Internet Engineering Task Force (IETF)                   I. Baz Castillo
Request for Comments: 7118                            J. Millan Villegas
Category: Standards Track                                      Versatica
ISSN: 2070-1721                                               V. Pascual
                                                                 Quobis
                                                           January 2014


            The WebSocket Protocol as a Transport for the
                  Session Initiation Protocol (SIP)

Abstract

  The WebSocket protocol enables two-way real-time communication
  between clients and servers in web-based applications.  This document
  specifies a WebSocket subprotocol as a reliable transport mechanism
  between Session Initiation Protocol (SIP) entities to enable use of
  SIP in web-oriented deployments.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7118.

Copyright Notice

  Copyright (c) 2014 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.




Baz Castillo, et al.         Standards Track                    [Page 1]

RFC 7118            WebSocket as a Transport for SIP        January 2014


Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
  2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   3
    2.1.  Definitions . . . . . . . . . . . . . . . . . . . . . . .   3
  3.  The WebSocket Protocol  . . . . . . . . . . . . . . . . . . .   3
  4.  The WebSocket SIP Subprotocol . . . . . . . . . . . . . . . .   4
    4.1.  Handshake . . . . . . . . . . . . . . . . . . . . . . . .   4
    4.2.  SIP Encoding  . . . . . . . . . . . . . . . . . . . . . .   5
  5.  SIP WebSocket Transport . . . . . . . . . . . . . . . . . . .   6
    5.1.  Via Transport Parameter . . . . . . . . . . . . . . . . .   6
    5.2.  SIP URI Transport Parameter . . . . . . . . . . . . . . .   6
    5.3.  Via "received" Parameter  . . . . . . . . . . . . . . . .   7
    5.4.  SIP Transport Implementation Requirements . . . . . . . .   7
    5.5.  Locating a SIP Server . . . . . . . . . . . . . . . . . .   8
  6.  Connection Keep-Alive . . . . . . . . . . . . . . . . . . . .   8
  7.  Authentication  . . . . . . . . . . . . . . . . . . . . . . .   8
  8.  Examples  . . . . . . . . . . . . . . . . . . . . . . . . . .  10
    8.1.  Registration  . . . . . . . . . . . . . . . . . . . . . .  10
    8.2.  INVITE Dialog through a Proxy . . . . . . . . . . . . . .  12
  9.  Security Considerations . . . . . . . . . . . . . . . . . . .  16
    9.1.  Secure WebSocket Connection . . . . . . . . . . . . . . .  16
    9.2.  Usage of "sips" Scheme  . . . . . . . . . . . . . . . . .  16
  10. IANA Considerations . . . . . . . . . . . . . . . . . . . . .  16
    10.1.  Registration of the WebSocket SIP Subprotocol  . . . . .  16
    10.2.  Registration of New NAPTR Service Field Values . . . . .  17
    10.3.  SIP/SIPS URI Parameters Subregistry  . . . . . . . . . .  17
    10.4.  Header Fields Subregistry  . . . . . . . . . . . . . . .  17
    10.5.  Header Field Parameters and Parameter Values Subregistry  17
    10.6.  SIP Transport Subregistry  . . . . . . . . . . . . . . .  18
  11. Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  18
  12. References  . . . . . . . . . . . . . . . . . . . . . . . . .  18
    12.1.  Normative References . . . . . . . . . . . . . . . . . .  18
    12.2.  Informative References . . . . . . . . . . . . . . . . .  19
  Appendix A.  Authentication Use Cases . . . . . . . . . . . . . .  21
    A.1.  Just SIP Authentication . . . . . . . . . . . . . . . . .  21
    A.2.  Just Web Authentication . . . . . . . . . . . . . . . . .  21
    A.3.  Cookie-Based Authentication . . . . . . . . . . . . . . .  22
  Appendix B.  Implementation Guidelines  . . . . . . . . . . . . .  22
    B.1.  SIP WebSocket Client Considerations . . . . . . . . . . .  23
    B.2.  SIP WebSocket Server Considerations . . . . . . . . . . .  24










Baz Castillo, et al.         Standards Track                    [Page 2]

RFC 7118            WebSocket as a Transport for SIP        January 2014


1.  Introduction

  The WebSocket protocol [RFC6455] enables message exchange between
  clients and servers on top of a persistent TCP connection (optionally
  secured with Transport Layer Security (TLS) [RFC5246]).  The initial
  protocol handshake makes use of HTTP [RFC2616] semantics, allowing
  the WebSocket protocol to reuse existing HTTP infrastructure.

  Modern web browsers include a WebSocket client stack complying with
  the WebSocket API [WS-API] as specified by the W3C.  It is expected
  that other client applications (those running in personal computers
  and devices such as smartphones) will also make a WebSocket client
  stack available.  The specification in this document enables use of
  SIP in these scenarios.

  This specification defines a WebSocket subprotocol (as defined in
  Section 1.9 of [RFC6455]) for transporting SIP messages between a
  WebSocket client and server, a reliable and message-boundary-
  preserving transport for SIP, and DNS Naming Authority Pointer
  (NAPTR) [RFC3403] service values and procedures for SIP entities
  implementing the WebSocket transport.  Media transport is out of the
  scope of this document.

  Section 3 in this specification relaxes the requirement in [RFC3261]
  by which the SIP server transport MUST add a "received" parameter in
  the top Via header in certain circumstances.

2.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

2.1.  Definitions

  SIP WebSocket Client:  A SIP entity capable of opening outbound
        connections to WebSocket servers and communicating using the
        WebSocket SIP subprotocol as defined by this document.

  SIP WebSocket Server:  A SIP entity capable of listening for inbound
        connections from WebSocket clients and communicating using the
        WebSocket SIP subprotocol as defined by this document.

