Internet Engineering Task Force (IETF)                      S. D'Antonio
Request for Comments: 7014                  Univ. of Napoli "Parthenope"
Category: Standards Track                                       T. Zseby
ISSN: 2070-1721                                          CAIDA/FhG FOKUS
                                                               C. Henke
                                        Tektronix Communications Berlin
                                                              L. Peluso
                                                   University of Napoli
                                                         September 2013


                      Flow Selection Techniques

Abstract

  The Intermediate Flow Selection Process is the process of selecting a
  subset of Flows from all observed Flows.  The Intermediate Flow
  Selection Process may be located at an IP Flow Information Export
  (IPFIX) Exporter or Collector, or within an IPFIX Mediator.  It
  reduces the effort of post-processing Flow data and transferring Flow
  Records.  This document describes motivations for using the
  Intermediate Flow Selection process and presents Intermediate Flow
  Selection techniques.  It provides an information model for
  configuring Intermediate Flow Selection Process techniques and
  discusses what information about an Intermediate Flow Selection
  Process should be exported.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7014.











D'Antonio, et al.            Standards Track                    [Page 1]

RFC 7014                Flow Selection Techniques         September 2013


Copyright Notice

  Copyright (c) 2013 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

  This document may contain material from IETF Documents or IETF
  Contributions published or made publicly available before November
  10, 2008.  The person(s) controlling the copyright in some of this
  material may not have granted the IETF Trust the right to allow
  modifications of such material outside the IETF Standards Process.
  Without obtaining an adequate license from the person(s) controlling
  the copyright in such materials, this document may not be modified
  outside the IETF Standards Process, and derivative works of it may
  not be created outside the IETF Standards Process, except to format
  it for publication as an RFC or to translate it into languages other
  than English.

























D'Antonio, et al.            Standards Track                    [Page 2]

RFC 7014                Flow Selection Techniques         September 2013


Table of Contents

  1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  4
    1.1.  Requirements Language  . . . . . . . . . . . . . . . . . .  4
  2.  Terminology  . . . . . . . . . . . . . . . . . . . . . . . . .  4
  3.  Difference between Intermediate Flow Selection Process and
      Packet Selection . . . . . . . . . . . . . . . . . . . . . . .  7
  4.  Difference between Intermediate Flow Selection Process and
      Intermediate Selection Process . . . . . . . . . . . . . . . .  9
  5.  Intermediate Flow Selection Process within the IPFIX
      Architecture . . . . . . . . . . . . . . . . . . . . . . . . .  9
    5.1.  Intermediate Flow Selection Process in the Metering
          Process  . . . . . . . . . . . . . . . . . . . . . . . . . 11
    5.2.  Intermediate Flow Selection Process in the Exporting
          Process  . . . . . . . . . . . . . . . . . . . . . . . . . 11
    5.3.  Intermediate Flow Selection Process as a Function of
          the IPFIX Mediator . . . . . . . . . . . . . . . . . . . . 11
  6.  Intermediate Flow Selection Process Techniques . . . . . . . . 12
    6.1.  Flow Filtering . . . . . . . . . . . . . . . . . . . . . . 12
      6.1.1.  Property Match Filtering . . . . . . . . . . . . . . . 12
      6.1.2.  Hash-Based Flow Filtering  . . . . . . . . . . . . . . 13
    6.2.  Flow Sampling  . . . . . . . . . . . . . . . . . . . . . . 13
      6.2.1.  Systematic Sampling  . . . . . . . . . . . . . . . . . 13
      6.2.2.  Random Sampling  . . . . . . . . . . . . . . . . . . . 14
    6.3.  Flow-State Dependent Intermediate Flow Selection
          Process  . . . . . . . . . . . . . . . . . . . . . . . . . 14
    6.4.  Flow-State Dependent Packet Selection  . . . . . . . . . . 15
  7.  Configuration of Intermediate Flow Selection Process
      Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 16
    7.1.  Intermediate Flow Selection Process Parameters . . . . . . 17
    7.2.  Description of Flow-State Dependent Packet Selection . . . 19
  8.  Information Model for Intermediate Flow Selection Process
      Configuration and Reporting  . . . . . . . . . . . . . . . . . 20
  9.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 22
    9.1.  Registration of Information Elements . . . . . . . . . . . 22
      9.1.1.  flowSelectorAlgorithm  . . . . . . . . . . . . . . . . 22
      9.1.2.  flowSelectedOctetDeltaCount  . . . . . . . . . . . . . 24
      9.1.3.  flowSelectedPacketDeltaCount . . . . . . . . . . . . . 24
      9.1.4.  flowSelectedFlowDeltaCount . . . . . . . . . . . . . . 24
      9.1.5.  selectorIDTotalFlowsObserved . . . . . . . . . . . . . 25
      9.1.6.  selectorIDTotalFlowsSelected . . . . . . . . . . . . . 25
      9.1.7.  samplingFlowInterval . . . . . . . . . . . . . . . . . 26
      9.1.8.  samplingFlowSpacing  . . . . . . . . . . . . . . . . . 26
      9.1.9.  flowSamplingTimeInterval . . . . . . . . . . . . . . . 27
      9.1.10. flowSamplingTimeSpacing  . . . . . . . . . . . . . . . 27
      9.1.11. hashFlowDomain . . . . . . . . . . . . . . . . . . . . 28
    9.2.  Registration of Object Identifier  . . . . . . . . . . . . 28
  10. Security and Privacy Considerations  . . . . . . . . . . . . . 28



D'Antonio, et al.            Standards Track                    [Page 3]

RFC 7014                Flow Selection Techniques         September 2013


  11. Acknowledgments  . . . . . . . . . . . . . . . . . . . . . . . 30
  12. References . . . . . . . . . . . . . . . . . . . . . . . . . . 30
    12.1. Normative References . . . . . . . . . . . . . . . . . . . 30
    12.2. Informative References . . . . . . . . . . . . . . . . . . 31

1.  Introduction

  This document describes Intermediate Flow Selection Process
  techniques for network traffic measurements.  A Flow is defined as a
  set of packets with common properties, as described in [RFC7011].  An
  Intermediate Flow Selection Process can be executed to limit the
  resource demands for capturing, storing, exporting, and post-
  processing Flow Records.  It also can be used to select a particular
  set of Flows that are of interest to a specific application.  This
  document provides a categorization of Intermediate Flow Selection
  Process techniques and describes configuration and reporting
  parameters for them.

  This document also addresses configuration and reporting parameters
  for Flow-state dependent packet selection as described in [RFC5475],
  although this technique is categorized as packet selection.  The
  reason is that Flow-state dependent packet selection techniques often
  aim at the reduction of resources for Flow capturing and Flow
  processing.  Furthermore, these techniques were only briefly
  discussed in [RFC5475].  Therefore, configuration and reporting
  considerations for Flow-state dependent packet selection techniques
  have been included in this document.

1.1.  Requirements Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [RFC2119].

2.  Terminology

  This document is consistent with the terminology introduced in
  [RFC7011], [RFC5470], [RFC5475], and [RFC3917].  As in [RFC7011] and
  [RFC5476], the first letter of each IPFIX specific and Packet
  Sampling (PSAMP) specific term is capitalized, along with the
  Intermediate Flow Selection Process specific terms defined here.










