Internet Engineering Task Force (IETF)                     F. Balus, Ed.
Request for Comments: 7041                                Alcatel-Lucent
Category: Informational                                  A. Sajassi, Ed.
ISSN: 2070-1721                                                    Cisco
                                                          N. Bitar, Ed.
                                                                Verizon
                                                          November 2013


          Extensions to the Virtual Private LAN Service (VPLS)
         Provider Edge (PE) Model for Provider Backbone Bridging

Abstract

  The IEEE 802.1 Provider Backbone Bridges (PBBs) specification defines
  an architecture and bridge protocols for interconnection of multiple
  Provider Bridged Networks (PBNs).  Provider backbone bridging was
  defined by IEEE as a connectionless technology based on multipoint
  VLAN tunnels.  PBB can be used to attain better scalability than
  Provider Bridges (PBs) in terms of the number of customer Media
  Access Control addresses and the number of service instances that can
  be supported.

  The Virtual Private LAN Service (VPLS) provides a framework for
  extending Ethernet LAN services, using MPLS tunneling capabilities,
  through a routed MPLS backbone without running the Rapid Spanning
  Tree Protocol (RSTP) or the Multiple Spanning Tree Protocol (MSTP)
  across the backbone.  As a result, VPLS has been deployed on a large
  scale in service provider networks.

  This document discusses extensions to the VPLS Provider Edge (PE)
  model required to incorporate desirable PBB components while
  maintaining the service provider fit of the initial model.


















Balus, et al.                 Informational                     [Page 1]

RFC 7041           Extensions to VPLS PE Model for PBB     November 2013


Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Not all documents
  approved by the IESG are a candidate for any level of Internet
  Standard; see Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7041.

Copyright Notice

  Copyright (c) 2013 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1. Introduction ....................................................3
  2. General Terminology .............................................4
  3. PE Reference Model ..............................................6
  4. Packet Walkthrough ..............................................9
  5. Control Plane ..................................................11
  6. Efficient Packet Replication in PBB VPLS .......................12
  7. PBB VPLS OAM ...................................................12
  8. Security Considerations ........................................12
  9. References .....................................................13
     9.1. Normative References ......................................13
     9.2. Informative References ....................................13
  10. Contributors ..................................................14
  11. Acknowledgments ...............................................15





Balus, et al.                 Informational                     [Page 2]

RFC 7041           Extensions to VPLS PE Model for PBB     November 2013


1.  Introduction

  The IEEE 802.1 Provider Backbone Bridges specification [PBB] defines
  an architecture and bridge protocols for interconnection of multiple
  Provider Bridged Networks (PBNs).  PBB can be used to attain better
  scalability than Provider Bridges [PB] in terms of the number of
  customer Media Access Control (MAC) addresses and the number of
  service instances that can be supported.  PBB provides a data-plane
  hierarchy and new addressing designed to achieve such better
  scalability in Provider Backbone Networks.  A number of Ethernet
  control-plane protocols, such as the Rapid Spanning Tree Protocol
  (RSTP), the Multiple Spanning Tree Protocol (MSTP), and Shortest Path
  Bridging (SPB), could be deployed as the core control plane for loop
  avoidance and load balancing for PBB.  The applicability of these
  control protocols is out of scope for this document.

  The Virtual Private LAN Service (VPLS) provides a solution for
  extending Ethernet LAN services, using MPLS tunneling capabilities,
  through a routed MPLS backbone without requiring the use of a native
  Ethernet control-plane protocol across the backbone.  VPLS use of
  the structured FEC 129 [RFC4762] also allows for inter-domain,
  inter-provider connectivity and enables auto-discovery options across
  the network, improving the service delivery options.

  A hierarchical solution for VPLS was introduced in [RFC4761] and
  [RFC4762] to provide improved scalability and efficient handling of
  packet replication.  These improvements are achieved by reducing the
  number of Provider Edge (PE) devices connected in a full-mesh
  topology through the creation of two-tier PEs.  A User-facing PE
  (U-PE) aggregates all the Customer Edge (CE) devices in a lower-tier
  access network and then connects to the Network-facing PE (N-PE)
  device(s) deployed around the core domain.  In VPLS, Media Access
  Control (MAC) address learning and forwarding are done based on
  Customer MAC addresses (C-MACs); this poses scalability issues on the
  N-PE devices as the number of VPLS instances (and thus C-MACs)
  increases.  Furthermore, since a set of pseudowires (PWs) is
  maintained on a "per customer service instance" basis, the number of
  PWs required at N-PE devices is proportional to the number of
  customer service instances multiplied by the number of N-PE devices
  in the full-mesh set.  This can result in scalability issues (in
  terms of PW manageability and troubleshooting) as the number of
  customer service instances grows.

