Internet Engineering Task Force (IETF)                        JC. Zuniga
Request for Comments: 7028              InterDigital Communications, LLC
Category: Experimental                                     LM. Contreras
ISSN: 2070-1721                                           Telefonica I+D
                                                          CJ. Bernardos
                                                                   UC3M
                                                                S. Jeon
                                          Instituto de Telecomunicacoes
                                                                 Y. Kim
                                                    Soongsil University
                                                         September 2013


    Multicast Mobility Routing Optimizations for Proxy Mobile IPv6

Abstract

  This document proposes some experimental enhancements to the base
  solution to support IP multicasting in a Proxy Mobile IPv6 (PMIPv6)
  domain.  These enhancements include the use of a multicast tree
  mobility anchor as the topological anchor point for multicast
  traffic, as well as a direct routing option where the Mobile Access
  Gateway can provide access to multicast content in the local network.
  The goal of these enhancements is to provide benefits such as
  reducing multicast traffic replication and supporting different
  PMIPv6 deployment scenarios.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for examination, experimental implementation, and
  evaluation.

  This document defines an Experimental Protocol for the Internet
  community.  This document is a product of the Internet Engineering
  Task Force (IETF).  It represents the consensus of the IETF
  community.  It has received public review and has been approved for
  publication by the Internet Engineering Steering Group (IESG).  Not
  all documents approved by the IESG are a candidate for any level of
  Internet Standard; see Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7028.







Zuniga, et al.                Experimental                      [Page 1]

RFC 7028        Multicast Mobility Routing Optimizations  September 2013


Copyright Notice

  Copyright (c) 2013 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1. Introduction ....................................................3
  2. Terminology .....................................................4
  3. Overview ........................................................5
     3.1. MTMA/Direct Routing Mode Selection .........................5
     3.2. Multicast Tree Mobility Anchor (Subscription via MTMA) .....5
     3.3. Direct Routing (Subscription via Direct Routing) ...........7
  4. Mobile Access Gateway Operation .................................9
     4.1. Extensions to Binding Update List Data Structure ...........9
     4.2. MAG as MLD Proxy ...........................................9
          4.2.1. MTMA Mode (Subscription via MTMA) ...................9
          4.2.2. Direct Routing Mode (Subscription via
                 Direct Routing) ....................................11
  5. Local Mobility Anchor Operation ................................14
     5.1. Dynamic IP Multicast Selector Option ......................14
          5.1.1. Option Application Rules ...........................14
          5.1.2. Option Format ......................................14
  6. Multicast Tree Mobility Anchor Operation .......................16
     6.1. Conceptual Data Structures ................................17
  7. Mobile Node Operation ..........................................17
  8. IPv4 Support ...................................................17
  9. IANA Considerations ............................................18
  10. Security Considerations .......................................18
  11. Contributors ..................................................19
  12. References ....................................................20
     12.1. Normative References .....................................20
     12.2. Informative References ...................................21
  Appendix A. MTMA Deployment Use Cases .............................22
    A.1. PMIPv6 Domain with Ratio 1:1 ...............................22
    A.2. PMIPv6 Domain with Ratio N:1 ...............................22
    A.3. PMIPv6 Domain with Ratio 1:N ...............................24
    A.4. PMIPv6 Domain with H-LMA ...................................26



Zuniga, et al.                Experimental                      [Page 2]

RFC 7028        Multicast Mobility Routing Optimizations  September 2013


1.  Introduction

  Proxy Mobile IPv6 [RFC5213] is a network-based approach to solving
  the IP mobility problem.  In a Proxy Mobile IPv6 (PMIPv6) domain, the
  Mobile Access Gateway (MAG) behaves as a proxy mobility agent in the
  network and performs the mobility management on behalf of the Mobile
  Node (MN).  The Local Mobility Anchor (LMA) is the home agent for the
  MN and the topological anchor point.  PMIPv6 was originally designed
  for unicast traffic.  However, a PMIPv6 domain may handle data from
  both unicast and multicast sources.

  The Internet Group Management Protocol (IGMPv3) [RFC3376] is used by
  IPv4 hosts to report their IP multicast group memberships to
  neighboring multicast routers.  Multicast Listener Discovery Version
  2 (MLDv2) [RFC3810] is used in a similar way by IPv6 routers to
  discover the presence of IPv6 multicast hosts.  Also, the IGMP/MLD
  proxy specification [RFC4605] allows an intermediate (i.e., edge)
  node to appear as a multicast router to downstream hosts and as a
  host to upstream multicast routers.  IGMP- and MLD-related protocols
  however were not originally designed to address the IP mobility of
  multicast listeners (i.e., IGMP and MLD protocols were originally
  designed for fixed networks).

  A base solution to support both IPv4 and IPv6 multicast listener
  mobility in a PMIPv6 domain is specified in [RFC6224], which
  describes deployment options without modifying mobility and multicast
  protocol standards.  PMIPv6 allows a mobile access gateway to
  establish multiple PMIPv6 tunnels with different local mobility
  anchors, e.g., up to one per mobile node.  In the presence of
  multicast traffic, multiple instances of the same traffic can
  converge to the same MAG.  Hence, when IP multicasting is applied
  into PMIPv6, it may lead to redundant traffic at a MAG.  This is the
  tunnel convergence problem.

  In order to address this issue, this document proposes an
  experimental solution, consisting of two complementary enhancements:
  multicast anchor and direct routing.  The first enhancement makes use
  of a Multicast Tree Mobility Anchor (MTMA) as the topological anchor
  point for remotely delivering multicast traffic, while the second
  enhancement uses direct routing taking advantage of local multicast
  source availability, allowing a mobile access gateway to connect
  directly to a multicast router for simple access to local content.
  Neither of the two schemes has any impact on the mobile node to
  support IPv4 and IPv6 multicast listener mobility, nor on the wider
  Internet, as they only affect the PMIPv6 domains where they are
  deployed.  Although references to "MLD proxy" are used in the
  document, it should be understood to also include "IGMP/MLD proxy"
  functionality (see Section 8 for details).  The status of this



Zuniga, et al.                Experimental                      [Page 3]

RFC 7028        Multicast Mobility Routing Optimizations  September 2013


  proposal is Experimental.  The status of this proposal may be
  reconsidered in the future, once more implementation feedback and
  deployment experience is gathered, reporting on the performance of
  the two proposed schemes as well as operational feedback on scheme
  selection.

2.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

  This document uses the terminology defined in [RFC5213], [RFC6275],
  and [RFC3810].  Specifically, the definition of PMIPv6 domain is
  reused from [RFC5213] and reproduced here for completeness.