D'Antonio, et al.            Standards Track                    [Page 4]

RFC 7014                Flow Selection Techniques         September 2013


  * Packet Classification

     Packet Classification is a process by which packets are mapped to
     specific Flow Records, based on packet properties or external
     properties (e.g., interface).  The properties (e.g., header
     information, packet content, Autonomous System (AS) number) make
     up the Flow Key.  If a Flow Record for a specific Flow Key value
     already exists, the Flow Record is updated; otherwise, a new Flow
     Record is created.

  * Intermediate Flow Selection Process

     An Intermediate Flow Selection Process is an Intermediate Process,
     as defined in [RFC6183] that takes Flow Records as its input and
     selects a subset of this set as its output.  The Intermediate Flow
     Selection Process is a more general concept than the Intermediate
     Selection Process as defined in [RFC6183].  While an Intermediate
     Selection Process selects Flow Records from a sequence based upon
     criteria-evaluated Flow Record values and only passes on those
     Flow Records that match the criteria, an Intermediate Flow
     Selection Process selects Flow Records using selection criteria
     applicable to a larger set of Flow characteristics and
     information.

  * Flow Cache

     A Flow Cache is the set of Flow Records.

  * Flow Selection State

     An Intermediate Flow Selection Process maintains state information
     for use by the Flow Selector.  At a given time, the Flow Selection
     State may depend on Flows and packets observed at and before that
     time, as well as other variables.  Examples include:

     (i)   sequence number of packets and Flow Records;

     (ii)  number of selected Flows;

     (iii) number of observed Flows;

     (iv)  current Flow Cache occupancy;

     (v)   Flow specific counters, lower and upper bounds;

     (vi)  Intermediate Flow Selection Process timeout intervals.





D'Antonio, et al.            Standards Track                    [Page 5]

RFC 7014                Flow Selection Techniques         September 2013


  * Flow Selector

     A Flow Selector defines the action of an Intermediate Flow
     Selection Process on a single Flow of its input.  The Flow
     Selector can make use of the following information in order to
     establish whether or not a Flow has to be selected:

     (i)   the content of the Flow Record;

     (ii)  any state information related to the Metering Process or
           Exporting Process;

     (iii) any Flow Selection State that may be maintained by the
           Intermediate Flow Selection Process.

  * Complete Flow

     A Complete Flow consists of all the packets that enter the
     Intermediate Flow Selection Process within the Flow timeout
     interval and that belong to the same Flow, per the definition of
     "Flow" in [RFC5470].  For this definition, only packets that
     arrive at the Intermediate Flow Selection Process are considered.

  * Flow Position

     Flow Position is the position of a Flow Record within the Flow
     Cache.

  * Flow Filtering

     Flow Filtering selects flows based on a deterministic function on
     the Flow Record content, Flow Selection State, external properties
     (e.g., ingress interface), or external events (e.g., violated
     Access Control List).  If the relevant parts of the Flow Record
     content can already be observed at the packet level (e.g., Flow
     Keys from packet header fields), Flow Filtering can be performed
     at the packet level by Property Match Filtering, as described in
     [RFC5475].

  * Hash-based Flow Filtering

     Hash-based Flow Filtering is a deterministic Flow filter function
     that selects flows based on a hash function.  The hash function is
     calculated over parts of the Flow Record content or external
     properties that are called the Hash Domain.  If the hash value
     falls into a predefined Hash Selection Range, the Flow is
     selected.




D'Antonio, et al.            Standards Track                    [Page 6]

RFC 7014                Flow Selection Techniques         September 2013


  * Flow-state Dependent Intermediate Flow Selection Process

     The Flow-state dependent Intermediate Flow Selection Process is a
     selection function that selects or drops Flows based on the
     current Flow Selection State.  The selection can be either
     deterministic, random, or non-uniform random.

  * Flow-state Dependent Packet Selection

     Flow-state dependent packet selection is a selection function that
     selects or drops packets based on the current Flow Selection
     State.  The selection can be either deterministic, random, or non-
     uniform random.  Flow-state dependent packet selection can be used
     to implement a preference for the selection of packets belonging
     to specific Flows.  For example, the selection probability of
     packets belonging to Flows that are already within the Flow Cache
     may be higher than for packets that have not been recorded yet.

  * Flow Sampling

     Flow Sampling selects flows based on Flow Record sequence or
     arrival times (e.g., entry in Flow Cache, arrival time at Exporter
     or Mediator).  The selection can be systematic (e.g., every n-th
     Flow) or based on a random function (e.g., select each Flow Record
     with probability p, or randomly select n out of N Flow Records).

3.  Difference between Intermediate Flow Selection Process and Packet
   Selection

  The Intermediate Flow Selection Process differs from packet selection
  as described in [RFC5475].  Packet selection techniques consider
  packets as the basic element, and the parent population consists of
  all packets observed at an Observation Point.  In contrast to this,
  the basic elements in Flow selection are the Flows.  The parent
  population consists of all observed Flows, and the Intermediate Flow
  Selection Process operates on the Flows.  The major characteristics
  of the Intermediate Flow Selection Process are the following:

  -  The Intermediate Flow Selection Process takes Flows as basic
     elements.  For packet selection, packets are considered as basic
     elements.

  -  The Intermediate Flow Selection Process typically takes place
     after Packet Classification, because the classification rules
     determine to which Flow a packet belongs.  The Intermediate Flow
     Selection Process can be performed before Packet Classification.
     In that case, the Intermediate Flow Selection Process is based on
     the Flow Key (and also on a hash value over the Flow Key) but not



D'Antonio, et al.            Standards Track                    [Page 7]

RFC 7014                Flow Selection Techniques         September 2013


     on characteristics that are only available after Packet
     Classification (e.g., Flow size, Flow duration).  Packet selection
     can be applied before and after Packet Classification.  As an
     example, packet selection before Packet Classification can be
     random packet selection, whereas packet selection after Packet
     Classification can be Flow-state dependent packet selection (as
     described in [RFC5475]).

  -  The Intermediate Flow Selection Process operates on Complete
     Flows.  That means that after the Intermediate Flow Selection
     Process, either all packets of the Flow are kept or all packets of
     the Flow are discarded.  That means that if the Intermediate Flow
     Selection Process is preceded by a packet selection process, the
     Complete Flow consists only of the packets that were not discarded
     during the packet selection.

  There are some techniques that are difficult to unambiguously
  categorize into one of the categories.  Here, some guidance is given
  on how to categorize such techniques:

  -  Techniques that can be considered as both packet selection and an
     Intermediate Flow Selection Process: some packet selection
     techniques result in the selection of Complete Flows and therefore
     can be considered as packet selection or as an Intermediate Flow
     Selection Process at the same time.  An example is Property Match
     Filtering of all packets to a specific destination address.  If
     Flows are defined based on destination addresses, such a packet
     selection also results in an Intermediate Flow Selection Process
     and can be considered as packet selection or as an Intermediate
     Flow Selection Process.