  This document describes how PBB can be integrated with VPLS to allow
  for useful PBB capabilities while continuing to avoid the use of MSTP
  in the backbone.  The combined solution referred to in this document





Balus, et al.                 Informational                     [Page 3]

RFC 7041           Extensions to VPLS PE Model for PBB     November 2013


  as PBB-VPLS results in better scalability in terms of the number of
  service instances, PWs, and C-MACs that need to be handled in the
  VPLS PEs.

  Section 2 provides a quick terminology reference.  Section 3 covers
  the reference model for PBB VPLS PEs.  Section 4 describes the packet
  walkthrough.  Sections 5 through 7 discuss the PBB-VPLS usage of
  existing VPLS mechanisms -- the control plane; efficient packet
  replication; and Operations, Administration, and Maintenance (OAM).

2.  General Terminology

  Some general terminology is defined here; most of the terminology
  used is from [PBB], [PB], [RFC4664], and [RFC4026].  Terminology
  specific to this memo is introduced as needed in later sections.

  B-BEB: A backbone edge bridge positioned at the edge of a provider
     backbone bridged network.  It contains a B-component that supports
     bridging in the provider backbone based on Backbone MAC (B-MAC)
     and B-tag information.

  B-component: A bridging component contained in backbone edge and core
     bridges that bridges in the backbone space (B-MAC addresses,
     B-VLAN).

  B-MAC: The backbone source or destination MAC address fields defined
     in the PBB provider MAC encapsulation header.

  B-tag:  Field defined in the PBB provider MAC encapsulation header
     that conveys the backbone VLAN identifier information.  The format
     of the B-tag field is the same as that of an 802.1ad S-tag field.

  B-Tagged Service Interface: The interface between a BEB and a
     Backbone Core Bridge (BCB) in a provider backbone bridged network.
     Frames passed through this interface contain a B-tag field.

  B-VID: The specific VLAN identifier carried inside a B-tag.

  B-VLAN: The backbone VLAN associated with a B-component.

  B-PW: The pseudowire used to interconnect B-component instances.

  BEB: A backbone edge bridge positioned at the edge of a provider
     backbone bridged network.  It can contain an I-component, a
     B-component, or both I-components and B-components.

  C-VID: The VLAN identifier in a customer VLAN.




Balus, et al.                 Informational                     [Page 4]

RFC 7041           Extensions to VPLS PE Model for PBB     November 2013


  DA: Destination Address.

  I-BEB: A backbone edge bridge positioned at the edge of a provider
     backbone bridged network.  It contains an I-component for bridging
     in the customer space (customer MAC addresses, service VLAN IDs).

  I-component: A bridging component contained in a backbone edge bridge
     that bridges in the customer space (customer MAC addresses,
     service VLAN identifier information (S-VLAN)).

  I-SID: The 24-bit service instance field carried inside the I-tag.
     I-SID defines the service instance that the frame should be
     "mapped to".

  I-tag: A field defined in the PBB provider MAC encapsulation header
     that conveys the service instance information (I-SID) associated
     with the frame.

  I-Tagged Service Interface: The interface defined between the
     I-components and B-components inside an IB-BEB or between two
     B-BEBs.  Frames passed through this interface contain an I-tag
     field.

  IB-BEB: A backbone edge bridge positioned at the edge of a provider
     backbone bridged network.  It contains an I-component for bridging
     in the customer space (customer MAC addresses, service VLAN IDs)
     and a B-component for bridging the provider's backbone space
     (B-MAC, B-tag).

  PBs: Provider Bridges (IEEE amendment (802.1ad) to 802.1Q for "QinQ"
     encapsulation and bridging of Ethernet frames [PB]).

  PBBs: Provider Backbone Bridges (IEEE amendment (802.1ah) to 802.1Q
     for "MAC tunneling" encapsulation and bridging of frames across a
     provider network [PBB]).

  PBBN: Provider Backbone Bridged Network.

  PBN: Provider Bridged Network.  A network that employs 802.1ad (QinQ)
     technology.

  PSN: Packet-Switched Network.

  S-tag: A field defined in the 802.1ad QinQ encapsulation header that
     conveys the service VLAN identifier information (S-VLAN).






