Internet Engineering Task Force (IETF)                   A. Mancuso, Ed.
Request for Comments: 6953                                        Google
Category: Informational                                      S. Probasco
ISSN: 2070-1721
                                                               B. Patil
                                                          Cisco Systems
                                                               May 2013


           Protocol to Access White-Space (PAWS) Databases:
                      Use Cases and Requirements

Abstract

  Portions of the radio spectrum that are assigned to a particular use
  but are unused or unoccupied at specific locations and times are
  defined as "white space".  The concept of allowing additional
  transmissions (which may or may not be licensed) in white space is a
  technique to "unlock" existing spectrum for new use.  This document
  includes the problem statement for the development of a protocol to
  access a database of white-space information followed by use cases
  and requirements for that protocol.  Finally, requirements associated
  with the protocol are presented.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Not all documents
  approved by the IESG are a candidate for any level of Internet
  Standard; see Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc6953.












Mancuso, et al.               Informational                     [Page 1]

RFC 6953             PAWS Use Cases and Requirements            May 2013


Copyright Notice

  Copyright (c) 2013 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
    1.1.  Introduction to White Space  . . . . . . . . . . . . . . .  3
    1.2.  Scope  . . . . . . . . . . . . . . . . . . . . . . . . . .  4
      1.2.1.  In Scope . . . . . . . . . . . . . . . . . . . . . . .  4
      1.2.2.  Out of Scope . . . . . . . . . . . . . . . . . . . . .  4
  2.  Conventions Used in This Document  . . . . . . . . . . . . . .  5
    2.1.  Terminology  . . . . . . . . . . . . . . . . . . . . . . .  5
    2.2.  Requirements Language  . . . . . . . . . . . . . . . . . .  5
  3.  Problem Statement  . . . . . . . . . . . . . . . . . . . . . .  6
    3.1.  Global Applicability . . . . . . . . . . . . . . . . . . .  6
    3.2.  Database Discovery . . . . . . . . . . . . . . . . . . . .  8
    3.3.  Device Registration  . . . . . . . . . . . . . . . . . . .  8
    3.4.  Protocol . . . . . . . . . . . . . . . . . . . . . . . . .  9
    3.5.  Data Model Definition  . . . . . . . . . . . . . . . . . .  9
  4.  Use Cases  . . . . . . . . . . . . . . . . . . . . . . . . . .  9
    4.1.  Master-Slave White-Space Networks  . . . . . . . . . . . .  9
    4.2.  Offloading: Moving Traffic to a White-Space Network  . . . 11
    4.3.  White Space Serving as Backhaul  . . . . . . . . . . . . . 13
    4.4.  Rapid Network Deployment during Emergencies  . . . . . . . 14
    4.5.  White Space Used for Local TV Broadcaster  . . . . . . . . 15
  5.  Requirements . . . . . . . . . . . . . . . . . . . . . . . . . 16
    5.1.  Data Model Requirements  . . . . . . . . . . . . . . . . . 16
    5.2.  Protocol Requirements  . . . . . . . . . . . . . . . . . . 17
    5.3.  Operational Requirements . . . . . . . . . . . . . . . . . 19
    5.4.  Guidelines . . . . . . . . . . . . . . . . . . . . . . . . 19
  6.  Security Considerations  . . . . . . . . . . . . . . . . . . . 20
  7.  Acknowledgments  . . . . . . . . . . . . . . . . . . . . . . . 22
  8.  References . . . . . . . . . . . . . . . . . . . . . . . . . . 22
    8.1.  Normative References . . . . . . . . . . . . . . . . . . . 22
    8.2.  Informative References . . . . . . . . . . . . . . . . . . 22




Mancuso, et al.               Informational                     [Page 2]

RFC 6953             PAWS Use Cases and Requirements            May 2013


1.  Introduction

1.1.  Introduction to White Space

  Wireless spectrum is a commodity that is regulated by governments.
  The spectrum is used for various purposes, which include, but are not
  limited to, entertainment (e.g., radio and television), communication
  (e.g., telephony and Internet access), military (e.g., radars, etc.),
  and navigation (e.g., satellite communication, GPS).  Portions of the
  radio spectrum that are assigned to a licensed (primary) user but are
  unused or unoccupied at specific locations and times are defined as
  "white space".  The concept of allowing additional (secondary)
  transmissions (which may or may not be licensed) in white space is a
  technique to "unlock" existing spectrum for new use.