  -  Flow-state Dependent Packet Selection: there exist techniques that
     select packets based on the Flow state, e.g., based on the number
     of already observed packets belonging to the Flow.  Examples of
     these techniques from the literature include "Sample and Hold"
     [EsVa01], "Fast Filtered Sampling" [MSZC10], and the "Sticky
     Sampling" algorithm presented in [MaMo02].  Such techniques can be
     used to influence which Flows are captured (e.g., increase the
     selection of packets belonging to large Flows) and reduce the
     number of Flows that need to be stored in the Flow Cache.
     Nevertheless, such techniques do not necessarily select Complete
     Flows, because they do not ensure that all packets of a selected
     Flow are captured.  Therefore, Flow-state dependent packet
     selection techniques that do not ensure that either all or no
     packets of a Flow are selected, strictly speaking, have to be
     considered as packet selection techniques and not as Intermediate
     Flow Selection Process techniques.




D'Antonio, et al.            Standards Track                    [Page 8]

RFC 7014                Flow Selection Techniques         September 2013


4.  Difference between Intermediate Flow Selection Process and
   Intermediate Selection Process

  The Intermediate Flow Selection Process differs from the Intermediate
  Selection Process, since the Intermediate Flow Selection Process uses
  selection criteria that apply to a larger set of Flow information and
  properties than those used by the Intermediate Selection Process.
  The typical function of an Intermediate Selection Process is Property
  Match Filtering, which selects a Flow Record if the value of a
  specific field in the Flow Record matches a configured value or falls
  within a configured range.  This means that the selection criteria
  used by an Intermediate Selection Process are evaluated only on Flow
  Record values.  An Intermediate Flow Selection Process makes its
  decision on whether a Flow has to be selected or not by taking into
  account not only information related to the content of the Flow
  Record but also any Flow Selection State information or variable that
  can be used to select Flows in order to meet application requirements
  or resource constraints (e.g., Flow Cache occupancy, export link
  capacity).  Examples include flow counters, Intermediate Flow
  Selection Process timeout intervals, and Flow Record time
  information.

5.  Intermediate Flow Selection Process within the IPFIX Architecture

  An Intermediate Flow Selection Process can be deployed at any of
  three places within the IPFIX architecture.  As shown in Figure 1,
  the Intermediate Flow Selection Process can occur

  1.  in the Metering Process at the IPFIX Exporter

  2.  in the Exporting Process at the Collector

  3.  within a Mediator


















D'Antonio, et al.            Standards Track                    [Page 9]

RFC 7014                Flow Selection Techniques         September 2013


               +===========================================+
               |  IPFIX Exporter        +----------------+ |
               |                        | Metering Proc. | |
               | +-----------------+    +----------------+ |
               | |    Metering     |    |  Intermediate  | |
               | |    Process      | or | Flow Selection | |
               | |                 |    |     Process    | |
               | +-----------------+----+----------------+ |
               | |           Exporting Process           | |
               | +----|-------------------------------|--+ |
               +======|===============================|====+
                      |                               |
                      |                               |
               +======|========================+      |
               |      |  Mediator              |      |
               |    +-V-------------------+    |      |
               |    | Collecting Process  |    |      |
               |    +---------------------+    |      |
               |    | Intermediate Flow   |    |      |
               |    | Selection Process   |    |      |
               |    +---------------------+    |      |
               |    |  Exporting Process  |    |      |
               |    +-|-------------------+    |      |
               +======|========================+      |
                      |                               |
                      |                               |
               +======|===============================|=====+
               |      |         Collector             |     |
               | +----V-------------------------------V-+   |
               | |         Collecting Process           |   |
               | +--------------------------------------+   |
               | | Intermediate Flow Selection Process  |   |
               | +--------------------------------------+   |
               | |           Exporting Process          |   |
               | +------------------------------|-------+   |
               +================================|===========+
                                                |
                                                |
                                                V
                                         +------------------+
                                         |       IPFIX      |
                                         +------------------+

    Figure 1: Potential Intermediate Flow Selection Process Locations

  In contrast to packet selection, the Intermediate Flow Selection
  Process is always applied after the packets are classified into
  Flows.



D'Antonio, et al.            Standards Track                   [Page 10]

RFC 7014                Flow Selection Techniques         September 2013


5.1.  Intermediate Flow Selection Process in the Metering Process

  An Intermediate Flow Selection Process in the Metering Process uses
  packet information to update the Flow Records in the Flow Cache.  The
  Intermediate Flow Selection Process, before Packet Classification,
  can be based on the Flow Key (and also on a hash value over the Flow
  Key) but not on characteristics that are only available after Packet
  Classification (e.g., Flow size, Flow duration).  Here, an
  Intermediate Flow Selection Process is applied to reduce resources
  for all subsequent processes or to select specific Flows of interest
  in cases where such Flow characteristics are already observable at
  the packet level (e.g., Flows to specific IP addresses).  In
  contrast, Flow-state dependent packet selection is a packet selection
  technique, because it does not necessarily select Complete Flows.

5.2.  Intermediate Flow Selection Process in the Exporting Process

  An Intermediate Flow Selection Process in the Exporting Process works
  on Flow Records and can therefore depend on Flow characteristics that
  are only visible after the classification of packets, such as Flow
  size and Flow duration.  The Exporting Process may implement policies
  for exporting only a subset of the Flow Records that have been stored
  in the system's memory, in order to offload Flow export and Flow
  post-processing.  An Intermediate Flow Selection Process in the
  Exporting Process may select only the subset of Flow Records that are
  of interest to the user's application or select only as many Flow
  Records as can be handled by the available resources (e.g., limited
  export link capacity).

5.3.  Intermediate Flow Selection Process as a Function of the IPFIX
     Mediator

  As shown in Figure 1, the Intermediate Flow Selection Process can be
  performed within an IPFIX Mediator [RFC6183].  The Intermediate Flow
  Selection Process takes a Flow Record stream as its input and selects
  Flow Records from a sequence based upon criteria-evaluated record
  values.  The Intermediate Flow Selection Process can again apply an
  Intermediate Flow Selection Process technique to obtain Flows of
  interest to the application.  Further, the Intermediate Flow
  Selection Process can base its selection decision on the correlation
  of data from different IPFIX Exporters, e.g., by only selecting Flows
  that were recorded on two or more IPFIX Exporters.









D'Antonio, et al.            Standards Track                   [Page 11]

RFC 7014                Flow Selection Techniques         September 2013


6.  Intermediate Flow Selection Process Techniques

  An Intermediate Flow Selection Process technique selects either all
  or none of the packets of a Flow; otherwise, the technique has to be
  considered as packet selection.  A difference between Flow Filtering
  and Flow sampling is recognized.

6.1.  Flow Filtering

  Flow Filtering is a deterministic function on the IPFIX Flow Record
  content.  If the relevant Flow characteristics are already observable
  at the packet level (e.g., Flow Keys), Flow Filtering can be applied
  before aggregation at the packet level.  In order to be compliant
  with IPFIX, at least one of this document's Flow Filtering schemes
  MUST be implemented.

6.1.1.  Property Match Filtering

  Property Match Filtering is performed similarly to Property Match
  Filtering for packet selection as described in [RFC5475].  The
  difference is that Flow Record fields are used here, instead of
  packet fields, to derive the selection decision.  Property Match
  Filtering is used to select a specific subset of the Flows that are
  of interest to a particular application (e.g., all Flows to a
  specific destination, all large Flows, etc.).  Properties on which
  the filtering is based can be Flow Keys, Flow Timestamps, or Per-Flow
  Counters as described in [RFC7012].  Examples include the Flow size
  in bytes, the number of packets in the Flow, the observation time of
  the first or last packet, and the maximum packet length.  An example
  of Property Match Filtering is to select Flows with more than a
  threshold number of observed octets.  The selection criteria can be a
  specific value, a set of specific values, or an interval.  For
  example, a Flow is selected if destinationIPv4Address and the total
  number of packets of the Flow equal two predefined values.  An
  Intermediate Flow Selection Process using Property Match Filtering in
  the Metering Process relies on properties that are observable at the
  packet level (e.g., Flow Key).  For example, a Flow is selected if
  sourceIPv4Address and sourceIPv4PrefixLength equal, respectively, two
  specific values.

