.8.4.  Desired Data Transfer Length and Buffer Offset

  The target specifies how many bytes it wants the initiator to send
  because of this R2T PDU.  The target may request the data from the
  initiator in several chunks, not necessarily in the original order of
  the data.  The target therefore also specifies a buffer offset that
  indicates the point at which the data transfer should begin, relative
  to the beginning of the total data transfer.  The Desired Data
  Transfer Length MUST NOT be 0 and MUST NOT exceed MaxBurstLength.

11.8.5.  Target Transfer Tag

  The target assigns its own tag to each R2T request that it sends to
  the initiator.  This tag can be used by the target to easily identify
  the data it receives.  The Target Transfer Tag and LUN are copied in
  the outgoing data PDUs and are only used by the target.  There is no
  protocol rule about the Target Transfer Tag except that the value
  0xffffffff is reserved and MUST NOT be sent by a target in an R2T.




























Chadalapaka, et al.          Standards Track                  [Page 185]

RFC 7143                  iSCSI (Consolidated)                April 2014


11.9.  Asynchronous Message

  An Asynchronous Message may be sent from the target to the initiator
  without corresponding to a particular command.  The target specifies
  the reason for the event and sense data.

  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0|.|.| 0x32      |1| Reserved                                    |
    +---------------+---------------+---------------+---------------+
   4|TotalAHSLength | DataSegmentLength                             |
    +---------------+---------------+---------------+---------------+
   8| LUN or Reserved                                               |
    +                                                               +
  12|                                                               |
    +---------------+---------------+---------------+---------------+
  16| 0xffffffff                                                    |
    +---------------+---------------+---------------+---------------+
  20| Reserved                                                      |
    +---------------+---------------+---------------+---------------+
  24| StatSN                                                        |
    +---------------+---------------+---------------+---------------+
  28| ExpCmdSN                                                      |
    +---------------+---------------+---------------+---------------+
  32| MaxCmdSN                                                      |
    +---------------+---------------+---------------+---------------+
  36| AsyncEvent    | AsyncVCode    | Parameter1 or Reserved        |
    +---------------+---------------+---------------+---------------+
  40| Parameter2 or Reserved        | Parameter3 or Reserved        |
    +---------------+---------------+---------------+---------------+
  44| Reserved                                                      |
    +---------------+---------------+---------------+---------------+
  48| Header-Digest (optional)                                      |
    +---------------+---------------+---------------+---------------+
    / DataSegment - Sense Data and iSCSI Event Data                 /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
    | Data-Digest (optional)                                        |
    +---------------+---------------+---------------+---------------+

  Some Asynchronous Messages are strictly related to iSCSI, while
  others are related to SCSI [SAM2].

  The StatSN counts this PDU as an acknowledgeable event (the StatSN is
  advanced), which allows for initiator and target state
  synchronization.



Chadalapaka, et al.          Standards Track                  [Page 186]

RFC 7143                  iSCSI (Consolidated)                April 2014


11.9.1.  AsyncEvent

  The codes used for iSCSI Asynchronous Messages (events) are:

       0 (SCSI Async Event) - a SCSI asynchronous event is reported in
         the sense data.  Sense Data that accompanies the report, in
         the data segment, identifies the condition.  The sending of a
         SCSI event ("asynchronous event reporting" in SCSI
         terminology) is dependent on the target support for SCSI
         asynchronous event reporting (see [SAM2]) as indicated in the
         standard INQUIRY data (see [SPC3]).  Its use may be enabled by
         parameters in the SCSI Control mode page (see [SPC3]).

       1 (Logout Request) - the target requests Logout.  This Async
         Message MUST be sent on the same connection as the one
         requesting to be logged out.  The initiator MUST honor this
         request by issuing a Logout as early as possible but no later
         than Parameter3 seconds.  The initiator MUST send a Logout
         with a reason code of "close the connection" OR "close the
         session" to close all the connections.  Once this message is
         received, the initiator SHOULD NOT issue new iSCSI commands on
         the connection to be logged out.  The target MAY reject any
         new I/O requests that it receives after this message with the
         reason code "Waiting for Logout".  If the initiator does not
         log out in Parameter3 seconds, the target should send an Async
         PDU with iSCSI event code "Dropped the connection" if possible
         or simply terminate the transport connection.  Parameter1 and
         Parameter2 are reserved.

       2 (Connection Drop Notification) - the target indicates that it
         will drop the connection.

         The Parameter1 field indicates the CID of the connection that
         is going to be dropped.

         The Parameter2 field (Time2Wait) indicates, in seconds, the
         minimum time to wait before attempting to reconnect or
         reassign.

         The Parameter3 field (Time2Retain) indicates the maximum time
         allowed to reassign commands after the initial wait (in
         Parameter2).

         If the initiator does not attempt to reconnect and/or reassign
         the outstanding commands within the time specified by
         Parameter3, or if Parameter3 is 0, the target will terminate





Chadalapaka, et al.          Standards Track                  [Page 187]

RFC 7143                  iSCSI (Consolidated)                April 2014


         all outstanding commands on this connection.  In this case, no
         other responses should be expected from the target for the
         outstanding commands on this connection.

         A value of 0 for Parameter2 indicates that reconnect can be
         attempted immediately.

       3 (Session Drop Notification) - the target indicates that it
         will drop all the connections of this session.

         The Parameter1 field is reserved.

         The Parameter2 field (Time2Wait) indicates, in seconds, the
         minimum time to wait before attempting to reconnect.

         The Parameter3 field (Time2Retain) indicates the maximum time
         allowed to reassign commands after the initial wait (in
         Parameter2).

         If the initiator does not attempt to reconnect and/or reassign
         the outstanding commands within the time specified by
         Parameter3, or if Parameter3 is 0, the session is terminated.
         In this case, the target will terminate all outstanding
         commands in this session; no other responses should be
         expected from the target for the outstanding commands in this
         session.  A value of 0 for Parameter2 indicates that reconnect
         can be attempted immediately.

       4 (Negotiation Request) - the target requests parameter
         negotiation on this connection.  The initiator MUST honor this
         request by issuing a Text Request (that can be empty) on the
         same connection as early as possible, but no later than
         Parameter3 seconds, unless a Text Request is already pending
         on the connection, or by issuing a Logout Request.  If the
         initiator does not issue a Text Request, the target may
         reissue the Asynchronous Message requesting parameter
         negotiation.














Chadalapaka, et al.          Standards Track                  [Page 188]

RFC 7143                  iSCSI (Consolidated)                April 2014


       5 (Task Termination) - all active tasks for a LU with a matching
         LUN field in the Async Message PDU are being terminated.  The
         receiving initiator iSCSI layer MUST respond to this message
         by taking the following steps, in order:

         - Stop Data-Out transfers on that connection for all active
           TTTs for the affected LUN quoted in the Async Message PDU.

         - Acknowledge the StatSN of the Async Message PDU via a
           NOP-Out PDU with ITT=0xffffffff (i.e., non-ping flavor),
           while copying the LUN field from the Async Message to
           NOP-Out.

         This value of AsyncEvent, however, MUST NOT be used on an
         iSCSI session unless the new TaskReporting text key defined in
         Section 13.23 was negotiated to FastAbort on the session.

   248-255 (Vendor-unique) - vendor-specific iSCSI event.  The
         AsyncVCode details the vendor code, and data MAY accompany the
         report.

  All other event codes are unassigned.

11.9.2.  AsyncVCode

  AsyncVCode is a vendor-specific detail code that is only valid if the
  AsyncEvent field indicates a vendor-specific event.  Otherwise, it is
  reserved.

11.9.3.  LUN

  The LUN field MUST be valid if AsyncEvent is 0.  Otherwise, this
  field is reserved.


















Chadalapaka, et al.          Standards Track                  [Page 189]

RFC 7143                  iSCSI (Consolidated)                April 2014


11.9.4.  Sense Data and iSCSI Event Data

  For a SCSI event, this data accompanies the report in the data
  segment and identifies the condition.

  For an iSCSI event, additional vendor-unique data MAY accompany the
  Async event.  Initiators MAY ignore the data when not understood,
  while processing the rest of the PDU.

  If the DataSegmentLength is not 0, the format of the DataSegment is
  as follows:

  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0|SenseLength                    | Sense Data                    |
    +---------------+---------------+---------------+---------------+
   x/ Sense Data                                                    /
    +---------------+---------------+---------------+---------------+
   y/ iSCSI Event Data                                              /
    /                                                               /
    +---------------+---------------+---------------+---------------+
   z|

11.9.4.1.  SenseLength

  This is the length of Sense Data.  When the Sense Data field is empty
  (e.g., the event is not a SCSI event), SenseLength is 0.






















Chadalapaka, et al.          Standards Track                  [Page 190]

RFC 7143                  iSCSI (Consolidated)                April 2014


11.10.  Text Request

  The Text Request is provided to allow for the exchange of information
  and for future extensions.  It permits the initiator to inform a
  target of its capabilities or request some special operations.

  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0|.|I| 0x04      |F|C| Reserved                                  |
    +---------------+---------------+---------------+---------------+
   4|TotalAHSLength | DataSegmentLength                             |
    +---------------+---------------+---------------+---------------+
   8| LUN or Reserved                                               |
    +                                                               +
  12|                                                               |
    +---------------+---------------+---------------+---------------+
  16| Initiator Task Tag                                            |
    +---------------+---------------+---------------+---------------+
  20| Target Transfer Tag or 0xffffffff                             |
    +---------------+---------------+---------------+---------------+
  24| CmdSN                                                         |
    +---------------+---------------+---------------+---------------+
  28| ExpStatSN                                                     |
    +---------------+---------------+---------------+---------------+
  32/ Reserved                                                      /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
  48| Header-Digest (optional)                                      |
    +---------------+---------------+---------------+---------------+
    / DataSegment (Text)                                            /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
    | Data-Digest (optional)                                        |
    +---------------+---------------+---------------+---------------+

  An initiator MUST NOT have more than one outstanding Text Request on
  a connection at any given time.

  On a connection failure, an initiator must either explicitly abort
  any active allegiant text negotiation task or cause such a task to be
  implicitly terminated by the target.








Chadalapaka, et al.          Standards Track                  [Page 191]

RFC 7143                  iSCSI (Consolidated)                April 2014


11.10.1.  F (Final) Bit

  When set to 1, this bit indicates that this is the last or only Text
  Request in a sequence of Text Requests; otherwise, it indicates that
  more Text Requests will follow.

11.10.2.  C (Continue) Bit

  When set to 1, this bit indicates that the text (set of key=value
  pairs) in this Text Request is not complete (it will be continued on
  subsequent Text Requests); otherwise, it indicates that this Text
  Request ends a set of key=value pairs.  A Text Request with the C bit
  set to 1 MUST have the F bit set to 0.

11.10.3.  Initiator Task Tag

  This is the initiator-assigned identifier for this Text Request.  If
  the command is sent as part of a sequence of Text Requests and
  responses, the Initiator Task Tag MUST be the same for all the
  requests within the sequence (similar to linked SCSI commands).  The
  I bit for all requests in a sequence also MUST be the same.

11.10.4.  Target Transfer Tag

  When the Target Transfer Tag is set to the reserved value 0xffffffff,
  it tells the target that this is a new request, and the target resets
  any internal state associated with the Initiator Task Tag (resets the
  current negotiation state).

  The target sets the Target Transfer Tag in a Text Response to a value
  other than the reserved value 0xffffffff whenever it indicates that
  it has more data to send or more operations to perform that are
  associated with the specified Initiator Task Tag.  It MUST do so
  whenever it sets the F bit to 0 in the response.  By copying the
  Target Transfer Tag from the response to the next Text Request, the
  initiator tells the target to continue the operation for the specific
  Initiator Task Tag.  The initiator MUST ignore the Target Transfer
  Tag in the Text Response when the F bit is set to 1.

  This mechanism allows the initiator and target to transfer a large
  amount of textual data over a sequence of text-command/text-response
  exchanges or to perform extended negotiation sequences.

  If the Target Transfer Tag is not 0xffffffff, the LUN field MUST be
  sent by the target in the Text Response.






Chadalapaka, et al.          Standards Track                  [Page 192]

RFC 7143                  iSCSI (Consolidated)                April 2014


  A target MAY reset its internal negotiation state if an exchange is
  stalled by the initiator for a long time or if it is running out of
  resources.

  Long Text Responses are handled as shown in the following example:

     I->T Text SendTargets=All (F = 1, TTT = 0xffffffff)

     T->I Text <part 1> (F = 0, TTT = 0x12345678)

     I->T Text <empty> (F = 1, TTT = 0x12345678)

     T->I Text <part 2> (F = 0, TTT = 0x12345678)

     I->T Text <empty> (F = 1, TTT = 0x12345678)

     ...

     T->I Text <part n> (F = 1, TTT = 0xffffffff)

11.10.5.  Text

  The data lengths of a Text Request MUST NOT exceed the iSCSI target
  MaxRecvDataSegmentLength (a parameter that is negotiated per
  connection and per direction).  The text format is specified in
  Section 6.2.

  Sections 12 and 13 list some basic Text key=value pairs, some of
  which can be used in Login Requests/Responses and some in Text
  Requests/Responses.

  A key=value pair can span Text Request or Text Response boundaries.
  A key=value pair can start in one PDU and continue on the next.  In
  other words, the end of a PDU does not necessarily signal the end of
  a key=value pair.

  The target responds by sending its response back to the initiator.
  The response text format is similar to the request text format.  The
  Text Response MAY refer to key=value pairs presented in an earlier
  Text Request, and the text in the request may refer to earlier
  responses.

  Section 6.2 details the rules for the Text Requests and Responses.

  Text operations are usually meant for parameter setting/negotiations
  but can also be used to perform some long-lasting operations.





Chadalapaka, et al.          Standards Track                  [Page 193]

RFC 7143                  iSCSI (Consolidated)                April 2014


  Text operations that take a long time should be placed in their own
  Text Request.

11.11.  Text Response

  The Text Response PDU contains the target's responses to the
  initiator's Text Request.  The format of the Text field matches that
  of the Text Request.

  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0|.|.| 0x24      |F|C| Reserved                                  |
    +---------------+---------------+---------------+---------------+
   4|TotalAHSLength | DataSegmentLength                             |
    +---------------+---------------+---------------+---------------+
   8| LUN or Reserved                                               |
    +                                                               +
  12|                                                               |
    +---------------+---------------+---------------+---------------+
  16| Initiator Task Tag                                            |
    +---------------+---------------+---------------+---------------+
  20| Target Transfer Tag or 0xffffffff                             |
    +---------------+---------------+---------------+---------------+
  24| StatSN                                                        |
    +---------------+---------------+---------------+---------------+
  28| ExpCmdSN                                                      |
    +---------------+---------------+---------------+---------------+
  32| MaxCmdSN                                                      |
    +---------------+---------------+---------------+---------------+
  36/ Reserved                                                      /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
  48| Header-Digest (optional)                                      |
    +---------------+---------------+---------------+---------------+
    / DataSegment (Text)                                            /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
    | Data-Digest (optional)                                        |
    +---------------+---------------+---------------+---------------+

11.11.1.  F (Final) Bit

  When set to 1, in response to a Text Request with the Final bit set
  to 1, the F bit indicates that the target has finished the whole
  operation.  Otherwise, if set to 0 in response to a Text Request with
  the Final Bit set to 1, it indicates that the target has more work to



Chadalapaka, et al.          Standards Track                  [Page 194]

RFC 7143                  iSCSI (Consolidated)                April 2014


  do (invites a follow-on Text Request).  A Text Response with the
  F bit set to 1 in response to a Text Request with the F bit set to 0
  is a protocol error.

  A Text Response with the F bit set to 1 MUST NOT contain key=value
  pairs that may require additional answers from the initiator.

  A Text Response with the F bit set to 1 MUST have a Target Transfer
  Tag field set to the reserved value 0xffffffff.

  A Text Response with the F bit set to 0 MUST have a Target Transfer
  Tag field set to a value other than the reserved value 0xffffffff.

11.11.2.  C (Continue) Bit

  When set to 1, this bit indicates that the text (set of key=value
  pairs) in this Text Response is not complete (it will be continued on
  subsequent Text Responses); otherwise, it indicates that this Text
  Response ends a set of key=value pairs.  A Text Response with the
  C bit set to 1 MUST have the F bit set to 0.

11.11.3.  Initiator Task Tag

  The Initiator Task Tag matches the tag used in the initial Text
  Request.

11.11.4.  Target Transfer Tag

  When a target has more work to do (e.g., cannot transfer all the
  remaining text data in a single Text Response or has to continue the
  negotiation) and has enough resources to proceed, it MUST set the
  Target Transfer Tag to a value other than the reserved value
  0xffffffff.  Otherwise, the Target Transfer Tag MUST be set to
  0xffffffff.

  When the Target Transfer Tag is not 0xffffffff, the LUN field may be
  significant.

  The initiator MUST copy the Target Transfer Tag and LUN in its next
  request to indicate that it wants the rest of the data.

  When the target receives a Text Request with the Target Transfer Tag
  set to the reserved value 0xffffffff, it resets its internal
  information (resets state) associated with the given Initiator Task
  Tag (restarts the negotiation).






Chadalapaka, et al.          Standards Track                  [Page 195]

RFC 7143                  iSCSI (Consolidated)                April 2014


  When a target cannot finish the operation in a single Text Response
  and does not have enough resources to continue, it rejects the Text
  Request with the appropriate Reject code.

  A target may reset its internal state associated with an Initiator
  Task Tag (the current negotiation state) as expressed through the
  Target Transfer Tag if the initiator fails to continue the exchange
  for some time.  The target may reject subsequent Text Requests with
  the Target Transfer Tag set to the "stale" value.

11.11.5.  StatSN

  The target StatSN variable is advanced by each Text Response sent.

11.11.6.  Text Response Data

  The data lengths of a Text Response MUST NOT exceed the iSCSI
  initiator MaxRecvDataSegmentLength (a parameter that is negotiated
  per connection and per direction).

  The text in the Text Response Data is governed by the same rules as
  the text in the Text Request Data (see Section 11.11.2).

  Although the initiator is the requesting party and controls the
  request-response initiation and termination, the target can offer
  key=value pairs of its own as part of a sequence and not only in
  response to the initiator.

11.12.  Login Request

  After establishing a TCP connection between an initiator and a
  target, the initiator MUST start a Login Phase to gain further access
  to the target's resources.

  The Login Phase (see Section 6.3) consists of a sequence of Login
  Requests and Login Responses that carry the same Initiator Task Tag.

  Login Requests are always considered as immediate.













Chadalapaka, et al.          Standards Track                  [Page 196]

RFC 7143                  iSCSI (Consolidated)                April 2014


  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0|.|1| 0x03      |T|C|.|.|CSG|NSG| Version-max   | Version-min   |
    +---------------+---------------+---------------+---------------+
   4|TotalAHSLength | DataSegmentLength                             |
    +---------------+---------------+---------------+---------------+
   8| ISID                                                          |
    +                               +---------------+---------------+
  12|                               | TSIH                          |
    +---------------+---------------+---------------+---------------+
  16| Initiator Task Tag                                            |
    +---------------+---------------+---------------+---------------+
  20| CID                           | Reserved                      |
    +---------------+---------------+---------------+---------------+
  24| CmdSN                                                         |
    +---------------+---------------+---------------+---------------+
  28| ExpStatSN or Reserved                                         |
    +---------------+---------------+---------------+---------------+
  32| Reserved                                                      |
    +---------------+---------------+---------------+---------------+
  36| Reserved                                                      |
    +---------------+---------------+---------------+---------------+
  40/ Reserved                                                      /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
  48/ DataSegment - Login Parameters in Text Request Format         /
   +/                                                               /
    +---------------+---------------+---------------+---------------+

11.12.1.  T (Transit) Bit

  When set to 1, this bit indicates that the initiator is ready to
  transit to the next stage.

  If the T bit is set to 1 and the NSG is set to FullFeaturePhase, then
  this also indicates that the initiator is ready for the Login
  Final-Response (see Section 6.3).

11.12.2.  C (Continue) Bit

  When set to 1, this bit indicates that the text (set of key=value
  pairs) in this Login Request is not complete (it will be continued on
  subsequent Login Requests); otherwise, it indicates that this Login
  Request ends a set of key=value pairs.  A Login Request with the
  C bit set to 1 MUST have the T bit set to 0.




Chadalapaka, et al.          Standards Track                  [Page 197]

RFC 7143                  iSCSI (Consolidated)                April 2014


11.12.3.  CSG and NSG

  Through these fields -- Current Stage (CSG) and Next Stage (NSG) --
  the Login negotiation requests and responses are associated with a
  specific stage in the session (SecurityNegotiation,
  LoginOperationalNegotiation, FullFeaturePhase) and may indicate the
  next stage to which they want to move (see Section 6.3).  The Next
  Stage value is only valid when the T bit is 1; otherwise, it is
  reserved.

  The stage codes are:

     0 - SecurityNegotiation

     1 - LoginOperationalNegotiation

     3 - FullFeaturePhase

  All other codes are reserved.

11.12.4.  Version

  The version number for this document is 0x00.  Therefore, both
  Version-min and Version-max MUST be set to 0x00.

11.12.4.1.  Version-max

  Version-max indicates the maximum version number supported.

  All Login Requests within the Login Phase MUST carry the same
  Version-max.

  The target MUST use the value presented with the first Login Request.

11.12.4.2.  Version-min

  All Login Requests within the Login Phase MUST carry the same
  Version-min.  The target MUST use the value presented with the first
  Login Request.












Chadalapaka, et al.          Standards Track                  [Page 198]

RFC 7143                  iSCSI (Consolidated)                April 2014


11.12.5.  ISID

  This is an initiator-defined component of the session identifier and
  is structured as follows (see Section 10.1.1 for details):

  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   8| T |     A     |              B                |      C        |
    +---------------+---------------+---------------+---------------+
  12|               D               |
    +---------------+---------------+

  The T field identifies the format and usage of A, B, C, and D as
  indicated below:

     T

     00b    OUI-Format

            A and B: 22-bit OUI

            (the I/G and U/L bits are omitted)

            C and D: 24-bit Qualifier

     01b    EN: Format (IANA Enterprise Number)

            A: Reserved

            B and C: EN (IANA Enterprise Number)

            D: Qualifier

     10b    "Random"

            A: Reserved

            B and C: Random

            D: Qualifier

     11b    A, B, C, and D: Reserved

  For the T field values 00b and 01b, a combination of A and B (for
  00b) or B and C (for 01b) identifies the vendor or organization whose
  component (software or hardware) generates this ISID.  A vendor or



Chadalapaka, et al.          Standards Track                  [Page 199]

RFC 7143                  iSCSI (Consolidated)                April 2014


  organization with one or more OUIs, or one or more Enterprise
  Numbers, MUST use at least one of these numbers and select the
  appropriate value for the T field when its components generate ISIDs.
  An OUI or EN MUST be set in the corresponding fields in network byte
  order (byte big-endian).

  If the T field is 10b, B and C are set to a random 24-bit unsigned
  integer value in network byte order (byte big-endian).  See [RFC3721]
  for how this affects the principle of "conservative reuse".

  The Qualifier field is a 16-bit or 24-bit unsigned integer value that
  provides a range of possible values for the ISID within the selected
  namespace.  It may be set to any value within the constraints
  specified in the iSCSI protocol (see Sections 4.4.3 and 10.1.1).