  An obvious requirement is that these secondary transmissions do not
  interfere with the assigned use of the spectrum.  One interesting
  observation is that often, in a given physical location, the primary
  user(s) may not be using the entire band assigned to them.  The
  available spectrum for secondary transmissions would then depend on
  the location of the secondary user.  The fundamental issue is how to
  determine, for a specific location and specific time, if any of the
  assigned spectrum is available for secondary use.

  Academia and industry have studied multiple cognitive radio [CRADIO]
  mechanisms for use in such a scenario.  One simple mechanism is to
  use a geospatial database that contains the spatial and temporal
  profile of all primary licensees' spectrum usage, and require
  secondary users to query the database for available spectrum that
  they can use at their location.  Such databases can be accessible and
  queryable by secondary users on the Internet.

  Any entity that is assigned spectrum that is not densely used may be
  asked by a governmental regulatory agency to share it to allow for
  more intensive use of the spectrum.  Providing a mechanism by which
  secondary users share the spectrum with the primary user is
  attractive in many bands, in many countries.

  This document includes the problem statement followed by use cases
  and requirements associated with the use of white-space spectrum by
  secondary users via a database query protocol.  The final sections
  include the requirements associated with such a protocol.  Note that
  the IETF has undertaken to develop a database query protocol (see
  [PAWS]).







Mancuso, et al.               Informational                     [Page 3]

RFC 6953             PAWS Use Cases and Requirements            May 2013


1.2.  Scope

1.2.1.  In Scope

  This document covers the requirements for a protocol to allow a
  device to access a database to obtain spectrum availability
  information.  Such a protocol should allow a device to perform the
  following actions:

  1.  Determine the relevant database to query.

  2.  Connect to and optionally register with the database using a
      well-defined protocol.

  3.  Provide geolocation and perhaps other data to the database using
      a well-defined format for querying the database.

  4.  Receive in response to the query a list of available white-space
      frequencies at the specified geolocation using a well-defined
      format for the information.

  5.  Send an acknowledgment to the database with information
      containing channels selected for use by the device and other
      device operation parameters.

  Note: The above protocol actions should explicitly or implicitly
  support the ability of devices to re-register and/or re-query the
  database when they change their locations or operating parameters.
  This will allow them to receive permission to operate in their new
  locations and/or with their new operating parameters, and to send
  acknowledgments to the database that include information on their new
  operating parameters.

1.2.2.  Out of Scope

  The following topics are out of scope for this specification:

  1.  It is the device's responsibility to query the database for new
      spectrum when the device moves, changes operating parameters,
      loses connectivity, etc.  Other synchronization mechanisms are
      out of scope.

  2.  A rogue device may operate without contacting the database to
      obtain available spectrum.  Hence, enforcement of spectrum usage
      by devices is out of scope.






Mancuso, et al.               Informational                     [Page 4]

RFC 6953             PAWS Use Cases and Requirements            May 2013


  3.  The protocol defines communications between the database and
      devices.  The protocol for communications between devices is out
      of scope.

  4.  Coexistence and interference avoidance of white-space devices
      within the same spectrum are out of scope.

  5.  Provisioning (releasing new spectrum for white-space use) is out
      of scope.

2.  Conventions Used in This Document

2.1.  Terminology

  Database:  A database is an entity that contains current information
     about available spectrum at a given location and time, as well as
     other types of information related to spectrum availability and
     usage.

