Internet Engineering Task Force (IETF)                    H. Schulzrinne
Request for Comments: 7090                           Columbia University
Category: Standards Track                                  H. Tschofenig
ISSN: 2070-1721
                                                            C. Holmberg
                                                               Ericsson
                                                               M. Patel
                                     Huawei Technologies (UK) Co., Ltd.
                                                             April 2014


            Public Safety Answering Point (PSAP) Callback

Abstract

  After an emergency call is completed (terminated either prematurely
  by the emergency caller or normally by the call taker), the call
  taker may feel the need for further communication.  For example, the
  call may have been dropped by accident without the call taker having
  sufficient information about the current state of an accident victim.
  A call taker may trigger a callback to the emergency caller using the
  contact information provided with the initial emergency call.  This
  callback could, under certain circumstances, be treated like any
  other call and, as a consequence, it may get blocked by authorization
  policies or may get forwarded to an answering machine.

  The IETF emergency services architecture specification already offers
  a solution approach for allowing Public Safety Answering Point (PSAP)
  callbacks to bypass authorization policies in order to reach the
  caller without unnecessary delays.  Unfortunately, the specified
  mechanism only supports limited scenarios.  This document discusses
  shortcomings of the current mechanisms and illustrates additional
  scenarios where better-than-normal call treatment behavior would be
  desirable.  We describe a solution based on a new header field value
  for the SIP Priority header field, called "psap-callback", to mark
  PSAP callbacks.















Schulzrinne, et al.          Standards Track                    [Page 1]

RFC 7090                      PSAP Callback                   April 2014


Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7090.

Copyright Notice

  Copyright (c) 2014 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.























Schulzrinne, et al.          Standards Track                    [Page 2]

RFC 7090                      PSAP Callback                   April 2014


Table of Contents

  1. Introduction ....................................................3
  2. Terminology .....................................................5
  3. Callback Scenarios ..............................................5
     3.1. Routing Asymmetry ..........................................5
     3.2. Multi-Stage Routing ........................................7
     3.3. Call Forwarding ............................................8
     3.4. Network-Based Service URN Resolution ......................10
     3.5. PSTN Interworking .........................................11
  4. SIP PSAP Callback Indicator ....................................12
     4.1. General ...................................................12
     4.2. Usage .....................................................12
     4.3. Syntax ....................................................12
          4.3.1. General ............................................12
          4.3.2. ABNF ...............................................12
  5. Security Considerations ........................................12
     5.1. Security Threat ...........................................12
     5.2. Security Requirements .....................................13
     5.3. Security Solution .........................................13
  6. IANA Considerations ............................................15
  7. Acknowledgements ...............................................16
  8. References .....................................................16
     8.1. Normative References ......................................16
     8.2. Informative References ....................................17

1.  Introduction

  Summoning police, the fire department, or an ambulance in emergencies
  is one of the fundamental and most valuable functions of the
  telephone.  As telephone functionality moves from circuit-switched
  telephony to Internet telephony, its users rightfully expect that
  this core functionality will continue to work at least as well as it
  has for the legacy technology.  New devices and services are being
  made available that could be used to make a request for help and that
  are not traditional telephones.  Users are increasingly expecting
  them to be used to place emergency calls.

  An overview of the protocol interactions for emergency calling using
  the IETF emergency services architecture is described in [RFC6443],
  and [RFC6881] specifies the technical details.  As part of the
  emergency call setup procedure, two important identifiers are
  conveyed to the PSAP call taker's user agent, namely the address-of-
  record (AOR), and if available, the Globally Routable User Agent (UA)
  URIs (GRUUs).  RFC 3261 [RFC3261] defines the AOR as:






Schulzrinne, et al.          Standards Track                    [Page 3]

RFC 7090                      PSAP Callback                   April 2014


     An address-of-record (AOR) is a SIP or SIPS URI that points to a
     domain with a location service that can map the URI to another URI
     where the user might be available.  Typically, the location
     service is populated through registrations.  An AOR is frequently
     thought of as the "public address" of the user.