  The T field value of 11b is reserved.

  If the ISID is derived from something assigned to a hardware adapter
  or interface by a vendor as a preset default value, it MUST be
  configurable to a value assigned according to the SCSI port behavior
  desired by the system in which it is installed (see Sections 10.1.1
  and 10.1.2).  The resultant ISID MUST also be persistent over power
  cycles, reboot, card swap, etc.

11.12.6.  TSIH

  The TSIH must be set in the first Login Request.  The reserved value
  0 MUST be used on the first connection for a new session.  Otherwise,
  the TSIH sent by the target at the conclusion of the successful login
  of the first connection for this session MUST be used.  The TSIH
  identifies to the target the associated existing session for this new
  connection.

  All Login Requests within a Login Phase MUST carry the same TSIH.

  The target MUST check the value presented with the first Login
  Request and act as specified in Section 6.3.1.

11.12.7.  Connection ID (CID)

  The CID provides a unique ID for this connection within the session.

  All Login Requests within the Login Phase MUST carry the same CID.

  The target MUST use the value presented with the first Login Request.






Chadalapaka, et al.          Standards Track                  [Page 200]

RFC 7143                  iSCSI (Consolidated)                April 2014


  A Login Request with a non-zero TSIH and a CID equal to that of an
  existing connection implies a logout of the connection followed by a
  login (see Section 6.3.4).  For details regarding the implicit Logout
  Request, see Section 11.14.

11.12.8.  CmdSN

  The CmdSN is either the initial command sequence number of a session
  (for the first Login Request of a session -- the "leading" login) or
  the command sequence number in the command stream if the login is for
  a new connection in an existing session.

  Examples:

  - Login on a leading connection: If the leading login carries the
    CmdSN 123, all other Login Requests in the same Login Phase carry
    the CmdSN 123, and the first non-immediate command in the Full
    Feature Phase also carries the CmdSN 123.

  - Login on other than a leading connection: If the current CmdSN at
    the time the first login on the connection is issued is 500, then
    that PDU carries CmdSN=500.  Subsequent Login Requests that are
    needed to complete this Login Phase may carry a CmdSN higher than
    500 if non-immediate requests that were issued on other connections
    in the same session advance the CmdSN.

  If the Login Request is a leading Login Request, the target MUST use
  the value presented in the CmdSN as the target value for the
  ExpCmdSN.

11.12.9.  ExpStatSN

  For the first Login Request on a connection, this is the ExpStatSN
  for the old connection, and this field is only valid if the Login
  Request restarts a connection (see Section 6.3.4).

  For subsequent Login Requests, it is used to acknowledge the Login
  Responses with their increasing StatSN values.

11.12.10.  Login Parameters

  The initiator MUST provide some basic parameters in order to enable
  the target to determine if the initiator may use the target's
  resources and the initial text parameters for the security exchange.

  All the rules specified in Section 11.10.5 for Text Requests also
  hold for Login Requests.  Keys and their explanations are listed in
  Section 12 (security negotiation keys) and in Section 13 (operational



Chadalapaka, et al.          Standards Track                  [Page 201]

RFC 7143                  iSCSI (Consolidated)                April 2014


  parameter negotiation keys).  All keys listed in Section 13, except
  for the X extension formats, MUST be supported by iSCSI initiators
  and targets.  Keys listed in Section 12 only need to be supported
  when the function to which they refer is mandatory to implement.

11.13.  Login Response

  The Login Response indicates the progress and/or end of the Login
  Phase.

  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0|.|.| 0x23      |T|C|.|.|CSG|NSG| Version-max   |Version-active |
    +---------------+---------------+---------------+---------------+
   4|TotalAHSLength | DataSegmentLength                             |
    +---------------+---------------+---------------+---------------+
   8| ISID                                                          |
    +                               +---------------+---------------+
  12|                               | TSIH                          |
    +---------------+---------------+---------------+---------------+
  16| Initiator Task Tag                                            |
    +---------------+---------------+---------------+---------------+
  20| Reserved                                                      |
    +---------------+---------------+---------------+---------------+
  24| StatSN                                                        |
    +---------------+---------------+---------------+---------------+
  28| ExpCmdSN                                                      |
    +---------------+---------------+---------------+---------------+
  32| MaxCmdSN                                                      |
    +---------------+---------------+---------------+---------------+
  36| Status-Class  | Status-Detail | Reserved                      |
    +---------------+---------------+---------------+---------------+
  40/ Reserved                                                      /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
  48/ DataSegment - Login Parameters in Text Request Format         /
   +/                                                               /
    +---------------+---------------+---------------+---------------+

11.13.1.  Version-max

  This is the highest version number supported by the target.

  All Login Responses within the Login Phase MUST carry the same
  Version-max.




Chadalapaka, et al.          Standards Track                  [Page 202]

RFC 7143                  iSCSI (Consolidated)                April 2014


  The initiator MUST use the value presented as a response to the first
  Login Request.

11.13.2.  Version-active

  Version-active indicates the highest version supported by the target
  and initiator.  If the target does not support a version within the
  range specified by the initiator, the target rejects the login and
  this field indicates the lowest version supported by the target.

  All Login Responses within the Login Phase MUST carry the same
  Version-active.

  The initiator MUST use the value presented as a response to the first
  Login Request.

11.13.3.  TSIH

  The TSIH is the target-assigned session-identifying handle.  Its
  internal format and content are not defined by this protocol, except
  for the value 0, which is reserved.  With the exception of the Login
  Final-Response in a new session, this field should be set to the TSIH
  provided by the initiator in the Login Request.  For a new session,
  the target MUST generate a non-zero TSIH and ONLY return it in the
  Login Final-Response (see Section 6.3).

11.13.4.  StatSN

  For the first Login Response (the response to the first Login
  Request), this is the starting status sequence number for the
  connection.  The next response of any kind -- including the next
  Login Response, if any, in the same Login Phase -- will carry this
  number + 1.  This field is only valid if the Status-Class is 0.

11.13.5.  Status-Class and Status-Detail

  The Status returned in a Login Response indicates the execution
  status of the Login Phase.  The status includes:

     Status-Class

     Status-Detail

  A Status-Class of 0 indicates success.

  A non-zero Status-Class indicates an exception.  In this case,
  Status-Class is sufficient for a simple initiator to use when
  handling exceptions, without having to look at the Status-Detail.



Chadalapaka, et al.          Standards Track                  [Page 203]

RFC 7143                  iSCSI (Consolidated)                April 2014


  The Status-Detail allows finer-grained exception handling for more
  sophisticated initiators and for better information for logging.

  The Status-Classes are as follows:

     0  Success - indicates that the iSCSI target successfully
        received, understood, and accepted the request.  The numbering
        fields (StatSN, ExpCmdSN, MaxCmdSN) are only valid if Status-
        Class is 0.

     1  Redirection - indicates that the initiator must take further
        action to complete the request.  This is usually due to the
        target moving to a different address.  All of the redirection
        Status-Class responses MUST return one or more text key
        parameters of the type "TargetAddress", which indicates the
        target's new address.  A redirection response MAY be issued by
        a target prior to or after completing a security negotiation if
        a security negotiation is required.  A redirection SHOULD be
        accepted by an initiator, even without having the target
        complete a security negotiation if any security negotiation is
        required, and MUST be accepted by the initiator after the
        completion of the security negotiation if any security
        negotiation is required.

     2  Initiator Error (not a format error) - indicates that the
        initiator most likely caused the error.  This MAY be due to a
        request for a resource for which the initiator does not have
        permission.  The request should not be tried again.

     3  Target Error - indicates that the target sees no errors in the
        initiator's Login Request but is currently incapable of
        fulfilling the request.  The initiator may retry the same Login
        Request later.


















Chadalapaka, et al.          Standards Track                  [Page 204]

RFC 7143                  iSCSI (Consolidated)                April 2014


  The table below shows all of the currently allocated status codes.
  The codes are in hexadecimal; the first byte is the Status-Class, and
  the second byte is the status detail.

    -----------------------------------------------------------------
    Status        | Code | Description
                  |(hex) |
    -----------------------------------------------------------------
    Success       | 0000 | Login is proceeding OK (*1).
    -----------------------------------------------------------------
    Target moved  | 0101 | The requested iSCSI Target Name (ITN)
    temporarily   |      | has temporarily moved
                  |      | to the address provided.
    -----------------------------------------------------------------
    Target moved  | 0102 | The requested ITN has permanently moved
    permanently   |      | to the address provided.
    -----------------------------------------------------------------
    Initiator     | 0200 | Miscellaneous iSCSI initiator
    error         |      | errors.
    -----------------------------------------------------------------
    Authentication| 0201 | The initiator could not be
    failure       |      | successfully authenticated or target
                  |      | authentication is not supported.
    -----------------------------------------------------------------
    Authorization | 0202 | The initiator is not allowed access
    failure       |      | to the given target.
    -----------------------------------------------------------------
    Not found     | 0203 | The requested ITN does not
                  |      | exist at this address.
    -----------------------------------------------------------------
    Target removed| 0204 | The requested ITN has been removed, and
                  |      | no forwarding address is provided.
    -----------------------------------------------------------------
    Unsupported   | 0205 | The requested iSCSI version range is
    version       |      | not supported by the target.
    -----------------------------------------------------------------
    Too many      | 0206 | Too many connections on this SSID.
    connections   |      |
    -----------------------------------------------------------------
    Missing       | 0207 | Missing parameters (e.g., iSCSI
    parameter     |      | Initiator Name and/or Target Name).
    -----------------------------------------------------------------
    Can't include | 0208 | Target does not support session
    in session    |      | spanning to this connection (address).
    -----------------------------------------------------------------
    Session type  | 0209 | Target does not support this type of
    not supported |      | session or not from this initiator.
    -----------------------------------------------------------------



Chadalapaka, et al.          Standards Track                  [Page 205]

RFC 7143                  iSCSI (Consolidated)                April 2014


    Session does  | 020a | Attempt to add a connection
    not exist     |      | to a non-existent session.
    -----------------------------------------------------------------
    Invalid during| 020b | Invalid request type during login.
    login         |      |
    -----------------------------------------------------------------
    Target error  | 0300 | Target hardware or software error.
    -----------------------------------------------------------------
    Service       | 0301 | The iSCSI service or target is not
    unavailable   |      | currently operational.
    -----------------------------------------------------------------
    Out of        | 0302 | The target has insufficient session,
    resources     |      | connection, or other resources.
    -----------------------------------------------------------------

  (*1) If the response T bit is set to 1 in both the request and the
       matching response, and the NSG is set to FullFeaturePhase in
       both the request and the matching response, the Login Phase is
       finished, and the initiator may proceed to issue SCSI commands.

  If the Status-Class is not 0, the initiator and target MUST close the
  TCP connection.

  If the target wishes to reject the Login Request for more than one
  reason, it should return the primary reason for the rejection.

11.13.6.  T (Transit) Bit

  The T bit is set to 1 as an indicator of the end of the stage.  If
  the T bit is set to 1 and the NSG is set to FullFeaturePhase, then
  this is also the Login Final-Response (see Section 6.3).  A T bit of
  0 indicates a "partial" response, which means "more negotiation
  needed".

  A Login Response with the T bit set to 1 MUST NOT contain key=value
  pairs that may require additional answers from the initiator within
  the same stage.

  If the Status-Class is 0, the T bit MUST NOT be set to 1 if the T bit
  in the request was set to 0.

11.13.7.  C (Continue) Bit

  When set to 1, this bit indicates that the text (set of key=value
  pairs) in this Login Response is not complete (it will be continued
  on subsequent Login Responses); otherwise, it indicates that this
  Login Response ends a set of key=value pairs.  A Login Response with
  the C bit set to 1 MUST have the T bit set to 0.



Chadalapaka, et al.          Standards Track                  [Page 206]

RFC 7143                  iSCSI (Consolidated)                April 2014


11.13.8.  Login Parameters

  The target MUST provide some basic parameters in order to enable the
  initiator to determine if it is connected to the correct port and the
  initial text parameters for the security exchange.

  All the rules specified in Section 11.11.6 for Text Responses also
  hold for Login Responses.  Keys and their explanations are listed in
  Section 12 (security negotiation keys) and in Section 13 (operational
  parameter negotiation keys).  All keys listed in Section 13, except
  for the X extension formats, MUST be supported by iSCSI initiators
  and targets.  Keys listed in Section 12 only need to be supported
  when the function to which they refer is mandatory to implement.

11.14.  Logout Request

  The Logout Request is used to perform a controlled closing of a
  connection.

  An initiator MAY use a Logout Request to remove a connection from a
  session or to close an entire session.

  After sending the Logout Request PDU, an initiator MUST NOT send any
  new iSCSI requests on the closing connection.  If the Logout Request
  is intended to close the session, new iSCSI requests MUST NOT be sent
  on any of the connections participating in the session.

  When receiving a Logout Request with the reason code "close the
  connection" or "close the session", the target MUST terminate all
  pending commands, whether acknowledged via the ExpCmdSN or not, on
  that connection or session, respectively.

  When receiving a Logout Request with the reason code "remove the
  connection for recovery", the target MUST discard all requests not
  yet acknowledged via the ExpCmdSN that were issued on the specified
  connection and suspend all data/status/R2T transfers on behalf of
  pending commands on the specified connection.

  The target then issues the Logout Response and half-closes the TCP
  connection (sends FIN).  After receiving the Logout Response and
  attempting to receive the FIN (if still possible), the initiator MUST
  completely close the logging-out connection.  For the terminated
  commands, no additional responses should be expected.

  A Logout for a CID may be performed on a different transport
  connection when the TCP connection for the CID has already been
  terminated.  In such a case, only a logical "closing" of the iSCSI
  connection for the CID is implied with a Logout.



Chadalapaka, et al.          Standards Track                  [Page 207]

RFC 7143                  iSCSI (Consolidated)                April 2014


  All commands that were not terminated or not completed (with status)
  and acknowledged when the connection is closed completely can be
  reassigned to a new connection if the target supports connection
  recovery.

  If an initiator intends to start recovery for a failing connection,
  it MUST use the Logout Request to "clean up" the target end of a
  failing connection and enable recovery to start, or use the Login
  Request with a non-zero TSIH and the same CID on a new connection for
  the same effect.  In sessions with a single connection, the
  connection can be closed and then a new connection reopened.  A
  connection reinstatement login can be used for recovery (see
  Section 6.3.4).

  A successful completion of a Logout Request with the reason code
  "close the connection" or "remove the connection for recovery"
  results at the target in the discarding of unacknowledged commands
  received on the connection being logged out.  These are commands that
  have arrived on the connection being logged out but that have not
  been delivered to SCSI because one or more commands with a smaller
  CmdSN have not been received by iSCSI.  See Section 4.2.2.1.  The
  resulting holes in the command sequence numbers will have to be
  handled by appropriate recovery (see Section 7), unless the session
  is also closed.

  The entire logout discussion in this section is also applicable for
  an implicit Logout realized by way of a connection reinstatement or
  session reinstatement.  When a Login Request performs an implicit
  Logout, the implicit Logout is performed as if having the reason
  codes specified below:

    Reason Code     Type of Implicit Logout
    -------------------------------------------------------------

         0          session reinstatement

         1          connection reinstatement when the operational
                    ErrorRecoveryLevel < 2

         2          connection reinstatement when the operational
                    ErrorRecoveryLevel = 2










Chadalapaka, et al.          Standards Track                  [Page 208]

RFC 7143                  iSCSI (Consolidated)                April 2014


  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0|.|I| 0x06      |1| Reason Code | Reserved                      |
    +---------------+---------------+---------------+---------------+
   4|TotalAHSLength | DataSegmentLength                             |
    +---------------------------------------------------------------+
   8/ Reserved                                                      /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
  16| Initiator Task Tag                                            |
    +---------------+---------------+---------------+---------------+
  20| CID or Reserved               | Reserved                      |
    +---------------+---------------+---------------+---------------+
  24| CmdSN                                                         |
    +---------------+---------------+---------------+---------------+
  28| ExpStatSN                                                     |
    +---------------+---------------+---------------+---------------+
  32/ Reserved                                                      /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
  48| Header-Digest (optional)                                      |
    +---------------+---------------+---------------+---------------+

11.14.1.  Reason Code

  The Reason Code field indicates the reason for Logout as follows:

     0 - close the session.  All commands associated with the
         session (if any) are terminated.

     1 - close the connection.  All commands associated with the
         connection (if any) are terminated.

     2 - remove the connection for recovery.  The connection is
         closed, and all commands associated with it, if any, are
         to be prepared for a new allegiance.

  All other values are reserved.

11.14.2.  TotalAHSLength and DataSegmentLength

  For this PDU, TotalAHSLength and DataSegmentLength MUST be 0.







Chadalapaka, et al.          Standards Track                  [Page 209]

RFC 7143                  iSCSI (Consolidated)                April 2014


11.14.3.  CID

  This is the connection ID of the connection to be closed (including
  closing the TCP stream).  This field is only valid if the reason code
  is not "close the session".

11.14.4.  ExpStatSN

  This is the last ExpStatSN value for the connection to be closed.

11.14.5.  Implicit Termination of Tasks

  A target implicitly terminates the active tasks due to the iSCSI
  protocol in the following cases:

     a) When a connection is implicitly or explicitly logged out with
        the reason code "close the connection" and there are active
        tasks allegiant to that connection.

     b) When a connection fails and eventually the connection state
        times out (state transition M1 in Section 8.2.2) and there are
        active tasks allegiant to that connection.

     c) When a successful recovery Logout is performed while there are
        active tasks allegiant to that connection and those tasks
        eventually time out after the Time2Wait and Time2Retain periods
        without allegiance reassignment.

     d) When a connection is implicitly or explicitly logged out with
        the reason code "close the session" and there are active tasks
        in that session.

  If the tasks terminated in any of the above cases are SCSI tasks,
  they must be internally terminated as if with CHECK CONDITION status.
  This status is only meaningful for appropriately handling the
  internal SCSI state and SCSI side effects with respect to ordering,
  because this status is never communicated back as a terminating
  status to the initiator.  However, additional actions may have to be
  taken at the SCSI level, depending on the SCSI context as defined by
  the SCSI standards (e.g., queued commands and ACA; UA for the next
  command on the I_T nexus in cases a), b), and c) above).  After the
  tasks are terminated, the target MUST report a Unit Attention
  condition on the next command processed on any connection for each
  affected I_T_L nexus with the status of CHECK CONDITION, the ASC/ASCQ
  value of 47h/7Fh ("SOME COMMANDS CLEARED BY ISCSI PROTOCOL EVENT"),
  etc.; see [SPC3].





Chadalapaka, et al.          Standards Track                  [Page 210]

RFC 7143                  iSCSI (Consolidated)                April 2014


11.15.  Logout Response

  The Logout Response is used by the target to indicate if the cleanup
  operation for the connection(s) has completed.

  After Logout, the TCP connection referred by the CID MUST be closed
  at both ends (or all connections must be closed if the logout reason
  was session close).

  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0|.|.| 0x26      |1| Reserved    | Response      | Reserved      |
    +---------------+---------------+---------------+---------------+
   4|TotalAHSLength | DataSegmentLength                             |
    +---------------------------------------------------------------+
   8/ Reserved                                                      /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
  16| Initiator Task Tag                                            |
    +---------------+---------------+---------------+---------------+
  20| Reserved                                                      |
    +---------------+---------------+---------------+---------------+
  24| StatSN                                                        |
    +---------------+---------------+---------------+---------------+
  28| ExpCmdSN                                                      |
    +---------------+---------------+---------------+---------------+
  32| MaxCmdSN                                                      |
    +---------------+---------------+---------------+---------------+
  36| Reserved                                                      |
    +---------------------------------------------------------------+
  40| Time2Wait                     | Time2Retain                   |
    +---------------+---------------+---------------+---------------+
  44| Reserved                                                      |
    +---------------+---------------+---------------+---------------+
  48| Header-Digest (optional)                                      |
    +---------------+---------------+---------------+---------------+













Chadalapaka, et al.          Standards Track                  [Page 211]

RFC 7143                  iSCSI (Consolidated)                April 2014


11.15.1.  Response

  Response field settings are as follows:

     0 - connection or session closed successfully.

     1 - CID not found.

     2 - connection recovery is not supported (i.e., the Logout reason
         code was "remove the connection for recovery" and the target
         does not support it as indicated by the operational
         ErrorRecoveryLevel).

     3 - cleanup failed for various reasons.

11.15.2.  TotalAHSLength and DataSegmentLength

  For this PDU, TotalAHSLength and DataSegmentLength MUST be 0.

11.15.3.  Time2Wait

  If the Logout response code is 0 and the operational
  ErrorRecoveryLevel is 2, this is the minimum amount of time, in
  seconds, to wait before attempting task reassignment.  If the Logout
  response code is 0 and the operational ErrorRecoveryLevel is less
  than 2, this field is to be ignored.

  This field is invalid if the Logout response code is 1.

  If the Logout response code is 2 or 3, this field specifies the
  minimum time to wait before attempting a new implicit or explicit
  logout.

  If Time2Wait is 0, the reassignment or a new Logout may be attempted
  immediately.

11.15.4.  Time2Retain

  If the Logout response code is 0 and the operational
  ErrorRecoveryLevel is 2, this is the maximum amount of time, in
  seconds, after the initial wait (Time2Wait) that the target waits for
  the allegiance reassignment for any active task, after which the task
  state is discarded.  If the Logout response code is 0 and the
  operational ErrorRecoveryLevel is less than 2, this field is to be
  ignored.

  This field is invalid if the Logout response code is 1.




Chadalapaka, et al.          Standards Track                  [Page 212]

RFC 7143                  iSCSI (Consolidated)                April 2014


  If the Logout response code is 2 or 3, this field specifies the
  maximum amount of time, in seconds, after the initial wait
  (Time2Wait) that the target waits for a new implicit or explicit
  logout.

  If it is the last connection of a session, the whole session state is
  discarded after Time2Retain.

  If Time2Retain is 0, the target has already discarded the connection
  (and possibly the session) state along with the task states.  No
  reassignment or Logout is required in this case.

11.16.  SNACK Request

  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0|.|.| 0x10      |1|.|.|.| Type  | Reserved                      |
    +---------------+---------------+---------------+---------------+
   4|TotalAHSLength | DataSegmentLength                             |
    +---------------+---------------+---------------+---------------+
   8| LUN or Reserved                                               |
    +                                                               +
  12|                                                               |
    +---------------+---------------+---------------+---------------+
  16| Initiator Task Tag or 0xffffffff                              |
    +---------------+---------------+---------------+---------------+
  20| Target Transfer Tag or SNACK Tag or 0xffffffff                |
    +---------------+---------------+---------------+---------------+
  24| Reserved                                                      |
    +---------------+---------------+---------------+---------------+
  28| ExpStatSN                                                     |
    +---------------+---------------+---------------+---------------+
  32/ Reserved                                                      /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
  40| BegRun                                                        |
    +---------------------------------------------------------------+
  44| RunLength                                                     |
    +---------------------------------------------------------------+
  48| Header-Digest (optional)                                      |
    +---------------+---------------+---------------+---------------+

  If the implementation supports ErrorRecoveryLevel greater than zero,
  it MUST support all SNACK types.





