Internet Engineering Task Force (IETF)                          T. Otani
Request for Comments: 7025                                      K. Ogaki
Category: Informational                                             KDDI
ISSN: 2070-1721                                              D. Caviglia
                                                               Ericsson
                                                               F. Zhang
                                                    Huawei Technologies
                                                            C. Margaria
                                                       Coriant R&D GmbH
                                                         September 2013


              Requirements for GMPLS Applications of PCE

Abstract

  The initial effort of the PCE (Path Computation Element) WG focused
  mainly on MPLS.  As a next step, this document describes functional
  requirements for GMPLS applications of PCE.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Not all documents
  approved by the IESG are a candidate for any level of Internet
  Standard; see Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7025.
















Otani, et al.                 Informational                     [Page 1]

RFC 7025               Reqs for GMPLS Apps of PCE         September 2013


Copyright Notice

  Copyright (c) 2013 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  2
  2.  GMPLS Applications of PCE  . . . . . . . . . . . . . . . . . .  3
    2.1.  Path Computation in GMPLS Networks . . . . . . . . . . . .  3
    2.2.  Unnumbered Interface . . . . . . . . . . . . . . . . . . .  5
    2.3.  Asymmetric Bandwidth Path Computation  . . . . . . . . . .  5
  3.  Requirements for GMPLS Applications of PCE . . . . . . . . . .  6
    3.1.  Requirements on Path Computation Request . . . . . . . . .  6
    3.2.  Requirements on Path Computation Reply . . . . . . . . . .  7
    3.3.  GMPLS PCE Management . . . . . . . . . . . . . . . . . . .  8
  4.  Security Considerations  . . . . . . . . . . . . . . . . . . .  8
  5.  Acknowledgement  . . . . . . . . . . . . . . . . . . . . . . .  9
  6.  References . . . . . . . . . . . . . . . . . . . . . . . . . .  9
    6.1.  Normative References . . . . . . . . . . . . . . . . . . .  9
    6.2.  Informative References . . . . . . . . . . . . . . . . . . 11

1.  Introduction

  The initial effort of the PCE (Path Computation Element) WG focused
  mainly on solving the path computation problem within a domain or
  over different domains in MPLS networks.  As with MPLS, service
  providers (SPs) have also come up with requirements for path
  computation in GMPLS-controlled networks [RFC3945], such as those
  based on Wavelength Division Multiplexing (WDM), Time Division
  Multiplexing (TDM), or Ethernet.

  [RFC4655] and [RFC4657] discuss the framework and requirements for
  PCE on both packet MPLS networks and GMPLS-controlled networks.  This
  document complements those RFCs by providing considerations of GMPLS
  applications in the intradomain and interdomain networking
  environments and indicating a set of requirements for the extended
  definition of PCE-related protocols.



Otani, et al.                 Informational                     [Page 2]

RFC 7025               Reqs for GMPLS Apps of PCE         September 2013


  Note that the requirements for interlayer and inter-area traffic
  engineering (TE) described in [RFC6457] and [RFC4927] are outside of
  the scope of this document.

  Constrained Shortest Path First (CSPF) computation within a domain or
  over domains for signaling GMPLS Label Switched Paths (LSPs) is
  usually more stringent than that of MPLS TE LSPs [RFC4216], because
  the additional constraints, e.g., interface switching capability,
  link encoding, link protection capability, Shared Risk Link Group
  (SRLG) [RFC4202], and so forth, need to be considered to establish
  GMPLS LSPs.  The GMPLS signaling protocol [RFC3473] is designed
  taking into account bidirectionality, switching type, encoding type,
  and protection attributes of the TE links spanned by the path, as
  well as LSP encoding and switching type of the endpoints,
  appropriately.

  This document provides requirements for GMPLS applications of PCE in
  support of GMPLS path computation, included are requirements for both
  intradomain and interdomain environments.