  In SIP systems, a single user can have a number of user agents
  (handsets, softphones, voicemail accounts, etc.) that are all
  referenced by the same AOR.  There are a number of cases in which it
  is desirable to have an identifier that addresses a single user agent
  rather than the group of user agents indicated by an AOR.  The GRUU
  is such a unique user-agent identifier, and it is also globally
  routable.  [RFC5627] specifies how to obtain and use GRUUs.
  [RFC6881] also makes use of the GRUU for emergency calls.

  Regulatory requirements demand that the emergency call setup
  procedure itself provides enough information to allow the call taker
  to initiate a callback to the emergency caller.  This is desirable in
  those cases where the call is dropped prematurely or when further
  communication needs arise.  The AOR and the GRUU serve this purpose.

  The communication attempt by the PSAP call taker back to the
  emergency caller is called a "PSAP callback".

  A PSAP callback may, however, be blocked by user-configured
  authorization policies or may be forwarded to an answering machine
  since SIP entities (SIP proxies as well as the SIP user equipment
  itself) cannot differentiate the PSAP callback from any other SIP
  call.  "Call barring", "do not disturb", or "call diversion" (also
  called call forwarding) are features that prevent delivery of a call.
  It is important to note that these features may be implemented by SIP
  intermediaries as well as by the user agent.

  Among the emergency services community, there is a desire to treat
  PSAP callbacks in such a way that the chances of reaching the
  emergency caller are increased.  At the same time, any solution must
  minimize the chance that other calls bypass call forwarding or other
  authorization policies.  Ideally, the PSAP callback has to relate to
  an earlier emergency call that was made "not too long ago".  An exact
  time interval is difficult to define in a global IETF standard due to
  the variety of national regulatory requirements, but [RFC6881]
  suggests 30 minutes.









Schulzrinne, et al.          Standards Track                    [Page 4]

RFC 7090                      PSAP Callback                   April 2014


  Nevertheless, to meet the needs from the emergency services
  community, a basic mechanism for preferential treatment of PSAP
  callbacks was defined in Section 13 of [RFC6443].  The specification
  says:

     A UA may be able to determine a PSAP callback by examining the
     domain of incoming calls after placing an emergency call and
     comparing that to the domain of the answering PSAP from the
     emergency call.  Any call from the same domain and directed to the
     supplied Contact header or AOR after an emergency call should be
     accepted as a callback from the PSAP if it occurs within a
     reasonable time after an emergency call was placed.

  This approach mimics a stateful packet-filtering firewall and is
  indeed helpful in a number of cases.  It is also relatively simple to
  implement even though it requires call state to be maintained by the
  user agent as well as by SIP intermediaries.  Unfortunately, the
  solution does not work in all deployment scenarios.  In Section 3 we
  describe cases where the currently standardized approach is
  insufficient.

2.  Terminology

  Emergency-services-related terminology is borrowed from [RFC5012].
  This includes terminology like emergency caller, user equipment, call
  taker, Emergency Service Routing Proxy (ESRP), and Public Safety
  Answering Point (PSAP).

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [RFC2119].

3.  Callback Scenarios

  This section illustrates a number of scenarios where the currently
  specified solution, as described in [RFC6881], for preferential
  treatment of callbacks fails.  As explained in Section 1, a SIP
  entity examines an incoming PSAP callback by comparing the domain of
  the PSAP with the destination domain of the outbound emergency call
  placed earlier.

3.1.  Routing Asymmetry

  In some deployment environments, it is common to have incoming and
  outgoing SIP messaging routed through different SIP entities.
  Figure 1 shows this graphically whereby a Voice over IP (VoIP)
  provider uses different SIP proxies for inbound and for outbound call
  handling.  Unless the two devices are synchronized, the callback



Schulzrinne, et al.          Standards Track                    [Page 5]

RFC 7090                      PSAP Callback                   April 2014


  reaching the inbound proxy would get treated like any other call
  since the emergency call established state information at the
  outbound proxy only.