Chadalapaka, et al.          Standards Track                  [Page 213]

RFC 7143                  iSCSI (Consolidated)                April 2014


  The SNACK is used by the initiator to request the retransmission of
  numbered responses, data, or R2T PDUs from the target.  The SNACK
  Request indicates the numbered responses or data "runs" whose
  retransmission is requested, where the run starts with the first
  StatSN, DataSN, or R2TSN whose retransmission is requested and
  indicates the number of Status, Data, or R2T PDUs requested,
  including the first.  0 has special meaning when used as a starting
  number and length:

     - When used in RunLength, it means all PDUs starting with the
       initial.

     - When used in both BegRun and RunLength, it means all
       unacknowledged PDUs.

  The numbered response(s) or R2T(s) requested by a SNACK MUST be
  delivered as exact replicas of the ones that the target transmitted
  originally, except for the fields ExpCmdSN, MaxCmdSN, and ExpDataSN,
  which MUST carry the current values.  R2T(s)requested by SNACK MUST
  also carry the current value of the StatSN.

  The numbered Data-In PDUs requested by a Data SNACK MUST be delivered
  as exact replicas of the ones that the target transmitted originally,
  except for the fields ExpCmdSN and MaxCmdSN, which MUST carry the
  current values; and except for resegmentation (see Section 11.16.3).

  Any SNACK that requests a numbered response, data, or R2T that was
  not sent by the target or was already acknowledged by the initiator
  MUST be rejected with a reason code of "Protocol Error".

11.16.1.  Type

  This field encodes the SNACK function as follows:

     0 - Data/R2T SNACK: requesting retransmission of one or more
         Data-In or R2T PDUs.

     1 - Status SNACK: requesting retransmission of one or more
         numbered responses.

     2 - DataACK: positively acknowledges Data-In PDUs.

     3 - R-Data SNACK: requesting retransmission of Data-In PDUs with
         possible resegmentation and status tagging.

  All other values are reserved.





Chadalapaka, et al.          Standards Track                  [Page 214]

RFC 7143                  iSCSI (Consolidated)                April 2014


  Data/R2T SNACK, Status SNACK, or R-Data SNACK for a command MUST
  precede status acknowledgment for the given command.

11.16.2.  Data Acknowledgment

  If an initiator operates at ErrorRecoveryLevel 1 or higher, it MUST
  issue a SNACK of type DataACK after receiving a Data-In PDU with the
  A bit set to 1.  However, if the initiator has detected holes in the
  input sequence, it MUST postpone issuing the SNACK of type DataACK
  until the holes are filled.  An initiator MAY ignore the A bit if it
  deems that the bit is being set aggressively by the target (i.e.,
  before the MaxBurstLength limit is reached).

  The DataACK is used to free resources at the target and not to
  request or imply data retransmission.

  An initiator MUST NOT request retransmission for any data it had
  already acknowledged.

11.16.3.  Resegmentation

  If the initiator MaxRecvDataSegmentLength changed between the
  original transmission and the time the initiator requests
  retransmission, the initiator MUST issue a R-Data SNACK (see
  Section 11.16.1).  With R-Data SNACK, the initiator indicates that it
  discards all the unacknowledged data and expects the target to resend
  it.  It also expects resegmentation.  In this case, the retransmitted
  Data-In PDUs MAY be different from the ones originally sent in order
  to reflect changes in MaxRecvDataSegmentLength.  Their DataSN starts
  with the BegRun of the last DataACK received by the target if any was
  received; otherwise, it starts with 0 and is increased by 1 for each
  resent Data-In PDU.

  A target that has received a R-Data SNACK MUST return a SCSI Response
  that contains a copy of the SNACK Tag field from the R-Data SNACK in
  the SCSI Response SNACK Tag field as its last or only Response.  For
  example, if it has already sent a response containing another value
  in the SNACK Tag field or had the status included in the last Data-In
  PDU, it must send a new SCSI Response PDU.  If a target sends more
  than one SCSI Response PDU due to this rule, all SCSI Response PDUs
  must carry the same StatSN (see Section 11.4.4).  If an initiator
  attempts to recover a lost SCSI Response (with a Status-SNACK; see
  Section 11.16.1) when more than one response has been sent, the
  target will send the SCSI Response with the latest content known to
  the target, including the last SNACK Tag for the command.






Chadalapaka, et al.          Standards Track                  [Page 215]

RFC 7143                  iSCSI (Consolidated)                April 2014


  For considerations in allegiance reassignment of a task to a
  connection with a different MaxRecvDataSegmentLength, refer to
  Section 7.2.2.

11.16.4.  Initiator Task Tag

  For a Status SNACK and DataACK, the Initiator Task Tag MUST be set to
  the reserved value 0xffffffff.  In all other cases, the Initiator
  Task Tag field MUST be set to the Initiator Task Tag of the
  referenced command.

11.16.5.  Target Transfer Tag or SNACK Tag

  For a R-Data SNACK, this field MUST contain a value that is different
  from 0 or 0xffffffff and is unique for the task (identified by the
  Initiator Task Tag).  This value MUST be copied by the iSCSI target
  in the last or only SCSI Response PDU it issues for the command.

  For DataACK, the Target Transfer Tag MUST contain a copy of the
  Target Transfer Tag and LUN provided with the SCSI Data-In PDU with
  the A bit set to 1.

  In all other cases, the Target Transfer Tag field MUST be set to the
  reserved value 0xffffffff.

11.16.6.  BegRun

  This field indicates the DataSN, R2TSN, or StatSN of the first PDU
  whose retransmission is requested (Data/R2T and Status SNACK), or the
  next expected DataSN (DataACK SNACK).

  A BegRun of 0, when used in conjunction with a RunLength of 0, means
  "resend all unacknowledged Data-In, R2T or Response PDUs".

  BegRun MUST be 0 for a R-Data SNACK.

11.16.7.  RunLength

  This field indicates the number of PDUs whose retransmission is
  requested.

  A RunLength of 0 signals that all Data-In, R2T, or Response PDUs
  carrying the numbers equal to or greater than BegRun have to be
  resent.

  The RunLength MUST also be 0 for a DataACK SNACK in addition to a
  R-Data SNACK.




Chadalapaka, et al.          Standards Track                  [Page 216]

RFC 7143                  iSCSI (Consolidated)                April 2014


11.17.  Reject

  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0|.|.| 0x3f      |1| Reserved    | Reason        | Reserved      |
    +---------------+---------------+---------------+---------------+
   4|TotalAHSLength | DataSegmentLength                             |
    +---------------+---------------+---------------+---------------+
   8/ Reserved                                                      /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
  16| 0xffffffff                                                    |
    +---------------+---------------+---------------+---------------+
  20| Reserved                                                      |
    +---------------+---------------+---------------+---------------+
  24| StatSN                                                        |
    +---------------+---------------+---------------+---------------+
  28| ExpCmdSN                                                      |
    +---------------+---------------+---------------+---------------+
  32| MaxCmdSN                                                      |
    +---------------+---------------+---------------+---------------+
  36| DataSN/R2TSN or Reserved                                      |
    +---------------+---------------+---------------+---------------+
  40| Reserved                                                      |
    +---------------+---------------+---------------+---------------+
  44| Reserved                                                      |
    +---------------+---------------+---------------+---------------+
  48| Header-Digest (optional)                                      |
    +---------------+---------------+---------------+---------------+
  xx/ Complete Header of Bad PDU                                    /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
  yy/Vendor-specific data (if any)                                  /
    /                                                               /
    +---------------+---------------+---------------+---------------+
  zz| Data-Digest (optional)                                        |
    +---------------+---------------+---------------+---------------+

  Reject is used to indicate an iSCSI error condition (protocol,
  unsupported option, etc.).









Chadalapaka, et al.          Standards Track                  [Page 217]

RFC 7143                  iSCSI (Consolidated)                April 2014


11.17.1.  Reason

  The reject Reason is coded as follows:

  +------+----------------------------------------+----------------+
  | Code | Explanation                            |Can the original|
  | (hex)|                                        |PDU be resent?  |
  +------+----------------------------------------+----------------+
  | 0x01 | Reserved                               | no             |
  |      |                                        |                |
  | 0x02 | Data (payload) digest error            | yes (Note 1)   |
  |      |                                        |                |
  | 0x03 | SNACK Reject                           | yes            |
  |      |                                        |                |
  | 0x04 | Protocol Error (e.g., SNACK Request for| no             |
  |      | a status that was already acknowledged)|                |
  |      |                                        |                |
  | 0x05 | Command not supported                  | no             |
  |      |                                        |                |
  | 0x06 | Immediate command reject - too many    | yes            |
  |      | immediate commands                     |                |
  |      |                                        |                |
  | 0x07 | Task in progress                       | no             |
  |      |                                        |                |
  | 0x08 | Invalid data ack                       | no             |
  |      |                                        |                |
  | 0x09 | Invalid PDU field                      | no (Note 2)    |
  |      |                                        |                |
  | 0x0a | Long op reject - Can't generate Target | yes            |
  |      | Transfer Tag - out of resources        |                |
  |      |                                        |                |
  | 0x0b | Deprecated; MUST NOT be used           | N/A (Note 3)   |
  |      |                                        |                |
  | 0x0c | Waiting for Logout                     | no             |
  +------+----------------------------------------+----------------+

  Note 1: For iSCSI, Data-Out PDU retransmission is only done if the
          target requests retransmission with a recovery R2T.  However,
          if this is the data digest error on immediate data, the
          initiator may choose to retransmit the whole PDU, including
          the immediate data.

  Note 2: A target should use this reason code for all invalid values
          of PDU fields that are meant to describe a task, a response,
          or a data transfer.  Some examples are invalid TTT/ITT,
          buffer offset, LUN qualifying a TTT, and an invalid sequence
          number in a SNACK.




Chadalapaka, et al.          Standards Track                  [Page 218]

RFC 7143                  iSCSI (Consolidated)                April 2014


  Note 3: Reason code 0x0b ("Negotiation Reset") as defined in
          Section 10.17.1 of [RFC3720] is deprecated and MUST NOT be
          used by implementations.  An implementation receiving reason
          code 0x0b MUST treat it as a negotiation failure that
          terminates the Login Phase and the TCP connection, as
          specified in Section 7.12.

  All other values for Reason are unassigned.

  In all the cases in which a pre-instantiated SCSI task is terminated
  because of the reject, the target MUST issue a proper SCSI command
  response with CHECK CONDITION as described in Section 11.4.3.  In
  these cases in which a status for the SCSI task was already sent
  before the reject, no additional status is required.  If the error is
  detected while data from the initiator is still expected (i.e., the
  command PDU did not contain all the data and the target has not
  received a Data-Out PDU with the Final bit set to 1 for the
  unsolicited data, if any, and all outstanding R2Ts, if any), the
  target MUST wait until it receives the last expected Data-Out PDUs
  with the F bit set to 1 before sending the Response PDU.

  For additional usage semantics of the Reject PDU, see Section 7.3.

11.17.2.  DataSN/R2TSN

  This field is only valid if the rejected PDU is a Data/R2T SNACK and
  the Reject reason code is "Protocol Error" (see Section 11.16).  The
  DataSN/R2TSN is the next Data/R2T sequence number that the target
  would send for the task, if any.

11.17.3.  StatSN, ExpCmdSN, and MaxCmdSN

  These fields carry their usual values and are not related to the
  rejected command.  The StatSN is advanced after a Reject.

11.17.4.  Complete Header of Bad PDU

  The target returns the header (not including the digest) of the PDU
  in error as the data of the response.












Chadalapaka, et al.          Standards Track                  [Page 219]

RFC 7143                  iSCSI (Consolidated)                April 2014


11.18.  NOP-Out

  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0|.|I| 0x00      |1| Reserved                                    |
    +---------------+---------------+---------------+---------------+
   4|TotalAHSLength | DataSegmentLength                             |
    +---------------+---------------+---------------+---------------+
   8| LUN or Reserved                                               |
    +                                                               +
  12|                                                               |
    +---------------+---------------+---------------+---------------+
  16| Initiator Task Tag or 0xffffffff                              |
    +---------------+---------------+---------------+---------------+
  20| Target Transfer Tag or 0xffffffff                             |
    +---------------+---------------+---------------+---------------+
  24| CmdSN                                                         |
    +---------------+---------------+---------------+---------------+
  28| ExpStatSN                                                     |
    +---------------+---------------+---------------+---------------+
  32/ Reserved                                                      /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
  48| Header-Digest (optional)                                      |
    +---------------+---------------+---------------+---------------+
    / DataSegment - Ping Data (optional)                            /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
    | Data-Digest (optional)                                        |
    +---------------+---------------+---------------+---------------+

  NOP-Out may be used by an initiator as a "ping request" to verify
  that a connection/session is still active and all its components are
  operational.  The NOP-In response is the "ping echo".

  A NOP-Out is also sent by an initiator in response to a NOP-In.

  A NOP-Out may also be used to confirm a changed ExpStatSN if another
  PDU will not be available for a long time.

  Upon receipt of a NOP-In with the Target Transfer Tag set to a valid
  value (not the reserved value 0xffffffff), the initiator MUST respond
  with a NOP-Out.  In this case, the NOP-Out Target Transfer Tag MUST
  contain a copy of the NOP-In Target Transfer Tag.  The initiator





Chadalapaka, et al.          Standards Track                  [Page 220]

RFC 7143                  iSCSI (Consolidated)                April 2014


  SHOULD NOT send a NOP-Out in response to any other received NOP-In,
  in order to avoid lengthy sequences of NOP-In and NOP-Out PDUs sent
  in response to each other.

11.18.1.  Initiator Task Tag

  The NOP-Out MUST have the Initiator Task Tag set to a valid value
  only if a response in the form of a NOP-In is requested (i.e., the
  NOP-Out is used as a ping request).  Otherwise, the Initiator Task
  Tag MUST be set to 0xffffffff.

  When a target receives the NOP-Out with a valid Initiator Task Tag,
  it MUST respond with a NOP-In Response (see Section 4.6.3.6).

  If the Initiator Task Tag contains 0xffffffff, the I bit MUST be set
  to 1, and the CmdSN is not advanced after this PDU is sent.

11.18.2.  Target Transfer Tag

  The Target Transfer Tag is a target-assigned identifier for the
  operation.

  The NOP-Out MUST only have the Target Transfer Tag set if it is
  issued in response to a NOP-In with a valid Target Transfer Tag.  In
  this case, it copies the Target Transfer Tag from the NOP-In PDU.
  Otherwise, the Target Transfer Tag MUST be set to 0xffffffff.

  When the Target Transfer Tag is set to a value other than 0xffffffff,
  the LUN field MUST also be copied from the NOP-In.

11.18.3.  Ping Data

  Ping data is reflected in the NOP-In Response.  The length of the
  reflected data is limited to MaxRecvDataSegmentLength.  The length of
  ping data is indicated by the DataSegmentLength.  0 is a valid value
  for the DataSegmentLength and indicates the absence of ping data.















Chadalapaka, et al.          Standards Track                  [Page 221]

RFC 7143                  iSCSI (Consolidated)                April 2014


11.19.  NOP-In

  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0|.|.| 0x20      |1| Reserved                                    |
    +---------------+---------------+---------------+---------------+
   4|TotalAHSLength | DataSegmentLength                             |
    +---------------+---------------+---------------+---------------+
   8| LUN or Reserved                                               |
    +                                                               +
  12|                                                               |
    +---------------+---------------+---------------+---------------+
  16| Initiator Task Tag or 0xffffffff                              |
    +---------------+---------------+---------------+---------------+
  20| Target Transfer Tag or 0xffffffff                             |
    +---------------+---------------+---------------+---------------+
  24| StatSN                                                        |
    +---------------+---------------+---------------+---------------+
  28| ExpCmdSN                                                      |
    +---------------+---------------+---------------+---------------+
  32| MaxCmdSN                                                      |
    +---------------+---------------+---------------+---------------+
  36/ Reserved                                                      /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
  48| Header-Digest (optional)                                      |
    +---------------+---------------+---------------+---------------+
    / DataSegment - Return Ping Data                                /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
    | Data-Digest (optional)                                        |
    +---------------+---------------+---------------+---------------+

  NOP-In is sent by a target as either a response to a NOP-Out, a
  "ping" to an initiator, or a means to carry a changed ExpCmdSN and/or
  MaxCmdSN if another PDU will not be available for a long time (as
  determined by the target).

  When a target receives the NOP-Out with a valid Initiator Task Tag
  (not the reserved value 0xffffffff), it MUST respond with a NOP-In
  with the same Initiator Task Tag that was provided in the NOP-Out
  request.  It MUST also duplicate up to the first
  MaxRecvDataSegmentLength bytes of the initiator-provided Ping Data.
  For such a response, the Target Transfer Tag MUST be 0xffffffff.  The





Chadalapaka, et al.          Standards Track                  [Page 222]

RFC 7143                  iSCSI (Consolidated)                April 2014


  target SHOULD NOT send a NOP-In in response to any other received
  NOP-Out in order to avoid lengthy sequences of NOP-In and NOP-Out
  PDUs sent in response to each other.

  Otherwise, when a target sends a NOP-In that is not a response to a
  NOP-Out received from the initiator, the Initiator Task Tag MUST be
  set to 0xffffffff, and the data segment MUST NOT contain any data
  (DataSegmentLength MUST be 0).

11.19.1.  Target Transfer Tag

  If the target is responding to a NOP-Out, this field is set to the
  reserved value 0xffffffff.

  If the target is sending a NOP-In as a ping (intending to receive a
  corresponding NOP-Out), this field is set to a valid value (not the
  reserved value 0xffffffff).

  If the target is initiating a NOP-In without wanting to receive a
  corresponding NOP-Out, this field MUST hold the reserved value
  0xffffffff.

11.19.2.  StatSN

  The StatSN field will always contain the next StatSN.  However, when
  the Initiator Task Tag is set to 0xffffffff, the StatSN for the
  connection is not advanced after this PDU is sent.

11.19.3.  LUN

  A LUN MUST be set to a correct value when the Target Transfer Tag is
  valid (not the reserved value 0xffffffff).

12.  iSCSI Security Text Keys and Authentication Methods

  Only the following keys are used during the SecurityNegotiation stage
  of the Login Phase:

     SessionType

     InitiatorName

     TargetName

     TargetAddress

     InitiatorAlias




Chadalapaka, et al.          Standards Track                  [Page 223]

RFC 7143                  iSCSI (Consolidated)                April 2014


     TargetAlias

     TargetPortalGroupTag

     AuthMethod and the keys used by the authentication methods
        specified in Section 12.1, along with all of their associated
        keys, as well as Vendor-Specific Authentication Methods.

  Other keys MUST NOT be used.

  SessionType, InitiatorName, TargetName, InitiatorAlias, TargetAlias,
  and TargetPortalGroupTag are described in Section 13 as they can be
  used in the OperationalNegotiation stage as well.

  All security keys have connection-wide applicability.

12.1.  AuthMethod

  Use: During Login - Security Negotiation
  Senders: Initiator and target
  Scope: connection

  AuthMethod = <list-of-values>

  The main item of security negotiation is the authentication method
  (AuthMethod).

  The authentication methods that can be used (appear in the list-of-
  values) are either vendor-unique methods or those listed in the
  following table:

   +--------------------------------------------------------------+
   | Name         | Description                                   |
   +--------------------------------------------------------------+
   | KRB5         | Kerberos V5 - defined in [RFC4120]            |
   +--------------------------------------------------------------+
   | SRP          | Secure Remote Password -                      |
   |              | defined in [RFC2945]                          |
   +--------------------------------------------------------------+
   | CHAP         | Challenge Handshake Authentication Protocol - |
   |              | defined in [RFC1994]                          |
   +--------------------------------------------------------------+
   | None         | No authentication                             |
   +--------------------------------------------------------------+

  The AuthMethod selection is followed by an "authentication exchange"
  specific to the authentication method selected.




Chadalapaka, et al.          Standards Track                  [Page 224]

RFC 7143                  iSCSI (Consolidated)                April 2014


  The authentication method proposal may be made by either the
  initiator or the target.  However, the initiator MUST make the first
  step specific to the selected authentication method as soon as it is
  selected.  It follows that if the target makes the authentication
  method proposal, the initiator sends the first key(s) of the exchange
  together with its authentication method selection.

  The authentication exchange authenticates the initiator to the target
  and, optionally, the target to the initiator.  Authentication is
  OPTIONAL to use but MUST be supported by the target and initiator.

  The initiator and target MUST implement CHAP.  All other
  authentication methods are OPTIONAL.

  Private or public extension algorithms MAY also be negotiated for
  authentication methods.  Whenever a private or public extension
  algorithm is part of the default offer (the offer made in the absence
  of explicit administrative action), the implementer MUST ensure that
  CHAP is listed as an alternative in the default offer and "None" is
  not part of the default offer.

  Extension authentication methods MUST be named using one of the
  following two formats:

     1) Z-reversed.vendor.dns_name.do_something=

     2) New public key with no name prefix constraints

  Authentication methods named using the Z- format are used as private
  extensions.  New public keys must be registered with IANA using the
  IETF Review process ([RFC5226]).  New public extensions for
  authentication methods MUST NOT use the Z# name prefix.

  For all of the public or private extension authentication methods,
  the method-specific keys MUST conform to the format specified in
  Section 6.1 for standard-label.

  To identify the vendor for private extension authentication methods,
  we suggest using the reversed DNS-name as a prefix to the proper
  digest names.

  The part of digest-name following Z- MUST conform to the format for
  standard-label specified in Section 6.1.

  Support for public or private extension authentication methods is
  OPTIONAL.





Chadalapaka, et al.          Standards Track                  [Page 225]

RFC 7143                  iSCSI (Consolidated)                April 2014


  The following subsections define the specific exchanges for each of
  the standardized authentication methods.  As mentioned earlier, the
  first step is always done by the initiator.

12.1.1.  Kerberos

  For KRB5 (Kerberos V5) [RFC4120] [RFC1964], the initiator MUST use:

     KRB_AP_REQ=<KRB_AP_REQ>

  where KRB_AP_REQ is the client message as defined in [RFC4120].

  The default principal name assumed by an iSCSI initiator or target
  (prior to any administrative configuration action) MUST be the iSCSI
  Initiator Name or iSCSI Target Name, respectively, prefixed by the
  string "iscsi/".

  If the initiator authentication fails, the target MUST respond with a
  Login reject with "Authentication Failure" status.  Otherwise, if the
  initiator has selected the mutual authentication option (by setting
  MUTUAL-REQUIRED in the ap-options field of the KRB_AP_REQ), the
  target MUST reply with:

     KRB_AP_REP=<KRB_AP_REP>

  where KRB_AP_REP is the server's response message as defined in
  [RFC4120].

  If mutual authentication was selected and target authentication
  fails, the initiator MUST close the connection.

  KRB_AP_REQ and KRB_AP_REP are binary-values, and their binary length
  (not the length of the character string that represents them in
  encoded form) MUST NOT exceed 65536 bytes.  Hex or Base64 encoding
  may be used for KRB_AP_REQ and KRB_AP_REP; see Section 6.1.

12.1.2.  Secure Remote Password (SRP)

  For SRP [RFC2945], the initiator MUST use:

     SRP_U=<U> TargetAuth=Yes     /* or TargetAuth=No */

  The target MUST answer with a Login reject with the "Authorization
  Failure" status or reply with:

     SRP_GROUP=<G1,G2...> SRP_s=<s>

  where G1,G2... are proposed groups, in order of preference.