  An Intermediate Flow Selection Process using Property Match Filtering
  in the Exporting Process is based on properties that are only visible
  after Packet Classification, such as Flow size and Flow duration.  An
  example is the selection of the largest Flows or a percentage of
  Flows with the longest lifetime.  Another example is to select and
  remove from the Flow Cache the Flow Record with the lowest Flow
  volume per current Flow lifetime if the Flow Cache is full.




D'Antonio, et al.            Standards Track                   [Page 12]

RFC 7014                Flow Selection Techniques         September 2013


  An Intermediate Flow Selection Process using Property Match Filtering
  within an IPFIX Mediator selects a Flow Record if the value of a
  specific field in the Flow Record equals a configured value or falls
  within a configured range [RFC6183].

6.1.2.  Hash-Based Flow Filtering

  Hash-based Flow Filtering uses a hash function h to map the Flow Key
  c onto a Hash Range R.  A Flow is selected if the hash value h(c) is
  within the Hash Selection Range S, which is a subset of R.  Hash-
  based Flow Filtering can be used to emulate a random sampling process
  but still enable the correlation between selected Flow subsets at
  different Observation Points.  Hash-based Flow Filtering is similar
  to Hash-based packet selection and is in fact identical when Hash-
  based packet selection uses the Flow Key that defines the Flow as the
  hash input.  Nevertheless, there may be the incentive to apply Hash-
  based Flow Filtering, but not at the packet level, in the Metering
  Process, for example, when the size of the selection range, and
  therefore the sampling probability, are dependent on the number of
  observed Flows.  If Hash-based Flow Filtering is used to select the
  same subset of flows at different Observation Points, the Hash Domain
  MUST only include parts of the Flow Record content that are invariant
  on the Flow path.  Refer also to the Trajectory Sampling application
  example of coordinated packet selection [RFC5475], which explains the
  hash-based filtering approach at the packet level.

6.2.  Flow Sampling

  Flow sampling operates on Flow Record sequence or arrival times.  It
  can use either a systematic or a random function for the Intermediate
  Flow Selection Process.  Flow sampling usually aims at the selection
  of a representative subset of all Flows in order to estimate
  characteristics of the whole set (e.g., mean Flow size in the
  network).

6.2.1.  Systematic Sampling

  Systematic sampling is a deterministic selection function.  It may be
  a periodic selection of the N-th Flow Record that arrives at the
  Intermediate Flow Selection Process.  Systematic sampling MAY be
  applied in the Metering Process.  An example would be to create,
  besides the Flow Cache of selected Flows, an additional data
  structure that saves the Flow Key values of the Flows that are not
  selected.  The selection of a Flow would then be based on the first
  packet of a Flow.  Every time a packet belonging to a new Flow (which
  is not in the data structure of either the selected or non-selected
  Flows) arrives at the Observation Point, a counter is increased.  If




D'Antonio, et al.            Standards Track                   [Page 13]

RFC 7014                Flow Selection Techniques         September 2013


  the counter is increased to a multiple of N, a new Flow Cache entry
  is created; if the counter is not a multiple of N, the Flow Key value
  is added to the data structure for non-selected Flows.

  Systematic sampling can also be time-based.  Time-based systematic
  sampling is applied by only creating Flows that are observed between
  time-based start and stop triggers.  The time interval may be applied
  at the packet level in the Metering Process or after aggregation at
  the Flow level, e.g., by selecting a Flow arriving at the Exporting
  Process every n seconds.

6.2.2.  Random Sampling

  Random Flow sampling is based on a random process that requires the
  calculation of random numbers.  One can differentiate between n-out-
  of-N and probabilistic Flow sampling.

6.2.2.1.  n-out-of-N Flow Sampling

  In n-out-of-N Sampling, n elements are selected out of the parent
  population, which consists of N elements.  One example would be to
  generate n different random numbers in the range [1,N] and select all
  Flows that have a Flow Position equal to one of the random numbers.

6.2.2.2.  Probabilistic Flow Sampling

  In probabilistic Sampling, the decision of whether or not a Flow is
  selected is made in accordance with a predefined selection
  probability.  For probabilistic Sampling, the Sample Size can vary
  for different trials.  The selection probability does not necessarily
  have to be the same for each Flow.  Therefore, a difference between
  uniform probabilistic sampling (with the same selection probability
  for all Flows) and non-uniform probabilistic sampling (where the
  selection probability can vary for different Flows) is recognized.
  For non-uniform probabilistic Flow sampling, the sampling probability
  may be adjusted according to the Flow Record content.  An example
  would be to increase the selection probability of large-volume Flows
  over small-volume Flows, as described in [DuLT01].

6.3.  Flow-State Dependent Intermediate Flow Selection Process

  The Flow-state dependent Intermediate Flow Selection Process can be a
  deterministic or random Intermediate Flow Selection Process, based on
  the Flow Record content and the Flow state that may be kept
  additionally for each of the Flows.  External processes may update
  counters, bounds, and timers for each of the Flow Records, and the
  Intermediate Flow Selection Process utilizes this information for the
  selection decision.  A review of Flow-state dependent Intermediate



D'Antonio, et al.            Standards Track                   [Page 14]

RFC 7014                Flow Selection Techniques         September 2013


  Flow Selection Process techniques that aim at the selection of the
  most frequent items by keeping additional Flow state information can
  be found in [CoHa08].  The Flow-state dependent Intermediate Flow
  Selection Process can only be applied after packet aggregation, when
  a packet has been assigned to a Flow.  The Intermediate Flow
  Selection Process then decides, based on the Flow state for each
  Flow, whether it is kept in the Flow Cache or not.  Two Flow-state
  dependent Intermediate Flow Selection Process Algorithms are
  described here:

  The Frequent algorithm [KaPS03] is a technique that aims at the
  selection of all flows that at least exceed a 1/k fraction of the
  Observed Packet Stream.  The algorithm has only a Flow Cache of size
  k-1, and each Flow in the Flow Cache has an additional counter.  The
  counter is incremented each time a packet belonging to the Flow in
  the Flow Cache is observed.  If the observed packet does not belong
  to any Flow, all counters are decremented; if any of the Flow
  counters has a value of zero, the Flow is replaced with a Flow formed
  from the new packet.

  Lossy counting is a selection technique that identifies all Flows
  whose packet count exceeds a certain percentage of the whole observed
  packet stream (e.g., 5% of all packets) with a certain estimation
  error e.  Lossy counting separates the observed packet stream in
  windows of size N=1/e, where N is an amount of consecutive packets.
  For each observed Flow, an additional counter will be held in the
  Flow state.  The counter is incremented each time a packet belonging
  to the Flow is observed, and all counters are decremented at the end
  of each window.  Also, all Flows with a counter of zero are removed
  from the Flow Cache.