                                                  ,-------.
                                                ,'         `.
                     ,-------.                 /  Emergency  \
                   ,'         `.              |   Services    |
                  /  VoIP       \      I      |   Network     |
                 |   Provider    |     n      |               |
                 |               |     t      |               |
                 |               |     e      |               |
                 |   +-------+   |     r      |               |
              +--+---|Inbound|<--+-----m      |               |
              |  |   |Proxy  |   |     e      |   +------+    |
              |  |   +-------+   |     d      |   |PSAP  |    |
              |  |               |     i      |   +--+---+    |
    +----+    |  |               |     a-+    |      |        |
    | UA |<---+  |               |     t |    |      |        |
    |    |----+  |               |     e |    |      |        |
    +----+    |  |               |       |    |      |        |
              |  |               |     P |    |      |        |
              |  |               |     r |    |      |        |
              |  |   +--------+  |     o |    |      |        |
              +--+-->|Outbound|--+---->v |    |   +--+---+    |
                 |   |Proxy   |  |     i |    | +-+ESRP  |    |
                 |   +--------+  |     d |    | | +------+    |
                 |               |     e |    | |             |
                 |               |     r +----+-+             |
                  \             /             |               |
                   `.         ,'               \             /
                     '-------'                  `.         ,'
                                                  '-------'

                 Figure 1: Example for Routing Asymmetry
















Schulzrinne, et al.          Standards Track                    [Page 6]

RFC 7090                      PSAP Callback                   April 2014


3.2.  Multi-Stage Routing

  Consider the emergency call routing scenario shown in Figure 2 where
  routing towards the PSAP occurs in several stages.  In this scenario,
  we consider a SIP UA that uses the Location-to-Service Translation
  (LoST) Protocol [RFC5222] to learn the next-hop destination, namely
  [email protected], to get the call closer to the PSAP.  This call is
  then sent to the proxy of the user's VoIP provider (example.org).
  The user's VoIP provider receives the emergency call and creates a
  state based on the destination domain, namely example.net.  It then
  routes the call to the indicated ESRP.  When the ESRP receives the
  call, it needs to decide what the next hop is to get to the final
  PSAP.  In our example, the next hop is the PSAP with the URI
  [email protected].

  When a callback is sent from [email protected] towards the emergency
  caller, the call will get normal treatment by the proxy of the VoIP
  provider since the domain of the PSAP does not match the stored state
  information.

                                        ,-----------.
      +----+                          ,'             `.
      | UA |--- [email protected]    /     Emergency    \
      +----+   \                    |      Services    |
                \  ,-------.        |      Network     |
                 ,'         `.      |                  |
                /   VoIP      \     |     +------+     |
               (   Provider    )    |     | PSAP |     |
                \ example.org /     |     +--+---+     |
                 `.         ,'      |        |         |
                   '---+---'        |        |         |
                       |            | [email protected] |
               [email protected]     |        |         |
                       |            |        |         |
                       |            |        |         |
                       |            |     +--+---+     |
                       +------------+-----+ ESRP |     |
                                    |     +------+     |
                                    |                  |
                                     \                /
                                      `.            ,'
                                        '----------'

                Figure 2: Example for Multi-Stage Routing







Schulzrinne, et al.          Standards Track                    [Page 7]

RFC 7090                      PSAP Callback                   April 2014


3.3.  Call Forwarding

  Imagine the following case where an emergency call enters an
  emergency network (state.example) via an ESRP, but then it gets
  forwarded to a different emergency services network (in our example,
  to example.net, example.org, or example.com).  The same
  considerations apply when the police, fire and, ambulance networks
  are part of the state.example subdomains (e.g.,
  police.state.example).

  Similar to the previous scenario, the wrong state information is
  being set up during the emergency call setup procedure.  A callback
  would originate in the example.net, example.org, or example.com
  domains whereas the emergency caller's SIP UA or the VoIP outbound
  proxy has stored state.example.




