3.  The WebSocket Protocol

  The WebSocket protocol [RFC6455] is a transport layer on top of TCP
  (optionally secured with TLS [RFC5246]) in which both client and
  server exchange message units in both directions.  The protocol



Baz Castillo, et al.         Standards Track                    [Page 3]

RFC 7118            WebSocket as a Transport for SIP        January 2014


  defines a connection handshake, WebSocket subprotocol and extensions
  negotiation, a frame format for sending application and control data,
  a masking mechanism, and status codes for indicating disconnection
  causes.

  The WebSocket connection handshake is based on HTTP [RFC2616] and
  utilizes the HTTP GET method with an "Upgrade" request.  This is sent
  by the client and then answered by the server (if the negotiation
  succeeded) with an HTTP 101 status code.  Once the handshake is
  completed, the connection upgrades from HTTP to the WebSocket
  protocol.  This handshake procedure is designed to reuse the existing
  HTTP infrastructure.  During the connection handshake, the client and
  server agree on the application protocol to use on top of the
  WebSocket transport.  Such an application protocol (also known as a
  "WebSocket subprotocol") defines the format and semantics of the
  messages exchanged by the endpoints.  This could be a custom protocol
  or a standardized one (as defined by the WebSocket SIP subprotocol in
  this document).  Once the HTTP 101 response is processed, both the
  client and server reuse the underlying TCP connection for sending
  WebSocket messages and control frames to each other.  Unlike plain
  HTTP, this connection is persistent and can be used for multiple
  message exchanges.

  WebSocket defines message units to be used by applications for the
  exchange of data, so it provides a message-boundary-preserving
  transport layer.  These message units can contain either UTF-8 text
  or binary data and can be split into multiple WebSocket text/binary
  transport frames as needed by the WebSocket stack.

     The WebSocket API [WS-API] for web browsers only defines callbacks
     to be invoked upon receipt of an entire message unit, regardless
     of whether it was received in a single WebSocket frame or split
     across multiple frames.

4.  The WebSocket SIP Subprotocol

  The term WebSocket subprotocol refers to an application-level
  protocol layered on top of a WebSocket connection.  This document
  specifies the WebSocket SIP subprotocol for carrying SIP requests and
  responses through a WebSocket connection.

4.1.  Handshake

  The SIP WebSocket Client and SIP WebSocket Server negotiate usage of
  the WebSocket SIP subprotocol during the WebSocket handshake
  procedure as defined in Section 1.3 of [RFC6455].  The client MUST





Baz Castillo, et al.         Standards Track                    [Page 4]

RFC 7118            WebSocket as a Transport for SIP        January 2014


  include the value "sip" in the Sec-WebSocket-Protocol header in its
  handshake request.  The 101 reply from the server MUST contain "sip"
  in its corresponding Sec-WebSocket-Protocol header.

     The WebSocket client initiates a WebSocket connection when
     attempting to send a SIP request (unless there is an already
     established WebSocket connection for sending the SIP request).  In
     case there is no HTTP 101 response during the WebSocket handshake,
     it is considered a transaction error as per [RFC3261],
     Section 8.1.3.1., "Transaction Layer Errors".

  Below is an example of a WebSocket handshake in which the client
  requests the WebSocket SIP subprotocol support from the server:

    GET / HTTP/1.1
    Host: sip-ws.example.com
    Upgrade: websocket
    Connection: Upgrade
    Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
    Origin: http://www.example.com
    Sec-WebSocket-Protocol: sip
    Sec-WebSocket-Version: 13

  The handshake response from the server accepting the WebSocket SIP
  subprotocol would look as follows:

    HTTP/1.1 101 Switching Protocols
    Upgrade: websocket
    Connection: Upgrade
    Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
    Sec-WebSocket-Protocol: sip

  Once the negotiation has been completed, the WebSocket connection is
  established and can be used for the transport of SIP requests and
  responses.  Messages other than SIP requests and responses MUST NOT
  be transmitted over this connection.

4.2.  SIP Encoding

  WebSocket messages can be transported in either UTF-8 text frames or
  binary frames.  SIP [RFC3261] allows both text and binary bodies in
  SIP requests and responses.  Therefore, SIP WebSocket Clients and SIP
  WebSocket Servers MUST accept both text and binary frames.

     If there is at least one non-UTF-8 symbol in the whole SIP message
     (including headers and the body), then the whole message MUST be
     sent within a WebSocket binary message.  Given the nature of




Baz Castillo, et al.         Standards Track                    [Page 5]

RFC 7118            WebSocket as a Transport for SIP        January 2014


     JavaScript and the WebSocket API, it is RECOMMENDED to use UTF-8
     encoding (or ASCII, which is a subset of UTF-8) for SIP messages
     carried over a WebSocket connection.

5.  SIP WebSocket Transport

  WebSocket [RFC6455] is a reliable protocol; therefore, the SIP
  WebSocket subprotocol defined by this document is a reliable SIP
  transport.  Thus, client and server transactions using WebSocket for
  transport MUST follow the procedures and timer values for reliable
  transports as defined in [RFC3261].

  Each SIP message MUST be carried within a single WebSocket message,
  and a WebSocket message MUST NOT contain more than one SIP message.
  Because the WebSocket transport preserves message boundaries, the use
  of the Content-Length header in SIP messages is not necessary when
  they are transported using the WebSocket subprotocol.

     This simplifies the parsing of SIP messages for both clients and
     servers.  There is no need to establish message boundaries using
     Content-Length headers between messages.  Other SIP transports,
     such as UDP and the Stream Control Transmission Protocol (SCTP)
     [RFC4168], also provide this benefit.

5.1.  Via Transport Parameter

  Via header fields in SIP messages carry a transport protocol
  identifier.  This document defines the value "WS" to be used for
  requests over plain WebSocket connections and "WSS" for requests over
  secure WebSocket connections (in which the WebSocket connection is
  established using TLS [RFC5246] with TCP transport).