  Device Class:  Identifies classes of devices including fixed, mobile,
     portable, etc.  May also indicate if the device is indoor or
     outdoor.

  Device ID:  An identifier for a device.

  Master Device:  A device that queries the database, on its own behalf
     and/or on behalf of a slave device, to obtain available spectrum
     information.

  Slave Device:  A device that queries the database through a master
     device.

  Trusted Database:  A database that is trusted by a device or provides
     data objects that are trusted by a device.

  White Space (WS):  Radio spectrum that is available for secondary use
     at a specific location and time.

  White-Space Device (WSD):  A device that uses white-space spectrum as
     a secondary user.  A white-space device can be a fixed or portable
     device such as an access point, base station, or cell phone.

2.2.  Requirements Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [RFC2119].




Mancuso, et al.               Informational                     [Page 5]

RFC 6953             PAWS Use Cases and Requirements            May 2013


3.  Problem Statement

  The use of white-space spectrum is enabled via the capability of a
  device to query a database and obtain information about the
  availability of spectrum for use at a given location.  The databases
  are reachable via the Internet, and the devices querying these
  databases are expected to have some form of Internet connectivity,
  directly or indirectly.  While databases are expected to support the
  rule set(s) of one or more regulatory domains, and the regulations
  and available spectrum associated with each rule set may vary, the
  fundamental operation of the protocol must be independent of any
  particular regulatory environment.

  An example of the high-level architecture of the devices and
  databases is shown in Figure 1.

                -----------
                | Master  |
                |WS Device|                              ------------
                |Lat: X   |\           .---.    /--------|Database A|
                |Long: Y  | \         (     )  /         ------------
                -----------  \-------/       \/               o
                                    ( Internet)               o
                -----------  /------(         )\              o
                | Master  | /        (       )  \             o
                |WS Device|/          (_____)    \       ------------
                |Lat: X   |                       \------|Database B|
                |Long: Y  |                              ------------
                -----------

     Figure 1: High-Level View of White-Space Database Architecture

  Note that there could be multiple databases serving white-space
  devices.  In some countries, such as the U.S., the regulator has
  determined that multiple databases may provide service to white-space
  devices.

  A messaging interface between the white-space devices and the
  database is required for operating a network using the white-space
  spectrum.  The following sections discuss various aspects of such an
  interface and the need for a standard.

3.1.  Global Applicability

  The use of white-space spectrum is currently approved or being
  considered in multiple regulatory domains, whose rules may differ.
  However, the need for devices that intend to use the spectrum to
  communicate with a database remains a common feature.  The database



Mancuso, et al.               Informational                     [Page 6]

RFC 6953             PAWS Use Cases and Requirements            May 2013


  implements rules that protect all primary users, independent of the
  characteristics of the white-space devices.  It also provides a way
  to specify a schedule of use, since some primary users (for example,
  wireless microphones) only operate in limited time slots.

  Devices need to be able to query a database, directly or indirectly,
  over the public Internet and/or private IP networks prior to
  operating in available spectrum.  Information about available
  spectrum, schedule, power, etc., are provided by the database as a
  response to the query from a device.  The messaging interface needs
  to be:

  1.  Interface agnostic - An interface between a master white-space
      device and database can be wired or unwired (e.g., a radio/air
      interface technology such as IEEE 802.11af, IEEE 802.15.4m, IEEE
      802.16, IEEE 802.22, LTE, etc.)  However, the messaging interface
      between a master white-space device and the database should be
      agnostic to the interface used for such messaging while being
      cognizant of the characteristics of the interface technology and
      the need to include any relevant attributes in the query to the
      database.