  Proxy Mobile IPv6 Domain (PMIPv6-Domain):  Proxy Mobile IPv6 domain
     refers to the network where the mobility management of a mobile
     node is handled using the Proxy Mobile IPv6 protocol as defined in
     [RFC5213].  The Proxy Mobile IPv6 domain includes local mobility
     anchors and mobile access gateways between which security
     associations can be set up and authorization for sending proxy
     binding updates on behalf of the mobile nodes can be ensured.

  In this document we refine the definition from the point of view of
  the kind of traffic served to the MN in the following way:

  PMIPv6 unicast domain:  PMIPv6 unicast domain refers to the network
     covered by one LMA for unicast service.  This service supports
     mobility as the MN moves from one MAG to another one, both
     associated with the same LMA regarding the MN unicast traffic.

  PMIPv6 multicast domain:  PMIPv6 multicast domain refers to the
     network covered by one network element named MTMA (defined below)
     for multicast service in such a way that an MN using that service
     is not aware of mobility as it moves from one MAG to another.

  From the definitions above, it can be stated that a PMIPv6 domain can
  have several PMIPv6 unicast domains and PMIPv6 multicast domains.
  Additionally, some other definitions are introduced, as follows.

  MTMA or multicast tree mobility anchor:  An entity working as
     topological anchor point for multicast traffic.  It manages the
     multicast groups subscribed by all (or a subset of) the MAGs in a
     PMIPv6 multicast domain, on behalf of the MNs attached to them.
     Hence, an MTMA performs the functions of either a designated
     multicast router or an MLD proxy.




Zuniga, et al.                Experimental                      [Page 4]

RFC 7028        Multicast Mobility Routing Optimizations  September 2013


  H-LMA or Hybrid-LMA:  An entity that is dedicated to both unicast and
     multicast services and able to work as both LMA and MTMA
     simultaneously.

  Direct routing:  This scheme uses the native multicast infrastructure
     for retrieving multicast data.  For an operator having its own
     local content, this technique also includes the case where the
     content source is directly connected to the MAG.

  Subscription via MTMA:  Multicast subscription mode in which the
     content is retrieved from the remote (or home) MTMA.

  Subscription via direct routing:  Multicast subscription mode in
     which the content is retrieved using direct routing from the local
     domain.

3.  Overview

3.1.  MTMA/Direct Routing Mode Selection

  This specification describes two complementary operational modes that
  can be used to deliver multicast traffic in a PMIPv6 domain:
  multicast tree mobility anchor and direct routing.  There are
  different approaches that can be followed to perform this operational
  mode selection, depending on the operator's preferences and PMIPv6
  deployment characteristics.  For example, the mode can be manually
  configured at the mobile access gateway, according to the multicast
  tree deployment in the PMIPv6 domain, following operator's
  configuration of the multicast distribution on it.  Another option is
  the use of dynamic policies, conveyed in the PBU (Proxy Binding
  Update) / PBA (Proxy Binding Acknowledgement) signaling using the
  Dynamic IP Multicast Selector option described in Section 5.1.  Next,
  each of the two operational modes is introduced.

3.2.  Multicast Tree Mobility Anchor (Subscription via MTMA)

  A multicast tree mobility anchor is used to serve as the mobility
  anchor for multicast traffic.  The MTMA is either a designated
  multicast router or an MLD proxy.  Typically, the MTMA will be used
  to get access to remote multicast content.

  The multicast tree mobility anchor connects to the mobile access
  gateway, as described in [RFC6224], and it can reuse native PMIPv6
  features such as tunnel establishment and security [RFC5213],
  heartbeat [RFC5847], etc.  Unicast traffic will go normally to the
  local mobility anchors in the PMIPv6 domain as described in
  [RFC5213].  A MAG connecting to the MTMA acts as an MLD proxy.




Zuniga, et al.                Experimental                      [Page 5]

RFC 7028        Multicast Mobility Routing Optimizations  September 2013


  This section describes how the MTMA works in scenarios of MN
  attachment and multicast mobility.  It concentrates on the case of
  both LMA and MTMA defining a unique PMIPv6 domain.  Some other
  deployment scenarios are presented in Appendix A.

  Figure 1 shows an example of a PMIPv6 domain supporting multicast
  mobility.  The local mobility anchor is dedicated to unicast traffic,
  and the multicast tree mobility anchor is dedicated to multicast
  traffic.  The MTMA can be considered to be a form of upstream
  multicast router with tunnel interfaces allowing subscription via
  MTMA for the MNs.

  As shown in Figure 1, MAG1 may connect to both unicast (LMA) and
  multicast (MTMA) entities.  Thus, a given MN may simultaneously
  receive both unicast and multicast traffic.  In Figure 1, MN1 and MN2
  receive unicast traffic, multicast traffic, or both, whereas MN3
  receives multicast traffic only.


































Zuniga, et al.                Experimental                      [Page 6]

RFC 7028        Multicast Mobility Routing Optimizations  September 2013


                                  +--------------+
                                  |Content Source|   || - PMIPv6 Tunnel
                                  +--------------+   |  - Multicast
                                         |                Data Path
                                         |
        ***  ***  ***  ***      ***  ***  ***  ***
       *   **   **   **   *    *   **   **   **    *
      *                    *  *                     *
      *  Unicast Traffic   *  *  Multicast Traffic  *
      *                    *  *                     *
       *   **   **   **   *    *   **   **   **   *
        ***  ***  ***  **       ***  ***  ***  ***
                |                       |
                |                       |
                |                       |
             +-----+                 +------+
    Unicast  | LMA |                 | MTMA |     Multicast
     Anchor  +-----+                 +------+      Anchor
                 \\                    // ||
                  \\                  //  ||
                   \\                //   ||
                    \\              //    ||
                     \\            //     ||
                      \\          //      ||
                       \\        //       ||
                        \\      //        ||
                         \\    //         ||
                         +------+      +------+
                         | MAG1 |      | MAG2 |   MLD Proxy
                         +------+      +------+
                         |     |          |
                         |     |          |
                       {MN1} {MN2}      {MN3}

     Figure 1: Architecture of Multicast Tree Mobility Anchor (MTMA)

3.3.  Direct Routing (Subscription via Direct Routing)

  Direct routing uses a native multicast infrastructure, allowing a
  mobile access gateway to directly connect to a multicast router (as
  next hop) in the PMIPv6 domain.  A MAG acts as an MLD proxy.