  The updated augmented BNF (Backus-Naur Form) [RFC5234] for this
  parameter is the following (the original BNF for this parameter can
  be found in [RFC3261], which was then updated by [RFC4168]):

    transport  =/  "WS" / "WSS"

5.2.  SIP URI Transport Parameter

  This document defines the value "ws" as the transport parameter value
  for a SIP URI [RFC3986] to be contacted using the SIP WebSocket
  subprotocol as transport.

  The updated augmented BNF for this parameter is the following (the
  original BNF for this parameter can be found in [RFC3261]):

    transport-param  =/  "transport=" "ws"



Baz Castillo, et al.         Standards Track                    [Page 6]

RFC 7118            WebSocket as a Transport for SIP        January 2014


5.3.  Via "received" Parameter

  The following is stated in [RFC3261], Section 18.2.1, "Receiving
  Requests":

     When the server transport receives a request over any transport,
     it MUST examine the value of the "sent-by" parameter in the top
     Via header field value.  If the host portion of the "sent-by"
     field contains a domain name, or if it contains an IP address that
     differs from the packet source address, the server MUST add a
     "received" parameter to that Via header field value.  This
     parameter MUST contain the source address from which the packet
     was received.

  The requirement of adding the "received" parameter does not fit well
  into the WebSocket protocol design.  The WebSocket connection
  handshake reuses the existing HTTP infrastructure in which there
  could be an unknown number of HTTP proxies and/or TCP load balancers
  between the SIP WebSocket Client and Server, so the source address
  the server would write into the Via "received" parameter would be the
  address of the HTTP/TCP intermediary in front of it.  This could
  reveal sensitive information about the internal topology of the
  server's network to the client.

  Given the fact that SIP responses can only be sent over the existing
  WebSocket connection, the Via "received" parameter is of little use.
  Therefore, in order to allow hiding possible sensitive information
  about the SIP WebSocket Server's network, this document updates
  [RFC3261], Section 18.2.1 by stating:

     When a SIP WebSocket Server receives a request, it MAY decide not
     to add a "received" parameter to the top Via header.  Therefore,
     SIP WebSocket Clients MUST accept responses without such a
     parameter in the top Via header regardless of whether the Via
     "sent-by" field contains a domain name.

5.4.  SIP Transport Implementation Requirements

  The following is stated in [RFC3261], Section 18, "Transport":

     All SIP elements MUST implement UDP and TCP.  SIP elements MAY
     implement other protocols.

  The specification of this transport enables SIP to be used as a
  session establishment protocol in scenarios where none of the other
  transport protocols defined for SIP can be used.  Since some





Baz Castillo, et al.         Standards Track                    [Page 7]

RFC 7118            WebSocket as a Transport for SIP        January 2014


  environments do not enable SIP elements to use UDP and TCP as SIP
  transport protocols, a SIP element acting as a SIP WebSocket Client
  is not mandated to implement support of UDP and TCP.

5.5.  Locating a SIP Server

  [RFC3263] specifies the procedures that should be followed by SIP
  entities for locating SIP servers.  This specification defines the
  NAPTR service value "SIP+D2W" for SIP WebSocket Servers that support
  plain WebSocket connections and "SIPS+D2W" for SIP WebSocket Servers
  that support secure WebSocket connections.

     At the time this document was written, DNS NAPTR/Service Record
     (SRV) queries could not be performed by commonly available
     WebSocket client stacks (in JavaScript engines and web browsers).

  In the absence of DNS SRV resource records or an explicit port, the
  default port for a SIP URI using the "sip" scheme and the "ws"
  transport parameter is 80, and the default port for a SIP URI using
  the "sips" scheme and the "ws" transport parameter is 443.

6.  Connection Keep-Alive

  SIP WebSocket Clients and Servers may keep their WebSocket
  connections open by sending periodic WebSocket "Ping" frames as
  described in [RFC6455], Section 5.5.2.

     The WebSocket API [WS-API] does not provide a mechanism for
     applications running in a web browser to control whether or not
     periodic WebSocket "Ping" frames are sent to the server.  The
     implementation of such a keep-alive feature is the decision of
     each web browser manufacturer and may also depend on the
     configuration of the web browser.

  The indication and use of the CRLF NAT keep-alive mechanism defined
  for SIP connection-oriented transports in [RFC5626], Section 3.5.1 or
  [RFC6223] are, of course, usable over the transport defined in this
  specification.

7.  Authentication

  This section describes how authentication is achieved through the
  requirements in [RFC6455], [RFC6265], [RFC2617], and [RFC3261].

  The WebSocket protocol [RFC6455] does not define an authentication
  mechanism; instead, it exposes the following text in Section 10.5,
  "WebSocket Client Authentication":




Baz Castillo, et al.         Standards Track                    [Page 8]

RFC 7118            WebSocket as a Transport for SIP        January 2014


     This protocol doesn't prescribe any particular way that servers
     can authenticate clients during the WebSocket handshake.  The
     WebSocket server can use any client authentication mechanism
     available to a generic HTTP server, such as cookies, HTTP
     authentication, or TLS authentication.

  The following list exposes mandatory-to-implement and optional
  mechanisms for SIP WebSocket Clients and Servers in order to get
  interoperability at the WebSocket authentication level:

  o  A SIP WebSocket Client MUST be ready to add a session cookie when
     it runs in a web browser (or behaves like a browser navigating a
     website) and has previously retrieved a session cookie from the
     web server whose URL domain matches the domain in the WebSocket
     URI.  This mechanism is defined by [RFC6265].

  o  A SIP WebSocket Client MUST be ready to be challenged with an HTTP
     401 status code [RFC2617] by the SIP WebSocket Server when
     performing the WebSocket handshake.

  o  A SIP WebSocket Client MAY use TLS client authentication (when in
     a secure WebSocket connection) as an optional authentication
     mechanism.