Chadalapaka, et al.          Standards Track                  [Page 226]

RFC 7143                  iSCSI (Consolidated)                April 2014


  The initiator MUST either close the connection or continue with:

     SRP_A=<A> SRP_GROUP=<G>

  where G is one of G1,G2... that were proposed by the target.

  The target MUST answer with a Login reject with the "Authentication
  Failure" status or reply with:

     SRP_B=<B>

  The initiator MUST close the connection or continue with:

     SRP_M=<M>

  If the initiator authentication fails, the target MUST answer with a
  Login reject with "Authentication Failure" status.  Otherwise, if the
  initiator sent TargetAuth=Yes in the first message (requiring target
  authentication), the target MUST reply with:

     SRP_HM=<H(A | M | K)>

  If the target authentication fails, the initiator MUST close the
  connection:

  where U, s, A, B, M, and H(A | M | K) are defined in [RFC2945] (using
  the SHA1 hash function, such as SRP-SHA1)

  and

  G,Gn ("Gn" stands for G1,G2...) are identifiers of SRP groups
  specified in [RFC3723].

  G, Gn, and U are text strings; s,A,B,M, and H(A | M | K) are
  binary-values.  The length of s,A,B,M and H(A | M | K) in binary form
  (not the length of the character string that represents them in
  encoded form) MUST NOT exceed 1024 bytes.  Hex or Base64 encoding may
  be used for s,A,B,M and H(A | M | K); see Section 6.1.

  See Appendix B for the related login example.

  For the SRP_GROUP, all the groups specified in [RFC3723] up to
  1536 bits (i.e., SRP-768, SRP-1024, SRP-1280, SRP-1536) must be
  supported by initiators and targets.  To guarantee interoperability,
  targets MUST always offer "SRP-1536" as one of the proposed groups.






Chadalapaka, et al.          Standards Track                  [Page 227]

RFC 7143                  iSCSI (Consolidated)                April 2014


12.1.3.  Challenge Handshake Authentication Protocol (CHAP)

  For CHAP [RFC1994], the initiator MUST use:

     CHAP_A=<A1,A2...>

  where A1,A2... are proposed algorithms, in order of preference.

  The target MUST answer with a Login reject with the "Authentication
  Failure" status or reply with:

     CHAP_A=<A> CHAP_I=<I> CHAP_C=<C>

  where A is one of A1,A2... that were proposed by the initiator.

  The initiator MUST continue with:

     CHAP_N=<N> CHAP_R=<R>

  or, if it requires target authentication, with:

     CHAP_N=<N> CHAP_R=<R> CHAP_I=<I> CHAP_C=<C>

  If the initiator authentication fails, the target MUST answer with a
  Login reject with "Authentication Failure" status.  Otherwise, if the
  initiator required target authentication, the target MUST either
  answer with a Login reject with "Authentication Failure" or reply
  with:

     CHAP_N=<N> CHAP_R=<R>

  If the target authentication fails, the initiator MUST close the
  connection:

  where N, (A,A1,A2), I, C, and R are (correspondingly) the Name,
  Algorithm, Identifier, Challenge, and Response as defined in
  [RFC1994].

  N is a text string; A,A1,A2, and I are numbers; C and R are
  binary-values.  Their binary length (not the length of the character
  string that represents them in encoded form) MUST NOT exceed
  1024 bytes.  Hex or Base64 encoding may be used for C and R; see
  Section 6.1.

  See Appendix B for the related login example.






Chadalapaka, et al.          Standards Track                  [Page 228]

RFC 7143                  iSCSI (Consolidated)                April 2014


  For the Algorithm, as stated in [RFC1994], one value is required to
  be implemented:

     5     (CHAP with MD5)

  To guarantee interoperability, initiators MUST always offer it as one
  of the proposed algorithms.

13.  Login/Text Operational Text Keys

  Some session-specific parameters MUST only be carried on the leading
  connection and cannot be changed after the leading connection login
  (e.g., MaxConnections -- the maximum number of connections).  This
  holds for a single connection session with regard to connection
  restart.  The keys that fall into this category have the "use: LO"
  (Leading Only).

  Keys that can only be used during login have the "use: IO"
  (Initialize Only), while those that can be used in both the Login
  Phase and Full Feature Phase have the "use: ALL".

  Keys that can only be used during the Full Feature Phase use FFPO
  (Full Feature Phase Only).

  Keys marked as Any-Stage may also appear in the SecurityNegotiation
  stage, while all other keys described in this section are
  operational keys.

  Keys that do not require an answer are marked as Declarative.

  Key scope is indicated as session-wide (SW) or connection-only (CO).

  "Result function", wherever mentioned, states the function that can
  be applied to check the validity of the responder selection.
  "Minimum" means that the selected value cannot exceed the offered
  value.  "Maximum" means that the selected value cannot be lower than
  the offered value.  "AND" means that the selected value must be a
  possible result of a Boolean "and" function with an arbitrary Boolean
  value (e.g., if the offered value is No the selected value must be
  No).  "OR" means that the selected value must be a possible result of
  a Boolean "or" function with an arbitrary Boolean value (e.g., if the
  offered value is Yes the selected value must be Yes).









Chadalapaka, et al.          Standards Track                  [Page 229]

RFC 7143                  iSCSI (Consolidated)                April 2014


13.1.  HeaderDigest and DataDigest

  Use: IO
  Senders: Initiator and target
  Scope: CO
  HeaderDigest = <list-of-values>
  DataDigest = <list-of-values>

  Default is None for both HeaderDigest and DataDigest.

  Digests enable the checking of end-to-end, non-cryptographic data
  integrity beyond the integrity checks provided by the link layers and
  the covering of the whole communication path, including all elements
  that may change the network-level PDUs, such as routers, switches,
  and proxies.

  The following table lists cyclic integrity checksums that can be
  negotiated for the digests and MUST be implemented by every iSCSI
  initiator and target.  These digest options only have error detection
  significance.

    +---------------------------------------------+
    | Name          | Description     | Generator |
    +---------------------------------------------+
    | CRC32C        | 32-bit CRC      |0x11edc6f41|
    +---------------------------------------------+
    | None          | no digest                   |
    +---------------------------------------------+

  The generator polynomial G(x) for this digest is given in hexadecimal
  notation (e.g., "0x3b" stands for 0011 1011, and the polynomial is
  x**5 + x**4 + x**3 + x + 1).

  When the initiator and target agree on a digest, this digest MUST be
  used for every PDU in the Full Feature Phase.

  Padding bytes, when present in a segment covered by a CRC, SHOULD be
  set to 0 and are included in the CRC.

  The CRC MUST be calculated by a method that produces the same results
  as the following process:

  - The PDU bits are considered as the coefficients of a polynomial
    M(x) of degree n - 1; bit 7 of the lowest numbered byte is
    considered the most significant bit (x**n - 1), followed by bit 6
    of the lowest numbered byte through bit 0 of the highest numbered
    byte (x**0).




Chadalapaka, et al.          Standards Track                  [Page 230]

RFC 7143                  iSCSI (Consolidated)                April 2014


  - The most significant 32 bits are complemented.

  - The polynomial is multiplied by x**32, then divided by G(x).  The
    generator polynomial produces a remainder R(x) of degree <= 31.

  - The coefficients of R(x) are formed into a 32-bit sequence.

  - The bit sequence is complemented, and the result is the CRC.

  - The CRC bits are mapped into the digest word.  The x**31
    coefficient is mapped to bit 7 of the lowest numbered byte of the
    digest, and the mapping continues with successive coefficients and
    bits so that the x**24 coefficient is mapped to bit 0 of the lowest
    numbered byte.  The mapping continues further with the x**23
    coefficient mapped to bit 7 of the next byte in the digest until
    the x**0 coefficient is mapped to bit 0 of the highest numbered
    byte of the digest.

  - Computing the CRC over any segment (data or header) extended to
    include the CRC built using the generator 0x11edc6f41 will always
    get the value 0x1c2d19ed as its final remainder (R(x)).  This value
    is given here in its polynomial form (i.e., not mapped as the
    digest word).

  For a discussion about selection criteria for the CRC, see [RFC3385].
  For a detailed analysis of the iSCSI polynomial, see [Castagnoli93].

  Private or public extension algorithms MAY also be negotiated for
  digests.  Whenever a private or public digest extension algorithm is
  part of the default offer (the offer made in the absence of explicit
  administrative action), the implementer MUST ensure that CRC32C is
  listed as an alternative in the default offer and "None" is not part
  of the default offer.

  Extension digest algorithms MUST be named using one of the following
  two formats:

     1) Y-reversed.vendor.dns_name.do_something=

     2) New public key with no name prefix constraints

  Digests named using the Y- format are used for private purposes
  (unregistered).  New public keys must be registered with IANA using
  the IETF Review process ([RFC5226]).  New public extensions for
  digests MUST NOT use the Y# name prefix.

  For private extension digests, to identify the vendor we suggest
  using the reversed DNS-name as a prefix to the proper digest names.



Chadalapaka, et al.          Standards Track                  [Page 231]

RFC 7143                  iSCSI (Consolidated)                April 2014


  The part of digest-name following Y- MUST conform to the format for
  standard-label specified in Section 6.1.

  Support for public or private extension digests is OPTIONAL.

13.2.  MaxConnections

  Use: LO
  Senders: Initiator and target
  Scope: SW
  Irrelevant when: SessionType=Discovery

  MaxConnections=<numerical-value-from-1-to-65535>

  Default is 1.
  Result function is Minimum.

  The initiator and target negotiate the maximum number of connections
  requested/acceptable.

13.3.  SendTargets

  Use: FFPO
  Senders: Initiator
  Scope: SW

  For a complete description, see Appendix C.

13.4.  TargetName

  Use: IO by initiator, FFPO by target -- only as response to a
     SendTargets, Declarative, Any-Stage
  Senders: Initiator and target
  Scope: SW

  TargetName=<iSCSI-name-value>

  Examples:

     TargetName=iqn.1993-11.com.disk-vendor:diskarrays.sn.45678

     TargetName=eui.020000023B040506

     TargetName=naa.62004567BA64678D0123456789ABCDEF







Chadalapaka, et al.          Standards Track                  [Page 232]

RFC 7143                  iSCSI (Consolidated)                April 2014


  The initiator of the TCP connection MUST provide this key to the
  remote endpoint in the first Login Request if the initiator is not
  establishing a Discovery session.  The iSCSI Target Name specifies
  the worldwide unique name of the target.

  The TargetName key may also be returned by the SendTargets Text
  Request (which is its only use when issued by a target).

  The TargetName MUST NOT be redeclared within the Login Phase.

13.5.  InitiatorName

  Use: IO, Declarative, Any-Stage
  Senders: Initiator
  Scope: SW

  InitiatorName=<iSCSI-name-value>

  Examples:

     InitiatorName=iqn.1992-04.com.os-vendor.plan9:cdrom.12345

     InitiatorName=iqn.2001-02.com.ssp.users:customer235.host90

     InitiatorName=naa.52004567BA64678D

  The initiator of the TCP connection MUST provide this key to the
  remote endpoint at the first login of the Login Phase for every
  connection.  The InitiatorName key enables the initiator to identify
  itself to the remote endpoint.

  The InitiatorName MUST NOT be redeclared within the Login Phase.

13.6.  TargetAlias

  Use: ALL, Declarative, Any-Stage
  Senders: Target
  Scope: SW

  TargetAlias=<iSCSI-local-name-value>

  Examples:

     TargetAlias=Bob-s Disk

     TargetAlias=Database Server 1 Log Disk

     TargetAlias=Web Server 3 Disk 20



Chadalapaka, et al.          Standards Track                  [Page 233]

RFC 7143                  iSCSI (Consolidated)                April 2014


  If a target has been configured with a human-readable name or
  description, this name SHOULD be communicated to the initiator during
  a Login Response PDU if SessionType=Normal (see Section 13.21).  This
  string is not used as an identifier, nor is it meant to be used for
  authentication or authorization decisions.  It can be displayed by
  the initiator's user interface in a list of targets to which it is
  connected.

13.7.  InitiatorAlias

  Use: ALL, Declarative, Any-Stage
  Senders: Initiator
  Scope: SW

  InitiatorAlias=<iSCSI-local-name-value>

  Examples:

     InitiatorAlias=Web Server 4

     InitiatorAlias=spyalley.nsa.gov

     InitiatorAlias=Exchange Server

  If an initiator has been configured with a human-readable name or
  description, it SHOULD be communicated to the target during a Login
  Request PDU.  If not, the host name can be used instead.  This string
  is not used as an identifier, nor is it meant to be used for
  authentication or authorization decisions.  It can be displayed by
  the target's user interface in a list of initiators to which it is
  connected.

13.8.  TargetAddress

  Use: ALL, Declarative, Any-Stage
  Senders: Target
  Scope: SW

  TargetAddress=domainname[:port][,portal-group-tag]

  The domainname can be specified as either a DNS host name, a dotted-
  decimal IPv4 address, or a bracketed IPv6 address as specified in
  [RFC3986].

  If the TCP port is not specified, it is assumed to be the IANA-
  assigned default port for iSCSI (see Section 14).





Chadalapaka, et al.          Standards Track                  [Page 234]

RFC 7143                  iSCSI (Consolidated)                April 2014


  If the TargetAddress is returned as the result of a redirect status
  in a Login Response, the comma and portal-group-tag MUST be omitted.

  If the TargetAddress is returned within a SendTargets response, the
  portal-group-tag MUST be included.

  Examples:

     TargetAddress=10.0.0.1:5003,1

     TargetAddress=[1080:0:0:0:8:800:200C:417A],65

     TargetAddress=[1080::8:800:200C:417A]:5003,1

     TargetAddress=computingcenter.example.com,23

  The use of the portal-group-tag is described in Appendix C.  The
  formats for the port and portal-group-tag are the same as the one
  specified in TargetPortalGroupTag.

13.9.  TargetPortalGroupTag

  Use: IO by target, Declarative, Any-Stage
  Senders: Target
  Scope: SW

  TargetPortalGroupTag=<16-bit-binary-value>

  Example:

     TargetPortalGroupTag=1

  The TargetPortalGroupTag key is a 16-bit binary-value that uniquely
  identifies a portal group within an iSCSI target node.  This key
  carries the value of the tag of the portal group that is servicing
  the Login Request.  The iSCSI target returns this key to the
  initiator in the Login Response PDU to the first Login Request PDU
  that has the C bit set to 0 when TargetName is given by the
  initiator.

  [SAM2] notes in its informative text that the TPGT value should be
  non-zero; note that this is incorrect.  A zero value is allowed as a
  legal value for the TPGT.  This discrepancy currently stands
  corrected in [SAM4].

  For the complete usage expectations of this key, see Section 6.3.





Chadalapaka, et al.          Standards Track                  [Page 235]

RFC 7143                  iSCSI (Consolidated)                April 2014


13.10.  InitialR2T

  Use: LO
  Senders: Initiator and target
  Scope: SW
  Irrelevant when: SessionType=Discovery

  InitialR2T=<boolean-value>

  Examples:

     I->InitialR2T=No

     T->InitialR2T=No

  Default is Yes.
  Result function is OR.

  The InitialR2T key is used to turn off the default use of R2T for
  unidirectional operations and the output part of bidirectional
  commands, thus allowing an initiator to start sending data to a
  target as if it has received an initial R2T with Buffer
  Offset=Immediate Data Length and Desired Data Transfer
  Length=(min(FirstBurstLength, Expected Data Transfer Length) -
  Received Immediate Data Length).

  The default action is that R2T is required, unless both the initiator
  and the target send this key-pair attribute specifying InitialR2T=No.
  Only the first outgoing data burst (immediate data and/or separate
  PDUs) can be sent unsolicited (i.e., not requiring an explicit R2T).

13.11.  ImmediateData

  Use: LO
  Senders: Initiator and target
  Scope: SW
  Irrelevant when: SessionType=Discovery

  ImmediateData=<boolean-value>

  Default is Yes.
  Result function is AND.

  The initiator and target negotiate support for immediate data.  To
  turn immediate data off, the initiator or target must state its
  desire to do so.  ImmediateData can be turned on if both the
  initiator and target have ImmediateData=Yes.




Chadalapaka, et al.          Standards Track                  [Page 236]

RFC 7143                  iSCSI (Consolidated)                April 2014


  If ImmediateData is set to Yes and InitialR2T is set to Yes
  (default), then only immediate data are accepted in the first burst.

  If ImmediateData is set to No and InitialR2T is set to Yes, then the
  initiator MUST NOT send unsolicited data and the target MUST reject
  unsolicited data with the corresponding response code.

  If ImmediateData is set to No and InitialR2T is set to No, then the
  initiator MUST NOT send unsolicited immediate data but MAY send one
  unsolicited burst of Data-OUT PDUs.

  If ImmediateData is set to Yes and InitialR2T is set to No, then the
  initiator MAY send unsolicited immediate data and/or one unsolicited
  burst of Data-OUT PDUs.

  The following table is a summary of unsolicited data options:

    +----------+-------------+------------------+-------------+
    |InitialR2T|ImmediateData|    Unsolicited   |ImmediateData|
    |          |             |   Data-Out PDUs  |             |
    +----------+-------------+------------------+-------------+
    | No       | No          | Yes              | No          |
    +----------+-------------+------------------+-------------+
    | No       | Yes         | Yes              | Yes         |
    +----------+-------------+------------------+-------------+
    | Yes      | No          | No               | No          |
    +----------+-------------+------------------+-------------+
    | Yes      | Yes         | No               | Yes         |
    +----------+-------------+------------------+-------------+

13.12.  MaxRecvDataSegmentLength

  Use: ALL, Declarative
  Senders: Initiator and target
  Scope: CO

  MaxRecvDataSegmentLength=<numerical-value-512-to-(2**24 - 1)>

  Default is 8192 bytes.

  The initiator or target declares the maximum data segment length in
  bytes it can receive in an iSCSI PDU.

  The transmitter (initiator or target) is required to send PDUs with a
  data segment that does not exceed MaxRecvDataSegmentLength of the
  receiver.





Chadalapaka, et al.          Standards Track                  [Page 237]

RFC 7143                  iSCSI (Consolidated)                April 2014


  A target receiver is additionally limited by MaxBurstLength for
  solicited data and FirstBurstLength for unsolicited data.  An
  initiator MUST NOT send solicited PDUs exceeding MaxBurstLength nor
  unsolicited PDUs exceeding FirstBurstLength (or FirstBurstLength-
  Immediate Data Length if immediate data were sent).

13.13.  MaxBurstLength

  Use: LO
  Senders: Initiator and target
  Scope: SW
  Irrelevant when: SessionType=Discovery

  MaxBurstLength=<numerical-value-512-to-(2**24 - 1)>

  Default is 262144 (256 KB).
  Result function is Minimum.

  The initiator and target negotiate the maximum SCSI data payload in
  bytes in a Data-In or a solicited Data-Out iSCSI sequence.  A
  sequence consists of one or more consecutive Data-In or Data-Out PDUs
  that end with a Data-In or Data-Out PDU with the F bit set to 1.

13.14.  FirstBurstLength

  Use: LO
  Senders: Initiator and target
  Scope: SW
  Irrelevant when: SessionType=Discovery
  Irrelevant when: ( InitialR2T=Yes and ImmediateData=No )

  FirstBurstLength=<numerical-value-512-to-(2**24 - 1)>

  Default is 65536 (64 KB).
  Result function is Minimum.

  The initiator and target negotiate the maximum amount in bytes of
  unsolicited data an iSCSI initiator may send to the target during the
  execution of a single SCSI command.  This covers the immediate data
  (if any) and the sequence of unsolicited Data-Out PDUs (if any) that
  follow the command.

  FirstBurstLength MUST NOT exceed MaxBurstLength.








Chadalapaka, et al.          Standards Track                  [Page 238]

RFC 7143                  iSCSI (Consolidated)                April 2014


13.15.  DefaultTime2Wait

  Use: LO
  Senders: Initiator and target
  Scope: SW

  DefaultTime2Wait=<numerical-value-0-to-3600>

  Default is 2.
  Result function is Maximum.

  The initiator and target negotiate the minimum time, in seconds, to
  wait before attempting an explicit/implicit logout or an active task
  reassignment after an unexpected connection termination or a
  connection reset.

  A value of 0 indicates that logout or active task reassignment can be
  attempted immediately.

13.16.  DefaultTime2Retain

  Use: LO
  Senders: Initiator and target
  Scope: SW

  DefaultTime2Retain=<numerical-value-0-to-3600>

  Default is 20.
  Result function is Minimum.

  The initiator and target negotiate the maximum time, in seconds,
  after an initial wait (Time2Wait), before which an active task
  reassignment is still possible after an unexpected connection
  termination or a connection reset.

  This value is also the session state timeout if the connection in
  question is the last LOGGED_IN connection in the session.

  A value of 0 indicates that connection/task state is immediately
  discarded by the target.

13.17.  MaxOutstandingR2T

  Use: LO
  Senders: Initiator and target
  Scope: SW

  MaxOutstandingR2T=<numerical-value-from-1-to-65535>



Chadalapaka, et al.          Standards Track                  [Page 239]

RFC 7143                  iSCSI (Consolidated)                April 2014


  Irrelevant when: SessionType=Discovery

  Default is 1.
  Result function is Minimum.

  The initiator and target negotiate the maximum number of outstanding
  R2Ts per task, excluding any implied initial R2T that might be part
  of that task.  An R2T is considered outstanding until the last data
  PDU (with the F bit set to 1) is transferred or a sequence reception
  timeout (Section 7.1.4.1) is encountered for that data sequence.

13.18.  DataPDUInOrder

  Use: LO
  Senders: Initiator and target
  Scope: SW
  Irrelevant when: SessionType=Discovery

  DataPDUInOrder=<boolean-value>

  Default is Yes.
  Result function is OR.

  "No" is used by iSCSI to indicate that the data PDUs within sequences
  can be in any order.  "Yes" is used to indicate that data PDUs within
  sequences have to be at continuously increasing addresses and
  overlays are forbidden.

13.19.  DataSequenceInOrder

  Use: LO
  Senders: Initiator and target
  Scope: SW
  Irrelevant when: SessionType=Discovery

  DataSequenceInOrder=<boolean-value>

  Default is Yes.
  Result function is OR.

  A data sequence is a sequence of Data-In or Data-Out PDUs that end
  with a Data-In or Data-Out PDU with the F bit set to 1.  A Data-Out
  sequence is sent either unsolicited or in response to an R2T.
  Sequences cover an offset-range.

  If DataSequenceInOrder is set to No, data PDU sequences may be
  transferred in any order.




Chadalapaka, et al.          Standards Track                  [Page 240]

RFC 7143                  iSCSI (Consolidated)                April 2014


  If DataSequenceInOrder is set to Yes, data sequences MUST be
  transferred using continuously non-decreasing sequence offsets (R2T
  buffer offset for writes, or the smallest SCSI Data-In buffer offset
  within a read data sequence).

  If DataSequenceInOrder is set to Yes, a target may retry at most the
  last R2T, and an initiator may at most request retransmission for the
  last read data sequence.  For this reason, if ErrorRecoveryLevel is
  not 0 and DataSequenceInOrder is set to Yes, then MaxOutstandingR2T
  MUST be set to 1.

13.20.  ErrorRecoveryLevel

  Use: LO
  Senders: Initiator and target
  Scope: SW

  ErrorRecoveryLevel=<numerical-value-0-to-2>

  Default is 0.
  Result function is Minimum.