  The main purpose of direct routing is to provide optimal connectivity
  for local content.  As a consequence, it replaces the MTMA of the
  channel management and data delivery of locally available content.
  Unicast traffic will go as normally to the LMAs in the PMIPv6 domain.





Zuniga, et al.                Experimental                      [Page 7]

RFC 7028        Multicast Mobility Routing Optimizations  September 2013


  This section describes how the direct routing works in scenarios of
  MN attachment and multicast mobility.

                          Multicast Tree
                                 :
                                 :         || - PMIPv6 Tunnel
      +----------+         +----------+    |  - Multicast Data Path
      |   LMA    |         |    MR    |
      +----------+         +----------+
           ||  \\           /     |
           ||   \\         /      |
           ||    \\       /       |
           ||     \\     /        |
           ||      \\   /         |
           ||       \\ /          |
           ||        \\           |
           ||        /\\          |
           ||       /  \\         |
           ||      /    \\        |
           ||     /      \\       |
           ||    /        \\      |
        +--------+        +--------+
        |  MAG1  |        |  MAG2  |    MLD proxy
        +--------+        +--------+
           :                   :
       +------+             +------+
       |  MN1 |   ----->    |  MN1 |
       +------+             +------+

   Figure 2: Architecture for Direct-Routing-Based PMIPv6 Multicasting

  Figure 2 shows the architecture for the local routing case using
  native multicasting infrastructure [PMIP6-REQ].

  The local mobility anchor is dedicated to unicast traffic, and the
  multicast traffic is obtained from an upstream multicast router
  present in the PMIPv6 domain.  Note that there can be multiple LMAs
  for unicast traffic (not shown in Figure 1 for simplicity) in a given
  PMIPv6 domain.

  As shown in Figure 2, a mobile access gateway may connect to both
  unicast (LMA) and multicast routers (MRs).  Thus, a given mobile node
  may simultaneously receive both unicast and multicast traffic.

  As seen in Figure 2, each MAG has a direct connection (i.e., not
  using the PMIPv6 tunnel interface) with a multicast router.
  Depending on the multicast support on the visited network, different
  schemas can be used to provide this direct connection between the



Zuniga, et al.                Experimental                      [Page 8]

RFC 7028        Multicast Mobility Routing Optimizations  September 2013


  MAGs and the multicast router(s), e.g., being connected to the same
  shared link or using a tunneling approach, such as Generic Routing
  Encapsulation (GRE) tunnels [RFC2784] or Automatic Multicast
  Tunneling (AMT) [AUTO].  To facilitate IGMP/MLD signaling and
  multicast traffic forwarding, an MLD proxy function defined in
  [RFC4605] SHOULD be implemented in the MAG.  There SHOULD be direct
  connectivity between the MAG and the local multicast router (or
  additional MLD proxy).

4.  Mobile Access Gateway Operation

  This section describes the operation of the mobile access gateway,
  considering that the MAG incorporates MLD proxy functions as per
  [RFC4605].

4.1.  Extensions to Binding Update List Data Structure

  A Binding Update List (BUL) at the MAG, like the one specified in
  [RFC5213], MUST be maintained to handle the relationship between the
  serving entities (e.g., MTMA and LMA) and the mobile nodes for both
  unicast and multicast traffic.

4.2.  MAG as MLD Proxy

4.2.1.  MTMA Mode (Subscription via MTMA)

  In case of subscription via MTMA, all MAGs that are connected to the
  MTMA must support the MLD proxy function [RFC4605].  Specifically in
  Figure 1, each of the MAG1-MTMA and MAG2-MTMA tunnel interfaces
  define an MLD proxy domain.  The mobile nodes are considered to be on
  the downstream interface of the MLD proxy (of the MAG), and the MTMA
  is considered to be on the upstream interface (of the MAG) as per
  [RFC4605].  Note that the mobile access gateway could also be an IGMP
  proxy.

  Figure 3 shows the procedure when MN1 attaches to a MAG, and
  establishes associations with the LMA (unicast) and the MTMA
  (multicast).













Zuniga, et al.                Experimental                      [Page 9]

RFC 7028        Multicast Mobility Routing Optimizations  September 2013


          MN1                  MAG1       LMA        MTMA
          |                (MLD proxy) (Unicast) (Multicast)
          MN1 attaches to MAG1  |          |          |
          |                     |          |          |
          |----Rtr Sol--------->|          |          |
          |                     |--PBU---->|          |
          |                     |          |          |
          |                     |<----PBA--|          |
          |                     |          |          |
          |                     |=Unicast==|          |
          |                     |  Tunnel  |          |
          |<---------Rtr Adv----|          |          |
          |                     |          |          |
          |< ------ Unicast Traffic------->|          |
          |                     |          |          |
          |                     |==Multicast Tunnel===|
          |                     |          |          |
          |<-------MLD Query----|          |          |
          |                     |          |          |
          MN1 requires          |          |          |
          multicast services    |          |          |
          |                     |          |          |
          |----MLD Report (G)-->|          |          |
          |                     |          |          |
          |                     |----Aggregated------>|
          |                     |   MLD Report (G)    |
          |                     |          |          |
          |                     |          |          |
          |<-----------Multicast Traffic------------->|
          |                     |          |          |

  Figure 3: MN Attachment and Multicast Service Establishment for MTMA

  In Figure 3, the MAG first establishes the PMIPv6 tunnel with LMA for
  unicast traffic as defined in [RFC5213] after being triggered by the
  Router Solicitation message from MN1.  Unicast traffic will then flow
  between MN1 and LMA.

  For multicast traffic, a multicast tunnel may have been pre-
  configured between MAG and MTMA, or may be dynamically established
  when the first MN appears at the MAG.

  MN1 sends the MLD report message (when required by its upper-layer
  applications) as defined in [RFC3810] in response to an MLD Query
  from MAG (generated as defined by [RFC6224] upon handover).  The MAG,
  acting as an MLD proxy defined in [RFC4605], will then send an
  Aggregated MLD Report to the multicast anchor, MTMA (assuming that
  this is a new multicast group that the MAG had not previously



Zuniga, et al.                Experimental                     [Page 10]

RFC 7028        Multicast Mobility Routing Optimizations  September 2013


  subscribed to).  Multicast traffic will then flow from the MTMA
  towards MN1.  The MTMA acts as an MLD Querier, so it will
  periodically query each mobile access gateway about the subscriptions
  it maintains (not shown in Figure 3).