Schulzrinne, et al.          Standards Track                    [Page 8]

RFC 7090                      PSAP Callback                   April 2014


                                  ,-------.
                                ,'         `.
                               /  Emergency  \
                              |   Services    |
                              |   Network     |
                              |(state.example)|
                              |               |
                              |               |
                              |   +------+    |
                              |   |PSAP  +--+ |
                              |   +--+---+  | |
                              |      |      | |
                              |      |      | |
                              |      |      | |
                              |      |      | |
                              |      |      | |
                              |   +--+---+  | |
            ------------------+---+ESRP  |  | |
            [email protected]  |   +------+  | |
                              |             | |
                              |    Call Fwd | |
                              |     +-+-+---+ |
                               \    | | |    /
                                `.  | | |  ,'
                                  '-|-|-|-'           ,-------.
                           Police   | | | Fire      ,'         `.
                       +------------+ | +----+     /  Emergency  \
        ,-------.      |              |      |    |   Services    |
      ,'         `.    |              |      |    |   Network     |
     /  Emergency  \   |          Ambulance  |    |    (Fire)     |
    |   Services    |  |              |      |    |               |
    |   Network     |  |              +----+ |    |   +------+    |
    |   (Police)    |  |     ,-------.     | +----+---+PSAP  |    |
    |               |  |   ,'         `.   |      |   +------+    |
    |   +------+    |  |  /  Emergency  \  |      |               |
    |   |PSAP  +----+--+ |   Services    | |      |  example.com  ,
    |   +------+    |    |   Network     | |      `~~~~~~~~~~~~~~~
    |               |    |  (Ambulance)  | |
    |  example.net  ,    |               | |
    `~~~~~~~~~~~~~~~     |   +------+    | |
                         |   |PSAP  +----+ +
                         |   +------+    |
                         |               |
                         |  example.org  ,
                         `~~~~~~~~~~~~~~~

                  Figure 3: Example for Call Forwarding




Schulzrinne, et al.          Standards Track                    [Page 9]

RFC 7090                      PSAP Callback                   April 2014


3.4.  Network-Based Service URN Resolution

  The IETF emergency services architecture also considers cases where
  the resolution from the Service URN to the PSAP URI does not only
  happen at the SIP UA itself but at intermediate SIP entities, such as
  the user's VoIP provider.

  Figure 4 shows this message exchange of the outgoing emergency call
  and the incoming PSAP graphically.  While the state information
  stored at the VoIP provider is correct, the state allocated at the
  SIP UA is not.

       ,-------.
     ,'         `.
    /  Emergency  \
   |   Services    |
   |   Network     |
   |  example.com  |
   |               |
   |   +------+    |    INVITE to [email protected]
   |   |PSAP  +<---+------------------------+
   |   |      +----+--------------------+   ^
   |   +------+    |INVITE from         |   |
   |               ,[email protected]  |   |
   `~~~~~~~~~~~~~~~                     |   |
                                        v   |
   +--------+  Query with location   +--+---+-+
   |        |  + urn:service:sos     |  VoIP  |
   | LoST   |<-----------------------|Service |
   | Server |   [email protected]   |Provider|
   |        |----------------------->|        |
   +--------+                        +--------+
                                      |     ^
                                INVITE|     | INVITE
                                  from|     | to
                    [email protected]|     | urn:service:sos
                                      V     |
                                     +-------+
                                     | SIP   |
                                     | UA    |
                                     | Alice |
                                     +-------+

       Figure 4: Example for Network-Based Service URN Resolution







Schulzrinne, et al.          Standards Track                   [Page 10]

RFC 7090                      PSAP Callback                   April 2014


3.5.  PSTN Interworking

  In case an emergency call enters the Public Switched Telephone
  Network (PSTN), as shown in Figure 5, there is no guarantee that the
  callback sometime later leaves the same PSTN/VoIP gateway or that the
  same endpoint identifier is used in the forward as well as in the
  backward direction making it difficult to reliably detect PSAP
  callbacks.