        Note, however, that TLS client authentication in the WebSocket
        protocol is governed by the rules of the HTTP protocol rather
        than the rules of SIP.

  o  A SIP WebSocket Server MUST be ready to read session cookies when
     present in the WebSocket handshake request and use such a cookie
     value for determining whether the WebSocket connection has been
     initiated by an HTTP client navigating a website in the same
     domain (or subdomain) as the SIP WebSocket Server.

  o  A SIP WebSocket Server SHOULD be able to reject a WebSocket
     handshake request with an HTTP 401 status code by providing a
     Basic/Digest challenge as defined for the HTTP protocol.

  Regardless of whether or not the SIP WebSocket Server requires
  authentication during the WebSocket handshake, authentication MAY be
  requested at the SIP level.

  Some authentication use cases are exposed in Appendix A.








Baz Castillo, et al.         Standards Track                    [Page 9]

RFC 7118            WebSocket as a Transport for SIP        January 2014


8.  Examples

8.1.  Registration

  Alice    (SIP WSS)    proxy.example.com
  |                             |
  |HTTP GET (WS handshake) F1   |
  |---------------------------->|
  |101 Switching Protocols F2   |
  |<----------------------------|
  |                             |
  |REGISTER F3                  |
  |---------------------------->|
  |200 OK F4                    |
  |<----------------------------|
  |                             |

  Alice loads a web page using her web browser and retrieves JavaScript
  code implementing the WebSocket SIP subprotocol defined in this
  document.  The JavaScript code (a SIP WebSocket Client) establishes a
  secure WebSocket connection with a SIP proxy/registrar (a SIP
  WebSocket Server) at proxy.example.com.  Upon WebSocket connection,
  Alice constructs and sends a SIP REGISTER request, including Outbound
  [RFC5626] and Globally Routable User Agent URI (GRUU) [RFC5627]
  support.  Since the JavaScript stack in a browser has no way to
  determine the local address from which the WebSocket connection was
  made, this implementation uses a random ".invalid" domain name for
  the Via header "sent-by" parameter and for the hostport of the URI in
  the Contact header (see Appendix B.1).

  Message details (authentication and Session Description Protocol
  (SDP) bodies are omitted for simplicity):

  F1 HTTP GET (WS handshake)  Alice -> proxy.example.com (TLS)

  GET / HTTP/1.1
  Host: proxy.example.com
  Upgrade: websocket
  Connection: Upgrade
  Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
  Origin: https://www.example.com
  Sec-WebSocket-Protocol: sip
  Sec-WebSocket-Version: 13








Baz Castillo, et al.         Standards Track                   [Page 10]

RFC 7118            WebSocket as a Transport for SIP        January 2014


  F2 101 Switching Protocols  proxy.example.com -> Alice (TLS)

  HTTP/1.1 101 Switching Protocols
  Upgrade: websocket
  Connection: Upgrade
  Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
  Sec-WebSocket-Protocol: sip


  F3 REGISTER  Alice -> proxy.example.com (transport WSS)

  REGISTER sip:proxy.example.com SIP/2.0
  Via: SIP/2.0/WSS df7jal23ls0d.invalid;branch=z9hG4bKasudf
  From: sip:[email protected];tag=65bnmj.34asd
  To: sip:[email protected]
  Call-ID: aiuy7k9njasd
  CSeq: 1 REGISTER
  Max-Forwards: 70
  Supported: path, outbound, gruu
  Contact: <sip:[email protected];transport=ws>
    ;reg-id=1
    ;+sip.instance="<urn:uuid:f81-7dec-14a06cf1>"


  F4 200 OK  proxy.example.com -> Alice (transport WSS)

  SIP/2.0 200 OK
  Via: SIP/2.0/WSS df7jal23ls0d.invalid;branch=z9hG4bKasudf
  From: sip:[email protected];tag=65bnmj.34asd
  To: sip:[email protected];tag=12isjljn8
  Call-ID: aiuy7k9njasd
  CSeq: 1 REGISTER
  Supported: outbound, gruu
  Contact: <sip:[email protected];transport=ws>
    ;reg-id=1
    ;+sip.instance="<urn:uuid:f81-7dec-14a06cf1>"
    ;pub-gruu="sip:[email protected];gr=urn:uuid:f81-7dec-14a06cf1"
    ;temp-gruu="sip:[email protected];gr"
    ;expires=3600












Baz Castillo, et al.         Standards Track                   [Page 11]

RFC 7118            WebSocket as a Transport for SIP        January 2014


8.2.  INVITE Dialog through a Proxy

  Alice    (SIP WSS)    proxy.example.com    (SIP UDP)       Bob
  |                             |                             |
  |INVITE F1                    |                             |
  |---------------------------->|                             |
  |100 Trying F2                |                             |
  |<----------------------------|                             |
  |                             |INVITE F3                    |
  |                             |---------------------------->|
  |                             |200 OK F4                    |
  |                             |<----------------------------|
  |200 OK F5                    |                             |
  |<----------------------------|                             |
  |                             |                             |
  |ACK F6                       |                             |
  |---------------------------->|                             |
  |                             |ACK F7                       |
  |                             |---------------------------->|
  |                             |                             |
  |                 Bidirectional RTP Media                   |
  |<=========================================================>|
  |                             |                             |
  |                             |BYE F8                       |
  |                             |<----------------------------|
  |BYE F9                       |                             |
  |<----------------------------|                             |
  |200 OK F10                   |                             |
  |---------------------------->|                             |
  |                             |200 OK F11                   |
  |                             |---------------------------->|
  |                             |                             |

  In the same scenario, Alice places a call to Bob's Address of Record
  (AOR).  The SIP WebSocket Server at proxy.example.com acts as a SIP
  proxy, routing the INVITE to Bob's contact address (which happens to
  be using SIP transported over UDP).  Bob answers the call and then
  terminates it.