2.  GMPLS Applications of PCE

2.1.  Path Computation in GMPLS Networks

  Figure 1 depicts a model GMPLS network, consisting of an ingress
  link, a transit link, as well as an egress link.  We will use this
  model to investigate consistent guidelines for GMPLS path
  computation.  Each link at each interface has its own switching
  capability, encoding type, and bandwidth.

            Ingress             Transit             Egress
  +-----+   link1-2   +-----+   link2-3   +-----+   link3-4   +-----+
  |Node1|------------>|Node2|------------>|Node3|------------>|Node4|
  |     |<------------|     |<------------|     |<------------|     |
  +-----+   link2-1   +-----+   link3-2   +-----+   link4-3   +-----+

              Figure 1: Path Computation in GMPLS Networks

  For the simplicity in consideration, the following basic assumptions
  are made when the LSP is created.

  (1)  Switching capabilities of outgoing links from the ingress and
       egress nodes (link1-2 and link4-3 in Figure 1) are consistent
       with each other.

  (2)  Switching capabilities of all transit links, including incoming
       links to the ingress and egress nodes (link2-1 and link3-4) are
       consistent with switching type of an LSP to be created.



Otani, et al.                 Informational                     [Page 3]

RFC 7025               Reqs for GMPLS Apps of PCE         September 2013


  (3)  Encoding types of all transit links are consistent with the
       encoding type of an LSP to be created.

  GMPLS-controlled networks (e.g., GMPLS-based TDM networks) are
  usually responsible for transmitting data for the client layer.
  These GMPLS-controlled networks can provide different types of
  connections for customer services based on different service
  bandwidth requests.

  The applications and the corresponding additional requirements for
  applying PCE to GMPLS-based TDM networks are described in this
  section.  In order to simplify the description, this document only
  discusses the scenario in Synchronous Digital Hierarchy (SDH)
  networks as an example (see Figure 2).  The scenarios in Synchronous
  Optical Network (SONET) or Optical Transport Network (OTN) are
  similar.

                       N1                    N2
      +-----+       +------+              +------+
      |     |-------|      |--------------|      |       +-------+
      +-----+       |      |---|          |      |       |       |
         A1         +------+   |          +------+       |       |
                       |       |             |           +-------+
                       |       |             |              PCE
                       |       |             |
                       |      +------+       |
                       |      |      |       |
                       |      |      |-----| |
                       |      +------+     | |
                       |         N5        | |
                       |                   | |
                    +------+              +------+
                    |      |              |      |        +-----+
                    |      |--------------|      |--------|     |
                    +------+              +------+        +-----+
                       N3                    N4              A2

                  Figure 2: A Simple TDM (SDH) Network

  Figure 2 shows a simple TDM (SDH) network topology, where N1, N2, N3,
  N4, and N5 are all SDH switches; A1 and A2 are client devices (e.g.,
  Ethernet switches).  Assume that one Ethernet service with 100 Mbit/s
  bandwidth is required from A1 to A2 over this network.  The client
  Ethernet service could be provided by a Virtual Container 4 (VC-4)
  container from N1 to N4; it could also be provided by three
  concatenated VC-3s (contiguous or virtual concatenation) from N1 to
  N4.




Otani, et al.                 Informational                     [Page 4]

RFC 7025               Reqs for GMPLS Apps of PCE         September 2013


  In this scenario, when the ingress node (e.g., N1) receives a client
  service transmitting request, the type of containers (one VC-4 or
  three concatenated VC-3s) could be determined by the PCC (Path
  Computation Client), e.g., N1 or Network Management System (NMS).
  However, it could also be determined automatically by the PCE based
  on policy [RFC5394].  If it is determined by the PCC, then the PCC
  should be capable of specifying the ingress node and egress node,
  signal type, the type of the concatenation, and the number of the
  concatenation in a PCReq (Path Computation Request) message.  The PCE
  should consider those parameters during path computation.  The route
  information (co-routing or diverse routing) should be specified in a
  PCRep (Path Computation Reply) message if path computation is
  performed successfully.