Balus, et al.                 Informational                     [Page 5]

RFC 7041           Extensions to VPLS PE Model for PBB     November 2013


  S-Tagged Service Interface: The interface defined between the
     customer (CE) and the I-BEB or IB-BEB components.  Frames passed
     through this interface contain an S-tag field.

  S-VLAN: The specific service VLAN identifier carried inside an S-tag.

  SA: Source Address.

  S-VID: The VLAN identifier in a service VLAN.

  Tag: In Ethernet, a header immediately following the Source MAC
     Address field of the frame.

3.  PE Reference Model

  The following gives a short primer on the Provider Backbone Bridge
  (PBB) before describing the PE reference model for PBB-VPLS.  The
  internal components of a PBB bridge module are depicted in Figure 1.

             +-------------------------------+
             |       PBB Bridge Model        |
             |                               |
  +---+      |  +------+      +-----------+  |
  |CE |---------|I-Comp|------|           |  |
  +---+      |  |      |      |           |--------
             |  +------+      |           |  |
             |     o          |   B-Comp  |  |
             |     o          |           |--------
             |     o          |           |  |
  +---+      |  +------+      |           |  |
  |CE |---------|I-Comp|------|           |--------
  +---+  ^   |  |      |  ^   |           |  |   ^
         |   |  +------+  |   +-----------+  |   |
         |   +------------|------------------+   |
         |                |                      |
         |                |                      |
    S-tagged            I-tagged             B-tagged
    Service Interface   Service I/F          Service I/F
    (I/F)

                       Figure 1: PBB Bridge Model










Balus, et al.                 Informational                     [Page 6]

RFC 7041           Extensions to VPLS PE Model for PBB     November 2013


  Provider Backbone Bridges (PBBs) [PBB] offer a scalable solution for
  service providers to build large bridged networks.  The focus of PBB
  is primarily on improving two main areas with provider Ethernet
  bridged networks:

    - MAC-address table scalability
    - Service instance scalability

  To obviate the above two limitations, PBB introduces a hierarchical
  network architecture with associated new frame formats that extend
  the work completed by Provider Bridges (PBs).  In the PBBN
  architecture, customer networks (using PBs) are aggregated into
  PBBNs, which utilize the IEEE PBB frame format.  The frame format
  employs a MAC tunneling encapsulation scheme for tunneling customer
  Ethernet frames within provider Ethernet frames across the PBBN.  A
  VLAN identifier (B-VID) is used to segregate the backbone into
  broadcast domains, and a new 24-bit service identifier (I-SID) is
  defined and used to associate a given customer MAC frame with a
  provider service instance (also called the service delimiter).  It
  should be noted that in [PBB] there is a clear segregation between
  provider service instances (represented by I-SIDs) and provider VLANs
  (represented by B-VIDs), which was not the case for PBs.

  As shown in Figure 1, a PBB bridge may consist of a single
  B-component and one or more I-components.  In simple terms, the
  B-component provides bridging in the provider space (B-MAC, B-VLAN),
  and the I-component provides bridging in the customer space (C-MAC,
  S-VLAN).  The customer frame is first encapsulated with the provider
  backbone header (B-MAC, B-tag, I-tag); then, the bridging is
  performed in the provider backbone space (B-MAC, B-VLAN) through the
  network till the frame arrives at the destination BEB, where it gets
  decapsulated and passed to the CE.  If a PBB bridge consists of both
  I-components and B-components, then it is called an IB-BEB, and if it
  only consists of either B-components or I-components, then it is
  called a B-BEB or an I-BEB, respectively.  The interface between an
  I-BEB or IB-BEB and a CE is called an S-tagged service interface, and
  the interface between an I-BEB and a B-BEB (or between two B-BEBs) is
  called an I-tagged service interface.  The interface between a B-BEB
  or IB-BEB and a Backbone Core Bridge (BCB) is called a B-tagged
  service interface.











Balus, et al.                 Informational                     [Page 7]

RFC 7041           Extensions to VPLS PE Model for PBB     November 2013


  To accommodate the PBB components, the VPLS model defined in
  [RFC4664] is extended as depicted in Figure 2.