  The initiator and target negotiate the recovery level supported.

  Recovery levels represent a combination of recovery capabilities.
  Each recovery level includes all the capabilities of the lower
  recovery levels and adds some new ones to them.

  In the description of recovery mechanisms, certain recovery classes
  are specified.  Section 7.1.5 describes the mapping between the
  classes and the levels.

13.21.  SessionType

  Use: LO, Declarative, Any-Stage
  Senders: Initiator
  Scope: SW

  SessionType=<Discovery|Normal>

  Default is Normal.

  The initiator indicates the type of session it wants to create.  The
  target can either accept it or reject it.







Chadalapaka, et al.          Standards Track                  [Page 241]

RFC 7143                  iSCSI (Consolidated)                April 2014


  A Discovery session indicates to the target that the only purpose of
  this session is discovery.  The only requests a target accepts in
  this type of session are a Text Request with a SendTargets key and a
  Logout Request with reason "close the session".

  The Discovery session implies MaxConnections = 1 and overrides both
  the default and an explicit setting.  As Section 7.4.1 states,
  ErrorRecoveryLevel MUST be 0 (zero) for Discovery sessions.

  Depending on the type of session, a target may decide on resources to
  allocate, the security to enforce, etc., for the session.  If the
  SessionType key is thus going to be offered as "Discovery", it SHOULD
  be offered in the initial Login Request by the initiator.

13.22.  The Private Extension Key Format

  Use: ALL
  Senders: Initiator and target
  Scope: specific key dependent

  X-reversed.vendor.dns_name.do_something=

  Keys with this format are used for private extension purposes.  These
  keys always start with X- if unregistered with IANA (private).  New
  public keys (if registered with IANA via an IETF Review [RFC5226]) no
  longer have an X# name prefix requirement; implementers may propose
  any intuitive unique name.

  For unregistered keys, to identify the vendor we suggest using the
  reversed DNS-name as a prefix to the key-proper.

  The part of key-name following X- MUST conform to the format for
  key-name specified in Section 6.1.

  Vendor-specific keys MUST ONLY be used in Normal sessions.

  Support for public or private extension keys is OPTIONAL.

13.23.  TaskReporting

  Use: LO
  Senders: Initiator and target
  Scope: SW
  Irrelevant when: SessionType=Discovery
  TaskReporting=<list-of-values>

  Default is RFC3720.




Chadalapaka, et al.          Standards Track                  [Page 242]

RFC 7143                  iSCSI (Consolidated)                April 2014


  This key is used to negotiate the task completion reporting semantics
  from the SCSI target.  The following table describes the semantics
  that an iSCSI target MUST support for respective negotiated key
  values.  Whenever this key is negotiated, at least the RFC3720 and
  ResponseFence values MUST be offered as options by the negotiation
  originator.

    +--------------+------------------------------------------+
    | Name         |             Description                  |
    +--------------+------------------------------------------+
    | RFC3720      | RFC 3720-compliant semantics.  Response  |
    |              | fencing is not guaranteed, and fast      |
    |              | completion of multi-task aborting is not |
    |              | supported.                               |
    +--------------+------------------------------------------+
    | ResponseFence| Response Fence (Section 4.2.2.3.3)       |
    |              | semantics MUST be supported in reporting |
    |              | task completions.                        |
    +--------------+------------------------------------------+
    | FastAbort    | Updated fast multi-task abort semantics  |
    |              | defined in Section 4.2.3.4 MUST be       |
    |              | supported.  Support for the Response     |
    |              | Fence is implied -- i.e., semantics as   |
    |              | described in Section 4.2.2.3.3 MUST be   |
    |              | supported as well.                       |
    +--------------+------------------------------------------+

  When TaskReporting is not negotiated to FastAbort, the standard
  multi-task abort semantics in Section 4.2.3.3 MUST be used.

13.24.  iSCSIProtocolLevel Negotiation

  The iSCSIProtocolLevel associated with this document is "1".  As a
  responder or an originator in a negotiation of this key, an iSCSI
  implementation compliant to this document alone, without any future
  protocol extensions, MUST use this value as defined by [RFC7144].

13.25.  Obsoleted Keys

  This document obsoletes the following keys defined in [RFC3720]:
  IFMarker, OFMarker, OFMarkInt, and IFMarkInt.  However, iSCSI
  implementations compliant to this document may still receive these
  obsoleted keys -- i.e., in a responder role -- in a text negotiation.

  When an IFMarker or OFMarker key is received, a compliant iSCSI
  implementation SHOULD respond with the constant "Reject" value.  The
  implementation MAY alternatively respond with a "No" value.




Chadalapaka, et al.          Standards Track                  [Page 243]

RFC 7143                  iSCSI (Consolidated)                April 2014


  However, the implementation MUST NOT respond with a "NotUnderstood"
  value for either of these keys.

  When an IFMarkInt or OFMarkInt key is received, a compliant iSCSI
  implementation MUST respond with the constant "Reject" value.  The
  implementation MUST NOT respond with a "NotUnderstood" value for
  either of these keys.

13.26.  X#NodeArchitecture

13.26.1.  Definition

  Use: LO, Declarative
  Senders: Initiator and target
  Scope: SW

  X#NodeArchitecture=<list-of-values>

  Default is None.

  Examples:

     X#NodeArchitecture=ExampleOS/v1234,ExampleInc_SW_Initiator/1.05a

     X#NodeArchitecture=ExampleInc_HW_Initiator/4010,Firmware/2.0.0.5

     X#NodeArchitecture=ExampleInc_SW_Initiator/2.1,CPU_Arch/i686

  This document does not define the structure or content of the list of
  values.

  The initiator or target declares the details of its iSCSI node
  architecture to the remote endpoint.  These details may include, but
  are not limited to, iSCSI vendor software, firmware, or hardware
  versions; the OS version; or hardware architecture.  This key may be
  declared on a Discovery session or a Normal session.

  The length of the key value (total length of the list-of-values) MUST
  NOT be greater than 255 bytes.

  X#NodeArchitecture MUST NOT be redeclared during the Login Phase.

13.26.2.  Implementation Requirements

  Functional behavior of the iSCSI node (this includes the iSCSI
  protocol logic -- the SCSI, iSCSI, and TCP/IP protocols) MUST NOT
  depend on the presence, absence, or content of the X#NodeArchitecture
  key.  The key MUST NOT be used by iSCSI nodes for interoperability or



Chadalapaka, et al.          Standards Track                  [Page 244]

RFC 7143                  iSCSI (Consolidated)                April 2014


  for exclusion of other nodes.  To ensure proper use, key values
  SHOULD be set by the node itself, and there SHOULD NOT be provisions
  for the key values to contain user-defined text.

  Nodes implementing this key MUST choose one of the following
  implementation options:

     - only transmit the key,

     - only log the key values received from other nodes, or

     - both transmit and log the key values.

  Each node choosing to implement transmission of the key values MUST
  be prepared to handle the response of iSCSI nodes that do not
  understand the key.

  Nodes that implement transmission and/or logging of the key values
  may also implement administrative mechanisms that disable and/or
  change the logging and key transmission details (see Section 9.4).
  Thus, a valid behavior for this key may be that a node is completely
  silent (the node does not transmit any key value and simply discards
  any key values it receives without issuing a NotUnderstood response).

14.  Rationale for Revised IANA Considerations

  This document makes rather significant changes in this area, and this
  section outlines the reasons behind the changes.  As previously
  specified in [RFC3720], iSCSI had used text string prefixes, such as
  X- and X#, to distinguish extended login/text keys, digest
  algorithms, and authentication methods from their standardized
  counterparts.  Based on experience with other protocols, [RFC6648],
  however, strongly recommends against this practice, in large part
  because extensions that use such prefixes may become standard over
  time, at which point it can be infeasible to change their text string
  names due to widespread usage under the existing text string name.

  iSCSI's experience with public extensions supports the
  recommendations in [RFC6648], as the only extension item ever
  registered with IANA, the X#NodeArchitecture key, was specified as a
  standard key in a Standards Track RFC [RFC4850] and hence did not
  require the X# prefix.  In addition, that key is the only public
  iSCSI extension that has been registered with IANA since RFC 3720 was
  originally published, so there has been effectively no use of the X#,
  Y#, and Z# public extension formats.






Chadalapaka, et al.          Standards Track                  [Page 245]

RFC 7143                  iSCSI (Consolidated)                April 2014


  Therefore, this document makes the following changes to the IANA
  registration procedures for iSCSI:

     1) The separate registries for X#, Y#, and Z# public extensions
        are removed.  The single entry in the registry for X#
        login/text keys (X#NodeArchitecture) is transferred to the main
        "iSCSI Login/Text Keys" registry.  IANA has never created the
        latter two registries because there have been no registration
        requests for them.  These public extension formats (X#, Y#, Z#)
        MUST NOT be used, with the exception of the existing
        X#NodeArchitecture key.

     2) The registration procedures for the main "iSCSI Login/Text
        Keys", "iSCSI digests", and "iSCSI authentication methods" IANA
        registries are changed to IETF Review [RFC5226] for possible
        future extensions to iSCSI.  This change includes a deliberate
        decision to remove the possibility of specifying an IANA-
        registered iSCSI extension in an RFC published via an RFC
        Editor Independent Submission, as the level of review in that
        process is insufficient for iSCSI extensions.

     3) The restriction against registering items using the private
        extension formats (X-, Y-, Z-) in the main IANA registries is
        removed.  Extensions using these formats MAY be registered
        under the IETF Review registration procedures, but each format
        is restricted to the type of extension for which it is
        specified in this RFC and MUST NOT be used for other types.
        For example, the X- extension format for extension login/text
        keys MUST NOT be used for digest algorithms or authentication
        methods.

15.  IANA Considerations

  The well-known TCP port number for iSCSI connections assigned by IANA
  is 3260, and this is the default iSCSI port.  Implementations needing
  a system TCP port number may use port 860, the port assigned by IANA
  as the iSCSI system port; however, in order to use port 860, it MUST
  be explicitly specified -- implementations MUST NOT default to the
  use of port 860, as 3260 is the only allowed default.

  IANA has replaced the references for ports 860 and 3260, both TCP and
  UDP, with references to this document.  Please see
  http://www.iana.org/assignments/service-names-port-numbers.

  IANA has updated all references to RFC 3720, RFC 4850, and RFC 5048
  to instead reference this RFC in all of the iSCSI registries that are
  part of the "Internet Small Computer System Interface (iSCSI)
  Parameters" set of registries.  This change reflects the fact that



Chadalapaka, et al.          Standards Track                  [Page 246]

RFC 7143                  iSCSI (Consolidated)                April 2014


  those three RFCs are obsoleted by this RFC.  References to other RFCs
  that are not being obsoleted (e.g., RFC 3723, RFC 5046) should not be
  changed.

  IANA has performed the following actions on the "iSCSI Login/Text
  Keys" registry:

     - Changed the registration procedure to IETF Review from Standard
       Required.

     - Changed the RFC 5048 reference for the registry to reference
       this RFC.

     - Added the X#NodeArchitecture key from the "iSCSI extended key"
       registry, and changed its reference to this RFC.

     - Changed all references to RFC 3720 and RFC 5048 to instead
       reference this RFC.

  IANA has changed the registration procedures for the "iSCSI
  authentication methods" and "iSCSI digests" registries to IETF Review
  from RFC Required.

  IANA has removed the "iSCSI extended key" registry, as its one entry
  has been added to the "iSCSI Login/Text Keys" registry.

  IANA has marked as obsolete the values 4 and 5 for SPKM1 and SPKM2,
  respectively, in the "iSCSI authentication methods" subregistry of
  the "Internet Small Computer System Interface (iSCSI) Parameters" set
  of registries.

  IANA has added this document to the "iSCSI Protocol Level" registry
  with value 1, as mentioned in Section 13.24.

  All the other IANA considerations stated in [RFC3720] and [RFC5048]
  remain unchanged.  The assignments contained in the following
  subregistries are not repeated in this document:

     - iSCSI authentication methods (from Section 13 of [RFC3720])

     - iSCSI digests (from Section 13 of [RFC3720])

  This document obsoletes the SPKM1 and SPKM2 key values for the
  AuthMethod text key.  Consequently, the SPKM_ text key prefix MUST be
  treated as obsolete and not be reused.






Chadalapaka, et al.          Standards Track                  [Page 247]

RFC 7143                  iSCSI (Consolidated)                April 2014


16.  References

16.1.  Normative References

  [EUI]      "Guidelines for 64-bit Global Identifier (EUI-64(TM))",
             <http://standards.ieee.org/regauth/oui/tutorials/
             EUI64.html>.

  [FC-FS3]   INCITS Technical Committee T11, "Fibre Channel - Framing
             and Signaling - 3 (FC-FS-3)", ANSI INCITS 470-2011, 2011.

  [OUI]      "IEEE OUI and "company_id" Assignments",
             <http://standards.ieee.org/regauth/oui>.

  [RFC1122]  Braden, R., Ed., "Requirements for Internet Hosts -
             Communication Layers", STD 3, RFC 1122, October 1989.

  [RFC1964]  Linn, J., "The Kerberos Version 5 GSS-API Mechanism",
             RFC 1964, June 1996.

  [RFC1982]  Elz, R. and R. Bush, "Serial Number Arithmetic", RFC 1982,
             August 1996.

  [RFC1994]  Simpson, W., "PPP Challenge Handshake Authentication
             Protocol (CHAP)", RFC 1994, August 1996.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2404]  Madson, C. and R. Glenn, "The Use of HMAC-SHA-1-96 within
             ESP and AH", RFC 2404, November 1998.

  [RFC2406]  Kent, S. and R. Atkinson, "IP Encapsulating Security
             Payload (ESP)", RFC 2406, November 1998.

  [RFC2451]  Pereira, R. and R. Adams, "The ESP CBC-Mode Cipher
             Algorithms", RFC 2451, November 1998.

  [RFC2945]  Wu, T., "The SRP Authentication and Key Exchange System",
             RFC 2945, September 2000.

  [RFC3454]  Hoffman, P. and M. Blanchet, "Preparation of
             Internationalized Strings ("stringprep")", RFC 3454,
             December 2002.

  [RFC3566]  Frankel, S. and H. Herbert, "The AES-XCBC-MAC-96 Algorithm
             and Its Use With IPsec", RFC 3566, September 2003.




Chadalapaka, et al.          Standards Track                  [Page 248]

RFC 7143                  iSCSI (Consolidated)                April 2014


  [RFC3629]  Yergeau, F., "UTF-8, a transformation format of
             ISO 10646", STD 63, RFC 3629, November 2003.

  [RFC3686]  Housley, R., "Using Advanced Encryption Standard (AES)
             Counter Mode With IPsec Encapsulating Security Payload
             (ESP)", RFC 3686, January 2004.

  [RFC3722]  Bakke, M., "String Profile for Internet Small Computer
             Systems Interface (iSCSI) Names", RFC 3722, April 2004.

  [RFC3723]  Aboba, B., Tseng, J., Walker, J., Rangan, V., and F.
             Travostino, "Securing Block Storage Protocols over IP",
             RFC 3723, April 2004.

  [RFC3986]  Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
             Resource Identifier (URI): Generic Syntax", STD 66,
             RFC 3986, January 2005.

  [RFC4106]  Viega, J. and D. McGrew, "The Use of Galois/Counter Mode
             (GCM) in IPsec Encapsulating Security Payload (ESP)",
             RFC 4106, June 2005.

  [RFC4120]  Neuman, C., Yu, T., Hartman, S., and K. Raeburn, "The
             Kerberos Network Authentication Service (V5)", RFC 4120,
             July 2005.

  [RFC4171]  Tseng, J., Gibbons, K., Travostino, F., Du Laney, C., and
             J. Souza, "Internet Storage Name Service (iSNS)",
             RFC 4171, September 2005.

  [RFC4291]  Hinden, R. and S. Deering, "IP Version 6 Addressing
             Architecture", RFC 4291, February 2006.

  [RFC4301]  Kent, S. and K. Seo, "Security Architecture for the
             Internet Protocol", RFC 4301, December 2005.

  [RFC4303]  Kent, S., "IP Encapsulating Security Payload (ESP)",
             RFC 4303, December 2005.

  [RFC4304]  Kent, S., "Extended Sequence Number (ESN) Addendum to
             IPsec Domain of Interpretation (DOI) for Internet Security
             Association and Key Management Protocol (ISAKMP)",
             RFC 4304, December 2005.

  [RFC4543]  McGrew, D. and J. Viega, "The Use of Galois Message
             Authentication Code (GMAC) in IPsec ESP and AH", RFC 4543,
             May 2006.




Chadalapaka, et al.          Standards Track                  [Page 249]

RFC 7143                  iSCSI (Consolidated)                April 2014


  [RFC4648]  Josefsson, S., "The Base16, Base32, and Base64 Data
             Encodings", RFC 4648, October 2006.

  [RFC5226]  Narten, T. and H. Alvestrand, "Guidelines for Writing an
             IANA Considerations Section in RFCs", BCP 26, RFC 5226,
             May 2008.

  [RFC5996]  Kaufman, C., Hoffman, P., Nir, Y., and P. Eronen,
             "Internet Key Exchange Protocol Version 2 (IKEv2)",
             RFC 5996, September 2010.

  [RFC6960]  Santesson, S., Myers, M., Ankney, R., Malpani, A.,
             Galperin, S., and C. Adams, "X.509 Internet Public Key
             Infrastructure Online Certificate Status Protocol - OCSP",
             RFC 6960, June 2013.

  [RFC7144]  Knight, F. and M. Chadalapaka, "Internet Small Computer
             System Interface (iSCSI) SCSI Features Update", RFC 7144,
             April 2014.

  [RFC7145]  Ko, M. and A. Nezhinsky, "Internet Small Computer System
             Interface (iSCSI) Extensions for the Remote Direct Memory
             Access (RDMA) Specification", RFC 7145, April 2014.

  [RFC7146]  Black, D. and P. Koning, "Securing Block Storage Protocols
             over IP: RFC 3723 Requirements Update for IPsec v3",
             RFC 7146, April 2014.

  [SAM2]     INCITS Technical Committee T10, "SCSI Architecture Model -
             2 (SAM-2)", ANSI INCITS 366-2003, ISO/IEC 14776-412, 2003.

  [SAM4]     INCITS Technical Committee T10, "SCSI Architecture Model -
             4 (SAM-4)", ANSI INCITS 447-2008, ISO/IEC 14776-414, 2008.

  [SPC2]     INCITS Technical Committee T10, "SCSI Primary Commands -
             2", ANSI INCITS 351-2001, ISO/IEC 14776-452, 2001.

  [SPC3]     INCITS Technical Committee T10, "SCSI Primary Commands -
             3", ANSI INCITS 408-2005, ISO/IEC 14776-453, 2005.

  [UML]      ISO, "Unified Modeling Language (UML) Version 1.4.2",
             ISO/IEC 19501:2005.

  [UNICODE]  The Unicode Consortium, "Unicode Standard Annex #15:
             Unicode Normalization Forms", 2013,
             <http://www.unicode.org/unicode/reports/tr15>.





Chadalapaka, et al.          Standards Track                  [Page 250]

RFC 7143                  iSCSI (Consolidated)                April 2014


16.2.  Informative References

  [Castagnoli93]
             Castagnoli, G., Brauer, S., and M. Herrmann, "Optimization
             of Cyclic Redundancy-Check Codes with 24 and 32 Parity
             Bits", IEEE Transact. on Communications, Vol. 41, No. 6,
             June 1993.

  [FC-SP-2]  INCITS Technical Committee T11, "Fibre Channel Security
             Protocols 2", ANSI INCITS 496-2012, 2012.

  [IB]       InfiniBand, "InfiniBand(TM) Architecture Specification",
             Vol. 1, Rel. 1.2.1, InfiniBand Trade Association,
             <http://www.infinibandta.org>.

  [RFC1737]  Sollins, K. and L. Masinter, "Functional Requirements for
             Uniform Resource Names", RFC 1737, December 1994.

  [RFC2401]  Kent, S. and R. Atkinson, "Security Architecture for the
             Internet Protocol", RFC 2401, November 1998.

  [RFC2407]  Piper, D., "The Internet IP Security Domain of
             Interpretation for ISAKMP", RFC 2407, November 1998.

  [RFC2409]  Harkins, D. and D. Carrel, "The Internet Key Exchange
             (IKE)", RFC 2409, November 1998.

  [RFC2608]  Guttman, E., Perkins, C., Veizades, J., and M. Day,
             "Service Location Protocol, Version 2", RFC 2608,
             June 1999.

  [RFC2743]  Linn, J., "Generic Security Service Application Program
             Interface Version 2, Update  ", RFC 2743, January 2000.

  [RFC2865]  Rigney, C., Willens, S., Rubens, A., and W. Simpson,
             "Remote Authentication Dial In User Service (RADIUS)",
             RFC 2865, June 2000.

  [RFC3385]  Sheinwald, D., Satran, J., Thaler, P., and V. Cavanna,
             "Internet Protocol Small Computer System Interface (iSCSI)
             Cyclic Redundancy Check (CRC)/Checksum Considerations",
             RFC 3385, September 2002.

  [RFC3602]  Frankel, S., Glenn, R., and S. Kelly, "The AES-CBC Cipher
             Algorithm and Its Use with IPsec", RFC 3602,
             September 2003.





Chadalapaka, et al.          Standards Track                  [Page 251]

RFC 7143                  iSCSI (Consolidated)                April 2014


  [RFC3720]  Satran, J., Meth, K., Sapuntzakis, C., Chadalapaka, M.,
             and E. Zeidner, "Internet Small Computer Systems Interface
             (iSCSI)", RFC 3720, April 2004.

  [RFC3721]  Bakke, M., Hafner, J., Hufferd, J., Voruganti, K., and M.
             Krueger, "Internet Small Computer Systems Interface
             (iSCSI) Naming and Discovery", RFC 3721, April 2004.

  [RFC3783]  Chadalapaka, M. and R. Elliott, "Small Computer Systems
             Interface (SCSI) Command Ordering Considerations with
             iSCSI", RFC 3783, May 2004.

  [RFC4121]  Zhu, L., Jaganathan, K., and S. Hartman, "The Kerberos
             Version 5 Generic Security Service Application Program
             Interface (GSS-API) Mechanism: Version 2", RFC 4121,
             July 2005.

  [RFC4297]  Romanow, A., Mogul, J., Talpey, T., and S. Bailey, "Remote
             Direct Memory Access (RDMA) over IP Problem Statement",
             RFC 4297, December 2005.

  [RFC4806]  Myers, M. and H. Tschofenig, "Online Certificate Status
             Protocol (OCSP) Extensions to IKEv2", RFC 4806,
             February 2007.

  [RFC4850]  Wysochanski, D., "Declarative Public Extension Key for
             Internet Small Computer Systems Interface (iSCSI) Node
             Architecture", RFC 4850, April 2007.

  [RFC5046]  Ko, M., Chadalapaka, M., Hufferd, J., Elzur, U., Shah, H.,
             and P. Thaler, "Internet Small Computer System Interface
             (iSCSI) Extensions for Remote Direct Memory Access
             (RDMA)", RFC 5046, October 2007.

  [RFC5048]  Chadalapaka, M., Ed., "Internet Small Computer System
             Interface (iSCSI) Corrections and Clarifications",
             RFC 5048, October 2007.