  As described above, the PCC should be capable of specifying TE
  attributes defined in the next section, and the PCE should compute a
  path accordingly.

  Where a GMPLS network consists of interdomain (e.g., inter-AS or
  inter-area) GMPLS-controlled networks, requirements on the path
  computation follow [RFC5376] and [RFC4726].

2.2.  Unnumbered Interface

  GMPLS supports unnumbered interface IDs as defined in [RFC3477]; this
  means that the endpoints of the path may be unnumbered.  It should
  also be possible to request a path consisting of the mixture of
  numbered links and unnumbered links, or a P2MP (Point-to-Multipoint)
  path with different types of endpoints.  Therefore, the PCC should be
  capable of indicating the unnumbered interface ID of the endpoints in
  the PCReq message.

2.3.  Asymmetric Bandwidth Path Computation

  Per [RFC6387], GMPLS signaling can be used for setting up an
  asymmetric bandwidth bidirectional LSP.  If a PCE is responsible for
  path computation, it should be capable of computing a path for the
  bidirectional LSP with asymmetric bandwidth.  This means that the PCC
  should be able to indicate the asymmetric bandwidth requirements in
  forward and reverse directions in the PCReq message.











Otani, et al.                 Informational                     [Page 5]

RFC 7025               Reqs for GMPLS Apps of PCE         September 2013


3.  Requirements for GMPLS Applications of PCE

3.1.  Requirements on Path Computation Request

  As for path computation in GMPLS-controlled networks as discussed in
  Section 2, the PCE should appropriately consider the GMPLS TE
  attributes listed below once a PCC or another PCE requests a path
  computation.  The path calculation request message from the PCC or
  the PCE must contain the information specifying appropriate
  attributes.  According to [RFC5440], [PCE-WSON-REQ], and RSVP
  procedures such as explicit label control (ELC), the additional
  attributes introduced are as follows:

  (1)   Switching capability/type: as defined in [RFC3471], [RFC4203],
        and all current and future values.

  (2)   Encoding type: as defined in [RFC3471], [RFC4203], and all
        current and future values.

  (3)   Signal type: as defined in [RFC4606] and all current and future
        values.

  (4)   Concatenation type: In SDH/SONET and OTN, two kinds of
        concatenation modes are defined: contiguous concatenation,
        which requires co-routing for each member signal and that all
        the interfaces along the path support this capability, and
        virtual concatenation, which allows diverse routing for member
        signals and requires that only the ingress and egress
        interfaces support this capability.  Note that for the virtual
        concatenation, it may also specify co-routing or diverse
        routing.  See [RFC4606] and [RFC4328] about concatenation
        information.

  (5)   Concatenation number: Indicates the number of signals that are
        requested to be contiguously or virtually concatenated.  Also
        see [RFC4606] and [RFC4328].

  (6)   Technology-specific label(s): as defined in [RFC4606],
        [RFC6060], [RFC6002], or [RFC6205].

  (7)   End-to-End (E2E) path protection type: as defined in [RFC4872],
        e.g., 1+1 protection, 1:1 protection, (pre-planned) rerouting,
        etc.

  (8)   Administrative group: as defined in [RFC3630].

  (9)   Link protection type: as defined in [RFC4203].




Otani, et al.                 Informational                     [Page 6]

RFC 7025               Reqs for GMPLS Apps of PCE         September 2013


  (10)  Support for unnumbered interfaces: as defined in [RFC3477].

  (11)  Support for asymmetric bandwidth requests: as defined in
        [RFC6387].

  (12)  Support for explicit label control during the path computation.

  (13)  Support of label restrictions in the requests/responses,
        similar to RSVP-TE ERO (Explicit Route Object) and XRO (Exclude
        Route Object), as defined in [RFC3473] and [RFC4874].