  We next consider a mobility scenario in which MN1 with an ongoing
  multicast subscription moves from one MAG to another MAG.  According
  to the baseline solution signaling method described in [RFC6224],
  after MN1 mobility, the new mobile access gateway acting in its role
  of MLD proxy will send an MLD Query to the newly observed mobile node
  on its downlink.  Assuming that the subsequent MLD Report from MN1
  requests membership for a new multicast group (from the new MAG's
  point of view), this will then result in an Aggregated MLD Report
  being sent to the MTMA from the new mobile access gateway.  This
  message will be sent through a multicast tunnel between the new MAG
  and MTMA (pre-established or dynamically established).

  When MN1 detaches, the old MAG may keep the multicast tunnel with the
  multicast MTMA if there are still other MNs using the multicast
  tunnel.  Even if there are no mobile nodes currently on the multicast
  tunnel, the old MAG may decide to keep the multicast tunnel
  temporarily for potential future use.

  As discussed above, existing MLD (and MLD proxy) signaling will
  handle a large part of the multicast mobility management for the
  mobile node.

4.2.2.  Direct Routing Mode (Subscription via Direct Routing)

  In this case, the MLD proxy instance is configured to obtain the
  multicast traffic locally.  Figure 4 shows an example of multicast
  service establishment.  The mobile access gateway first establishes
  the PMIPv6 tunnel with the local mobility anchor for unicast traffic
  as defined in [RFC5213] after being triggered by the Router
  Solicitation message from the mobile node.  Unicast traffic will then
  flow between the MN and LMA.

  For multicast traffic, it is assumed that the upstream interface of
  the MLD proxy instance has been configured pointing to a multicast
  router internal to the PMIPv6 domain (or towards an additional MLD
  proxy node in the domain), for all the multicast channels (which, in
  consequence, have to be local).  There should be direct connectivity
  between the MAG and the local multicast router (or additional MLD
  proxy).







Zuniga, et al.                Experimental                     [Page 11]

RFC 7028        Multicast Mobility Routing Optimizations  September 2013


       MN1                   MAG1          LMA            MR
        |                (MLD proxy)    (Unicast)    (Multicast)
   MN1 attaches to MAG1       |             |             |
        |                     |             |             |
        |----Rtr Sol--------->|             |             |
        |                     |--PBU------->|             |
        |                     |             |             |
        |                     |<-------PBA--|             |
        |                     |             |             |
        |                     |===Unicast===|             |
        |                     |   Tunnel    |             |
        |<---------Rtr Adv----|             |             |
        |                     |             |             |
        |<--------Unicast Traffic---------->|             |
        |                     |             |             |
        |                     |             |             |
        |<-------MLD Query----|<-------------MLD Query----|
        |                     |             |             |
    MN1 requires              |             |             |
    multicast services        |             |             |
        |                     |             |             |
        |--MLD Report (G)---->|             |             |
        |                     |             |             |
        |                     |----Aggregated------------>|
        |                     |   MLD Report (G)          |
        |                     |             |             |
        |                     |             |             |
        |<-------------Multicast Traffic----------------->|
        |                     |             |             |

      Figure 4: Multicast Service Establishment for Direct Routing

  Upon detecting node attachment from an incoming interface, the MAG
  adds each downstream interface to the MLD proxy instance with an
  upstream link to an MR according to the standard MLD proxy operations
  [RFC4605] and sends an MLD Query message towards the MN.  The mobile
  node sends the MLD report message (when required by its upper-layer
  applications) in response to an MLD Query from the MAG.  Upon
  receiving the MLD Report message from each incoming interface, the
  MAG checks the MLD proxy instance associated with the downstream
  interface and then the MLD Report messages will be aggregated and
  forwarded to the upstream link associated with the MR (assuming that
  this is a new multicast group that the MAG had not previously
  subscribed to).  Multicast traffic will then flow from the local
  multicast router towards the mobile node.






Zuniga, et al.                Experimental                     [Page 12]

RFC 7028        Multicast Mobility Routing Optimizations  September 2013


        MN1          P-MAG       N-MAG        LMA        MR
         |             |           |           |          |
         |             |           |           |          |
         |<------------|<-- Multicast Data----------------|
         |             |       .   |           |          |
         |             |       .   |           |          |
         |             |       .   |           |          |
      Link         Handover        |           |          |
   Disconnected    Detection       |           |          |
         |             |           |           |          |
         |             |           |           |          |
         |             |    MN Attachment      |          |
         |             |           |           |          |
         |             |           |           |          |
         |----Rtr Sol------------->|           |          |
         |             |           |           |          |
         |             |           |--PBU----->|          |
         |             |           |           |          |
         |             |           |<-----PBA--|          |
         |             |           |           |          |
         |<-----------MLD Query----|           |          |
         |             |           |           |          |
         |----MLD Report---------->|           |          |
         |             |           |           |          |
         |             |           |----Aggregated------->|
         |             |           |    MLD Report        |
         |             |           |           |          |
         |<------------------------|<---Multicast Data----|
         |             |           |           |          |

        Figure 5: Multicast Mobility Signaling for Direct Routing

  Figure 5 shows the handover operation procedure for the direct
  routing operation mode.  When MN1 hands off to the next MAG (N-MAG)
  from the previous MAG (P-MAG), the N-MAG detects the newly arrived
  attached mobile node and performs binding update procedure by
  exchanging PBU/PBA signaling messages with LMA.  At the same time, an
  MLD proxy instance detecting MN1 transmits an MLD query message to
  the mobile node.  After receiving the MLD query message, MN1 sends an
  MLD report message that includes the multicast group information.
  The N-MAG then sends an aggregated MLD report message to the upstream
  link associated with the MR.  An upstream interface of MLD proxy
  instance is chosen towards certain multicast router.  The upstream
  interface selection can be done according to dynamic policies
  conveyed in the Dynamic IP Multicast Selector option (as described in
  Section 5.1) or according to manually configured policies.  Note that
  in the base solution defined in [RFC6224], the interface selection is
  determined for each MN based on the Binding Update List.  When the



Zuniga, et al.                Experimental                     [Page 13]

RFC 7028        Multicast Mobility Routing Optimizations  September 2013


  N-MAG receives the multicast packets from the MR, it then simply
  forwards them without tunnel encapsulation.  The N-MAG updates MN1's
  location information to the LMA by exchanging PBU/PBA signaling
  messages.

5.  Local Mobility Anchor Operation

  This section includes a new mobility option to support dynamic
  policies on subscription via MTMA/direct routing based on the local
  mobility anchor conveying the required info to the mobile access
  gateway in the proxy binding acknowledgement message.