  [RFC5433]  Clancy, T. and H. Tschofenig, "Extensible Authentication
             Protocol - Generalized Pre-Shared Key (EAP-GPSK) Method",
             RFC 5433, February 2009.

  [RFC6648]  Saint-Andre, P., Crocker, D., and M. Nottingham,
             "Deprecating the "X-" Prefix and Similar Constructs in
             Application Protocols", BCP 178, RFC 6648, June 2012.

  [SAS]      INCITS Technical Committee T10, "Serial Attached SCSI -
             2.1 (SAS-2.1)", ANSI INCITS 457-2010, 2010.



Chadalapaka, et al.          Standards Track                  [Page 252]

RFC 7143                  iSCSI (Consolidated)                April 2014


  [SBC2]     INCITS Technical Committee T10, "SCSI Block Commands - 2
             (SBC-2)", ANSI INCITS 405-2005, ISO/IEC 14776-322, 2005.

  [SPC4]     INCITS Technical Committee T10, "SCSI Primary Commands -
             4", ANSI INCITS 513-201x.

  [SPL]      INCITS Technical Committee T10, "SAS Protocol Layer - 2
             (SPL-2)", ANSI INCITS 505-2013, ISO/IEC 14776-262, 2013.











































Chadalapaka, et al.          Standards Track                  [Page 253]

RFC 7143                  iSCSI (Consolidated)                April 2014


Appendix A.  Examples

A.1.  Read Operation Example

  +------------------+-----------------------+---------------------+
  |Initiator Function|       PDU Type        |   Target Function   |
  +------------------+-----------------------+---------------------+
  | Command request  |SCSI Command (read)>>> |                     |
  | (read)           |                       |                     |
  +------------------+-----------------------+---------------------+
  |                  |                       |Prepare Data Transfer|
  +------------------+-----------------------+---------------------+
  |   Receive Data   |   <<< SCSI Data-In    |   Send Data         |
  +------------------+-----------------------+---------------------+
  |   Receive Data   |   <<< SCSI Data-In    |   Send Data         |
  +------------------+-----------------------+---------------------+
  |   Receive Data   |   <<< SCSI Data-In    |   Send Data         |
  +------------------+-----------------------+---------------------+
  |                  |   <<< SCSI Response   |Send Status and Sense|
  +------------------+-----------------------+---------------------+
  | Command Complete |                       |                     |
  +------------------+-----------------------+---------------------+





























Chadalapaka, et al.          Standards Track                  [Page 254]

RFC 7143                  iSCSI (Consolidated)                April 2014


A.2.  Write Operation Example

  +------------------+-----------------------+---------------------+
  |Initiator Function|       PDU Type        |   Target Function   |
  +------------------+-----------------------+---------------------+
  | Command request  |SCSI Command (write)>>>| Receive command     |
  | (write)          |                       | and queue it        |
  +------------------+-----------------------+---------------------+
  |                  |                       | Process old commands|
  +------------------+-----------------------+---------------------+
  |                  |                       | Ready to process    |
  |                  |   <<< R2T             | write command       |
  +------------------+-----------------------+---------------------+
  |   Send Data      |   SCSI Data-Out >>>   |   Receive Data      |
  +------------------+-----------------------+---------------------+
  |                  |   <<< R2T             | Ready for data      |
  +------------------+-----------------------+---------------------+
  |                  |   <<< R2T             | Ready for data      |
  +------------------+-----------------------+---------------------+
  |   Send Data      |   SCSI Data-Out >>>   |   Receive Data      |
  +------------------+-----------------------+---------------------+
  |   Send Data      |   SCSI Data-Out >>>   |   Receive Data      |
  +------------------+-----------------------+---------------------+
  |                  |   <<< SCSI Response   |Send Status and Sense|
  +------------------+-----------------------+---------------------+
  | Command Complete |                       |                     |
  +------------------+-----------------------+---------------------+
























Chadalapaka, et al.          Standards Track                  [Page 255]

RFC 7143                  iSCSI (Consolidated)                April 2014


A.3.  R2TSN/DataSN Use Examples

A.3.1.  Output (Write) Data DataSN/R2TSN Example

  +-------------------+------------------------+---------------------+
  |Initiator Function |  PDU Type and Content  |   Target Function   |
  +-------------------+------------------------+---------------------+
  | Command request   |SCSI Command (write)>>> | Receive command     |
  | (write)           |                        | and queue it        |
  +-------------------+------------------------+---------------------+
  |                   |                        | Process old commands|
  +-------------------+------------------------+---------------------+
  |                   |   <<< R2T              | Ready for data      |
  |                   |   R2TSN = 0            |                     |
  +-------------------+------------------------+---------------------+
  |                   |   <<< R2T              | Ready for more data |
  |                   |   R2TSN = 1            |                     |
  +-------------------+------------------------+---------------------+
  | Send Data         |   SCSI Data-Out >>>    |   Receive Data      |
  | for R2TSN 0       |   DataSN = 0, F = 0    |                     |
  +-------------------+------------------------+---------------------+
  | Send Data         |   SCSI Data-Out >>>    |   Receive Data      |
  | for R2TSN 0       |   DataSN = 1, F = 1    |                     |
  +-------------------+------------------------+---------------------+
  | Send Data         |   SCSI Data >>>        |   Receive Data      |
  | for R2TSN 1       |   DataSN = 0, F = 1    |                     |
  +-------------------+------------------------+---------------------+
  |                   |   <<< SCSI Response    |Send Status and Sense|
  |                   |   ExpDataSN = 0        |                     |
  +-------------------+------------------------+---------------------+
  | Command Complete  |                        |                     |
  +-------------------+------------------------+---------------------+



















Chadalapaka, et al.          Standards Track                  [Page 256]

RFC 7143                  iSCSI (Consolidated)                April 2014


A.3.2.  Input (Read) Data DataSN Example

  +------------------+-----------------------+----------------------+
  |Initiator Function|        PDU Type       |    Target Function   |
  +------------------+-----------------------+----------------------+
  | Command request  |SCSI Command (read)>>> |                      |
  | (read)           |                       |                      |
  +------------------+-----------------------+----------------------+
  |                  |                       |Prepare Data Transfer |
  +------------------+-----------------------+----------------------+
  |   Receive Data   |   <<< SCSI Data-In    |   Send Data          |
  |                  |   DataSN = 0, F = 0   |                      |
  +------------------+-----------------------+----------------------+
  |   Receive Data   |   <<< SCSI Data-In    |   Send Data          |
  |                  |   DataSN = 1, F = 0   |                      |
  +------------------+-----------------------+----------------------+
  |   Receive Data   |   <<< SCSI Data-In    |   Send Data          |
  |                  |   DataSN = 2, F = 1   |                      |
  +------------------+-----------------------+----------------------+
  |                  |   <<< SCSI Response   |Send Status and Sense |
  |                  |   ExpDataSN = 3       |                      |
  +------------------+-----------------------+----------------------+
  | Command Complete |                       |                      |
  +------------------+-----------------------+----------------------+



























Chadalapaka, et al.          Standards Track                  [Page 257]

RFC 7143                  iSCSI (Consolidated)                April 2014


A.3.3.  Bidirectional DataSN Example

  +------------------+-----------------------+---------------------+
  |Initiator Function|       PDU Type        |   Target Function   |
  +------------------+-----------------------+---------------------+
  | Command request  |SCSI Command >>>       |                     |
  | (Read-Write)     | Read-Write            |                     |
  +------------------+-----------------------+---------------------+
  |                  |                       | Process old commands|
  +------------------+-----------------------+---------------------+
  |                  |   <<< R2T             | Ready to process    |
  |                  |   R2TSN = 0           | write command       |
  +------------------+-----------------------+---------------------+
  | * Receive Data   |   <<< SCSI Data-In    |   Send Data         |
  |                  |   DataSN = 0, F = 0   |                     |
  +------------------+-----------------------+---------------------+
  | * Receive Data   |   <<< SCSI Data-In    |   Send Data         |
  |                  |   DataSN = 1, F = 1   |                     |
  +------------------+-----------------------+---------------------+
  | * Send Data      |   SCSI Data-Out >>>   |   Receive Data      |
  | for R2TSN 0      |   DataSN = 0, F = 1   |                     |
  +------------------+-----------------------+---------------------+
  |                  |   <<< SCSI Response   |Send Status and Sense|
  |                  |   ExpDataSN = 2       |                     |
  +------------------+-----------------------+---------------------+
  | Command Complete |                       |                     |
  +------------------+-----------------------+---------------------+

  * Send Data and Receive Data may be transferred simultaneously as in
    an atomic Read-Old-Write-New or sequentially as in an atomic
    Read-Update-Write (in the latter case, the R2T may follow the
    received data).



















Chadalapaka, et al.          Standards Track                  [Page 258]

RFC 7143                  iSCSI (Consolidated)                April 2014


A.3.4.  Unsolicited and Immediate Output (Write) Data with DataSN
       Example

  +------------------+------------------------+----------------------+
  |Initiator Function|  PDU Type and Content  |   Target Function    |
  +------------------+------------------------+----------------------+
  | Command request  |SCSI Command (write)>>> | Receive command      |
  | (write)          |F = 0                   | and data             |
  |+ immediate data  |                        | and queue it         |
  +------------------+------------------------+----------------------+
  | Send Unsolicited |    SCSI Write Data >>> | Receive more Data    |
  | Data             |    DataSN = 0, F = 1   |                      |
  +------------------+------------------------+----------------------+
  |                  |                        | Process old commands |
  +------------------+------------------------+----------------------+
  |                  |    <<< R2T             | Ready for more data  |
  |                  |    R2TSN = 0           |                      |
  +------------------+------------------------+----------------------+
  | Send Data        |    SCSI Write Data >>> |   Receive Data       |
  | for R2TSN 0      |    DataSN = 0, F = 1   |                      |
  +------------------+------------------------+----------------------+
  |                  |    <<< SCSI Response   |Send Status and Sense |
  |                  |                        |                      |
  +------------------+------------------------+----------------------+
  | Command Complete |                        |                      |
  +------------------+------------------------+----------------------+

A.4.  CRC Examples

  Note: All values are hexadecimal.

  32 bytes of zeroes:

     Byte:        0  1  2  3

        0:       00 00 00 00
      ...
       28:       00 00 00 00

      CRC:       aa 36 91 8a











Chadalapaka, et al.          Standards Track                  [Page 259]

RFC 7143                  iSCSI (Consolidated)                April 2014


  32 bytes of ones:

     Byte:        0  1  2  3

        0:       ff ff ff ff
      ...
       28:       ff ff ff ff

      CRC:       43 ab a8 62

  32 bytes of incrementing 00..1f:

     Byte:        0  1  2  3

        0:       00 01 02 03
      ...
       28:       1c 1d 1e 1f

      CRC:       4e 79 dd 46

  32 bytes of decrementing 1f..00:

     Byte:        0  1  2  3

        0:       1f 1e 1d 1c
      ...
       28:       03 02 01 00

      CRC:       5c db 3f 11

  An iSCSI - SCSI Read (10) Command PDU:

    Byte:        0     1    2    3

       0:       01    c0   00   00
       4:       00    00   00   00
       8:       00    00   00   00
      12:       00    00   00   00
      16:       14    00   00   00
      20:       00    00   04   00
      24:       00    00   00   14
      28:       00    00   00   18
      32:       28    00   00   00
      36:       00    00   00   00
      40:       02    00   00   00
      44:       00    00   00   00

     CRC:       56    3a   96   d9



Chadalapaka, et al.          Standards Track                  [Page 260]

RFC 7143                  iSCSI (Consolidated)                April 2014


Appendix B.  Login Phase Examples

  In the first example, the initiator and target authenticate each
  other via Kerberos:

     I-> Login (CSG,NSG=0,1 T=1)
         InitiatorName=iqn.1999-07.com.os:hostid.77
         TargetName=iqn.1999-07.com.example:diskarray.sn.88
         AuthMethod=KRB5,SRP,None

     T-> Login (CSG,NSG=0,0 T=0)
         AuthMethod=KRB5

     I-> Login (CSG,NSG=0,1 T=1)
         KRB_AP_REQ=<krb_ap_req>

  (krb_ap_req contains the Kerberos V5 ticket and authenticator with
  MUTUAL-REQUIRED set in the ap-options field)

  If the authentication is successful, the target proceeds with:

     T-> Login (CSG,NSG=0,1 T=1)
         KRB_AP_REP=<krb_ap_rep>

  (krb_ap_rep is the Kerberos V5 mutual authentication reply)

  If the authentication is successful, the initiator may proceed
  with:

     I-> Login (CSG,NSG=1,0 T=0) FirstBurstLength=8192

     T-> Login (CSG,NSG=1,0 T=0) FirstBurstLength=4096
         MaxBurstLength=8192

     I-> Login (CSG,NSG=1,0 T=0) MaxBurstLength=8192
         ... more iSCSI Operational Parameters

     T-> Login (CSG,NSG=1,0 T=0)
         ... more iSCSI Operational Parameters

     And at the end:

     I-> Login (CSG,NSG=1,3 T=1)
         optional iSCSI parameters

     T-> Login (CSG,NSG=1,3 T=1) "login accept"





Chadalapaka, et al.          Standards Track                  [Page 261]

RFC 7143                  iSCSI (Consolidated)                April 2014


  If the initiator's authentication by the target is not successful,
  the target responds with:

     T-> Login "login reject"

  instead of the Login KRB_AP_REP message, and it terminates the
  connection.

  If the target's authentication by the initiator is not successful,
  the initiator terminates the connection (without responding to the
  Login KRB_AP_REP message).

  In the next example, only the initiator is authenticated by the
  target via Kerberos:

     I-> Login (CSG,NSG=0,1 T=1)
         InitiatorName=iqn.1999-07.com.os:hostid.77
         TargetName=iqn.1999-07.com.example:diskarray.sn.88
         AuthMethod=SRP,KRB5,None

     T-> Login-PR (CSG,NSG=0,0 T=0)
         AuthMethod=KRB5

     I-> Login (CSG,NSG=0,1 T=1)
         KRB_AP_REQ=krb_ap_req

  (MUTUAL-REQUIRED not set in the ap-options field of krb_ap_req)

  If the authentication is successful, the target proceeds with:

     T-> Login (CSG,NSG=0,1 T=1)

     I-> Login (CSG,NSG=1,0 T=0)
         ... iSCSI parameters

     T-> Login (CSG,NSG=1,0 T=0)
         ... iSCSI parameters

     . . .

     T-> Login (CSG,NSG=1,3 T=1)"login accept"










Chadalapaka, et al.          Standards Track                  [Page 262]

RFC 7143                  iSCSI (Consolidated)                April 2014


  In the next example, the initiator and target authenticate each other
  via SRP:

     I-> Login (CSG,NSG=0,1 T=1)
         InitiatorName=iqn.1999-07.com.os:hostid.77
         TargetName=iqn.1999-07.com.example:diskarray.sn.88
         AuthMethod=KRB5,SRP,None

     T-> Login-PR (CSG,NSG=0,0 T=0)
         AuthMethod=SRP

     I-> Login (CSG,NSG=0,0 T=0)
         SRP_U=<user>
         TargetAuth=Yes

     T-> Login (CSG,NSG=0,0 T=0)
         SRP_N=<N>
         SRP_g=<g>
         SRP_s=<s>

     I-> Login (CSG,NSG=0,0 T=0)
         SRP_A=<A>

     T-> Login (CSG,NSG=0,0 T=0)
         SRP_B=<B>

     I-> Login (CSG,NSG=0,1 T=1)
         SRP_M=<M>

  If the initiator authentication is successful, the target proceeds
  with:

     T-> Login (CSG,NSG=0,1 T=1)
         SRP_HM=<H(A | M | K)>

  where N, g, s, A, B, M, and H(A | M | K) are defined in [RFC2945].

  If the target authentication is not successful, the initiator
  terminates the connection; otherwise, it proceeds.

     I-> Login (CSG,NSG=1,0 T=0)
         ... iSCSI parameters

     T-> Login (CSG,NSG=1,0 T=0)
         ... iSCSI parameters






Chadalapaka, et al.          Standards Track                  [Page 263]

RFC 7143                  iSCSI (Consolidated)                April 2014


     And at the end:

     I-> Login (CSG,NSG=1,3 T=1)
         optional iSCSI parameters

     T-> Login (CSG,NSG=1,3 T=1) "login accept"

  If the initiator authentication is not successful, the target
  responds with:

     T-> Login "login reject"

  instead of the T-> Login SRP_HM=<H(A | M | K)> message, and it
  terminates the connection.

  In the next example, only the initiator is authenticated by the
  target via SRP:

     I-> Login (CSG,NSG=0,1 T=1)
         InitiatorName=iqn.1999-07.com.os:hostid.77
         TargetName=iqn.1999-07.com.example:diskarray.sn.88
         AuthMethod=KRB5,SRP,None

     T-> Login-PR (CSG,NSG=0,0 T=0)
         AuthMethod=SRP

     I-> Login (CSG,NSG=0,0 T=0)
         SRP_U=<user>
         TargetAuth=No

     T-> Login (CSG,NSG=0,0 T=0)
         SRP_N=<N>
         SRP_g=<g>
         SRP_s=<s>

     I-> Login (CSG,NSG=0,0 T=0)
         SRP_A=<A>

     T-> Login (CSG,NSG=0,0 T=0)
         SRP_B=<B>

     I-> Login (CSG,NSG=0,1 T=1)
          SRP_M=<M>








Chadalapaka, et al.          Standards Track                  [Page 264]

RFC 7143                  iSCSI (Consolidated)                April 2014


  If the initiator authentication is successful, the target proceeds
  with:

     T-> Login (CSG,NSG=0,1 T=1)

     I-> Login (CSG,NSG=1,0 T=0)
         ... iSCSI parameters

     T-> Login (CSG,NSG=1,0 T=0)
         ... iSCSI parameters

     And at the end:

     I-> Login (CSG,NSG=1,3 T=1)
         optional iSCSI parameters

     T-> Login (CSG,NSG=1,3 T=1) "login accept"

  In the next example, the initiator and target authenticate each other
  via CHAP:

     I-> Login (CSG,NSG=0,0 T=0)
         InitiatorName=iqn.1999-07.com.os:hostid.77
         TargetName=iqn.1999-07.com.example:diskarray.sn.88
         AuthMethod=KRB5,CHAP,None

     T-> Login-PR (CSG,NSG=0,0 T=0)
         AuthMethod=CHAP

     I-> Login (CSG,NSG=0,0 T=0)
         CHAP_A=<A1,A2>

     T-> Login (CSG,NSG=0,0 T=0)
         CHAP_A=<A1>
         CHAP_I=<I>
         CHAP_C=<C>

     I-> Login (CSG,NSG=0,1 T=1)
         CHAP_N=<N>
         CHAP_R=<R>
         CHAP_I=<I>
         CHAP_C=<C>









Chadalapaka, et al.          Standards Track                  [Page 265]

RFC 7143                  iSCSI (Consolidated)                April 2014


  If the initiator authentication is successful, the target proceeds
  with:

     T-> Login (CSG,NSG=0,1 T=1)
         CHAP_N=<N>
         CHAP_R=<R>

  If the target authentication is not successful, the initiator aborts
  the connection; otherwise, it proceeds.

     I-> Login (CSG,NSG=1,0 T=0)
         ... iSCSI parameters

     T-> Login (CSG,NSG=1,0 T=0)
         ... iSCSI parameters

     And at the end:

     I-> Login (CSG,NSG=1,3 T=1)
         optional iSCSI parameters

     T-> Login (CSG,NSG=1,3 T=1) "login accept"

  If the initiator authentication is not successful, the target
  responds with:

     T-> Login "login reject"

  instead of the Login CHAP_R=<response> "proceed and change stage"
  message, and it terminates the connection.

  In the next example, only the initiator is authenticated by the
  target via CHAP:

     I-> Login (CSG,NSG=0,1 T=0)
         InitiatorName=iqn.1999-07.com.os:hostid.77
         TargetName=iqn.1999-07.com.example:diskarray.sn.88
         AuthMethod=KRB5,CHAP,None

     T-> Login-PR (CSG,NSG=0,0 T=0)
         AuthMethod=CHAP

     I-> Login (CSG,NSG=0,0 T=0)
         CHAP_A=<A1,A2>







Chadalapaka, et al.          Standards Track                  [Page 266]

RFC 7143                  iSCSI (Consolidated)                April 2014


     T-> Login (CSG,NSG=0,0 T=0)
         CHAP_A=<A1>
         CHAP_I=<I>
         CHAP_C=<C>

     I-> Login (CSG,NSG=0,1 T=1)
         CHAP_N=<N>
         CHAP_R=<R>

  If the initiator authentication is successful, the target proceeds
  with:

     T-> Login (CSG,NSG=0,1 T=1)

     I-> Login (CSG,NSG=1,0 T=0)
         ... iSCSI parameters

     T-> Login (CSG,NSG=1,0 T=0)
         ... iSCSI parameters

     And at the end:

     I-> Login (CSG,NSG=1,3 T=1)
         optional iSCSI parameters

     T-> Login (CSG,NSG=1,3 T=1) "login accept"

  In the next example, the initiator does not offer any security
  parameters.  It therefore may offer iSCSI parameters on the Login PDU
  with the T bit set to 1, and the target may respond with a final
  Login Response PDU immediately:

     I-> Login (CSG,NSG=1,3 T=1)
         InitiatorName=iqn.1999-07.com.os:hostid.77
         TargetName=iqn.1999-07.com.example:diskarray.sn.88
         ... iSCSI parameters

     T-> Login (CSG,NSG=1,3 T=1) "login accept"
         ... ISCSI parameters

  In the next example, the initiator does offer security parameters on
  the Login PDU, but the target does not choose any (i.e., chooses the
  "None" values):

     I-> Login (CSG,NSG=0,1 T=1)
         InitiatorName=iqn.1999-07.com.os:hostid.77
         TargetName=iqn.1999-07.com.example:diskarray.sn.88
         AuthMethod=KRB5,SRP,None



Chadalapaka, et al.          Standards Track                  [Page 267]

RFC 7143                  iSCSI (Consolidated)                April 2014


     T-> Login-PR (CSG,NSG=0,1 T=1)
         AuthMethod=None

     I-> Login (CSG,NSG=1,0 T=0)
         ... iSCSI parameters

     T-> Login (CSG,NSG=1,0 T=0)
         ... iSCSI parameters

     And at the end:

     I-> Login (CSG,NSG=1,3 T=1)
         optional iSCSI parameters

     T-> Login (CSG,NSG=1,3 T=1) "login accept"

Appendix C.  SendTargets Operation

  The text in this appendix is a normative part of this document.

  To reduce the amount of configuration required on an initiator, iSCSI
  provides the SendTargets Text Request.  The initiator uses the
  SendTargets request to get a list of targets to which it may have
  access, as well as the list of addresses (IP address and TCP port) on
  which these targets may be accessed.

  To make use of SendTargets, an initiator must first establish one of
  two types of sessions.  If the initiator establishes the session
  using the key "SessionType=Discovery", the session is a Discovery
  session, and a target name does not need to be specified.  Otherwise,
  the session is a Normal operational session.  The SendTargets command
  MUST only be sent during the Full Feature Phase of a Normal or
  Discovery session.