    +-----------+
    | PSTN      |-------------+
    | Calltaker |             |
    | Bob       |<--------+   |
    +-----------+         |   v
               -------------------
           ////                   \\\\      +------------+
          |                           |     |PSTN / VoIP |
          |             PSTN          |---->|Gateway     |
           \\\\                   ////      |            |
               -------------------          +----+-------+
                          ^                      |
                          |                      |
                    +-------------+              |  +--------+
                    |             |              |  |VoIP    |
                    | PSTN / VoIP |              +->|Service |
                    | Gateway     |                 |Provider|
                    |             |<------INVITE----|   Y    |
                    +-------------+                 +--------+
                                                     |     ^
                                                     |     |
                                                   INVITE INVITE
                                                     |     |
                                                     V     |
                                                    +-------+
                                                    | SIP   |
                                                    | UA    |
                                                    | Alice |
                                                    +-------+

                 Figure 5: Example for PSTN Interworking

  Note: This scenario is considered outside the scope of this document.
  The specified solution does not support this use case.








Schulzrinne, et al.          Standards Track                   [Page 11]

RFC 7090                      PSAP Callback                   April 2014


4.  SIP PSAP Callback Indicator

4.1.  General

  This section defines a new header field value, called "psap-
  callback", for the SIP Priority header field defined in [RFC3261].
  The value is used to inform SIP entities that the request is
  associated with a PSAP callback SIP session.

4.2.  Usage

  SIP entities that receive the header field value within an initial
  request for a SIP session can, depending on local policies, apply
  PSAP callback-specific procedures for the session or request.

  The PSAP callback-specific procedures may be applied by SIP-based
  network entities and by the callee.  The specific actions taken when
  receiving a call marked as a PSAP callback marked call, such as
  bypassing services and barring procedures, are outside the scope of
  this document.

4.3.  Syntax

4.3.1.  General

  This section defines the ABNF [RFC5234] for the new SIP Priority
  header field value "psap-callback".

4.3.2.  ABNF

      priority-value  =/  "psap-callback"

              Figure 6: ABNF

5.  Security Considerations

5.1.  Security Threat

  The PSAP callback functionality described in this document allows
  marked calls to bypass blacklists and ignore call-forwarding
  procedures and other similar features used to raise the attention of
  emergency callers when attempting to contact them.  In the case where
  the SIP Priority header value, "psap-callback", is supported by the
  SIP UA, it would override user-interface configurations, such as
  vibrate-only mode, to alert the caller of the incoming call.






Schulzrinne, et al.          Standards Track                   [Page 12]

RFC 7090                      PSAP Callback                   April 2014


5.2.  Security Requirements

  The security threat discussed in Section 5.1 leads to the requirement
  to ensure that the mechanisms described in this document cannot be
  used for malicious purposes, including telemarketing.

  Furthermore, if the newly defined extension is not recognized, not
  verified adequately, or not obeyed by SIP intermediaries or SIP
  endpoints, then it must not lead to a failure of the call handling
  procedure.  Such a call must be treated like a call that does not
  have any marking attached.

  The indicator described in Section 4 can be inserted by any SIP
  entity, including attackers.  So it is critical that the indicator
  only lead to preferential call treatment in cases where the recipient
  has some trust in the caller, as described in the next section.

5.3.  Security Solution

  The approach for dealing with the implementation of the security
  requirements described in Section 5.2 can be differentiated between
  the behavior applied by the UA and by SIP proxies.  A UA that has
  made an emergency call MUST keep state information so that it can
  recognize and accept a callback from the PSAP if it occurs within a
  reasonable time after an emergency call was placed, as described in
  Section 13 of [RFC6443].  Only a timer started at the time when the
  original emergency call has ended is required; information about the
  calling party identity is not needed since the callback may use a
  different calling party identity, as described in Section 3.  Since
  these SIP UA considerations are described already in [RFC6443] as
  well as in [RFC6881] the rest of this section focuses on the behavior
  of SIP proxies.

  Figure 7 shows the architecture that utilizes the identity of the
  PSAP to decide whether a preferential treatment of callbacks should
  be provided.  To make this policy decision, the identity of the PSAP
  (i.e., calling party identity) is compared with a PSAPs white list.