6.4.  Flow-State Dependent Packet Selection

  Flow-state dependent packet selection is not an Intermediate Flow
  Selection Process technique but a packet selection technique.
  Nevertheless, configuration and reporting parameters for this
  technique will be described in this document.  An example is the
  "Sample and Hold" algorithm [EsVa01], which tries to implement a
  preference for large-volume Flows in the selection.  When a packet
  arrives, it is selected when a Flow Record for this packet already
  exists.  If there is no Flow Record, the packet is selected according
  to a certain probability that is dependent on the packet size.









D'Antonio, et al.            Standards Track                   [Page 15]

RFC 7014                Flow Selection Techniques         September 2013


7.  Configuration of Intermediate Flow Selection Process Techniques

  This section describes the configuration parameters of the Flow
  selection techniques presented above.  It provides the basis for an
  information model to be adopted in order to configure the
  Intermediate Flow Selection Process within an IPFIX Device.  The
  information model with the Information Elements (IEs) for
  Intermediate Flow Selection Process configuration is described
  together with the reporting IEs in Section 8.  Table 1 gives an
  overview of the defined Intermediate Flow Selection Process
  techniques, where they can be applied, and what their input
  parameters are.  Depending on where the Flow selection techniques are
  applied, different input parameters can be configured.

  +-------------------+--------------------+--------------------------+
  | Location          | Selection          | Selection Input          |
  |                   | Technique          |                          |
  +-------------------+--------------------+--------------------------+
  | In the Metering   | Flow-state         | packet sampling          |
  | Process           | Dependent Packet   | probabilities, Flow      |
  |                   | Selection          | Selection State, packet  |
  |                   |                    | properties               |
  |                   |                    |                          |
  | In the Metering   | Property Match     | Flow Record IEs,         |
  | Process           | Flow Filtering     | Selection Interval       |
  |                   |                    |                          |
  | In the Metering   | Hash-based Flow    | selection range, hash    |
  | Process           | Filtering          | function, Flow Key, seed |
  |                   |                    | (optional)               |
  |                   |                    |                          |
  | In the Metering   | Time-based         | Flow Position (derived   |
  | Process           | Systematic Flow    | from arrival time of     |
  |                   | sampling           | packets), Flow Selection |
  |                   |                    | State                    |
  |                   |                    |                          |
  | In the Metering   | Sequence-based     | Flow Position (derived   |
  | Process           | Systematic Flow    | from packet position),   |
  |                   | sampling           | Flow Selection State     |
  |                   |                    |                          |
  | In the Metering   | Random Flow        | random number generator  |
  | Process           | sampling           | or list and packet       |
  |                   |                    | position, Flow state     |
  |                   |                    |                          |
  | In the Exporting  | Property Match     | Flow Record content,     |
  | Process/ within   | Flow Filtering     | filter function          |
  | the IPFIX         |                    |                          |
  | Mediator          |                    |                          |
  |                   |                    |                          |



D'Antonio, et al.            Standards Track                   [Page 16]

RFC 7014                Flow Selection Techniques         September 2013


  | In the Exporting  | Hash-based Flow    | selection range, hash    |
  | Process/ within   | Filtering          | function, hash input     |
  | the IPFIX         |                    | (Flow Keys and other     |
  | Mediator          |                    | Flow properties)         |
  |                   |                    |                          |
  | In the Exporting  | Flow-state         | Flow state parameters,   |
  | Process/ within   | Dependent          | random number generator  |
  | the IPFIX         | Intermediate Flow  | or list                  |
  | Mediator          | Selection Process  |                          |
  |                   |                    |                          |
  | In the Exporting  | Time-based         | Flow arrival time, Flow  |
  | Process/ within   | Systematic Flow    | state                    |
  | the IPFIX         | sampling           |                          |
  | Mediator          |                    |                          |
  |                   |                    |                          |
  | In the Exporting  | Sequence-based     | Flow Position, Flow      |
  | Process/ within   | Systematic Flow    | state                    |
  | the IPFIX         | sampling           |                          |
  | Mediator          |                    |                          |
  |                   |                    |                          |
  | In the Exporting  | Random Flow        | random number generator  |
  | Process/ within   | sampling           | or list and Flow         |
  | the IPFIX         |                    | Position, Flow state     |
  | Mediator          |                    |                          |
  +-------------------+--------------------+--------------------------+

   Table 1: Overview of Intermediate Flow Selection Process Techniques

7.1.  Intermediate Flow Selection Process Parameters

  This section defines what parameters are required to describe the
  most common Intermediate Flow Selection Process techniques.

  Intermediate Flow Selection Process Parameters:

  For Property Match Filtering:

  -  Information Element as specified in [IANA-IPFIX]):
     Specifies the Information Element that is used as the property in
     the filter expression.  Section 8 specifies the Information
     Elements that MUST be exported by an Intermediate Flow Selection
     Process using Property Match Filtering.

  -  Selection Value or Value Interval:
     Specifies the value or interval of the filter expression.  Packets
     and Flow Records that have a value equal to the Selection Value or
     within the Interval will be selected.




D'Antonio, et al.            Standards Track                   [Page 17]

RFC 7014                Flow Selection Techniques         September 2013


  For Hash-based Flow Filtering:

  -  Hash Domain:
     Specifies the bits from the packet or Flow that are taken as the
     hash input to the hash function.

  -  Hash Function:
     Specifies the name of the hash function that is used to calculate
     the hash value.  Possible hash functions are BOB [RFC5475], IP
     Shift-XOR (IPSX) [RFC5475], and CRC-32 [Bra75].

  -  Hash Selection Range:
     Flows that have a hash value within the Hash Selection Range are
     selected.  The Hash Selection Range can be a value interval or
     arbitrary hash values within the Hash Range of the hash function.

  -  Random Seed or Initializer Value:
     Some hash functions require an initializing value.  In order to
     make the selection decision more secure, one can choose a random
     seed that configures the hash function.

  For Flow-state Dependent Intermediate Flow Selection Process:

  -  Frequency threshold:
     Specifies the frequency threshold s for Flow-state dependent Flow
     Selection techniques that try to find the most frequent items
     within a dataset.  All Flows that exceed the defined threshold
     will be selected.

  -  Accuracy parameter:
     Specifies the accuracy parameter e for techniques that deal with
     the issue of mining frequent items in a dataset.  The accuracy
     parameter defines the maximum error, i.e., no Flows that have a
     true frequency less than (s - e) N are selected, where s is the
     frequency threshold and N is the total number of packets.

  The above list of parameters for Flow-state dependent Flow Selection
  techniques is suitable for the presented frequent item and lossy
  counting algorithms.  Nevertheless, a variety of techniques exist
  with very specific parameters not defined here.

  For Systematic time-based Flow sampling:

  -  Interval length (in usec):
     Defines the length of the sampling interval during which Flows are
     selected.





D'Antonio, et al.            Standards Track                   [Page 18]

RFC 7014                Flow Selection Techniques         September 2013


  -  Spacing (in usec):
     Defines the spacing in usec between the end of one sampling
     interval and the start of the next interval.

  For Systematic count-based Flow sampling:

  -  Interval length:
     Defines the number of Flows that are selected within the sampling
     interval.