  A system that contains targets MUST support Discovery sessions on
  each of its iSCSI IP address-port pairs and MUST support the
  SendTargets command on the Discovery session.  In a Discovery
  session, a target MUST return all path information (IP address-port
  pairs and Target Portal Group Tags) for the targets on the target
  Network Entity that the requesting initiator is authorized to access.

  A target MUST support the SendTargets command on operational
  sessions; these will only return path information about the target to
  which the session is connected and do not need to return information
  about other target names that may be defined in the responding
  system.

  An initiator MAY make use of the SendTargets command as it sees fit.



Chadalapaka, et al.          Standards Track                  [Page 268]

RFC 7143                  iSCSI (Consolidated)                April 2014


  A SendTargets command consists of a single Text Request PDU.  This
  PDU contains exactly one text key and value.  The text key MUST be
  SendTargets.  The expected response depends upon the value, as well
  as whether the session is a Discovery session or an operational
  session.

  The value must be one of:

     All

        The initiator is requesting that information on all relevant
        targets known to the implementation be returned.  This value
        MUST be supported on a Discovery session and MUST NOT be
        supported on an operational session.

     <iSCSI-target-name>

        If an iSCSI Target Name is specified, the session should
        respond with addresses for only the named target, if possible.
        This value MUST be supported on Discovery sessions.  A
        Discovery session MUST be capable of returning addresses for
        those targets that would have been returned had value=All been
        designated.

     <nothing>

        The session should only respond with addresses for the target
        to which the session is logged in.  This MUST be supported on
        operational sessions and MUST NOT return targets other than the
        one to which the session is logged in.

  The response to this command is a Text Response that contains a list
  of zero or more targets and, optionally, their addresses.  Each
  target is returned as a target record.  A target record begins with
  the TargetName text key, followed by a list of TargetAddress text
  keys, and bounded by the end of the Text Response or the next
  TargetName key, which begins a new record.  No text keys other than
  TargetName and TargetAddress are permitted within a SendTargets
  response.

  For the format of the TargetName, see Section 13.4.

  A Discovery session MAY respond to a SendTargets request with its
  complete list of targets, or with a list of targets that is based on
  the name of the initiator logged in to the session.

  A SendTargets response MUST NOT contain target names if there are no
  targets for the requesting initiator to access.



Chadalapaka, et al.          Standards Track                  [Page 269]

RFC 7143                  iSCSI (Consolidated)                April 2014


  Each target record returned includes zero or more TargetAddress
  fields.

  Each target record starts with one text key of the form:

     TargetName=<target-name-goes-here>

  followed by zero or more address keys of the form:

  TargetAddress=<hostname-or-ipaddress>[:<tcp-port>],
     <portal-group-tag>

  The hostname-or-ipaddress contains a domain name, IPv4 address, or
  IPv6 address ([RFC4291]), as specified for the TargetAddress key.

  A hostname-or-ipaddress duplicated in TargetAddress responses for a
  given node (the port is absent or equal) would probably indicate that
  multiple address families are in use at once (IPv6 and IPv4).

  Each TargetAddress belongs to a portal group, identified by its
  numeric Target Portal Group Tag (see Section 13.9).  The iSCSI Target
  Name, together with this tag, constitutes the SCSI port identifier;
  the tag only needs to be unique within a given target's name list of
  addresses.

  Multiple-connection sessions can span iSCSI addresses that belong to
  the same portal group.

  Multiple-connection sessions cannot span iSCSI addresses that belong
  to different portal groups.

  If a SendTargets response reports an iSCSI address for a target, it
  SHOULD also report all other addresses in its portal group in the
  same response.

  A SendTargets Text Response can be longer than a single Text Response
  PDU and makes use of the long Text Responses as specified.

  After obtaining a list of targets from the Discovery session, an
  iSCSI initiator may initiate new sessions to log in to the discovered
  targets for full operation.  The initiator MAY keep the Discovery
  session open and MAY send subsequent SendTargets commands to discover
  new targets.








Chadalapaka, et al.          Standards Track                  [Page 270]

RFC 7143                  iSCSI (Consolidated)                April 2014


  Examples:

  This example is the SendTargets response from a single target that
  has no other interface ports.

  The initiator sends a Text Request that contains:

     SendTargets=All

  The target sends a Text Response that contains:

     TargetName=iqn.1993-11.com.example:diskarray.sn.8675309

  All the target had to return in this simple case was the target name.
  It is assumed by the initiator that the IP address and TCP port for
  this target are the same as those used on the current connection to
  the default iSCSI target.

  The next example has two internal iSCSI targets, each accessible via
  two different ports with different IP addresses.  The following is
  the Text Response:

     TargetName=iqn.1993-11.com.example:diskarray.sn.8675309

     TargetAddress=10.1.0.45:3000,1

     TargetAddress=10.1.1.45:3000,2

     TargetName=iqn.1993-11.com.example:diskarray.sn.1234567

     TargetAddress=10.1.0.45:3000,1

     TargetAddress=10.1.1.45:3000,2

  Both targets share both addresses; the multiple addresses are likely
  used to provide multi-path support.  The initiator may connect to
  either target name on either address.  Each of the addresses has its
  own Target Portal Group Tag; they do not support spanning multiple-
  connection sessions with each other.  Keep in mind that the Target
  Portal Group Tags for the two named targets are independent of one
  another; portal group "1" on the first target is not necessarily the
  same as portal group "1" on the second target.

  In the above example, a DNS host name or an IPv6 address could have
  been returned instead of an IPv4 address.






Chadalapaka, et al.          Standards Track                  [Page 271]

RFC 7143                  iSCSI (Consolidated)                April 2014


  The next Text Response shows a target that supports spanning sessions
  across multiple addresses and further illustrates the use of the
  Target Portal Group Tags:

     TargetName=iqn.1993-11.com.example:diskarray.sn.8675309

     TargetAddress=10.1.0.45:3000,1

     TargetAddress=10.1.1.46:3000,1

     TargetAddress=10.1.0.47:3000,2

     TargetAddress=10.1.1.48:3000,2

     TargetAddress=10.1.1.49:3000,3

  In this example, any of the target addresses can be used to reach the
  same target.  A single-connection session can be established to any
  of these TCP addresses.  A multiple-connection session could span
  addresses .45 and .46 or .47 and .48 but cannot span any other
  combination.  A TargetAddress with its own tag (.49) cannot be
  combined with any other address within the same session.

  This SendTargets response does not indicate whether .49 supports
  multiple connections per session; it is communicated via the
  MaxConnections text key upon login to the target.

Appendix D.  Algorithmic Presentation of Error Recovery Classes

  This appendix illustrates the error recovery classes using a
  pseudo-programming language.  The procedure names are chosen to be
  obvious to most implementers.  Each of the recovery classes described
  has initiator procedures as well as target procedures.  These
  algorithms focus on outlining the mechanics of error recovery classes
  and do not exhaustively describe all other aspects/cases.  Examples
  of this approach are as follows:

     - Handling for only certain Opcode types is shown.

     - Only certain reason codes (e.g., Recovery in Logout command) are
       outlined.

     - Resultant cases, such as recovery of Synchronization on a header
       digest error, are considered out of scope in these algorithms.
       In this particular example, a header digest error may lead to
       connection recovery if some type of Sync and Steering layer is
       not implemented.




Chadalapaka, et al.          Standards Track                  [Page 272]

RFC 7143                  iSCSI (Consolidated)                April 2014


  These algorithms strive to convey the iSCSI error recovery concepts
  in the simplest terms and are not designed to be optimal.

D.1.  General Data Structure and Procedure Description

  This section defines the procedures and data structures that are
  commonly used by all the error recovery algorithms.  The structures
  may not be the exhaustive representations of what is required for a
  typical implementation.

  Data structure definitions:

  struct TransferContext {
          int TargetTransferTag;
          int ExpectedDataSN;
  };

  struct TCB {              /* task control block */
          Boolean SoFarInOrder;
          int ExpectedDataSN; /* used for both R2Ts and Data */
          int MissingDataSNList[MaxMissingDPDU];
          Boolean FbitReceived;
          Boolean StatusXferd;
          Boolean CurrentlyAllegiant;
          int ActiveR2Ts;
          int Response;
          char *Reason;
          struct TransferContext
                      TransferContextList[MaxOutstandingR2T];
          int InitiatorTaskTag;
          int CmdSN;
          int SNACK_Tag;
  };

  struct Connection {
          struct Session SessionReference;
          Boolean SoFarInOrder;
          int CID;
          int State;
          int CurrentTimeout;
          int ExpectedStatSN;
          int MissingStatSNList[MaxMissingSPDU];
          Boolean PerformConnectionCleanup;
  };







Chadalapaka, et al.          Standards Track                  [Page 273]

RFC 7143                  iSCSI (Consolidated)                April 2014


  struct Session {
          int NumConnections;
          int CmdSN;
          int Maxconnections;
          int ErrorRecoveryLevel;
          struct iSCSIEndpoint OtherEndInfo;
          struct Connection ConnectionList[MaxSupportedConns];
  };

  Procedure descriptions:

  Receive-an-In-PDU(transport connection, inbound PDU);
  check-basic-validity(inbound PDU);
  Start-Timer(timeout handler, argument, timeout value);
  Build-And-Send-Reject(transport connection, bad PDU, reason code);

D.2.  Within-command Error Recovery Algorithms

D.2.1.  Procedure Descriptions

  Recover-Data-if-Possible(last required DataSN, task control block);
  Build-And-Send-DSnack(task control block);
  Build-And-Send-RDSnack(task control block);
  Build-And-Send-Abort(task control block);
  SCSI-Task-Completion(task control block);
  Build-And-Send-A-Data-Burst(transport connection, data-descriptor,
     task control block);
  Build-And-Send-R2T(transport connection, data-descriptor,
     task control block);
  Build-And-Send-Status(transport connection, task control block);
  Transfer-Context-Timeout-Handler(transfer context);

  Notes:

  - One procedure used in this section: the Handle-Status-SNACK-request
    is defined in Appendix D.3.

  - The response-processing pseudocode shown in the target algorithms
    applies to all solicited PDUs that carry the StatSN -- SCSI
    Response, Text Response, etc.











Chadalapaka, et al.          Standards Track                  [Page 274]

RFC 7143                  iSCSI (Consolidated)                April 2014


D.2.2.  Initiator Algorithms

  Recover-Data-if-Possible(LastRequiredDataSN, TCB)
  {
      if (operational ErrorRecoveryLevel > 0) {
           if (# of missing PDUs is trackable) {
                 Note the missing DataSNs in TCB.
                 if (the task spanned a change in
                            MaxRecvDataSegmentLength) {
                      if (TCB.StatusXferd is TRUE)
                          drop the status PDU;
                      Build-And-Send-RDSnack(TCB);
                 } else {
                      Build-And-Send-DSnack(TCB);
                 }

           } else {
               TCB.Reason = "Protocol Service CRC error";
                    }
      } else {
            TCB.Reason = "Protocol Service CRC error";
      }
      if (TCB.Reason == "Protocol Service CRC error") {
            Clear the missing PDU list in the TCB.
            if (TCB.StatusXferd is not TRUE)
               Build-And-Send-Abort(TCB);
      }
  }

  Receive-an-In-PDU(Connection, CurrentPDU)
  {
   check-basic-validity(CurrentPDU);
   if (Header-Digest-Bad) discard, return;
   Retrieve TCB for CurrentPDU.InitiatorTaskTag.
   if ((CurrentPDU.type == Data)
               or (CurrentPDU.type = R2T)) {
      if (Data-Digest-Bad for Data) {
                send-data-SNACK = TRUE;
        LastRequiredDataSN = CurrentPDU.DataSN;
              } else {
            if (TCB.SoFarInOrder = TRUE) {
                if (current DataSN is expected) {
                     Increment TCB.ExpectedDataSN.
                } else {
                        TCB.SoFarInOrder = FALSE;
                        send-data-SNACK = TRUE;
                       }




Chadalapaka, et al.          Standards Track                  [Page 275]

RFC 7143                  iSCSI (Consolidated)                April 2014


            } else {
                    if (current DataSN was considered missing) {
                       remove current DataSN from missing PDU list.
                   } else if (current DataSN is higher than expected) {
                               send-data-SNACK = TRUE;
                        } else {
                              discard, return;
                        }
                        Adjust TCB.ExpectedDataSN if appropriate.
               }
               LastRequiredDataSN = CurrentPDU.DataSN - 1;
                 }
                 if (send-data-SNACK is TRUE and
                   task is not already considered failed) {
               Recover-Data-if-Possible(LastRequiredDataSN, TCB);
      }
              if (missing data PDU list is empty) {
                 TCB.SoFarInOrder = TRUE;
              }
      if (CurrentPDU.type == R2T) {
         Increment ActiveR2Ts for this task.
         Create a data-descriptor for the data burst.
         Build-And-Send-A-Data-Burst(Connection, data-descriptor, TCB);
       }
    } else if (CurrentPDU.type == Response) {
       if (Data-Digest-Bad) {
                  send-status-SNACK = TRUE;
               } else {
          TCB.StatusXferd = TRUE;
          Store the status information in TCB.
          if (ExpDataSN does not match) {
               TCB.SoFarInOrder = FALSE;
               Recover-Data-if-Possible(current DataSN, TCB);
          }
                  if (missing data PDU list is empty) {
                       TCB.SoFarInOrder = TRUE;
                  }
       }
    } else { /* REST UNRELATED TO WITHIN-COMMAND-RECOVERY, NOT SHOWN */
    }
    if ((TCB.SoFarInOrder == TRUE) and
                          (TCB.StatusXferd == TRUE)) {
            SCSI-Task-Completion(TCB);
     }
  }






Chadalapaka, et al.          Standards Track                  [Page 276]

RFC 7143                  iSCSI (Consolidated)                April 2014


D.2.3.  Target Algorithms

  Receive-an-In-PDU(Connection, CurrentPDU)
  {
    check-basic-validity(CurrentPDU);
    if (Header-Digest-Bad) discard, return;
    Retrieve TCB for CurrentPDU.InitiatorTaskTag.
    if (CurrentPDU.type == Data) {
        Retrieve TContext from CurrentPDU.TargetTransferTag;
        if (Data-Digest-Bad) {
                    Build-And-Send-Reject(Connection, CurrentPDU,
                                 Payload-Digest-Error);
           Note the missing data PDUs in MissingDataRange[].
                    send-recovery-R2T = TRUE;
                 } else {
           if (current DataSN is not expected) {
               Note the missing data PDUs in MissingDataRange[].
                        send-recovery-R2T = TRUE;
                    }
           if (CurrentPDU.Fbit == TRUE) {
               if (current PDU is solicited) {
                       Decrement TCB.ActiveR2Ts.
               }
               if ((current PDU is unsolicited and
                       data received is less than I/O length and
                         data received is less than FirstBurstLength)
                    or (current PDU is solicited and the length of
                         this burst is less than expected)) {
                    send-recovery-R2T = TRUE;
                    Note the missing data in MissingDataRange[].
               }
                    }
                 }
                 Increment TContext.ExpectedDataSN.
        if (send-recovery-R2T is TRUE and
                  task is not already considered failed) {
           if (operational ErrorRecoveryLevel > 0) {
               Increment TCB.ActiveR2Ts.
               Create a data-descriptor for the data burst
                          from MissingDataRange.
               Build-And-Send-R2T(Connection, data-descriptor, TCB);
           } else {
                if (current PDU is the last unsolicited)
                    TCB.Reason = "Not enough unsolicited data";
                else
                    TCB.Reason = "Protocol Service CRC error";
           }
        }



Chadalapaka, et al.          Standards Track                  [Page 277]

RFC 7143                  iSCSI (Consolidated)                April 2014


        if (TCB.ActiveR2Ts == 0) {
           Build-And-Send-Status(Connection, TCB);
        }
    } else if (CurrentPDU.type == SNACK) {
        snack-failure = FALSE;
        if (operational ErrorRecoveryLevel > 0) {
           if (CurrentPDU.type == Data/R2T) {
               if (the request is satisfiable) {
                  if (request for Data) {
                     Create a data-descriptor for the data burst
                         from BegRun and RunLength.
                     Build-And-Send-A-Data-Burst(Connection,
                        data-descriptor, TCB);
                  } else { /* R2T */
                     Create a data-descriptor for the data burst
                         from BegRun and RunLength.
                     Build-And-Send-R2T(Connection, data-descriptor,
                        TCB);
                   }
                } else {
                      snack-failure = TRUE;
                }
           } else if (CurrentPDU.type == status) {
                Handle-Status-SNACK-request(Connection, CurrentPDU);
           } else if (CurrentPDU.type == DataACK) {
                  Consider all data up to CurrentPDU.BegRun as
                  acknowledged.
                  Free up the retransmission resources for that data.
             } else if (CurrentPDU.type == R-Data SNACK) {
                           Create a data descriptor for a data burst
                           covering all unacknowledged data.
                 Build-And-Send-A-Data-Burst(Connection,
                    data-descriptor, TCB);
                 TCB.SNACK_Tag = CurrentPDU.SNACK_Tag;
                 if (there's no more data to send) {
                    Build-And-Send-Status(Connection, TCB);
                 }
           }
        } else { /* operational ErrorRecoveryLevel = 0 */
                 snack-failure = TRUE;
        }
        if (snack-failure == TRUE) {
             Build-And-Send-Reject(Connection, CurrentPDU,
                 SNACK-Reject);
             if (TCB.StatusXferd != TRUE) {
                 TCB.Reason = "SNACK rejected";
                 Build-And-Send-Status(Connection, TCB);
             }



Chadalapaka, et al.          Standards Track                  [Page 278]

RFC 7143                  iSCSI (Consolidated)                April 2014


        }

    } else { /* REST UNRELATED TO WITHIN-COMMAND-RECOVERY, NOT SHOWN */
    }
  }

  Transfer-Context-Timeout-Handler(TContext)
  {
    Retrieve TCB and Connection from TContext.
    Decrement TCB.ActiveR2Ts.
    if (operational ErrorRecoveryLevel > 0 and
                  task is not already considered failed) {
        Note the missing data PDUs in MissingDataRange[].
        Create a data-descriptor for the data burst
                          from MissingDataRange[].
        Build-And-Send-R2T(Connection, data-descriptor, TCB);

      } else {
          TCB.Reason = "Protocol Service CRC error";
          if (TCB.ActiveR2Ts = 0) {
             Build-And-Send-Status(Connection, TCB);
          }
      }
  }

D.3.  Within-connection Recovery Algorithms

D.3.1.  Procedure Descriptions

  Procedure descriptions:

  Recover-Status-if-Possible(transport connection,
     currently received PDU);
  Evaluate-a-StatSN(transport connection, currently received PDU);
  Retransmit-Command-if-Possible(transport connection, CmdSN);
  Build-And-Send-SSnack(transport connection);
  Build-And-Send-Command(transport connection,
     task control block);
  Command-Acknowledge-Timeout-Handler(task control block);
  Status-Expect-Timeout-Handler(transport connection);
  Build-And-Send-NOP-Out(transport connection);
  Handle-Status-SNACK-request(transport connection,
     Status SNACK PDU);
  Retransmit-Status-Burst(Status SNACK, task control block);
  Is-Acknowledged(beginning StatSN, run length);






Chadalapaka, et al.          Standards Track                  [Page 279]

RFC 7143                  iSCSI (Consolidated)                April 2014


  Implementation-specific parameters that are tunable:

  InitiatorProactiveSNACKEnabled

  Notes:

  - The initiator algorithms only deal with unsolicited NOP-In PDUs for
    generating Status SNACKs.  A solicited NOP-In PDU has an assigned
    StatSN that, when out of order, could trigger the out-of-order
    StatSN handling in within-command algorithms, again leading to
    Recover-Status-if-Possible.

  - The pseudocode shown may result in the retransmission of
    unacknowledged commands in more cases than necessary.  This will
    not, however, affect the correctness of the operation because the
    target is required to discard the duplicate CmdSNs.

  - The procedure Build-And-Send-Async is defined in the connection
    recovery algorithms.

  - The procedure Status-Expect-Timeout-Handler describes how
    initiators may proactively attempt to retrieve the Status if they
    so choose.  This procedure is assumed to be triggered much before
    the standard ULP timeout.

D.3.2.  Initiator Algorithms

    Recover-Status-if-Possible(Connection, CurrentPDU)
    {
        if ((Connection.state == LOGGED_IN) and
                    connection is not already considered failed) {
           if (operational ErrorRecoveryLevel > 0) {
              if (# of missing PDUs is trackable) {
                    Note the missing StatSNs in Connection
                    that were not already requested with SNACK;
                Build-And-Send-SSnack(Connection);
                      } else {
                        Connection.PerformConnectionCleanup = TRUE;
              }
           } else {
                      Connection.PerformConnectionCleanup = TRUE;
           }
           if (Connection.PerformConnectionCleanup == TRUE) {
              Start-Timer(Connection-Cleanup-Handler, Connection, 0);
                    }
        }

    }



Chadalapaka, et al.          Standards Track                  [Page 280]

RFC 7143                  iSCSI (Consolidated)                April 2014


    Retransmit-Command-if-Possible(Connection, CmdSN)
    {
        if (operational ErrorRecoveryLevel > 0) {
           Retrieve the InitiatorTaskTag, and thus TCB for the CmdSN.
           Build-And-Send-Command(Connection, TCB);
        }
    }

    Evaluate-a-StatSN(Connection, CurrentPDU)
    {
        send-status-SNACK = FALSE;
        if (Connection.SoFarInOrder == TRUE) {
           if (current StatSN is the expected) {
                Increment Connection.ExpectedStatSN.
           } else {
                         Connection.SoFarInOrder = FALSE;
                         send-status-SNACK = TRUE;
                    }
        } else {
           if (current StatSN was considered missing) {
                remove current StatSN from the missing list.
           } else {
                         if (current StatSN is higher than expected){
                             send-status-SNACK = TRUE;
                         } else {
                             send-status-SNACK = FALSE;
                     discard the PDU;
                }
           }
           Adjust Connection.ExpectedStatSN if appropriate.
           if (missing StatSN list is empty) {
                Connection.SoFarInOrder = TRUE;
                    }
        }
        return send-status-SNACK;
    }

    Receive-an-In-PDU(Connection, CurrentPDU)
    {
        check-basic-validity(CurrentPDU);
        if (Header-Digest-Bad) discard, return;
        Retrieve TCB for CurrentPDU.InitiatorTaskTag.
        if (CurrentPDU.type == NOP-In) {
              if (the PDU is unsolicited) {
                    if (current StatSN is not expected) {
                         Recover-Status-if-Possible(Connection,
                                      CurrentPDU);
                    }



Chadalapaka, et al.          Standards Track                  [Page 281]

RFC 7143                  iSCSI (Consolidated)                April 2014


                    if (current ExpCmdSN is not Session.CmdSN) {
                         Retransmit-Command-if-Possible(Connection,
                                      CurrentPDU.ExpCmdSN);
                    }
              }
        } else if (CurrentPDU.type == Reject) {
              if (it is a data digest error on immediate data) {
                    Retransmit-Command-if-Possible(Connection,
                                      CurrentPDU.BadPDUHeader.CmdSN);
              }
        } else if (CurrentPDU.type == Response) {
             send-status-SNACK = Evaluate-a-StatSN(Connection,
                                            CurrentPDU);
             if (send-status-SNACK == TRUE)
                 Recover-Status-if-Possible(Connection, CurrentPDU);
        } else { /* REST UNRELATED TO WITHIN-CONNECTION-RECOVERY,
                  * NOT SHOWN */
        }
    }

    Command-Acknowledge-Timeout-Handler(TCB)
    {
        Retrieve the Connection for TCB.
        Retransmit-Command-if-Possible(Connection, TCB.CmdSN);
    }

    Status-Expect-Timeout-Handler(Connection)
    {

        if (operational ErrorRecoveryLevel > 0) {
            Build-And-Send-NOP-Out(Connection);
        } else if (InitiatorProactiveSNACKEnabled){
            if ((Connection.state == LOGGED_IN) and
                         connection is not already considered failed) {
                 Build-And-Send-SSnack(Connection);
            }
        }
    }













Chadalapaka, et al.          Standards Track                  [Page 282]

RFC 7143                  iSCSI (Consolidated)                April 2014


D.3.3.  Target Algorithms

  Handle-Status-SNACK-request(Connection, CurrentPDU)
    {
        if (operational ErrorRecoveryLevel > 0) {
           if (request for an acknowledged run) {
               Build-And-Send-Reject(Connection, CurrentPDU,
                                             Protocol-Error);
           } else if (request for an untransmitted run) {
               discard, return;
           } else {
               Retransmit-Status-Burst(CurrentPDU, TCB);
           }
        } else {
           Build-And-Send-Async(Connection, DroppedConnection,
                                 DefaultTime2Wait, DefaultTime2Retain);
        }
    }

D.4.  Connection Recovery Algorithms

D.4.1.  Procedure Descriptions

  Build-And-Send-Async(transport connection, reason code,
     minimum time, maximum time);
  Pick-A-Logged-In-Connection(session);
  Build-And-Send-Logout(transport connection,
     logout connection identifier, reason code);
  PerformImplicitLogout(transport connection,
     logout connection identifier, target information);
  PerformLogin(transport connection, target information);
  CreateNewTransportConnection(target information);
  Build-And-Send-Command(transport connection, task control block);
  Connection-Cleanup-Handler(transport connection);
  Connection-Resource-Timeout-Handler(transport connection);
  Quiesce-And-Prepare-for-New-Allegiance(session, task control block);
  Build-And-Send-Logout-Response(transport connection,
     CID of connection in recovery, reason code);
  Build-And-Send-TaskMgmt-Response(transport connection,
     task mgmt command PDU, response code);
  Establish-New-Allegiance(task control block, transport connection);
  Schedule-Command-To-Continue(task control block);









Chadalapaka, et al.          Standards Track                  [Page 283]

RFC 7143                  iSCSI (Consolidated)                April 2014


  Note:

  - Transport exception conditions such as unexpected connection
    termination, connection reset, and hung connection while the
    connection is in the Full Feature Phase are all assumed to be
    asynchronously signaled to the iSCSI layer using the
    Transport_Exception_Handler procedure.