5.1.  Dynamic IP Multicast Selector Option

5.1.1.  Option Application Rules

  A new TLV-encoded mobility option, the Dynamic IP Multicast Selector
  option, is defined for use with the proxy binding acknowledgement
  message exchanged between an LMA and a MAG to convey dynamic policies
  on subscription via MTMA/direct routing.  This option is used for
  exchanging the IP addresses of both the group subscribed to by the
  MN, and the source(s) delivering it, as well as the applicable filter
  mode.  This information is carried by using directly the Multicast
  Address Record format defined in [RFC3810].  There can be multiple
  "Dynamic IP Multicast Selector" options present in the message, up to
  one for each active subscription maintained by the MN.

5.1.2.  Option Format

  The format of this new option is as follows:





















Zuniga, et al.                Experimental                     [Page 14]

RFC 7028        Multicast Mobility Routing Optimizations  September 2013


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
                                  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                  |      Type     |     Length    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Protocol    |M| Reserved  |Nr of Mcast Address Records (N)|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  +                  Multicast Address Record [1]                 +
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  +                  Multicast Address Record [2]                 +
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                               .                               |
  |                               .                               |
  |                               .                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  +                  Multicast Address Record [N]                 +
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type:

     54

  Length:

     8-bit unsigned integer indicating the length of the option in
     octets, excluding the type and length fields.

  Protocol:

     Field used to identify the multicast membership protocol in use,
     and the corresponding format of the next Multicast Address Record.
     This field maps the type codification used in the original MLD
     specifications for the Report message, namely for MLDv2 [RFC3810]
     the Protocol value MUST be 143, whereas for MLDv1 [RFC2710] the
     Protocol value MUST be 131.

  Dynamic IP Multicast Selector Mode Flag (M-bit):

     This field indicates the subscription via MTMA/direct routing
     mode.  If the (M) flag value is set to a value of (1), it is an
     indication that the IP multicast traffic associated with the
     multicast group(s) identified by the Multicast Address Record(s)



Zuniga, et al.                Experimental                     [Page 15]

RFC 7028        Multicast Mobility Routing Optimizations  September 2013


     in this mobility option SHOULD be routed locally (subscription via
     direct routing mode).  If the (M) flag value is set to a value of
     (0), it is an indication that IP multicast traffic associated with
     the multicast group(s) identified by the Multicast Address Record
     in this mobility option(s) SHOULD be routed to the home network,
     via the MTMA (subscription via MTMA mode).  The mobile access
     gateway MAY also choose to use static pre-established policies
     instead of following the indications provided by the local
     mobility anchor.  All other IP traffic associated with the mobile
     node is managed according to a default policy configured at the
     PMIPv6 multicast domain.

  Reserved:

     This field is unused for now.  The value MUST be initialized to 0
     by the sender and MUST be ignored by the receiver.

  Nr of Mcast Address Records (N)

     16-bit unsigned integer indicating the number of Mcast Address
     Records (N) present in this option.

  Multicast Address Record:

     Multicast subscription information corresponding to a single
     multicast address as defined in [RFC3810], or as defined in
     [RFC2710] for MLDv1.

6.  Multicast Tree Mobility Anchor Operation

  The MTMA provides connectivity to the multicast infrastructure out of
  the PMIPv6 domain.  The MTMA itself either could act as an additional
  MLD proxy (only in the case where all the connected mobile access
  gateways act also as MLD proxies), reporting to a further node an
  aggregated view of the subscriptions in a PMIPv6 multicast domain, or
  can act as a designated multicast router for all the MAGs in a PMIPv6
  multicast domain.  The multicast tree mobility anchor will then
  request the multicast content on behalf of the MAGs (and mobile nodes
  behind them).  In addition, the MTMA will create and maintain the
  corresponding multicast forwarding states per each tunnel interface
  towards the MAGs.  Whatever the role played, when the MAGs act as MLD
  proxy, the MTMA becomes the MLD querier of the MLD proxy instance
  located in each MAG.








Zuniga, et al.                Experimental                     [Page 16]

RFC 7028        Multicast Mobility Routing Optimizations  September 2013


6.1.  Conceptual Data Structures

  The multicast tree mobility anchor does not directly interact with
  the mobile nodes attached to any of the mobile access gateways.  The
  MTMA only manages the multicast groups subscribed per MAG on behalf
  of the MNs attached to it.  Having this in mind, the relevant
  information to be stored in the MTMA should be the tunnel interface
  identifier (tunnel-if-id) of the bidirectional tunnel for multicast
  between the MTMA and every MAG (e.g., similar to what is stated in
  [RFC5213] for the unicast case), the IP addresses of the multicast
  group delivered per tunnel to each of the MAGs, and the IP addresses
  of the sources injecting the multicast traffic per tunnel to the
  multicast domain defined by the MTMA.

7.  Mobile Node Operation

  The mobile node operation is not impacted by the existence of an MTMA
  as anchor for the multicast traffic being subscribed or the use of
  direct routing.  The MN will act according to the stated operations
  in [RFC5213] and [RFC6224].

  This document considers that every mobile node requesting multicast-
  only services is previously registered in a PMIPv6 unicast domain to
  get a unicast IP address.  The registration can also be required for
  several purposes such as remote management, billing, multicast
  configuration, etc.

  A given mobile node's policy profile information must be updated to
  be able to store the IPv6 addresses of both the local mobility anchor
  and multicast tree mobility anchor, the later for the subscription
  via MTMA case.

8.  IPv4 Support

  This document does not introduce any IPv4-specific issue regarding
  [RFC5844].  In order for the solution to support IPv4, all the
  described network elements (i.e., MAG, MTMA, and MR) must support
  IGMP.  In this case, the functionalities of the MAG and MTMA would be
  as described in [RFC6224], with the MTMA replicating the requirements
  described for the LMA.  For the case of the MR, it must also be dual-
  stack (i.e., IPv6/IPv4) enabled.

  Although references to "MLD proxy" have been used in the document, it
  should be understood to also include "IGMP/MLD proxy" functionality.

  Regarding the Dynamic IP Multicast Selector Option format, it SHOULD
  consider IPv4 compatibility in the following way:




Zuniga, et al.                Experimental                     [Page 17]

RFC 7028        Multicast Mobility Routing Optimizations  September 2013


  Protocol field:

     For IPv4, this field maps the type codification used in the
     original IGMP specifications for the Report message, in the
     following way:

     It MUST be 0x12 in case of using IGMPv1.

     It MUST be 0x16 in case of using IGMPv2.

     It MUST be 0x22 in case of using IGMPv3.