  -  Spacing:
     Defines the spacing, in number of observed Flows, between the end
     of one sampling interval and the start of the next interval.

  For random n-out-of-N Flow sampling:

  -  Population Size N:
     The number of all Flows in the Population from which the sample is
     drawn.

  -  Sampling Size n:
     The number of Flows that are randomly drawn from the population N.

  For probabilistic Flow sampling:

  -  Sampling probability p:
     Defines the probability by which each of the observed Flows is
     selected.

7.2.  Description of Flow-State Dependent Packet Selection

  The configuration of Flow-state dependent packet selection has not
  been described in [RFC5475]; therefore, the parameters are defined
  here:

  For Flow-state Dependent Packet Selection:

  -  Packet selection probability per possible Flow state interval:
     Defines multiple {Flow interval, packet selection probability}
     value pairs that configure the sampling probability, depending on
     the current Flow state.

  -  Additional parameters:
     For the configuration of Flow-state dependent packet selection,
     additional parameters or packet properties may be required, e.g.,
     the packet size [EsVa01].





D'Antonio, et al.            Standards Track                   [Page 19]

RFC 7014                Flow Selection Techniques         September 2013


8.  Information Model for Intermediate Flow Selection Process
   Configuration and Reporting

  This section specifies the Information Elements that MUST be exported
  by an Intermediate Flow Selection Process in order to support the
  interpretation of measurement results from Flow measurements.  The
  information is mainly used to report how many packets and Flows have
  been observed in total and how many of them were selected.  This
  helps, for instance, to calculate the Attained Selection Fraction
  (see also [RFC5476]), which is an important parameter for providing
  an accuracy statement.  The IEs can provide reporting information
  about Flow Records, packets, or bytes.  The reported metrics are the
  total number of elements and the number of selected elements.  The
  number of dropped elements can be derived from this information.





































D'Antonio, et al.            Standards Track                   [Page 20]

RFC 7014                Flow Selection Techniques         September 2013


  Table 2 shows a list of Intermediate Flow Selection Process
  Information Elements:

  ID   Name                         | ID   Name
  ----------------------------------+----------------------------------
  301  selectionSequenceID          | 302  selectorID
                                    |
  390  flowSelectorAlgorithm        |   1  octetDeltaCount
                                    |
  391  flowSelectedOctetDeltaCount  |   2  packetDeltaCount
                                    |
  392  flowSelectedPacketDeltaCount |   3  originalFlowsPresent
                                    |
  393  flowSelectedFlowDeltaCount   | 394  selectorIDTotalFlowsObserved
                                    |
  395  selectorIDTotalFlowsSelected | 396  samplingFlowInterval
                                    |
  397  samplingFlowSpacing          | 309  samplingSize
                                    |
  310  samplingPopulation           | 311  samplingProbability
                                    |
  398  flowSamplingTimeInterval     | 399  flowSamplingTimeSpacing
                                    |
  326  digestHashValue              | 400  hashFlowDomain
                                    |
  329  hashOutputRangeMin           | 330  hashOutputRangeMax
                                    |
  331  hashSelectedRangeMin         | 332  hashSelectedRangeMax
                                    |
  333  hashDigestOutput             | 334  hashInitialiserValue
                                    |
  320  absoluteError                | 321  relativeError
                                    |
  336  upperCILimit                 | 337  lowerCILimit
                                    |
  338  confidenceLevel              |

    Table 2: Intermediate Flow Selection Process Information Elements













D'Antonio, et al.            Standards Track                   [Page 21]

RFC 7014                Flow Selection Techniques         September 2013


9.  IANA Considerations

9.1.  Registration of Information Elements

  IANA has registered the following IEs in the "IPFIX Information
  Elements" registry at http://www.iana.org/assignments/ipfix/.

9.1.1.  flowSelectorAlgorithm

  Description:

     This Information Element identifies the Intermediate Flow
     Selection Process technique (e.g., Filtering, Sampling) that is
     applied by the Intermediate Flow Selection Process.  Most of these
     techniques have parameters; configuration parameter(s) MUST be
     clearly specified.  Further Information Elements are needed to
     fully specify packet selection with these methods and all their
     parameters.  Further method identifiers may be added to the list
     below.  It might be necessary to define new Information Elements
     to specify their parameters.  The flowSelectorAlgorithm registry
     is maintained by IANA.  New assignments for the registry will be
     administered by IANA, on a First Come First Served basis
     [RFC5226], subject to Expert Review [RFC5226].  Please note that
     the purpose of the flow selection techniques described in this
     document is the improvement of measurement functions as defined in
     the Introduction (Section 1).  Before adding new flow selector
     algorithms, their intended purposes should be determined,
     especially if those purposes contradict any policies defined in
     [RFC2804].  The designated expert(s) should consult with the
     community if a request that runs counter to [RFC2804] is received.
     The registry can be updated when specifications of the new
     method(s) and any new Information Elements are provided.  The
     group of experts must double-check the flowSelectorAlgorithm
     definitions and Information Elements with already-defined
     flowSelectorAlgorithm definitions and Information Elements for
     completeness, accuracy, and redundancy.  Those experts will
     initially be drawn from the Working Group Chairs and document
     editors of the IPFIX and PSAMP Working Groups.  The following
     identifiers for Intermediate Flow Selection Process Techniques are
     defined here:











D'Antonio, et al.            Standards Track                   [Page 22]

RFC 7014                Flow Selection Techniques         September 2013


        +----+------------------------+--------------------------+
        | ID |       Technique        |      Parameters          |
        +----+------------------------+--------------------------+
        | 1  | Systematic count-based | flowSamplingInterval     |
        |    | Sampling               | flowSamplingSpacing      |
        +----+------------------------+--------------------------+
        | 2  | Systematic time-based  | flowSamplingTimeInterval |
        |    | Sampling               | flowSamplingTimeSpacing  |
        +----+------------------------+--------------------------+
        | 3  | Random n-out-of-N      | samplingSize             |
        |    | Sampling               | samplingPopulation       |
        +----+------------------------+--------------------------+
        | 4  | Uniform probabilistic  | samplingProbability      |
        |    | Sampling               |                          |
        +----+------------------------+--------------------------+
        | 5  | Property Match         | Information Element      |
        |    | Filtering              | Value Range              |
        +----+------------------------+--------------------------+
        |   Hash-based Filtering      | hashInitialiserValue     |
        +----+------------------------+ hashFlowDomain           |
        | 6  | using BOB              | hashSelectedRangeMin     |
        +----+------------------------+ hashSelectedRangeMax     |
        | 7  | using IPSX             | hashOutputRangeMin       |
        +----+------------------------+ hashOutputRangeMax       |
        | 8  | using CRC              |                          |
        +----+------------------------+--------------------------+
        | 9  | Flow-state Dependent   |No agreed Parameters      |
        |    | Intermediate Flow      |                          |
        |    | Selection Process      |                          |
        +----+------------------------+--------------------------+

         Table 3: Intermediate Flow Selection Process Techniques

  Abstract Data Type: unsigned16

  ElementId: 390

  Data Type Semantics: identifier

  Status: current











D'Antonio, et al.            Standards Track                   [Page 23]

RFC 7014                Flow Selection Techniques         September 2013


9.1.2.  flowSelectedOctetDeltaCount

  Description:

     This Information Element specifies the volume in octets of all
     Flows that are selected in the Intermediate Flow Selection Process
     since the previous report.