Schulzrinne, et al.          Standards Track                   [Page 13]

RFC 7090                      PSAP Callback                   April 2014


                      +----------+
                      | List of  |+
                      | valid    ||
                      | PSAPs    ||
                      +----------+|
                       +----------+
                           *
                           * white list
                           *
                           V
        Incoming      +----------+    Normal
        SIP Msg       | SIP      |+   Treatment
       -------------->| Entity   ||======================>
        + Identity    |          ||(if not in white list)
          Info        +----------+|
                      +----------+
                           ||
                           ||
                           || Preferential
                           || Treatment
                           ++========================>
                             (if successfully verified)

                 Figure 7: Identity-Based Authorization

  The identity assurance in SIP can come in different forms, namely via
  the SIP Identity [RFC4474] or the P-Asserted-Identity [RFC3325]
  mechanisms.  The former technique relies on a cryptographic assurance
  and the latter on a chain of trust.  Also, the usage of Transport
  Layer Security (TLS) between neighboring SIP entities may provide
  useful identity information.  At the time of writing, these identity
  technologies are being revised in the Secure Telephone Identity
  Revisited (stir) working group [STIR] to offer better support for
  legacy technologies interworking and SIP intermediaries that modify
  the content of various SIP headers and the body.  Once the work on
  these specifications has been completed, they will offer a stronger
  calling party identity mechanism that limits or prevents identity
  spoofing.

  An important aspect from a security point of view is the relationship
  between the emergency services network (containing the PSAPs) and the
  VoIP provider, assuming that the emergency call travels via the VoIP
  provider and not directly between the SIP UA and the PSAP.

  The establishment of a white list with PSAP identities may be
  operationally complex and dependent on the relationship between the
  emergency services operator and the VoIP provider.  If there is a
  relationship between the VoIP provider and the PSAP operator, for



Schulzrinne, et al.          Standards Track                   [Page 14]

RFC 7090                      PSAP Callback                   April 2014


  example, when they are both operating in the same geographical
  region, then populating the white list is fairly simple and
  consequently the identification of a PSAP callback is less
  problematic compared to the case where the two entities have never
  interacted with each other before.  In the end, the VoIP provider has
  to verify whether the marked callback message indeed came from a
  legitimate source.

  VoIP providers MUST only give PSAP callbacks preferential treatment
  when the calling party identity of the PSAP was successfully matched
  against entries in the white list.  If it cannot be verified (because
  there was no match), then the VoIP provider MUST remove the PSAP
  callback marking.  Thereby, the callback reverts to a normal call.
  As a second step, SIP UAs MUST maintain a timer that is started with
  the original emergency call and this timer expires within a
  reasonable amount of time, such as 30 minutes per [RFC6881].  Such a
  timer also ensures that VoIP providers cannot misuse the PSAP
  callback mechanism, for example, to ensure that their support calls
  reach their customers.

  Finally, a PSAP callback MUST use the same media as the original
  emergency call.  For example, when an initial emergency call
  established a real-time text communication session, then the PSAP
  callback must also attempt to establish a real-time communication
  interaction.  The reason for this is twofold.  First, the person
  seeking help may have disabilities that prevent them from using
  certain media and hence using the same media for the callback avoids
  unpleasant surprises and delays.  Second, the emergency caller may
  have intentionally chosen a certain media and does not prefer to
  communicate in a different way.  For example, it would be unfortunate
  if a hostage tries to seek help using instant messaging to avoid any
  noise when subsequently the ringtone triggered by a PSAP callback
  using a voice call gets the attention of the hostage-taker.  User-
  interface designs need to cater to such situations.

6.  IANA Considerations

  This document adds the "psap-callback" value to the SIP "Priority
  Header Field Values" registry allocated by [RFC6878].  The semantic
  of the newly defined "psap-callback" value is defined in Section 4.