  Multicast Address Record field:

     This field takes different formats depending on the IGMP version
     being used by the MN, as follows:

     *  For IGMPv1, it takes the format given by the Group Address in
        [RFC1112].

     *  For IGMPv2, it takes the format given by the Group Address in
        [RFC2236].

     *  For IGMPv3, it takes the format given by the Group Record in
        [RFC3376].

9.  IANA Considerations

  This document defines a new mobility option, the Dynamic IP Multicast
  Selector, which has been assigned the Type 54 by IANA.  The Type
  value for these options has been assigned from the same numbering
  space as allocated for the other mobility options, as defined in
  [RFC6275]: http://www.iana.org/assignments/mobility-parameters.

10.  Security Considerations

  This document describes two complementary operational modes that can
  be used to deliver multicast traffic in a PMIPv6 domain: multicast
  anchor and direct routing.  Different approaches are described in the
  document to decide which operational mode is selected: i) the use of
  pre-configured/pre-provisioned policies at the mobile access gateway,
  or ii) the use of dynamic policies.  Approach ii) could introduce a
  potential security issue if the protocol signaling is not properly
  secured.  The use of the Dynamic IP Multicast Selector option
  described in the document requires message integrity protection and
  source authentication.  Hence, the IPsec security mechanism





Zuniga, et al.                Experimental                     [Page 18]

RFC 7028        Multicast Mobility Routing Optimizations  September 2013


  recommended by Proxy Mobile IPv6 [RFC5213] MUST be used to secure the
  Dynamic IP Multicast Selector option conveyed in the PBA (Proxy
  Binding Acknowledgement).

  This document does not introduce any additional security threats
  beyond the current security considerations of PMIPv6 [RFC5213], MLD
  [RFC3810], IGMP [RFC3376], and IGMP/MLD Proxying [RFC4605].

11.  Contributors

  The following individuals made significant contributions to this
  document.

  Akbar Rahman
  InterDigital Communications, LLC
  EMail: [email protected]

  Ignacio Soto
  Universidad Carlos III de Madrid
  EMail: [email protected]































Zuniga, et al.                Experimental                     [Page 19]

RFC 7028        Multicast Mobility Routing Optimizations  September 2013


12.  References

12.1.  Normative References

  [RFC1112]    Deering, S., "Host extensions for IP multicasting",
               STD 5, RFC 1112, August 1989.

  [RFC2119]    Bradner, S., "Key words for use in RFCs to Indicate
               Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2236]    Fenner, W., "Internet Group Management Protocol, Version
               2", RFC 2236, November 1997.

  [RFC2710]    Deering, S., Fenner, W., and B. Haberman, "Multicast
               Listener Discovery (MLD) for IPv6", RFC 2710,
               October 1999.

  [RFC2784]    Farinacci, D., Li, T., Hanks, S., Meyer, D., and P.
               Traina, "Generic Routing Encapsulation (GRE)", RFC 2784,
               March 2000.

  [RFC3376]    Cain, B., Deering, S., Kouvelas, I., Fenner, B., and A.
               Thyagarajan, "Internet Group Management Protocol,
               Version 3", RFC 3376, October 2002.

  [RFC3810]    Vida, R. and L. Costa, "Multicast Listener Discovery
               Version 2 (MLDv2) for IPv6", RFC 3810, June 2004.

  [RFC4605]    Fenner, B., He, H., Haberman, B., and H. Sandick,
               "Internet Group Management Protocol (IGMP) / Multicast
               Listener Discovery (MLD)-Based Multicast Forwarding
               ("IGMP/MLD Proxying")", RFC 4605, August 2006.

  [RFC5213]    Gundavelli, S., Leung, K., Devarapalli, V., Chowdhury,
               K., and B. Patil, "Proxy Mobile IPv6", RFC 5213,
               August 2008.

  [RFC5844]    Wakikawa, R. and S. Gundavelli, "IPv4 Support for Proxy
               Mobile IPv6", RFC 5844, May 2010.

  [RFC5847]    Devarapalli, V., Koodli, R., Lim, H., Kant, N.,
               Krishnan, S., and J. Laganier, "Heartbeat Mechanism for
               Proxy Mobile IPv6", RFC 5847, June 2010.

  [RFC6275]    Perkins, C., Johnson, D., and J. Arkko, "Mobility
               Support in IPv6", RFC 6275, July 2011.





Zuniga, et al.                Experimental                     [Page 20]

RFC 7028        Multicast Mobility Routing Optimizations  September 2013


12.2.  Informative References

  [AUTO]       Bumgardner, G., "Automatic Multicast Tunneling", Work in
               Progress, July 2013.

  [MLDPROXY]   Asaeda, H. and S. Jeon, "Multiple Upstream Interface
               Support for IGMP/MLD Proxy", Work in Progress,
               February 2013.

  [MUIIMP]     Zhang, H. and T. Schmidt, "Multi-Upstream Interfaces
               IGMP/MLD Proxy", Work in Progress, July 2013.

  [MULTIMOB]   Schmidt, T., Gao, S., Zhang, H., and M. Waehlisch,
               "Mobile Multicast Sender Support in Proxy Mobile IPv6
               (PMIPv6) Domains", Work in Progress, July 2013.

  [PMIP6-REQ]  Deng, H., Chen, G., Schmidt, T., Seite, P., and P. Yang,
               "Multicast Support Requirements for Proxy Mobile IPv6",
               Work in Progress, July 2009.

  [RFC6224]    Schmidt, T., Waehlisch, M., and S. Krishnan, "Base
               Deployment for Multicast Listener Support in Proxy
               Mobile IPv6 (PMIPv6) Domains", RFC 6224, April 2011.

  [UPSTREAM]   Contreras, LM., Bernardos, CJ., and JC. Zuniga,
               "Extension of the MLD proxy functionality to support
               multiple upstream interfaces", Work in Progress,
               February 2013.























Zuniga, et al.                Experimental                     [Page 21]

RFC 7028        Multicast Mobility Routing Optimizations  September 2013


Appendix A.  MTMA Deployment Use Cases

  This informative appendix describes, from the network architecture
  point of view, several deployment options considering the MTMA.