  Abstract Data Type: unsigned64

  ElementId: 391

  Units: octets

  Status: current

9.1.3.  flowSelectedPacketDeltaCount

  Description:

     This Information Element specifies the volume in packets of all
     Flows that were selected in the Intermediate Flow Selection
     Process since the previous report.

  Abstract Data Type: unsigned64

  ElementId: 392

  Units: packets

  Status: current

9.1.4.  flowSelectedFlowDeltaCount

  Description:

     This Information Element specifies the number of Flows that were
     selected in the Intermediate Flow Selection Process since the last
     report.

  Abstract Data Type: unsigned64

  ElementId: 393

  Units: flows

  Status: current




D'Antonio, et al.            Standards Track                   [Page 24]

RFC 7014                Flow Selection Techniques         September 2013


9.1.5.  selectorIDTotalFlowsObserved

  Description:

     This Information Element specifies the total number of Flows
     observed by a Selector, for a specific value of SelectorID.  This
     Information Element should be used in an Options Template scoped
     to the observation to which it refers.  See Section 3.4.2.1 of the
     IPFIX protocol document [RFC7011].

  Abstract Data Type: unsigned64

  ElementId: 394

  Units: flows

  Status: current

9.1.6.  selectorIDTotalFlowsSelected

  Description:

     This Information Element specifies the total number of Flows
     selected by a Selector, for a specific value of SelectorID.  This
     Information Element should be used in an Options Template scoped
     to the observation to which it refers.  See Section 3.4.2.1 of the
     IPFIX protocol document [RFC7011].

  Abstract Data Type: unsigned64

  ElementId: 395

  Units: flows

  Status: current
















D'Antonio, et al.            Standards Track                   [Page 25]

RFC 7014                Flow Selection Techniques         September 2013


9.1.7.  samplingFlowInterval

  Description:

     This Information Element specifies the number of Flows that are
     consecutively sampled.  A value of 100 means that 100 consecutive
     Flows are sampled.  For example, this Information Element may be
     used to describe the configuration of a systematic count-based
     Sampling Selector.

  Abstract Data Type: unsigned64

  ElementId: 396

  Units: flows

  Status: current

9.1.8.  samplingFlowSpacing

  Description:

     This Information Element specifies the number of Flows between two
     "samplingFlowInterval"s.  A value of 100 means that the next
     interval starts 100 Flows (which are not sampled) after the
     current "samplingFlowInterval" is over.  For example, this
     Information Element may be used to describe the configuration of a
     systematic count-based Sampling Selector.

  Abstract Data Type: unsigned64

  ElementId: 397

  Units: flows

  Status: current















D'Antonio, et al.            Standards Track                   [Page 26]

RFC 7014                Flow Selection Techniques         September 2013


9.1.9.  flowSamplingTimeInterval

  Description:

     This Information Element specifies the time interval in
     microseconds during which all arriving Flows are sampled.  For
     example, this Information Element may be used to describe the
     configuration of a systematic time-based Sampling Selector.

  Abstract Data Type: unsigned64

  ElementId: 398

  Units: microseconds

  Status: current

9.1.10.  flowSamplingTimeSpacing

  Description:

     This Information Element specifies the time interval in
     microseconds between two "flowSamplingTimeInterval"s.  A value of
     100 means that the next interval starts 100 microseconds (during
     which no Flows are sampled) after the current
     "flowsamplingTimeInterval" is over.  For example, this Information
     Element may be used to describe the configuration of a systematic
     time-based Sampling Selector.

  Abstract Data Type: unsigned64

  ElementId: 399

  Units: microseconds

  Status: current















D'Antonio, et al.            Standards Track                   [Page 27]

RFC 7014                Flow Selection Techniques         September 2013


9.1.11.  hashFlowDomain

  Description:

     This Information Element specifies the Information Elements that
     are used by the Hash-based Flow Selector as the Hash Domain.

  Abstract Data Type: unsigned16

  ElementId: 400

  Data Type Semantics: identifier

  Status: Current

9.2.  Registration of Object Identifier

  IANA has registered the following OID in the IPFIX-SELECTOR-MIB
  Functions subregistry at http://www.iana.org/assignments/smi-numbers
  according to the procedures set forth in [RFC6615].

  +---------+-----------------------+---------------------+-----------+
  | Decimal | Name                  | Description         | Reference |
  +---------+-----------------------+---------------------+-----------+
  | 8       | flowSelectorAlgorithm | This Object         | [RFC7014] |
  |         |                       | Identifier          |           |
  |         |                       | identifies the      |           |
  |         |                       | Intermediate Flow   |           |
  |         |                       | Selection Process   |           |
  |         |                       | technique (e.g.,    |           |
  |         |                       | Filtering,          |           |
  |         |                       | Sampling) that is   |           |
  |         |                       | applied by the      |           |
  |         |                       | Intermediate Flow   |           |
  |         |                       | Selection Process   |           |
  +---------+-----------------------+---------------------+-----------+

              Table 4: Object Identifiers to Be Registered

10.  Security and Privacy Considerations

  Flow data exported by Exporting Processes, and collected by
  Collecting Processes, can be sensitive for privacy reasons and need
  to be protected.  Privacy considerations for collected data are
  provided in [RFC7011].

  Some of the described Intermediate Flow Selection Process techniques
  (e.g., Flow sampling, hash-based Flow Filtering) aim at the selection



D'Antonio, et al.            Standards Track                   [Page 28]

RFC 7014                Flow Selection Techniques         September 2013


  of a representative subset of flows in order to estimate parameters
  of the population.  An adversary may have incentives to influence the
  selection of flows, for example, to circumvent accounting or to avoid
  the detection of packets that are part of an attack.

  Security considerations concerning the choice of a hash function for
  Hash-based packet selection have been discussed in Section 6.2.3 of
  [RFC5475] and are also appropriate for Hash-based Flow Selection.
  [RFC5475] discusses the possibility of crafting Packet Streams that
  are disproportionately selected or can be used to discover hash
  function parameters.  It also describes vulnerabilities of different
  hash functions to these attacks and discusses practices to minimize
  these vulnerabilities.

  For other sampling approaches, an adversary can gain knowledge about
  the start and stop triggers in time-based systematic Sampling, e.g.,
  by sending test packets.  This knowledge might allow adversaries to
  modify their send schedule in such a way that their packets are
  disproportionately selected or not selected.  For random Sampling, an
  input to the encryption process, like the Initialization Vector of
  the CBC (Cipher Block Chaining) mode, should be used to prevent an
  adversary from predicting the selection decision [Dw01].

  Further security threats can occur when Intermediate Flow Selection
  Process parameters are configured or communicated to other entities.
  The protocol(s) for the configuration and reporting of Intermediate
  Flow Selection Process parameters are out of scope for this document.
  Nevertheless, a set of initial requirements for future configuration
  and reporting protocols are stated below:

  1.  Protection against disclosure of configuration information:
      Intermediate Flow Selection Process configuration information
      describes the Intermediate Flow Selection Process and its
      parameters.  This information can be useful to attackers.
      Attackers may craft packets that never fit the selection criteria
      in order to prevent Flows from being seen by the Intermediate
      Flow Selection Process.  They can also craft a lot of packets
      that fit the selection criteria and overload or bias subsequent
      processes.  Therefore, any transmission of configuration data
      (e.g., to configure a process or to report its actual status)
      should be protected by encryption.