  2.  Spectrum agnostic - The spectrum used by primary and secondary
      users varies by country.  Some spectrum bands have an explicit
      notion of a "channel": a defined swath of spectrum within a band
      that has some assigned identifier.  Other spectrum bands may be
      subject to white-space sharing, but only have actual frequency
      low/high parameters to define primary and secondary use.  The
      protocol should be able to be used in any spectrum band where
      white-space sharing is permitted.

  3.  Globally applicable - A common messaging interface between white-
      space devices and databases will enable the use of such spectrum
      for various purposes on a global basis.  Devices can operate in
      any location where such spectrum is available and a common
      interface ensures uniformity in implementations and deployment.
      To allow the global use of white-space devices in different
      countries (whatever the regulatory domain), the protocol should
      support the database that communicates the applicable regulatory
      rule-set information to the white-space device.

  4.  Built on flexible and extensible data structures - Different
      databases are likely to have different requirements for the kinds
      of data required for registration (different regulatory rule sets
      that apply to the registration of devices) and other messages
      sent by the device to the database.  For instance, different
      regulators might require different device-characteristic
      information to be passed to the database.



Mancuso, et al.               Informational                     [Page 7]

RFC 6953             PAWS Use Cases and Requirements            May 2013


3.2.  Database Discovery

  The master device must obtain the address of a trusted database,
  which it will query for available white-space spectrum.  If the
  master device uses a discovery service to locate a trusted database,
  it may perform the following steps (this description is intended as
  descriptive, not prescriptive):

  1.  The master device constructs and sends a request (e.g., over the
      Internet) to a trusted discovery service.

  2.  If no acceptable response is received within a pre-configured
      time limit, the master device concludes that no trusted database
      is available.  If at least one response is received, the master
      device evaluates the response(s) to determine if a trusted
      database can be identified where the master device is able to
      receive service from the database.  If so, it establishes contact
      with the trusted database.

  3.  The master device establishes a white-space network as described
      in Section 4.

  Optionally, and in place of steps 1-2 above, the master device can be
  pre-configured with the address (e.g., URI) of one or more trusted
  databases.  The master device can establish contact with one of these
  trusted databases.

3.3.  Device Registration

  The master device may register with the database before it queries
  the database for available spectrum.  A registration process may
  consist of the following steps:

  1.  The master device sends registration information to the database.
      This information may include the device ID; serial number
      assigned by the manufacturer; device location; device antenna
      height above ground; name of the individual or business that owns
      the device; and the name, postal address, email address, and
      phone number of a contact person responsible for the device's
      operation.

  2.  The database responds to the registration request with an
      acknowledgment to indicate the success of the registration
      request or with an error if the registration was unsuccessful.
      Additional information may be provided by the database in its
      response to the master device.





Mancuso, et al.               Informational                     [Page 8]

RFC 6953             PAWS Use Cases and Requirements            May 2013


3.4.  Protocol

  A protocol that enables a white-space device to query a database to
  obtain information about available spectrum is needed.  A device may
  be required to register with the database with some credentials prior
  to being allowed to query.  The requirements for such a protocol are
  specified in this document.

3.5.  Data Model Definition

  The contents of the queries and response need to be specified.  A
  data model is required; it must enable the white-space device to
  query the database while including all the relevant information, such
  as geolocation, radio technology, power characteristics, etc., which
  may be country, spectrum, and regulatory dependent.  All databases
  are able to interpret the data model and respond to the queries using
  the same data model that is understood by all devices.

4.  Use Cases

  There are many potential use cases for white-space spectrum -- for
  example, providing broadband Internet access in urban and densely
  populated hotspots, as well as rural and remote, underserved areas.
  Available white-space spectrum may also be used to provide Internet
  'backhaul' for traditional Wi-Fi hotspots or for use by towns and
  cities to monitor/control traffic lights, read utility meters, and
  the like.  Still other use cases include the ability to offload data
  traffic from another Internet access network (e.g., 3G cellular
  network) or to deliver data, information, or a service to a user
  based on the user's location.  Some of these use cases are described
  in the following sections.