  These options can be distinguished in terms of the number of LMAs and
  MTMAs present in a PMIPv6 domain and the service relationship that a
  set of MNs gets from them, in the form of a "LMA : MTMA" ratio.
  According to that, it is possible to differentiate the following
  approaches:

  o  A set of MNs is served in a PMIPv6 domain by two entities, one
     MTMA for multicast service, and one LMA for unicast, in such a way
     that the ratio is 1:1 (one common PMIPv6 unicast and multicast
     domain).

  o  A set of MNs is served in a PMIPv6 domain by several entities, one
     MTMA for multicast service, while the others (LMAs) for unicast,
     in such a way that the ratio is N:1 (N PMIPv6 unicast domains
     coexist with a unique multicast domain).

  o  A set of MNs is served in a PMIPv6 domain by several entities, one
     LMA for unicast, while the others (MTMAs) are devoted to multicast
     service, in such a way that the ratio is 1:N (one single PMIPv6
     unicast domain coexists with multiple multicast domains).

  Scenarios with an N:M ratio are considered to be a combination of the
  previous ones.

A.1.  PMIPv6 Domain with Ratio 1:1

  This approach refers to the architecture presented in Figure 1.
  Within this approach, a common set of MNs is served by a couple of
  entities, one LMA for unicast and one MTMA for multicast.  All the
  MNs of the set are served by these two elements as they move in the
  PMIPv6 domain.

A.2.  PMIPv6 Domain with Ratio N:1

  This approach refers to the situation where a common set of MNs is
  served by a unique MTMA for multicast service, but simultaneously
  there are subsets from that group of MNs that are served by distinct
  LMAs for unicast service as they move in the PMIPv6 domain.  Each
  particular MN association with the LMAs (unicast) and MTMA
  (multicast) remains always the same as it moves in the PMIPv6 domain.

  Figure 6 shows the scenario here described.




Zuniga, et al.                Experimental                     [Page 22]

RFC 7028        Multicast Mobility Routing Optimizations  September 2013


           +----------------+       +----------------+
           |Content Source A|       |Content Source B|
           +----------------+       +----------------+
                  |                      |
                  |                      |
        ***  ***  ***  ***  ***  ***  ***  *** *** *** ***
       *   **   **   **   **  **   **   **   **   **  **  *
      *                                                    *
      *                 Fixed Internet                     *
      *        (Unicast & Multicast Traffic)               *
       *   **   **   **   **  **   **   **   **   **  **  *
        ***  ***  ***  *** *** ***  ***  ***  ***  ***  ***
          |                     |                      |
          |                     |                      |
          |                     |                      |
       +------+        +-----------------+          +------+
       | LMA1 |        |       MTMA2     |          | LMA3 |
       +------+        +-----------------+          +------+
         || \\        oo    oo      oo   oo          //  ||
         ||  \\      oo     oo      oo    oo        //   ||
         ||   \\    oo      oo      oo     oo      //    ||
         ||    \\  oo       oo      oo      oo    //     ||
         ||     \\oo        oo      oo       oo  //      ||
         ||      \\         oo      oo        oo//       ||
         ||     oo\\        oo      oo         //        ||
         ||    oo  \\       oo      oo        //oo       ||
         ||   oo    \\      oo      oo       //  oo      ||
         ||  oo      \\     oo      oo      //    oo     ||
       +------+      +--------+     +--------+     +--------+
       | MAG1 |      |  MAG2  |     |  MAG3  |     |  MAG4  |
       +------+      +--------+     +--------+     +--------+
       |      |       |      |       |      |       |      |
       |      |       |      |       |      |       |      |
    {MN10}  {MN11}  {MN20} {MN21}  {MN30} {MN31} {MN40} {MN41}

                 Figure 6: PMIPv6 Domain with Ratio N:1

  Figure 6 proposes an architecture where there are two entities acting
  as LMAs, LMA1 and LMA3, while there is another one, named MTMA2,
  working as multicast tree mobility anchor.  LMA1 and LMA3 constitute
  two distinct unicast domains, whereas MTMA2 forms a single multicast
  domain.  The tunnels among MAGs and LMAs represented by lines ("||")
  indicate a tunnel transporting unicast traffic, while the tunnels
  among MAGs and MTMA2 depicted with circles ("o") show a tunnel
  transporting multicast traffic.

  In the figure, it can be observed that all the MNs are served by
  MTMA2 for the incoming multicast traffic from sources A or B.



Zuniga, et al.                Experimental                     [Page 23]

RFC 7028        Multicast Mobility Routing Optimizations  September 2013


  However, there are different subsets regarding unicast traffic, which
  maintain distinct associations within the PMIPv6 domain.  For
  instance, the subset formed by MN10, MN11, MN20, and MN21 is served
  by LMA1 for unicast, and the rest of MNs are served by LMA3.  For the
  scenario described above, the association between each MN and the
  corresponding LMA and MTMA is permanently maintained.

A.3.  PMIPv6 Domain with Ratio 1:N

  This approach is related to a scenario where a common group of MNs is
  served by a unique LMA for unicast service, but simultaneously there
  are subsets from that group of MNs that are served by distinct MTMAs
  for multicast service as they move in the PMIPv6 domain.  Different
  MTMAs might be associated with serving different multicast groups.
  These associations remain the same even if the MNs move within the
  PMIPv6 domain.

  Figure 7 shows the scenario here described.

































Zuniga, et al.                Experimental                     [Page 24]

RFC 7028        Multicast Mobility Routing Optimizations  September 2013


    +----------------+                    +----------------+
    |Content Source A|                    |Content Source B|
    +----------------+                    +----------------+
           |                                       |
           |          ********************         |
          ( )        *                    *       ( )
         (   )      *    Fixed Internet    *     (   )
        (     )     *   (Unicast Traffic)  *    (     )
         (   )       *                    *      (   )
          ( )         ********************        ( )
           |                   |                   |
           |                   |                   |
        +------+       +--------------+      +------+
        | MTMA1|       |     LMA2     |      | MTMA3|
        +------+       +--------------+      +------+
        oo      oo           // \\          ^^     ^^
         oo       oo        //   \\       ^^      ^^
          oo        oo     //     \\    ^^       ^^
           oo         oo  //       \\ ^^        ^^
            oo          oo/         ^^         ^^
             oo         //oo      ^^ \\       ^^
              oo       //   oo  ^^    \\     ^^
               oo     //      oo       \\   ^^
                oo   //      ^^ oo      \\ ^^
                 oo //     ^^     oo     \^^
              +-------------+     +-------------+
              |   \      /  |     |  \     |    |
              |   ~o~~~~o~  |     |  ~o~~~~o~   |
              |  ( MLD w  ) |     | (  MLD w )  |
              |  ( multip ) |     | ( multip )  |
              |  (  i/f   ) |     | (  i/f   )  |
              |   ~~~~~~~~  |     |  ~~~~~~~~   |
              |             |     |             |
              |     MAG1    |     |     MAG2    |
             /+-------------+     +-------------+\
            |       |       |     |        |      |
            |       |       |     |        |      |
         {MN10}   {MN11} {MN12}  {MN20}  {MN21} {MN22}