  2.  Protection against modification of configuration information:
      Sending incorrect configuration information to the Intermediate
      Flow Selection Process can lead to a malfunction of the
      Intermediate Flow Selection Process.  Additionally, reporting
      incorrect configuration information from the Intermediate Flow
      Selection Process to other processes can lead to incorrect



D'Antonio, et al.            Standards Track                   [Page 29]

RFC 7014                Flow Selection Techniques         September 2013


      estimations at subsequent processes.  Therefore, any protocol
      that transmits configuration information should prevent an
      attacker from modifying configuration information.  Data
      integrity can be achieved by authenticating the data.

  3.  Protection against malicious nodes sending configuration
      information:
      The remote configuration of Intermediate Flow Selection Process
      techniques should be protected against access by unauthorized
      nodes.  This can be achieved by access control lists at the
      device that hosts the Intermediate Flow Selection Process (e.g.,
      IPFIX Exporter, IPFIX Mediator, or IPFIX Collector) and by source
      authentication.  The reporting of configuration data from an
      Intermediate Flow Selection Process has to be protected in the
      same way.  That means that protocols that report configuration
      data from the Intermediate Flow Selection Process to other
      processes also need to protect against unauthorized nodes
      reporting configuration information.

  The security threats that originate from communicating configuration
  information to and from Intermediate Flow Selection Processes cannot
  be assessed solely with the information given in this document.  A
  further and more detailed assessment of security threats is necessary
  when a specific protocol for the configuration or reporting
  configuration data is proposed.

11.  Acknowledgments

  We would like to thank the IPFIX group, especially Brian Trammell,
  Paul Aitken, and Benoit Claise, for fruitful discussions and for
  proofreading the document.

12.  References

12.1.  Normative References

  [RFC2119]     Bradner, S., "Key words for use in RFCs to Indicate
                Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC5475]     Zseby, T., Molina, M., Duffield, N., Niccolini, S., and
                F. Raspall, "Sampling and Filtering Techniques for IP
                Packet Selection", RFC 5475, March 2009.

  [RFC5476]     Claise, B., Johnson, A., and J. Quittek, "Packet
                Sampling (PSAMP) Protocol Specifications", RFC 5476,
                March 2009.





D'Antonio, et al.            Standards Track                   [Page 30]

RFC 7014                Flow Selection Techniques         September 2013


  [RFC6615]     Dietz, T., Kobayashi, A., Claise, B., and G. Muenz,
                "Definitions of Managed Objects for IP Flow Information
                Export", RFC 6615, June 2012.

  [RFC7011]     Claise, B., Ed., Trammell, B., Ed., and P. Aitken,
                "Specification of the IP Flow Information Export
                (IPFIX) Protocol for the Exchange of Flow Information",
                STD 77, RFC 7011, September 2013.

  [RFC7012]     Claise, B., Ed. and B. Trammell, Ed., "Information
                Model for IP Flow Information Export (IPFIX)",
                RFC 7012, September 2013.

12.2.  Informative References

  [Bra75]       Brayer, K., "Evaluation of 32 Degree Polynomials in
                Error Detection on the SATIN IV Autovon Error
                Patterns", National Technical Information Service,
                August 1975.

  [CoHa08]      Cormode, G. and M. Hadjieleftheriou, "Finding Frequent
                Items in Data Streams", Proceedings of the 34th
                International Conference on Very Large DataBases
                (VLDB), Auckland, New Zealand, Volume 1, Issue 2, pages
                1530-1541, August 2008.

  [DuLT01]      Duffield, N., Lund, C., and M. Thorup, "Charging from
                Sampled Network Usage", ACM SIGCOMM Internet
                Measurement Workshop (IMW) 2001, pages 245-256, San
                Francisco, CA, USA, November 2001.

  [Dw01]        Dworkin, M., "Recommendation for Block Cipher Modes of
                Operation - Methods and Techniques", NIST Special
                Publication 800-38A, December 2001.

  [EsVa01]      Estan, C. and G,. Varghese, "New Directions in Traffic
                Measurement and Accounting: Focusing on the Elephants,
                Ignoring the Mice", ACM SIGCOMM Internet Measurement
                Workshop (IMW) 2001, San Francisco, CA, USA,
                November 2001.

  [IANA-IPFIX]  IANA, "IP Flow Information Export (IPFIX) Entities
                Registry", <http://www.iana.org/assignments/ipfix/>.

  [KaPS03]      Karp, R., Papadimitriou, C., and S. Shenker, "A simple
                algorithm for finding frequent elements in sets and
                bags", ACM Transactions on Database Systems, Volume 28,
                pages 51-55, March 2003.



D'Antonio, et al.            Standards Track                   [Page 31]

RFC 7014                Flow Selection Techniques         September 2013


  [MSZC10]      Mai, J., Sridharan, A., Zang, H., and C. Chuah, "Fast
                Filtered Sampling", Computer Networks Volume 54, Issue
                11, pages 1885-1898, ISSN 1389-1286, August 2010.

  [MaMo02]      Manku, G. and R. Motwani, "Approximate Frequency Counts
                over Data Streams", Proceedings of the 28th
                International Conference on Very Large DataBases
                (VLDB), Hong Kong, China, pages 346-357, August 2002.

  [RFC2804]     IAB and IESG, "IETF Policy on Wiretapping", RFC 2804,
                May 2000.

  [RFC3917]     Quittek, J., Zseby, T., Claise, B., and S. Zander,
                "Requirements for IP Flow Information Export (IPFIX)",
                RFC 3917, October 2004.

  [RFC5226]     Narten, T. and H. Alvestrand, "Guidelines for Writing
                an IANA Considerations Section in RFCs", BCP 26,
                RFC 5226, May 2008.

  [RFC5470]     Sadasivan, G., Brownlee, N., Claise, B., and J.
                Quittek, "Architecture for IP Flow Information Export",
                RFC 5470, March 2009.

  [RFC6183]     Kobayashi, A., Claise, B., Muenz, G., and K. Ishibashi,
                "IP Flow Information Export (IPFIX) Mediation:
                Framework", RFC 6183, April 2011.
























D'Antonio, et al.            Standards Track                   [Page 32]

RFC 7014                Flow Selection Techniques         September 2013


Authors' Addresses

  Salvatore D'Antonio
  University of Napoli "Parthenope"
  Centro Direzionale di Napoli Is. C4
  Naples  80143
  Italy

  Phone: +39 081 5476766
  EMail: [email protected]


  Tanja Zseby
  CAIDA/FhG FOKUS
  San Diego Supercomputer Center (SDSC)
  University of California, San Diego (UCSD)
  9500 Gilman Drive
  La Jolla, CA  92093-0505
  USA

  EMail: [email protected]


  Christian Henke
  Tektronix Communications Berlin
  Wohlrabedamm 32
  Berlin  13629
  Germany

  Phone: +49 17 2323 8717
  EMail: [email protected]


  Lorenzo Peluso
  University of Napoli
  Via Claudio 21
  Napoli  80125
  Italy

  Phone: +39 081 7683821
  EMail: [email protected]










D'Antonio, et al.            Standards Track                   [Page 33]