       +----------------------------------------+
       |       PBB-VPLS-Capable PE Model        |
       |   +---------------+          +------+  |
       |   |               |          |VPLS-1|------------
       |   |               |==========|Fwdr  |------------ PWs
  +--+ |   |     Bridge    ------------      |------------
  |CE|-|-- |               |          +------+  |
  +--+ |   |     Module    |             o      |
       |   |               |             o      |
       |   |    (PBB       |             o      |
       |   |    bridge)    |             o      |
       |   |               |             o      |
  +--+ |   |               |          +------+  |
  |CE|-|-- |               ------------VPLS-n|-------------
  +--+ |   |               |==========| Fwdr |------------- PWs
       |   |               |     ^    |      |-------------
       |   +---------------+     |    +------+  |
       |                         |              |
       +-------------------------|--------------+
                        LAN Emulation Interface

                   Figure 2: PBB-VPLS-Capable PE Model

  The PBB module as defined in the [PBB] specification is expanded to
  interact with VPLS Forwarders.  The VPLS Forwarders are used in
  [RFC4762] to build a PW mesh or a set of spoke PWs (Hierarchical VPLS
  (H-VPLS) topologies).  The VPLS instances are represented externally
  in the MPLS context by a Layer 2 Forwarding Equivalence Class (L2FEC)
  that binds related VPLS instances together.  VPLS Signaling
  advertises the mapping between the L2FEC and the PW labels and
  implicitly associates the VPLS bridging instance to the VPLS
  Forwarders [RFC4762].

  In the PBB-VPLS case, the backbone service instance in the
  B-component space (B-VID) is represented in the backbone MPLS network
  using a VPLS instance.  In the same way as for the regular VPLS case,
  existing signaling procedures are used to generate through PW labels
  the linkage between VPLS Forwarders and the backbone service
  instance.

  Similarly, with the regular H-VPLS, another L2FEC may be used to
  identify the customer service instance in the I-component space.
  This will be useful, for example, to address the PBB-VPLS N-PE case
  where H-VPLS spokes are connecting the PBB-VPLS N-PE to a VPLS U-PE.




Balus, et al.                 Informational                     [Page 8]

RFC 7041           Extensions to VPLS PE Model for PBB     November 2013


  It is important to note that the PBB-VPLS solution inherits the PBB
  service aggregation capability where multiple customer service
  instances may be mapped to a backbone service instance.  In the
  PBB-VPLS case, this means multiple customer VPNs can be transported
  using a single VPLS instance corresponding to the backbone service
  instance, thus substantially reducing resource consumption in the
  VPLS core.

4.  Packet Walkthrough

  Since the PBB bridge module inherently performs forwarding, the PE
  reference model of Figure 2 can be expanded as shown in Figure 3.

  Furthermore, the B-component is connected via several virtual
  interfaces to the PW Forwarder module.  The function of the PW
  Forwarder is defined in [RFC3985].  In this context, the PW Forwarder
  simply performs the mapping of the PWs to the virtual interface on
  the B-component, without the need for any MAC lookup.

  This simplified model takes full advantage of the PBB module -- where
  all the [PBB] procedures, including C-MAC/B-MAC forwarding and PBB
  encapsulation/decapsulation, take place -- and thus avoids the need
  to specify any of these functions in this document.

  Because of text-based graphics, Figure 3 only shows PWs on the
  core-facing side; however, in the case of MPLS access with spoke PWs,
  the PE reference model is simply extended to include the same PW
  Forwarder function on the access-facing side.  To avoid cluttering
  the figure, but without losing any generality, the access-side PW
  Forwarder (Fwdr) is not depicted.





















Balus, et al.                 Informational                     [Page 9]

RFC 7041           Extensions to VPLS PE Model for PBB     November 2013


       +------------------------------------------------+
       |               PBB-VPLS-Capable PE Model        |
       |             +---------------+      +------+    |
       |             |               |      |      |    |
       |   +------+  |               ========      ---------
  +--+ |   |      |  |               |      |      --------- PWs
  |CE|-|-- | I-   ====               ========  PW  ---------
  +--+ |   | Comp |  |               |      | Fwdr |
       |   +------+  |               |      |      --------- PWs
       |             |    B-Comp     ========      ---------
       |             |               |  ^   |      |    |
       |   +------+  |               |  |   +------+    |
  +--+ |   | I-   |  |               OOOOOOOOOOOOOOOOOOOOOOOO B-tag
  |CE|-|-- | Comp ====               |  |               |     I/Fs
  +--+ |   |      |^ |               OOOOOOOOOOOOOOOOOOOOOOOO
       |   +------+| |               |  |               |
       |           | +---------------+  |               |
       |           |                    |               |
       +-----------|--------------------|---------------+
                   |                    |
             Internal I-tag I/Fs   Virtual Interfaces (I/Fs)