                 Figure 7: PMIPv6 Domain with Ratio 1:N

  Figure 7 proposes an architecture where the LMA2 is the unique LMA
  for a certain group of MNs, while there are two other entities, MTMA1
  and MTMA3, acting as MTMAs for different subsets of multicast
  content.  MTMA1 and MTMA3 constitute two distinct multicast domains,
  whereas LMA2 forms a single unicast domain.  Each MTMA could be
  devoted to carry on a different content (for instance, MTMA1 for
  source A and MTMA3 for source B).  Looking at the figure, all MNs are



Zuniga, et al.                Experimental                     [Page 25]

RFC 7028        Multicast Mobility Routing Optimizations  September 2013


  served by LMA2 for unicast, while they might be simultaneously served
  by MTMA1 and MTMA3, depending on the multicast content.  For the
  scenario described above, the association between multicast content
  and MTMA is permanently maintained.  Note that this scenario would
  require support for MLD proxy with multiple interfaces [MULTIMOB],
  [UPSTREAM], [MLDPROXY], [MUIIMP] at the MAGs.

A.4.  PMIPv6 Domain with H-LMA

  The H-LMA is defined as an entity that simultaneously transports
  unicast and multicast service, that is, it simultaneously works as
  LMA and MTMA.  In the context of the MTMA solution, an H-LMA can play
  the role of MTMA for an entire group of MNs in a PMIPv6 domain, while
  acting simultaneously as LMA for a subset of them.  Figure 8 adapts
  the PMIPv6 domain with ratio N:1 scenario of Figure 6 to the case
  where MTMA2 is an H-LMA, which serves multicast traffic to all the
  MNs in the picture, and simultaneously, it is able to serve unicast
  traffic to the subset formed by MN21 and MN30.

































Zuniga, et al.                Experimental                     [Page 26]

RFC 7028        Multicast Mobility Routing Optimizations  September 2013


           +----------------+       +----------------+
           |Content Source A|       |Content Source B|
           +----------------+       +----------------+
                  |                      |
                  |                      |
        ***  ***  ***  ***  ***  ***  ***  *** *** *** ***
       *   **   **   **   **  **   **   **   **   **  **  *
      *                                                    *
      *                 Fixed Internet                     *
      *        (Unicast & Multicast Traffic)               *
       *   **   **   **   **  **   **   **   **   **  **  *
        ***  ***  ***  *** *** ***  ***  ***  ***  ***  ***
          |                     |                      |
          |                     |                      |
          |                     |                      |
       +------+        +-----------------+          +------+
       | LMA1 |        |       H-LMA     |          | LMA3 |
       +------+        +-----------------+          +------+
         || \\        oo    db      db   oo          //  ||
         ||  \\      oo     db      db    oo        //   ||
         ||   \\    oo      db      db     oo      //    ||
         ||    \\  oo       db      db      oo    //     ||
         ||     \\oo        db      db       oo  //      ||
         ||      \\         db      db        oo//       ||
         ||     oo\\        db      db         //        ||
         ||    oo  \\       db      db        //oo       ||
         ||   oo    \\      db      db       //  oo      ||
         ||  oo      \\     db      db      //    oo     ||
       +------+      +--------+     +--------+     +--------+
       | MAG1 |      |  MAG2  |     |  MAG3  |     |  MAG4  |
       +------+      +--------+     +--------+     +--------+
       |      |       |      |       |      |       |      |
       |      |       |      |       |      |       |      |
    {MN10}  {MN11}  {MN20} {MN21}  {MN30} {MN31} {MN40} {MN41}


                   Figure 8: PMIPv6 Domain with H-LMA

  Figure 8 presents a PMIPv6 network where there are two pure unicast
  LMAs, LMA1, and LMA3, and a hybrid LMA, labeled as H-LMA in the
  figure.  The H-LMA is an MTMA from the perspective of MAG1 and MAG4.
  The tunnels among MAGs and LMAs represented by lines ("||") indicate
  a tunnel transporting exclusively unicast traffic, the tunnels
  depicted with circles ("o") show a tunnel transporting exclusively
  multicast traffic, and the tunnels with mixed lines and circles
  ("db") describe a tunnel transporting both types of traffic
  simultaneously.




Zuniga, et al.                Experimental                     [Page 27]

RFC 7028        Multicast Mobility Routing Optimizations  September 2013


  All of the MNs in the figure receive the multicast traffic from H-LMA
  (one single multicast domain), but it is possible to distinguish
  three subsets from the unicast service perspective (that is, three
  unicast domains).  The first subset is the one formed by MN10, MN11,
  and MN20, which receives unicast traffic from LMA1.  A second subset
  is the one formed by MN21 and MN30, which receives unicast traffic
  from H-LMA.  And finally, a third subset is built on MN31, MN40, and
  MN41, which receives unicast traffic from LMA3.  For the scenario
  described above, the association between each MN and the
  corresponding LMA and H-LMA is permanently maintained.









































Zuniga, et al.                Experimental                     [Page 28]

RFC 7028        Multicast Mobility Routing Optimizations  September 2013


Authors' Addresses

  Juan Carlos Zuniga
  InterDigital Communications, LLC
  1000 Sherbrooke Street West, 10th floor
  Montreal, Quebec  H3A 3G4
  Canada
  EMail: [email protected]
  URI:   http://www.InterDigital.com/

  Luis M. Contreras
  Telefonica I+D
  Don Ramon de la Cruz, 82-84
  Madrid  28006
  Spain
  EMail: [email protected]

  Carlos J. Bernardos
  Universidad Carlos III de Madrid
  Av. Universidad, 30
  Leganes, Madrid  28911
  Spain
  Phone: +34 91624 6236
  EMail: [email protected]
  URI:   http://www.it.uc3m.es/cjbc/

  Seil Jeon
  Instituto de Telecomunicacoes
  Campus Universitario de Santiago
  Aveiro  3810-193
  Portugal
  EMail: [email protected]
  URI:   https://atnog.av.it.pt/~sjeon/

  Younghan Kim
  Soongsil University
  Sangdo-dong, Dongjak-gu
  Seoul  511
  Republic of Korea
  EMail: [email protected]
  URI:   http://dcnlab.ssu.ac.kr/










Zuniga, et al.                Experimental                     [Page 29]