  Message details (authentication and SDP bodies are omitted for
  simplicity):










Baz Castillo, et al.         Standards Track                   [Page 12]

RFC 7118            WebSocket as a Transport for SIP        January 2014


  F1 INVITE  Alice -> proxy.example.com (transport WSS)

  INVITE sip:[email protected] SIP/2.0
  Via: SIP/2.0/WSS df7jal23ls0d.invalid;branch=z9hG4bK56sdasks
  From: sip:[email protected];tag=asdyka899
  To: sip:[email protected]
  Call-ID: asidkj3ss
  CSeq: 1 INVITE
  Max-Forwards: 70
  Supported: path, outbound, gruu
  Route: <sip:proxy.example.com:443;transport=ws;lr>
  Contact: <sip:[email protected]
   ;gr=urn:uuid:f81-7dec-14a06cf1;ob>
  Content-Type: application/sdp


  F2 100 Trying  proxy.example.com -> Alice (transport WSS)

  SIP/2.0 100 Trying
  Via: SIP/2.0/WSS df7jal23ls0d.invalid;branch=z9hG4bK56sdasks
  From: sip:[email protected];tag=asdyka899
  To: sip:[email protected]
  Call-ID: asidkj3ss
  CSeq: 1 INVITE


  F3 INVITE  proxy.example.com -> Bob (transport UDP)

  INVITE sip:[email protected]:5060 SIP/2.0
  Via: SIP/2.0/UDP proxy.example.com;branch=z9hG4bKhjhjqw32c
  Via: SIP/2.0/WSS df7jal23ls0d.invalid;branch=z9hG4bK56sdasks
  Record-Route: <sip:proxy.example.com;transport=udp;lr>,
    <sip:[email protected]:443;transport=ws;lr>
  From: sip:[email protected];tag=asdyka899
  To: sip:[email protected]
  Call-ID: asidkj3ss
  CSeq: 1 INVITE
  Max-Forwards: 69
  Supported: path, outbound, gruu
  Contact: <sip:[email protected]
    ;gr=urn:uuid:f81-7dec-14a06cf1;ob>
  Content-Type: application/sdp









Baz Castillo, et al.         Standards Track                   [Page 13]

RFC 7118            WebSocket as a Transport for SIP        January 2014


  F4 200 OK  Bob -> proxy.example.com (transport UDP)

  SIP/2.0 200 OK
  Via: SIP/2.0/UDP proxy.example.com;branch=z9hG4bKhjhjqw32c
    ;received=192.0.2.10
  Via: SIP/2.0/WSS df7jal23ls0d.invalid;branch=z9hG4bK56sdasks
  Record-Route: <sip:proxy.example.com;transport=udp;lr>,
    <sip:[email protected]:443;transport=ws;lr>
  From: sip:[email protected];tag=asdyka899
  To: sip:[email protected];tag=bmqkjhsd
  Call-ID: asidkj3ss
  CSeq: 1 INVITE
  Contact: <sip:[email protected]:5060;transport=udp>
  Content-Type: application/sdp


  F5 200 OK  proxy.example.com -> Alice (transport WSS)

  SIP/2.0 200 OK
  Via: SIP/2.0/WSS df7jal23ls0d.invalid;branch=z9hG4bK56sdasks
  Record-Route: <sip:proxy.example.com;transport=udp;lr>,
    <sip:[email protected]:443;transport=ws;lr>
  From: sip:[email protected];tag=asdyka899
  To: sip:[email protected];tag=bmqkjhsd
  Call-ID: asidkj3ss
  CSeq: 1 INVITE
  Contact: <sip:[email protected]:5060;transport=udp>
  Content-Type: application/sdp


  F6 ACK  Alice -> proxy.example.com (transport WSS)

  ACK sip:[email protected]:5060;transport=udp SIP/2.0
  Via: SIP/2.0/WSS df7jal23ls0d.invalid;branch=z9hG4bKhgqqp090
  Route: <sip:[email protected]:443;transport=ws;lr>,
    <sip:proxy.example.com;transport=udp;lr>,
  From: sip:[email protected];tag=asdyka899
  To: sip:[email protected];tag=bmqkjhsd
  Call-ID: asidkj3ss
  CSeq: 1 ACK
  Max-Forwards: 70










Baz Castillo, et al.         Standards Track                   [Page 14]

RFC 7118            WebSocket as a Transport for SIP        January 2014


  F7 ACK  proxy.example.com -> Bob (transport UDP)

  ACK sip:[email protected]:5060;transport=udp SIP/2.0
  Via: SIP/2.0/UDP proxy.example.com;branch=z9hG4bKhwpoc80zzx
  Via: SIP/2.0/WSS df7jal23ls0d.invalid;branch=z9hG4bKhgqqp090
  From: sip:[email protected];tag=asdyka899
  To: sip:[email protected];tag=bmqkjhsd
  Call-ID: asidkj3ss
  CSeq: 1 ACK
  Max-Forwards: 69


  F8 BYE  Bob -> proxy.example.com (transport UDP)

  BYE sip:[email protected];gr=urn:uuid:f81-7dec-14a06cf1;ob SIP/2.0
  Via: SIP/2.0/UDP 203.0.113.22;branch=z9hG4bKbiuiansd001
  Route: <sip:proxy.example.com;transport=udp;lr>,
    <sip:[email protected]:443;transport=ws;lr>
  From: sip:[email protected];tag=bmqkjhsd
  To: sip:[email protected];tag=asdyka899
  Call-ID: asidkj3ss
  CSeq: 1201 BYE
  Max-Forwards: 70


  F9 BYE  proxy.example.com -> Alice (transport WSS)

  BYE sip:[email protected];gr=urn:uuid:f81-7dec-14a06cf1;ob SIP/2.0
  Via: SIP/2.0/WSS proxy.example.com:443;branch=z9hG4bKmma01m3r5
  Via: SIP/2.0/UDP 203.0.113.22;branch=z9hG4bKbiuiansd001
  From: sip:[email protected];tag=bmqkjhsd
  To: sip:[email protected];tag=asdyka899
  Call-ID: asidkj3ss
  CSeq: 1201 BYE
  Max-Forwards: 69