Schulzrinne, et al.          Standards Track                   [Page 15]

RFC 7090                      PSAP Callback                   April 2014


7.  Acknowledgements

  We would like to thank the following persons for their feedback:
  Bernard Aboba, Andrew Allen, John-Luc Bakker, Kenneth Carlberg,
  Martin Dolly, Keith Drage, Timothy Dwight, John Elwell, Janet Gunn,
  Cullen Jennings, Hadriel Kaplan, Paul Kyzivat, John Medland, Atle
  Monrad, James Polk, Dan Romascanu, Brian Rosen, Robert Sparks, Geoff
  Thompson, and Martin Thomson.

  We would also like to thank the ECRIT working group chairs, Marc
  Linsner and Roger Marshall, for their support.  Roger Marshall was
  the document shepherd for this document.  Vijay Gurbani provided the
  general area review.

  During IESG review, the document received good feedback from Barry
  Leiba, Spencer Dawkins, Richard Barnes, Joel Jaeggli, Stephen
  Farrell, and Benoit Claise.

8.  References

8.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC3261]  Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
             A., Peterson, J., Sparks, R., Handley, M., and E.
             Schooler, "SIP: Session Initiation Protocol", RFC 3261,
             June 2002.

  [RFC5234]  Crocker, D., Ed., and P. Overell, "Augmented BNF for
             Syntax Specifications: ABNF", STD 68, RFC 5234, January
             2008.

  [RFC5627]  Rosenberg, J., "Obtaining and Using Globally Routable User
             Agent URIs (GRUUs) in the Session Initiation Protocol
             (SIP)", RFC 5627, October 2009.

  [RFC6878]  Roach, A., "IANA Registry for the Session Initiation
             Protocol (SIP) "Priority" Header Field", RFC 6878, March
             2013.










Schulzrinne, et al.          Standards Track                   [Page 16]

RFC 7090                      PSAP Callback                   April 2014


8.2.  Informative References

  [RFC3325]  Jennings, C., Peterson, J., and M. Watson, "Private
             Extensions to the Session Initiation Protocol (SIP) for
             Asserted Identity within Trusted Networks", RFC 3325,
             November 2002.

  [RFC4474]  Peterson, J. and C. Jennings, "Enhancements for
             Authenticated Identity Management in the Session
             Initiation Protocol (SIP)", RFC 4474, August 2006.

  [RFC5012]  Schulzrinne, H. and R. Marshall, "Requirements for
             Emergency Context Resolution with Internet Technologies",
             RFC 5012, January 2008.

  [RFC5222]  Hardie, T., Newton, A., Schulzrinne, H., and H.
             Tschofenig, "LoST: A Location-to-Service Translation
             Protocol", RFC 5222, August 2008.

  [RFC6443]  Rosen, B., Schulzrinne, H., Polk, J., and A. Newton,
             "Framework for Emergency Calling Using Internet
             Multimedia", RFC 6443, December 2011.

  [RFC6881]  Rosen, B. and J. Polk, "Best Current Practice for
             Communications Services in Support of Emergency Calling",
             BCP 181, RFC 6881, March 2013.

  [STIR]     IETF, "Secure Telephone Identity Revisited (stir) Working
             Group", http://datatracker.ietf.org/wg/stir/charter/,
             October 2013.





















Schulzrinne, et al.          Standards Track                   [Page 17]

RFC 7090                      PSAP Callback                   April 2014


Authors' Addresses

  Henning Schulzrinne
  Columbia University
  Department of Computer Science
  450 Computer Science Building
  New York, NY  10027
  US

  Phone: +1 212 939 7004
  EMail: [email protected]
  URI:   http://www.cs.columbia.edu


  Hannes Tschofenig

  EMail: [email protected]
  URI:   http://www.tschofenig.priv.at


  Christer Holmberg
  Ericsson
  Hirsalantie 11
  Jorvas  02420
  Finland

  EMail: [email protected]


  Milan Patel
  Huawei Technologies (UK) Co., Ltd.
  300 South Oak Way, Green Park
  Reading, Berkshire  RG2 6UF
  U.K.

  EMail: [email protected]















Schulzrinne, et al.          Standards Track                   [Page 18]