4.1.  Master-Slave White-Space Networks

  There are a number of common scenarios in which a master white-space
  device will act as proxy or mediator for one or more slave devices
  using its connection to the Internet to query the database for
  available spectrum for itself and for one or more slave devices.
  These slave devices may be fixed or mobile, in close proximity with
  each other (indoor network or urban hotspot), or at a distance (rural
  or remote WAN).  Once slave devices switch to white-space spectrum
  for their communications, they may connect through the master to the
  Internet or use white-space spectrum for intra-network communications
  only.  The master device can continue to arbitrate and control white-
  space communications by slave devices, and it may notify them when
  they are required to change white-space frequencies or cease white-
  space communications.




Mancuso, et al.               Informational                     [Page 9]

RFC 6953             PAWS Use Cases and Requirements            May 2013


  Figure 2 depicts the general architecture of such a simple master-
  slave network in which the master device communicates with a database
  on its own behalf and on behalf of slave devices.

         --------
         |Slave |
         |Device| \             \|/                          ----------
         |  1   |  (Air)         |                           |Database|
         --------       \        |                 (----)   /|--------|
            |            \ ------|------          (      ) /
            |             \|  Master   |         /        \
          --------        /|           |======= ( Internet )
          |Slave |       / |  Device   |         \        /
          |Device|  (Air)  |           |          (      )
          |  2   | /       |-----------|           (----)
          --------        /
            o   |        /
            o   |     (Air)
            o   |      /
          --------    /
          |Slave |   /
          |Device|  /
          |  n   |
          --------

               Figure 2: Master-Slave White-Space Network

  The protocol requirements for these master-slave devices and other
  similar scenarios is essentially the same: the protocol must support
  the ability of a master device to make available-spectrum query
  requests on behalf of slave devices, passing device identification,
  geolocation, and other slave device parameters to the database as
  required to obtain a list of white-space spectrum available for use
  by one or more slave devices.  Of course, different use cases will
  use this spectrum information in different ways, and the details of
  master/slave communications may be different for different use cases.

  Common steps that may occur in master-slave networks include the
  following:

  1.  The master device powers up.

  2.  Slave devices may power up and associate with the master device
      via Wi-Fi or some other over-the-air, non-white-space spectrum.
      Until the slave device is allocated white-space spectrum, any
      master-slave or slave-slave communications occurs over such non-
      white-space spectrum.




Mancuso, et al.               Informational                    [Page 10]

RFC 6953             PAWS Use Cases and Requirements            May 2013


  3.  The master has Internet connectivity, determines (or knows) its
      location, and establishes a connection to a trusted database (see
      Section 3.2).

  4.  The master may register with the trusted database (see
      Section 3.3).

  5.  The master sends a query to the trusted database requesting a
      list of available white-space spectrum based upon its
      geolocation.  Query parameters may include the master's location,
      device identifier, and antenna height.  The master may send
      available-spectrum requests to the database on behalf of slave
      devices.

  6.  The database responds to the master's query with a list of
      available white-space spectrum, associated maximum power levels,
      and durations of time for spectrum use.  If the master made
      requests on behalf of slave devices, the master may transmit the
      obtained available-spectrum lists to the slaves (or the master
      may allocate spectrum to slaves from the obtained spectrum
      lists).

  7.  The master may inform the database of the spectrum and power
      level it selects from the available spectrum list.  If a slave
      device has been allocated available white-space spectrum, the
      slave may inform the master of the spectrum and power level it
      has chosen, and the master may, in turn, relay such slave device
      usage to the database.

  8.  Further communication among masters and slaves over the white-
      space network may occur via the selected/allocated white-space
      spectrum frequencies.

  Note: Steps 5 through 7 may be repeated by the master device when it
  (or a slave device that uses the master as a proxy to communicate
  with the database) changes its location or operating parameters --
  for example, after a master changes location, it may query the
  database for available spectrum at its new location, then acknowledge
  the subsequent response received from the database with information
  on the spectrum and power levels it is using at the new location.