3.2.  Requirements on Path Computation Reply

  As described above, a PCE should compute the path that satisfies the
  constraints specified in the PCReq message.  Then, the PCE should
  send a PCRep message, including the computation result, to the PCC.
  For a Path Computation Reply message (PCRep) in GMPLS networks, there
  are some additional requirements.  The PCEP (PCE communication
  protocol) PCRep message must be extended to meet the following
  requirements.

  (1)  Path computation with concatenation

       In the case of path computation involving concatenation, when a
       PCE receives the PCReq message specifying the concatenation
       constraints described in Section 3.1, the PCE should compute a
       path accordingly.

       For path computation involving contiguous concatenation, a
       single route is required, and all the interfaces along the route
       should support contiguous concatenation capability.  Therefore,
       the PCE should compute a path based on the contiguous
       concatenation capability of each interface and only one ERO that
       should carry the route information for the response.

       For path computation involving virtual concatenation, only the
       ingress/egress interfaces need to support virtual concatenation
       capability, and there may be diverse routes for the different
       member signals.  Therefore, multiple EROs may be needed for the
       response.  Each ERO may represent the route of one or multiple
       member signals.  When one ERO represents multiple member
       signals, the number must be specified.









Otani, et al.                 Informational                     [Page 7]

RFC 7025               Reqs for GMPLS Apps of PCE         September 2013


  (2)  Label constraint

       In the case that a PCC does not specify the exact label(s) when
       requesting a label-restricted path and the PCE is capable of
       performing the route computation and label assignment
       computation procedure, the PCE needs to be able to specify the
       label of the path in a PCRep message.

       Wavelength restriction is a typical case of label restriction.
       More generally, label switching and selection constraints may
       apply in GMPLS-controlled networks, and a PCC may request a PCE
       to take label constraint into account and return an ERO
       containing the label or set of labels that fulfill the PCC
       request.

  (3)  Roles of the routes

       When a PCC specifies the protection type of an LSP, the PCE
       should compute the working route and the corresponding
       protection route(s).  Therefore, the PCRep should allow to
       distinguish the working (nominal) and the protection routes.
       According to these routes, the RSVP-TE procedure appropriately
       creates both the working and the protection LSPs, for example,
       with the ASSOCIATION object [RFC6689].

3.3.  GMPLS PCE Management

  This document does not change any of the management or operational
  details for networks that utilize PCE.  (Please refer to [RFC4655]
  for manageability considerations for a PCE-based architecture.)
  However, this document proposes the introduction of several PCEP
  objects and data for the better integration of PCE with GMPLS
  networks.  Those protocol elements will need to be visible in any
  management tools that apply to the PCE, PCC, and PCEP.  That
  includes, but is not limited to, adding appropriate objects to
  existing PCE MIB modules that are used for modeling and monitoring
  PCEP deployments [PCEP-MIB].  Ideas for what objects are needed may
  be guided by the relevant GMPLS extensions in GMPLS-TE-STD-MIB
  [RFC4802].

4.  Security Considerations

  PCEP extensions to support GMPLS should be considered under the same
  security as current PCE work, and this extension will not change the
  underlying security issues.  Section 10 of [RFC5440] describes the
  list of security considerations in PCEP.  At the time [RFC5440] was
  published, TCP Authentication Option (TCP-AO) had not been fully




Otani, et al.                 Informational                     [Page 8]

RFC 7025               Reqs for GMPLS Apps of PCE         September 2013


  specified for securing the TCP connections that underlie PCEP
  sessions.  TCP-AO [RFC5925] has now been published, and PCEP
  implementations should fully support TCP-AO according to [RFC6952].

5.  Acknowledgement

  The authors would like to express thanks to Ramon Casellas, Julien
  Meuric, Adrian Farrel, Yaron Sheffer, and Shuichi Okamoto for their
  comments.