   +---------------+                                +--------------+
   | C-MAC DA,SA   |                                | PSN Header   |
   |---------------|                                |--------------|
   | S-VID, C-VID  |                                | PW Label     |
   |---------------|                                |--------------|
   |    Payload    |                                | B-MAC DA,SA  |
   +---------------+                                |--------------|
                                                    | PBB I-tag    |
                                                    |--------------|
                                                    | C-MAC DA,SA  |
                                                    |--------------|
                                                    | S-VID, C-VID |
                                                    |--------------|
                                                    |   Payload    |
                                                    +--------------+

               Figure 3: Packet Walkthrough for PBB VPLS PE

  In order to better understand the data-plane walkthrough, let us
  consider the example of a PBB packet arriving over a Backbone
  pseudowire (B-PW).  The PSN header is used to carry the PBB
  encapsulated frame over the backbone while the PW label will point to
  the related Backbone Service Instance (B-SI), in the same way as for
  regular VPLS.  The PW label has in this case an equivalent role with
  the backbone VLAN identifier on the PBB B-tagged interface.




Balus, et al.                 Informational                    [Page 10]

RFC 7041           Extensions to VPLS PE Model for PBB     November 2013


  An example of the PBB packet for the regular Ethernet PW is depicted
  on the right-hand side of Figure 3.  The MPLS packet from the MPLS
  core network is received by the PBB-VPLS PE.  The PW Forwarder
  function of the PE uses the PW label to derive the virtual
  interface-id on the B-component, and then, after removing the PSN and
  PW encapsulation, it passes the packet to the B-component.  From
  there on, the processing and forwarding are performed according to
  [PBB], where bridging based on the Backbone MAC (B-MAC) Destination
  Address (DA) is performed.  This scenario results in one of the
  following outcomes:

  1. The packet is forwarded to a physical interface on the
     B-component.  In this case, the PBB Ethernet frame is forwarded
     as is.

  2. The packet is forwarded to a virtual interface on the B-component.
     This is not typically the case, because of a single split-horizon
     group within a VPLS instance; however, if there is more than one
     split-horizon group, then such forwarding takes place.  In this
     case, the PW Forwarder module adds the PSN and PW labels before
     sending the packet out.

  3. The packet is forwarded toward the access side via one of the
     I-tagged service interfaces connected to the corresponding
     I-components.  In this case, the I-component removes the B-MAC
     header according to [PBB] and bridges the packet using the
     C-MAC DA.

  If the destination B-MAC is an unknown MAC address or a Group MAC
  address (multicast or broadcast), then the B-component floods the
  packet to one or more of the three destinations described above.

5.  Control Plane

  The control-plane procedures described in [RFC6074], [RFC4761], and
  [RFC4762] can be reused in a PBB-VPLS to set up the PW infrastructure
  in the service provider and/or customer bridging space.  This allows
  porting the existing control-plane procedures (e.g., BGP
  Auto-Discovery (BGP-AD), PW setup, VPLS MAC flushing, PW OAM) for
  each domain.











Balus, et al.                 Informational                    [Page 11]

RFC 7041           Extensions to VPLS PE Model for PBB     November 2013


6.  Efficient Packet Replication in PBB VPLS

  The PBB VPLS architecture takes advantage of the existing VPLS
  features addressing packet replication efficiency.  The H-VPLS
  hierarchy may be used in both customer and backbone service instances
  to reduce the redundant distribution of packets over the core.  IGMP
  and PIM snooping may be applied on a "per customer service instance"
  basis to control the distribution of the multicast traffic to
  non-member sites.

  [IEEE-802.1Q] specifies the use of the Multiple MAC Registration
  Protocol (MMRP) for flood containment in the backbone instances.  The
  same solution can be ported in the PBB-VPLS solution.

  Further optimizations of the packet replication in PBB-VPLS are out
  of the scope of this document.

7.  PBB VPLS OAM

  The existing VPLS, PW, and MPLS OAM procedures may be used in each
  customer service instance or backbone service instance to verify the
  status of the related connectivity components.

  PBB OAM procedures make use of the IEEE Ethernet Connectivity Fault
  Management [CFM] and ITU-T Y.1731 [Y.1731] tools in both I-components
  and B-components.

  Both sets of tools (PBB and VPLS) may be used for the combined
  PBB-VPLS solution.