  F10 200 OK  Alice -> proxy.example.com (transport WSS)

  SIP/2.0 200 OK
  Via: SIP/2.0/WSS proxy.example.com:443;branch=z9hG4bKmma01m3r5
  Via: SIP/2.0/UDP 203.0.113.22;branch=z9hG4bKbiuiansd001
  From: sip:[email protected];tag=bmqkjhsd
  To: sip:[email protected];tag=asdyka899
  Call-ID: asidkj3ss
  CSeq: 1201 BYE





Baz Castillo, et al.         Standards Track                   [Page 15]

RFC 7118            WebSocket as a Transport for SIP        January 2014


  F11 200 OK  proxy.example.com -> Bob (transport UDP)

  SIP/2.0 200 OK
  Via: SIP/2.0/UDP 203.0.113.22;branch=z9hG4bKbiuiansd001
  From: sip:[email protected];tag=bmqkjhsd
  To: sip:[email protected];tag=asdyka899
  Call-ID: asidkj3ss
  CSeq: 1201 BYE

9.  Security Considerations

9.1.  Secure WebSocket Connection

  It is RECOMMENDED that the SIP traffic transported over a WebSocket
  communication be protected by using a secure WebSocket connection
  (using TLS [RFC5246] over TCP).

  When establishing a connection using SIP over secure WebSocket
  transport, the client MUST authenticate the server using the server's
  certificate according to the WebSocket validation procedure in
  [RFC6455].

     Server operators should note that this authentication procedure is
     different from the procedure for SIP domain certificates defined
     in [RFC5922].  Certificates that are appropriate for SIP over TLS
     over TCP will probably not be appropriate for SIP over secure
     WebSocket connections.

9.2.  Usage of "sips" Scheme

  The "sips" scheme in a SIP URI dictates that the entire request path
  to the target be secure.  If such a path includes a WebSocket
  connection, it MUST be a secure WebSocket connection.

10.  IANA Considerations

10.1.  Registration of the WebSocket SIP Subprotocol

  IANA has registered the WebSocket SIP subprotocol under the
  "WebSocket Subprotocol Name" registry with the following data:

  Subprotocol Identifier:  sip

  Subprotocol Common Name:  WebSocket Transport for SIP (Session
     Initiation Protocol)

  Subprotocol Definition:  [RFC7118]




Baz Castillo, et al.         Standards Track                   [Page 16]

RFC 7118            WebSocket as a Transport for SIP        January 2014


10.2.  Registration of New NAPTR Service Field Values

  This document defines two new NAPTR service field values (SIP+D2W and
  SIPS+D2W) and IANA has registered these values under the "Registry
  for the Session Initiation Protocol (SIP) NAPTR Resource Record
  Services Field".  The entries are as follows:

  Services Field   Protocol   Reference
  --------------   --------   ---------
  SIP+D2W          WS         [RFC7118]
  SIPS+D2W         WS         [RFC7118]

10.3.  SIP/SIPS URI Parameters Subregistry

  IANA has added a reference to this document under the "SIP/SIPS URI
  Parameters" subregistry within the "Session Initiation Protocol (SIP)
  Parameters" registry:

  Parameter Name   Predefined Values   Reference
  --------------   -----------------   ---------
  transport        Yes                 [RFC3261][RFC7118]

10.4.  Header Fields Subregistry

  IANA has added a reference to this document under the "Header Fields"
  subregistry within the "Session Initiation Protocol (SIP) Parameters"
  registry:

  Header Name   compact   Reference
  -----------   -------   ---------
  Via           v         [RFC3261][RFC7118]

10.5.  Header Field Parameters and Parameter Values Subregistry

  IANA has added a reference to this document under the "Header Field
  Parameters and Parameter Values" subregistry within the "Session
  Initiation Protocol (SIP) Parameters" registry:

                                Predefined
  Header Field  Parameter Name  Values  Reference
  ------------  --------------  ------  ---------
  Via           received        No      [RFC3261][RFC7118]









Baz Castillo, et al.         Standards Track                   [Page 17]

RFC 7118            WebSocket as a Transport for SIP        January 2014


10.6.  SIP Transport Subregistry

  This document adds a new subregistry, "SIP Transport", to the
  "Session Initiation Protocol (SIP) Parameters" registry.  Its format
  and initial values are as shown in the following table:

  +------------+------------------------+
  | Transport  | Reference              |
  +------------+------------------------+
  | UDP        | [RFC3261]              |
  | TCP        | [RFC3261]              |
  | TLS        | [RFC3261]              |
  | SCTP       | [RFC3261], [RFC4168]   |
  | TLS-SCTP   | [RFC4168]              |
  | WS         | [RFC7118]              |
  | WSS        | [RFC7118]              |
  +------------+------------------------+

  The policy for registration of values in this registry is "Standards
  Action" [RFC5226].

11.  Acknowledgements

  Special thanks to the following people who participated in
  discussions on the SIPCORE and RTCWEB WG mailing lists and
  contributed ideas and/or provided detailed reviews (the list is
  likely to be incomplete): Hadriel Kaplan, Paul Kyzivat, Robert
  Sparks, Adam Roach, Ranjit Avasarala, Xavier Marjou, Nataraju A. B.,
  Martin Vopatek, Alexey Melnikov, Alan Johnston, Christer Holmberg,
  Salvatore Loreto, Kevin P. Fleming, Suresh Krishnan, Yaron Sheffer,
  Richard Barnes, Barry Leiba, Stephen Farrell, Ted Lemon, Benoit
  Claise, Pete Resnick, Binod P.G., and Saul Ibarra Corretge.

12.  References

12.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2617]  Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
             Leach, P., Luotonen, A., and L. Stewart, "HTTP
             Authentication: Basic and Digest Access Authentication",
             RFC 2617, June 1999.