6.  References

6.1.  Normative References

  [RFC3471]  Berger, L., "Generalized Multi-Protocol Label Switching
             (GMPLS) Signaling Functional Description", RFC 3471,
             January 2003.

  [RFC3473]  Berger, L., "Generalized Multi-Protocol Label Switching
             (GMPLS) Signaling Resource ReserVation Protocol-Traffic
             Engineering (RSVP-TE) Extensions", RFC 3473, January 2003.

  [RFC3477]  Kompella, K. and Y. Rekhter, "Signalling Unnumbered Links
             in Resource ReSerVation Protocol - Traffic Engineering
             (RSVP-TE)", RFC 3477, January 2003.

  [RFC3630]  Katz, D., Kompella, K., and D. Yeung, "Traffic Engineering
             (TE) Extensions to OSPF Version 2", RFC 3630,
             September 2003.

  [RFC3945]  Mannie, E., "Generalized Multi-Protocol Label Switching
             (GMPLS) Architecture", RFC 3945, October 2004.

  [RFC4202]  Kompella, K. and Y. Rekhter, "Routing Extensions in
             Support of Generalized Multi-Protocol Label Switching
             (GMPLS)", RFC 4202, October 2005.

  [RFC4203]  Kompella, K. and Y. Rekhter, "OSPF Extensions in Support
             of Generalized Multi-Protocol Label Switching (GMPLS)",
             RFC 4203, October 2005.

  [RFC4328]  Papadimitriou, D., "Generalized Multi-Protocol Label
             Switching (GMPLS) Signaling Extensions for G.709 Optical
             Transport Networks Control", RFC 4328, January 2006.







Otani, et al.                 Informational                     [Page 9]

RFC 7025               Reqs for GMPLS Apps of PCE         September 2013


  [RFC4606]  Mannie, E. and D. Papadimitriou, "Generalized Multi-
             Protocol Label Switching (GMPLS) Extensions for
             Synchronous Optical Network (SONET) and Synchronous
             Digital Hierarchy (SDH) Control", RFC 4606, August 2006.

  [RFC4802]  Nadeau, T. and A. Farrel, "Generalized Multiprotocol Label
             Switching (GMPLS) Traffic Engineering Management
             Information Base", RFC 4802, February 2007.

  [RFC4872]  Lang, J., Rekhter, Y., and D. Papadimitriou, "RSVP-TE
             Extensions in Support of End-to-End Generalized Multi-
             Protocol Label Switching (GMPLS) Recovery", RFC 4872,
             May 2007.

  [RFC4927]  Le Roux, J., "Path Computation Element Communication
             Protocol (PCECP) Specific Requirements for Inter-Area MPLS
             and GMPLS Traffic Engineering", RFC 4927, June 2007.

  [RFC5376]  Bitar, N., Zhang, R., and K. Kumaki, "Inter-AS
             Requirements for the Path Computation Element
             Communication Protocol (PCECP)", RFC 5376, November 2008.

  [RFC5440]  Vasseur, JP. and JL. Le Roux, "Path Computation Element
             (PCE) Communication Protocol (PCEP)", RFC 5440,
             March 2009.

  [RFC6002]  Berger, L. and D. Fedyk, "Generalized MPLS (GMPLS) Data
             Channel Switching Capable (DCSC) and Channel Set Label
             Extensions", RFC 6002, October 2010.

  [RFC6060]  Fedyk, D., Shah, H., Bitar, N., and A. Takacs,
             "Generalized Multiprotocol Label Switching (GMPLS) Control
             of Ethernet Provider Backbone Traffic Engineering
             (PBB-TE)", RFC 6060, March 2011.

  [RFC6205]  Otani, T. and D. Li, "Generalized Labels for Lambda-
             Switch-Capable (LSC) Label Switching Routers", RFC 6205,
             March 2011.

  [RFC6387]  Takacs, A., Berger, L., Caviglia, D., Fedyk, D., and J.
             Meuric, "GMPLS Asymmetric Bandwidth Bidirectional Label
             Switched Paths (LSPs)", RFC 6387, September 2011.