8.  Security Considerations

  No new security issues are introduced beyond those described in
  [RFC4761] and [RFC4762].

















Balus, et al.                 Informational                    [Page 12]

RFC 7041           Extensions to VPLS PE Model for PBB     November 2013


9.  References

9.1.  Normative References

  [RFC4761] Kompella, K., Ed., and Y. Rekhter, Ed., "Virtual Private
            LAN Service (VPLS) Using BGP for Auto-Discovery and
            Signaling", RFC 4761, January 2007.

  [RFC4762] Lasserre, M., Ed., and V. Kompella, Ed., "Virtual Private
            LAN Service (VPLS) Using Label Distribution Protocol (LDP)
            Signaling", RFC 4762, January 2007.

  [RFC6074] Rosen, E., Davie, B., Radoaca, V., and W. Luo,
            "Provisioning, Auto-Discovery, and Signaling in Layer 2
            Virtual Private Networks (L2VPNs)", RFC 6074, January 2011.

9.2.  Informative References

  [RFC3985] Bryant, S., Ed., and P. Pate, Ed., "Pseudo Wire Emulation
            Edge-to-Edge (PWE3) Architecture", RFC 3985, March 2005.

  [RFC4664] Andersson, L., Ed., and E. Rosen, Ed., "Framework for
            Layer 2 Virtual Private Networks (L2VPNs)", RFC 4664,
            September 2006.

  [PBB]     Clauses 25 and 26 of "IEEE Standard for Local and
            metropolitan area networks - Media Access Control (MAC)
            Bridges and Virtual Bridged Local Area Networks", IEEE
            Std 802.1Q-REV, 2013.

  [PB]      Clauses 15 and 16 of "IEEE Standard for Local and
            metropolitan area networks - Media Access Control (MAC)
            Bridges and Virtual Bridged Local Area Networks", IEEE
            Std 802.1Q-REV, 2013.

  [CFM]     CFM clauses of "IEEE Standard for Local and metropolitan
            area networks - Media Access Control (MAC) Bridges and
            Virtual Bridged Local Area Networks", IEEE Std 802.1Q-REV,
            2013.

  [IEEE-802.1Q]
            "IEEE Standard for Local and metropolitan area networks -
            Media Access Control (MAC) Bridges and Virtual Bridged
            Local Area Networks", IEEE Std 802.1Q-REV, 2013.







Balus, et al.                 Informational                    [Page 13]

RFC 7041           Extensions to VPLS PE Model for PBB     November 2013


  [Y.1731]  ITU-T Recommendation Y.1731, "OAM functions and mechanisms
            for Ethernet based networks", July 2011.

  [RFC4026] Andersson, L. and T. Madsen, "Provider Provisioned Virtual
            Private Network (VPN) Terminology", RFC 4026, March 2005.

10.  Contributors

  The following people made significant contributions to this document:

     Matthew Bocci
     Alcatel-Lucent
     Voyager Place
     Shoppenhangers Road
     Maidenhead
     Berks, UK

     EMail: [email protected]


     Raymond Zhang
     Alcatel-Lucent

     EMail: [email protected]


     Geraldine Calvignac
     Orange
     2, avenue Pierre-Marzin
     22307 Lannion Cedex
     France

     EMail: [email protected]


     John Hoffmans
     KPN
     Regulusweg 1
     2516 AC Den Haag
     The Netherlands

     EMail: [email protected]









Balus, et al.                 Informational                    [Page 14]

RFC 7041           Extensions to VPLS PE Model for PBB     November 2013


     Olen Stokes
     Extreme Networks
     PO Box 14129
     RTP, NC  27709
     USA

     EMail: [email protected]

11.  Acknowledgments

  The authors would like to thank Wim Henderickx, Mustapha Aissaoui,
  Dimitri Papadimitriou, Pranjal Dutta, Jorge Rabadan, Maarten Vissers,
  and Don Fedyk for their insightful comments and probing questions.

Authors' Addresses

  Florin Balus (editor)
  Alcatel-Lucent
  701 E. Middlefield Road
  Mountain View, CA  94043
  USA

  EMail: [email protected]


  Ali Sajassi (editor)
  Cisco
  170 West Tasman Drive
  San Jose, CA  95134
  USA

  EMail: [email protected]


  Nabil Bitar (editor)
  Verizon
  60 Sylvan Road
  Waltham, MA  02145
  USA

  EMail: [email protected]










Balus, et al.                 Informational                    [Page 15]