Baz Castillo, et al.         Standards Track                   [Page 18]

RFC 7118            WebSocket as a Transport for SIP        January 2014


  [RFC3261]  Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
             A., Peterson, J., Sparks, R., Handley, M., and E.
             Schooler, "SIP: Session Initiation Protocol", RFC 3261,
             June 2002.

  [RFC3263]  Rosenberg, J. and H. Schulzrinne, "Session Initiation
             Protocol (SIP): Locating SIP Servers", RFC 3263, June
             2002.

  [RFC3403]  Mealling, M., "Dynamic Delegation Discovery System (DDDS)
             Part Three: The Domain Name System (DNS) Database", RFC
             3403, October 2002.

  [RFC5226]  Narten, T. and H. Alvestrand, "Guidelines for Writing an
             IANA Considerations Section in RFCs", BCP 26, RFC 5226,
             May 2008.

  [RFC5234]  Crocker, D. and P. Overell, "Augmented BNF for Syntax
             Specifications: ABNF", STD 68, RFC 5234, January 2008.

  [RFC5246]  Dierks, T. and E. Rescorla, "The Transport Layer Security
             (TLS) Protocol Version 1.2", RFC 5246, August 2008.

  [RFC6265]  Barth, A., "HTTP State Management Mechanism", RFC 6265,
             April 2011.

  [RFC6455]  Fette, I. and A. Melnikov, "The WebSocket Protocol", RFC
             6455, December 2011.

12.2.  Informative References

  [RFC2606]  Eastlake, D. and A. Panitz, "Reserved Top Level DNS
             Names", BCP 32, RFC 2606, June 1999.

  [RFC2616]  Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
             Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
             Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

  [RFC3327]  Willis, D. and B. Hoeneisen, "Session Initiation Protocol
             (SIP) Extension Header Field for Registering Non-Adjacent
             Contacts", RFC 3327, December 2002.

  [RFC3986]  Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
             Resource Identifier (URI): Generic Syntax", STD 66, RFC
             3986, January 2005.






Baz Castillo, et al.         Standards Track                   [Page 19]

RFC 7118            WebSocket as a Transport for SIP        January 2014


  [RFC4168]  Rosenberg, J., Schulzrinne, H., and G. Camarillo, "The
             Stream Control Transmission Protocol (SCTP) as a Transport
             for the Session Initiation Protocol (SIP)", RFC 4168,
             October 2005.

  [RFC5626]  Jennings, C., Mahy, R., and F. Audet, "Managing Client-
             Initiated Connections in the Session Initiation Protocol
             (SIP)", RFC 5626, October 2009.

  [RFC5627]  Rosenberg, J., "Obtaining and Using Globally Routable User
             Agent URIs (GRUUs) in the Session Initiation Protocol
             (SIP)", RFC 5627, October 2009.

  [RFC5922]  Gurbani, V., Lawrence, S., and A. Jeffrey, "Domain
             Certificates in the Session Initiation Protocol (SIP)",
             RFC 5922, June 2010.

  [RFC6223]  Holmberg, C., "Indication of Support for Keep-Alive", RFC
             6223, April 2011.

  [WS-API]   W3C and I. Hickson, Ed., "The WebSocket API", September
             2012.





























Baz Castillo, et al.         Standards Track                   [Page 20]

RFC 7118            WebSocket as a Transport for SIP        January 2014


Appendix A.  Authentication Use Cases

  The sections below briefly describe some SIP over WebSocket scenarios
  in which authentication takes place in different ways.

A.1.  Just SIP Authentication

  SIP Private Branch Exchange (PBX) model A implements the SIP
  WebSocket transport defined by this specification.  Its
  implementation is 100% website agnostic as it does not share
  information with the web server providing the HTML code to browsers,
  meaning that the SIP WebSocket Server (here, PBX model A) has no
  knowledge about web login activity within the website.

  In this simple scenario, the SIP WebSocket Server does not inspect
  fields in the WebSocket handshake HTTP GET request such as the
  request URL, the Origin header value, the Host header value, or the
  Cookie header value (if present).  However, some of those fields
  could be inspected for a minimal validation (i.e., PBX model A could
  require that the Origin header value contains a specific URL so just
  users navigating such a website would be able to establish a
  WebSocket connection with PBX model A).

  Once the WebSocket connection has been established, SIP
  authentication is requested by PBX model A for each SIP request
  coming over that connection.  Therefore, SIP WebSocket Clients must
  be provisioned with their corresponding SIP password.

A.2.  Just Web Authentication

  A SIP-to-PSTN (Public Switched Telephone Network) provider offers
  telephony service for clients logged into its website.  The provider
  does not want to expose SIP passwords into the web for security/
  privacy reasons.

  Once the user is logged into the web, the web server provides him
  with a SIP identity (SIP URI) and a session temporary token string
  (along with the SIP WebSocket Client JavaScript application and SIP
  settings).  The web server stores the SIP identity and session token
  into a database.

  The web application adds the SIP identity and session token as URL
  query parameters in the WebSocket handshake request and attempts the
  connection.  The SIP WebSocket Server inspects the handshake request
  and validates that the session token matches the value stored in the
  database for the given SIP identity.  In case the value matches, the
  WebSocket connection gets "authenticated" for that SIP identity.  The
  SIP WebSocket Client can then register and make calls.  The SIP



Baz Castillo, et al.         Standards Track                   [Page 21]

RFC 7118            WebSocket as a Transport for SIP        January 2014


  WebSocket Server would, however, verify that the identity in those
  SIP requests (i.e., the From URI value) matches the SIP identity the
  WebSocket connection is associated to (otherwise, the SIP request is
  rejected).

  When the user performs a logout action in the web, the web server
  removes the SIP identity and session token tuple from the database
  and notifies the SIP WebSocket Server, which revokes and closes the
  WebSocket connection.