D.4.2.  Initiator Algorithms

    Receive-an-In-PDU(Connection, CurrentPDU)
    {
        check-basic-validity(CurrentPDU);
        if (Header-Digest-Bad) discard, return;
        Retrieve TCB from CurrentPDU.InitiatorTaskTag.
        if (CurrentPDU.type == Async) {
            if (CurrentPDU.AsyncEvent == ConnectionDropped) {
               Retrieve the AffectedConnection for
                  CurrentPDU.Parameter1.
               AffectedConnection.CurrentTimeout =
                  CurrentPDU.Parameter3;
              AffectedConnection.State = CLEANUP_WAIT;
              Start-Timer(Connection-Cleanup-Handler,
                           AffectedConnection, CurrentPDU.Parameter2);
            } else if (CurrentPDU.AsyncEvent == LogoutRequest)) {
              AffectedConnection = Connection;
              AffectedConnection.State = LOGOUT_REQUESTED;
              AffectedConnection.PerformConnectionCleanup = TRUE;
                       AffectedConnection.CurrentTimeout =
                          CurrentPDU.Parameter3;
              Start-Timer(Connection-Cleanup-Handler,
                            AffectedConnection, 0);
            } else if (CurrentPDU.AsyncEvent == SessionDropped)) {
              for (each Connection) {
                  Connection.State = CLEANUP_WAIT;
                  Connection.CurrentTimeout = CurrentPDU.Parameter3;
                  Start-Timer(Connection-Cleanup-Handler,
                            Connection, CurrentPDU.Parameter2);
              }
              Session.state = FAILED;
            }

        } else if (CurrentPDU.type == LogoutResponse) {
            Retrieve the CleanupConnection for CurrentPDU.CID.
            if (CurrentPDU.Response = failure) {
               CleanupConnection.State = CLEANUP_WAIT;





Chadalapaka, et al.          Standards Track                  [Page 284]

RFC 7143                  iSCSI (Consolidated)                April 2014


            } else {
                CleanupConnection.State = FREE;
            }
        } else if (CurrentPDU.type == LoginResponse) {
             if (this is a response to an implicit Logout) {
                Retrieve the CleanupConnection.
                if (successful) {
                    CleanupConnection.State = FREE;
                    Connection.State = LOGGED_IN;
                } else {
                     CleanupConnection.State = CLEANUP_WAIT;
                     DestroyTransportConnection(Connection);
                }
             }
        } else { /* REST UNRELATED TO CONNECTION-RECOVERY,
                  * NOT SHOWN */
        }
        if (CleanupConnection.State == FREE) {
           for (each command that was active on CleanupConnection) {
           /* Establish new connection allegiance */
                NewConnection = Pick-A-Logged-In-Connection(Session);
                Build-And-Send-Command(NewConnection, TCB);
            }
        }
    }

    Connection-Cleanup-Handler(Connection)
    {
        Retrieve Session from Connection.
        if (Connection can still exchange iSCSI PDUs) {
            NewConnection = Connection;
        } else {
            Start-Timer(Connection-Resource-Timeout-Handler,
                  Connection, Connection.CurrentTimeout);
            if (there are other logged-in connections) {
                 NewConnection = Pick-A-Logged-In-Connection(Session);
            } else {
                 NewConnection =
                    CreateTransportConnection(Session.OtherEndInfo);
                 Initiate an implicit Logout on NewConnection for
                    Connection.CID.
                 return;
            }
        }
        Build-And-Send-Logout(NewConnection, Connection.CID,
                                            RecoveryRemove);
    }




Chadalapaka, et al.          Standards Track                  [Page 285]

RFC 7143                  iSCSI (Consolidated)                April 2014


    Transport_Exception_Handler(Connection)
    {
        Connection.PerformConnectionCleanup = TRUE;
        if (the event is an unexpected transport disconnect) {
            Connection.State = CLEANUP_WAIT;
            Connection.CurrentTimeout = DefaultTime2Retain;
            Start-Timer(Connection-Cleanup-Handler, Connection,
                           DefaultTime2Wait);
        } else {
            Connection.State = FREE;
        }
    }

D.4.3.  Target Algorithms

    Receive-an-In-PDU(Connection, CurrentPDU)
    {
        check-basic-validity(CurrentPDU);
        if (Header-Digest-Bad) discard, return;
        else if (Data-Digest-Bad) {
                  Build-And-Send-Reject(Connection, CurrentPDU,
                                           Payload-Digest-Error);
                  discard, return;
        }
        Retrieve TCB and Session.
        if (CurrentPDU.type == Logout) {
           if (CurrentPDU.ReasonCode = RecoveryRemove) {
               Retrieve the CleanupConnection from CurrentPDU.CID).
               for (each command active on CleanupConnection) {
                    Quiesce-And-Prepare-for-New-Allegiance(Session,
                       TCB);
                    TCB.CurrentlyAllegiant = FALSE;
               }
               Cleanup-Connection-State(CleanupConnection);
               if ((quiescing successful) and (cleanup successful))
    {
                    Build-And-Send-Logout-Response(Connection,
                                      CleanupConnection.CID, Success);
               } else {
                    Build-And-Send-Logout-Response(Connection,
                                      CleanupConnection.CID, Failure);
               }

            }







Chadalapaka, et al.          Standards Track                  [Page 286]

RFC 7143                  iSCSI (Consolidated)                April 2014


        } else if ((CurrentPDU.type == Login) and
                             operational ErrorRecoveryLevel == 2) {
                Retrieve the CleanupConnection from CurrentPDU.CID).
                for (each command active on CleanupConnection) {
                      Quiesce-And-Prepare-for-New-Allegiance(Session,
                         TCB);
                      TCB.CurrentlyAllegiant = FALSE;
                }
                Cleanup-Connection-State(CleanupConnection);
                if ((quiescing successful) and (cleanup successful))
    {
                      Continue with the rest of the login processing;
                } else {
                      Build-And-Send-Login-Response(Connection,
                                 CleanupConnection.CID, Target Error);
                }
            }
        } else if (CurrentPDU.type == TaskManagement) {
              if (CurrentPDU.function == "TaskReassign") {
                    if (Session.ErrorRecoveryLevel < 2) {
                        Build-And-Send-TaskMgmt-Response(Connection,
                           CurrentPDU,
                              "Task allegiance reassignment not
                                                  supported");
                    } else if (task is not found) {
                        Build-And-Send-TaskMgmt-Response(Connection,
                           CurrentPDU, "Task not in task set");
                    } else if (task is currently allegiant) {
                        Build-And-Send-TaskMgmt-Response(Connection,
                           CurrentPDU, "Task still allegiant");
                    } else {
                        Establish-New-Allegiance(TCB, Connection);
                        TCB.CurrentlyAllegiant = TRUE;
                        Schedule-Command-To-Continue(TCB);
                    }
              }
        } else { /* REST UNRELATED TO CONNECTION-RECOVERY,
                  * NOT SHOWN */
        }

    }










Chadalapaka, et al.          Standards Track                  [Page 287]

RFC 7143                  iSCSI (Consolidated)                April 2014


    Transport_Exception_Handler(Connection)
    {
        Connection.PerformConnectionCleanup = TRUE;
        if (the event is an unexpected transport disconnect) {
            Connection.State = CLEANUP_WAIT;
             Start-Timer(Connection-Resource-Timeout-Handler,
                Connection, (DefaultTime2Wait+DefaultTime2Retain));
              if (this Session has Full Feature Phase connections
                    left) {
                  DifferentConnection =
                     Pick-A-Logged-In-Connection(Session);
                   Build-And-Send-Async(DifferentConnection,
                         DroppedConnection, DefaultTime2Wait,
                           DefaultTime2Retain);
            }
        } else {
              Connection.State = FREE;
        }
    }

Appendix E.  Clearing Effects of Various Events on Targets

E.1.  Clearing Effects on iSCSI Objects

  The following tables describe the target behavior on receiving the
  events specified in the rows of the table.  The second table is an
  extension of the first table and defines clearing actions for more
  objects on the same events.  The legend is:

   Y = Yes (cleared/discarded/reset on the event specified in the row).
       Unless otherwise noted, the clearing action is only applicable
       for the issuing initiator port.

   N = No (not affected on the event specified in the row, i.e., stays
       at previous value).

  NA = Not Applicable or Not Defined.














Chadalapaka, et al.          Standards Track                  [Page 288]

RFC 7143                  iSCSI (Consolidated)                April 2014


                           +------+------+------+------+------+
                           |IT (1)|IC (2)|CT (5)|ST (6)|PP (7)|
    +----------------------+------+------+------+------+------+
    |connection failure (8)|Y     |Y     |N     |N     |Y     |
    +----------------------+------+------+------+------+------+
    |connection state      |NA    |NA    |Y     |N     |NA    |
    |timeout (9)           |      |      |      |      |      |
    +----------------------+------+------+------+------+------+
    |session timeout/      |Y     |Y     |Y     |Y     |Y (14)|
    |closure/reinstatement |      |      |      |      |      |
    |(10)                  |      |      |      |      |      |
    +----------------------+------+------+------+------+------+
    |session continuation  |NA    |NA    |N (11)|N     |NA    |
    |(12)                  |      |      |      |      |      |
    +----------------------+------+------+------+------+------+
    |successful connection |Y     |Y     |Y     |N     |Y (13)|
    |close logout          |      |      |      |      |      |
    +----------------------+------+------+------+------+------+
    |session failure (18)  |Y     |Y     |N     |N     |Y     |
    +----------------------+------+------+------+------+------+
    |successful recovery   |Y     |Y     |N     |N     |Y (13)|
    |Logout                |      |      |      |      |      |
    +----------------------+------+------+------+------+------+
    |failed Logout         |Y     |Y     |N     |N     |Y     |
    +----------------------+------+------+------+------+------+
    |connection Login      |NA    |NA    |NA    |Y (15)|NA    |
    |(leading)             |      |      |      |      |      |
    +----------------------+------+------+------+------+------+
    |connection Login      |NA    |NA    |N (11)|N     |Y     |
    |(non-leading)         |      |      |      |      |      |
    +----------------------+------+------+------+------+------+
    |TARGET COLD RESET (16)|Y (20)|Y     |Y     |Y     |Y     |
    +----------------------+------+------+------+------+------+
    |TARGET WARM RESET (16)|Y (20)|Y     |Y     |Y     |Y     |
    +----------------------+------+------+------+------+------+
    |LU reset (19)         |Y (20)|Y     |Y     |Y     |Y     |
    +----------------------+------+------+------+------+------+
    |power cycle (16)      |Y     |Y     |Y     |Y     |Y     |
    +----------------------+------+------+------+------+------+

    (1)  Incomplete TTTs (IT) are Target Transfer Tags on which the
         target is still expecting PDUs to be received.  Examples
         include TTTs received via R2T, NOP-In, etc.

    (2)  Immediate Commands (IC) are immediate commands, but waiting
         for execution on a target (for example, ABORT TASK SET).





Chadalapaka, et al.          Standards Track                  [Page 289]

RFC 7143                  iSCSI (Consolidated)                April 2014


    (5)  Connection Tasks (CT) are tasks that are active on the iSCSI
         connection in question.

    (6)  Session Tasks (ST) are tasks that are active on the entire
         iSCSI session.  A union of "connection tasks" on all
         participating connections.

    (7)  Partial PDUs (PP) (if any) are PDUs that are partially sent
         and waiting for transport window credit to complete the
         transmission.

    (8)  Connection failure is a connection exception condition - one
         of the transport connections shut down, transport connections
         reset, or transport connections timed out, which abruptly
         terminated the iSCSI Full Feature Phase connection.  A
         connection failure always takes the connection state machine
         to the CLEANUP_WAIT state.

    (9)  Connection state timeout happens if a connection spends more
         time than agreed upon during login negotiation in the
         CLEANUP_WAIT state, and this takes the connection to the FREE
         state (M1 transition in connection cleanup state diagram; see
         Section 8.2).

    (10) Session timeout, closure, and reinstatement are defined in
         Section 6.3.5.

    (11) This clearing effect is "Y" only if it is a connection
         reinstatement and the operational ErrorRecoveryLevel is less
         than 2.

    (12) Session continuation is defined in Section 6.3.6.

    (13) This clearing effect is only valid if the connection is being
         logged out on a different connection and when the connection
         being logged out on the target may have some partial PDUs
         pending to be sent.  In all other cases, the effect is "NA".

    (14) This clearing effect is only valid for a "close the session"
         logout in a multi-connection session.  In all other cases, the
         effect is "NA".

    (15) Only applicable if this leading connection login is a session
         reinstatement.  If this is not the case, it is "NA".

    (16) This operation affects all logged-in initiators.

    (18) Session failure is defined in Section 6.3.6.



Chadalapaka, et al.          Standards Track                  [Page 290]

RFC 7143                  iSCSI (Consolidated)                April 2014


    (19) This operation affects all logged-in initiators, and the
         clearing effects are only applicable to the LU being reset.

    (20) With standard multi-task abort semantics (Section 4.2.3.3), a
         TARGET WARM RESET or a TARGET COLD RESET or a LU reset would
         clear the active TTTs upon completion.  However, the FastAbort
         multi-task abort semantics defined by Section 4.2.3.4 do not
         guarantee that the active TTTs are cleared by the end of the
         reset operations.  In fact, the FastAbort semantics are
         designed to allow clearing the TTTs in a "lazy" fashion after
         the TMF Response is delivered.  Thus, when
         TaskReporting=FastAbort (Section 13.23) is operational on a
         session, the clearing effects of reset operations on
         "Incomplete TTTs" is "N".





































Chadalapaka, et al.          Standards Track                  [Page 291]

RFC 7143                  iSCSI (Consolidated)                April 2014


                          +------+-------+------+------+-------+
                          |DC (1)|DD (2) |SS (3)|CS (4)|DS (5) |
    +---------------------+------+-------+------+------+-------+
    |connection failure   |N     |Y      |N     |N     |N      |
    +---------------------+------+-------+------+------+-------+
    |connection state     |Y     |NA     |Y     |N     |NA     |
    |timeout              |      |       |      |      |       |
    +---------------------+------+-------+------+------+-------+
    |session timeout/     |Y     |Y      |Y (7) |Y     |NA     |
    |closure/reinstatement|      |       |      |      |       |
    +---------------------+------+-------+------+------+-------+
    |session continuation |N (11)|NA (12)|NA    |N     |NA (13)|
    +---------------------+------+-------+------+------+-------+
    |successful connection|Y     |Y      |Y     |N     |NA     |
    |close Logout         |      |       |      |      |       |
    +---------------------+------+-------+------+------+-------+
    |session failure      |N     |Y      |N     |N     |N      |
    +---------------------+------+-------+------+------+-------+
    |successful recovery  |Y     |Y      |Y     |N     |N      |
    |Logout               |      |       |      |      |       |
    +---------------------+------+-------+------+------+-------+
    |failed Logout        |N     |Y (9)  |N     |N     |N      |
    +---------------------+------+-------+------+------+-------+
    |connection Login     |NA    |NA     |N (8) |N (8) |NA     |
    |(leading             |      |       |      |      |       |
    +---------------------+------+-------+------+------+-------+
    |connection Login     |N (11)|NA (12)|N (8) |N     |NA (13)|
    |(non-leading)        |      |       |      |      |       |
    +---------------------+------+-------+------+------+-------+
    |TARGET COLD RESET    |Y     |Y      |Y     |Y (10)|NA     |
    +---------------------+------+-------+------+------+-------+
    |TARGET WARM RESET    |Y     |Y      |N     |N     |NA     |
    +---------------------+------+-------+------+------+-------+
    |LU reset             |N     |Y      |N     |N     |N      |
    +---------------------+------+-------+------+------+-------+
    |power cycle          |Y     |Y      |Y     |Y (10)|NA     |
    +---------------------+------+-------+------+------+-------+

    (1)  Discontiguous Commands (DC) are commands allegiant to the
         connection in question and waiting to be reordered in the
         iSCSI layer.  All "Y"s in this column assume that the task
         causing the event (if indeed the event is the result of a
         task) is issued as an immediate command, because the
         discontiguities can be ahead of the task.

    (2)  Discontiguous Data (DD) are data PDUs received for the task in
         question and waiting to be reordered due to prior
         discontiguities in the DataSN.



Chadalapaka, et al.          Standards Track                  [Page 292]

RFC 7143                  iSCSI (Consolidated)                April 2014


    (3)  "SS" refers to the StatSN.

    (4)  "CS" refers to the CmdSN.

    (5)  "DS" refers to the DataSN.

    (7)  This action clears the StatSN on all the connections.

    (8)  This sequence number is instantiated on this event.

    (9)  A logout failure drives the connection state machine to the
         CLEANUP_WAIT state, similar to the connection failure event.
         Hence, it has a similar effect on this and several other
         protocol aspects.

    (10) This is cleared by virtue of the fact that all sessions with
         all initiators are terminated.

    (11) This clearing effect is "Y" if it is a connection
         reinstatement.

    (12) This clearing effect is "Y" only if it is a connection
         reinstatement and the operational ErrorRecoveryLevel is 2.

    (13) This clearing effect is "N" only if it is a connection
         reinstatement and the operational ErrorRecoveryLevel is 2.

E.2.  Clearing Effects on SCSI Objects

  The only iSCSI protocol action that can effect clearing actions on
  SCSI objects is the "I_T nexus loss" notification (Section 6.3.5.1
  ("Loss of Nexus Notification")).  [SPC3] describes the clearing
  effects of this notification on a variety of SCSI attributes.  In
  addition, SCSI standards documents (such as [SAM2] and [SBC2]) define
  additional clearing actions that may take place for several SCSI
  objects on SCSI events such as LU resets and power-on resets.

  Since iSCSI defines a TARGET COLD RESET as a "protocol-equivalent" to
  a target power-cycle, the iSCSI TARGET COLD RESET must also be
  considered as the power-on reset event in interpreting the actions
  defined in the SCSI standards.

  When the iSCSI session is reconstructed (between the same SCSI ports
  with the same nexus identifier) reestablishing the same I_T nexus,
  all SCSI objects that are defined to not clear on the "I_T nexus
  loss" notification event, such as persistent reservations, are
  automatically associated to this new session.




Chadalapaka, et al.          Standards Track                  [Page 293]

RFC 7143                  iSCSI (Consolidated)                April 2014


Acknowledgments

  Several individuals on the original IPS Working Group made
  significant contributions to the original RFCs 3720, 3980, 4850,
  and 5048.

  Specifically, the authors of the original RFCs -- which herein are
  consolidated into a single document -- were the following:

     RFC 3720: Julian Satran, Kalman Meth, Costa Sapuntzakis,
     Mallikarjun Chadalapaka, Efri Zeidner

     RFC 3980: Marjorie Krueger, Mallikarjun Chadalapaka, Rob Elliott

     RFC 4850: David Wysochanski

     RFC 5048: Mallikarjun Chadalapaka

  Many thanks to Fred Knight for contributing to the UML notations and
  drawings in this document.

  We would in addition like to acknowledge the following individuals
  who contributed to this revised document: David Harrington, Paul
  Koning, Mark Edwards, Rob Elliott, and Martin Stiemerling.

  Thanks to Yi Zeng and Nico Williams for suggesting and/or reviewing
  Kerberos-related security considerations text.

  The authors gratefully acknowledge the valuable feedback during the
  Last Call review process from a number of individuals; their feedback
  significantly improved this document.  The individuals were Stephen
  Farrell, Brian Haberman, Barry Leiba, Pete Resnick, Sean Turner,
  Alexey Melnikov, Kathleen Moriarty, Fred Knight, Mike Christie, Qiang
  Wang, Shiv Rajpal, and Andy Banta.

  Finally, this document also benefited from significant review
  contributions from the Storm Working Group at large.

  Comments may be sent to Mallikarjun Chadalapaka.












Chadalapaka, et al.          Standards Track                  [Page 294]

RFC 7143                  iSCSI (Consolidated)                April 2014


Authors' Addresses

  Mallikarjun Chadalapaka
  Microsoft
  One Microsoft Way
  Redmond, WA  98052
  USA

  EMail: [email protected]


  Julian Satran
  Infinidat Ltd.

  EMail: [email protected], [email protected]


  Kalman Meth
  IBM Haifa Research Lab
  Haifa University Campus - Mount Carmel
  Haifa 31905, Israel

  Phone +972.4.829.6341
  EMail: [email protected]


  David L. Black
  EMC Corporation
  176 South St.
  Hopkinton, MA  01748
  USA

  Phone +1 (508) 293-7953
  EMail: [email protected]

















Chadalapaka, et al.          Standards Track                  [Page 295]