  [RFC6689]  Berger, L., "Usage of the RSVP ASSOCIATION Object",
             RFC 6689, July 2012.






Otani, et al.                 Informational                    [Page 10]

RFC 7025               Reqs for GMPLS Apps of PCE         September 2013


6.2.  Informative References

  [PCE-WSON-REQ]
             Lee, Y., Bernstein, G., Martensson, J., Takeda, T.,
             Tsuritani, T., and O. Dios, "PCEP Requirements for WSON
             Routing and Wavelength Assignment", Work in Progress,
             June 2013.

  [PCEP-MIB] Koushik, K., Stephan, E., Zhao, Q., King, D., and J.
             Hardwick, "PCE communication protocol (PCEP) Management
             Information Base", Work in Progress, July 2013.

  [RFC4216]  Zhang, R. and J. Vasseur, "MPLS Inter-Autonomous System
             (AS) Traffic Engineering (TE) Requirements", RFC 4216,
             November 2005.

  [RFC4655]  Farrel, A., Vasseur, J., and J. Ash, "A Path Computation
             Element (PCE)-Based Architecture", RFC 4655, August 2006.

  [RFC4657]  Ash, J. and J. Le Roux, "Path Computation Element (PCE)
             Communication Protocol Generic Requirements", RFC 4657,
             September 2006.

  [RFC4726]  Farrel, A., Vasseur, J., and A. Ayyangar, "A Framework for
             Inter-Domain Multiprotocol Label Switching Traffic
             Engineering", RFC 4726, November 2006.

  [RFC4874]  Lee, CY., Farrel, A., and S. De Cnodder, "Exclude Routes -
             Extension to Resource ReserVation Protocol-Traffic
             Engineering (RSVP-TE)", RFC 4874, April 2007.

  [RFC5394]  Bryskin, I., Papadimitriou, D., Berger, L., and J. Ash,
             "Policy-Enabled Path Computation Framework", RFC 5394,
             December 2008.

  [RFC5925]  Touch, J., Mankin, A., and R. Bonica, "The TCP
             Authentication Option", RFC 5925, June 2010.

  [RFC6457]  Takeda, T. and A. Farrel, "PCC-PCE Communication and PCE
             Discovery Requirements for Inter-Layer Traffic
             Engineering", RFC 6457, December 2011.

  [RFC6952]  Jethanandani, M., Patel, K., and L. Zheng, "Analysis of
             BGP, LDP, PCEP, and MSDP Issues According to the Keying
             and Authentication for Routing Protocols (KARP) Design
             Guide", RFC 6952, May 2013.





Otani, et al.                 Informational                    [Page 11]

RFC 7025               Reqs for GMPLS Apps of PCE         September 2013


Authors' Addresses

  Tomohiro Otani
  KDDI Corporation
  2-3-2 Nishi-shinjuku
  Shinjuku-ku, Tokyo
  Japan
  Phone: +81-(3) 3347-6006
  EMail: [email protected]


  Kenichi Ogaki
  KDDI Corporation
  3-10-10 Iidabashi
  Chiyoda-ku, Tokyo
  Japan
  Phone: +81-(3) 6678-0284
  EMail: [email protected]


  Diego Caviglia
  Ericsson
  16153 Genova Cornigliano
  Italy
  Phone: +390106003736
  EMail: [email protected]


  Fatai Zhang
  Huawei Technologies Co., Ltd.
  F3-5-B R&D Center, Huawei Base
  Bantian, Longgang District, Shenzhen 518129
  P.R. China
  Phone: +86-755-28972912
  EMail: [email protected]


  Cyril Margaria
  Coriant R&D GmbH
  St Martin Strasse 76
  Munich  81541
  Germany
  Phone: +49 89 5159 16934
  EMail: [email protected]







Otani, et al.                 Informational                    [Page 12]