  No SIP authentication takes place in this scenario.

A.3.  Cookie-Based Authentication

  The Apache web server comes with a new module: mod_sip_websocket.  In
  port 80, the web server is configured to listen for both HTTP common
  requests and WebSocket handshake requests.  Therefore, both the web
  server and the SIP WebSocket Server are co-located within the same
  host and same domain.

  Once the user is logged into the web, he is provided with the SIP
  WebSocket Client JavaScript application and SIP settings.  The HTTP
  200 response after the login procedure also contains a session cookie
  [RFC6265].  The web application then attempts a WebSocket connection
  against the same URL/domain of the website, and thus the session
  cookie is automatically added by the browser into the WebSocket
  handshake request (as the WebSocket protocol [RFC6455] states).

  The web server inspects the cookie value (as it would do for a common
  HTTP request containing a session cookie so that the login procedure
  is not required again).  If the cookie is valid, the WebSocket
  connection is authorized.  And, as in the previous use case, the
  connection is also associated with a specific SIP identity that must
  be satisfied by every SIP request coming over that connection.

  No SIP authentication takes place in this scenario but just common
  cookie usage as widely deployed in the World Wide Web.

Appendix B.  Implementation Guidelines

  Let us assume a scenario in which the users access with their web
  browsers (probably behind NAT) an application provided by a server on
  an intranet, login by entering their user identifier and credentials,
  and retrieve a JavaScript application (along with the HTML)
  implementing a SIP WebSocket Client.






Baz Castillo, et al.         Standards Track                   [Page 22]

RFC 7118            WebSocket as a Transport for SIP        January 2014


  Such a SIP stack connects to a given SIP WebSocket Server (an
  outbound SIP proxy that also implements classic SIP transports such
  as UDP and TCP).  The HTTP GET method request sent by the web browser
  for the WebSocket handshake includes a Cookie [RFC6265] header with
  the value previously provided by the server after the successful
  login procedure.  The cookie value is then inspected by the WebSocket
  server to authorize the connection.  Once the WebSocket connection is
  established, the SIP WebSocket Client performs a SIP registration to
  a SIP registrar server that is reachable through the proxy.  After
  registration, the SIP WebSocket Client and Server exchange SIP
  messages as would normally be expected.

  This scenario is quite similar to ones in which SIP user agents (UAs)
  behind NATs connect to a proxy and must reuse the same TCP connection
  for incoming requests (because they are not directly reachable by the
  proxy otherwise).  In both cases, the SIP UAs are only reachable
  through the proxy to which they are connected.

  The SIP Outbound extension [RFC5626] seems an appropriate solution
  for this scenario.  Therefore, these SIP WebSocket Clients and the
  SIP registrar implement both the Outbound and Path [RFC3327]
  extensions, and the SIP proxy acts as an Outbound Edge Proxy (as
  defined in [RFC5626], Section 3.4).

  SIP WebSocket Clients in this scenario receive incoming SIP requests
  via the SIP WebSocket Server to which they are connected.  Therefore,
  in some call transfer cases, the use of GRUU [RFC5627] (which should
  be implemented in both the SIP WebSocket Clients and SIP registrar)
  is valuable.

     If a REFER request is sent to a third SIP user agent including the
     Contact URI of a SIP WebSocket Client as the target in its
     Refer-To header field, such a URI will be reachable by the third
     SIP UA only if it is a globally routable URI.  GRUU (Globally
     Routable User Agent URI) is a solution for those scenarios and
     would cause the incoming request from the third SIP user agent to
     be sent to the SIP registrar, which would route the request to the
     SIP WebSocket Client via the Outbound Edge Proxy.

B.1.  SIP WebSocket Client Considerations

  The JavaScript stack in web browsers does not have the ability to
  discover the local transport address used for originating WebSocket
  connections.  A SIP WebSocket Client running in such an environment
  can construct a domain name consisting of a random token followed by
  the ".invalid" top-level domain name, as stated in [RFC2606], and
  uses it within its Via and Contact headers.




Baz Castillo, et al.         Standards Track                   [Page 23]

RFC 7118            WebSocket as a Transport for SIP        January 2014


     The Contact URI provided by SIP UAs requesting (and receiving)
     Outbound support is not used for routing requests to those UAs,
     thus it is safe to set a random domain in the Contact URI
     hostport.

  Both the Outbound and GRUU specifications require a SIP UA to include
  a Uniform Resource Name (URN) in a "+sip.instance" parameter of the
  Contact header in which they include their SIP REGISTER requests.
  The client device is responsible for generating or collecting a
  suitable value for this purpose.

     In web browsers, it is difficult to generate or collect a suitable
     value to be used as an URN value from the browser itself.  This
     scenario suggests that value is generated according to [RFC5626],
     Section 4.1 by the web application running in the browser the
     first time it loads the JavaScript SIP stack code, and then it is
     stored as a cookie within the browser.

B.2.  SIP WebSocket Server Considerations

  The SIP WebSocket Server in this scenario behaves as a SIP Outbound
  Edge Proxy, which involves support for Outbound [RFC5626] and Path
  [RFC3327].

  The proxy performs loose routing and remains in the path of dialogs
  as specified in [RFC3261].  If it did not do this, in-dialog requests
  would fail since SIP WebSocket Clients make use of their SIP
  WebSocket Server in order to send and receive SIP messages.























Baz Castillo, et al.         Standards Track                   [Page 24]

RFC 7118            WebSocket as a Transport for SIP        January 2014


Authors' Addresses

  Inaki Baz Castillo
  Versatica
  Barakaldo, Basque Country
  Spain

  EMail: [email protected]


  Jose Luis Millan Villegas
  Versatica
  Bilbao, Basque Country
  Spain

  EMail: [email protected]


  Victor Pascual
  Quobis
  Spain

  EMail: [email protected]




























Baz Castillo, et al.         Standards Track                   [Page 25]