4.2.  Offloading: Moving Traffic to a White-Space Network

  This scenario is a variant of the master-slave network described in
  the previous use case.  In this scenario, an access point (AP) offers
  a white-space service that offloads Internet traffic as an
  alternative data path to a more congested or costly Internet wire,
  wireless, or satellite service.



Mancuso, et al.               Informational                    [Page 11]

RFC 6953             PAWS Use Cases and Requirements            May 2013


  Figure 3 shows an example of deployment of this scenario.

                             \|/
                              |
                           |--|----------|
         \|/              /|Access Point |\
          |       (Air)--/ |-------------| \
        --|------ /                         \               -----------
       |Portable|/                           \      (----)  | Database|
       | Device |                             \    (      ) /----------
       |--------|\                             \  /        \
                  \                             X( Internet )
                   \                           /  \        /
                    (Air)                     /    (      )
                       \                     /      (----)
                        \                   /
                         \|---------------|/
                          |    Metered    |
                          |    Service    |
                          |---------------|

          Figure 3: Offloading Traffic to a White-Space Network

  A simplified operation scenario of offloading content, such as video
  stream, from a congested or costly Internet connection to a white-
  space service provided by an AP consists of the following steps:

  1.  The AP contacts the database to determine channels it can use.

  2.  The portable device connects to a paid Internet service and
      selects a video for streaming.

  3.  The portable device determines if it can offload to a white-space
      AP:

      A.  If the portable device knows its location, it

          1.  asks the database (using the paid service) for available
              white-space spectrum;

          2.  listens for and connects to the AP over the permitted
              white-space spectrum.

      B.  If the portable device does not have GPS or other means to
          determine its position, it

          1.  uses non-white-space spectrum to listen for and connect
              to the AP;



Mancuso, et al.               Informational                    [Page 12]

RFC 6953             PAWS Use Cases and Requirements            May 2013


          2.  asks the AP to query the database for permitted white-
              space spectrum on its behalf;

          3.  uses the permitted white-space spectrum to connect to the
              AP.

  4.  The portable device accesses the Internet through the AP to
      stream the selected video.

4.3.  White Space Serving as Backhaul

  In this use case, an Internet connectivity service is provided to
  users over a common wireless standard, such as Wi-Fi, with a white-
  space master/slave network providing backhaul connectivity to the
  Internet.  Note that Wi-Fi is referenced in Figure 4 and the
  following discussion, but any other technology can be substituted in
  its place.

  Figure 4 shows an example of deployment of this scenario.
                        \|/   White      \|/    \|/     Wi-Fi \|/
                         |    Space       |      |             |
                         |                |      |           |-|----|
           (----)      |-|----|         |-|------|-|         | Wi-Fi|
          (      )     |Master|         | Slave    |--(Air)--| Dev  |
         /        \    |      |--(Air)--| Bridge   |         |------|
        ( Internet )---|      |         | to Wi-Fi |
         \        /    |------|         |----------|           \|/
          (      )                                  \           |
           (----)                                    \(Air)   |-|----|
                                                           \--| Wi-Fi|
                                                              | Dev  |
                                                              |------|

             Figure 4: White-Space Network Used for Backhaul

  Once the bridged device (Slave Bridge + Wi-Fi) is connected to a
  master and WS network, a simplified operation scenario of backhaul
  for Wi-Fi consists of the following steps:

  1.  A bridged slave device (Slave Bridge + Wi-Fi) is connected to a
      master device operating in the WS spectrum (the master obtains
      available white-space spectrum as described in Section 4.1).

  2.  Once the slave device is connected to the master, the Wi-Fi
      access point has Internet connectivity as well.

  3.  End users attach to the Wi-Fi network via their Wi-Fi-enabled
      devices and receive Internet connectivity.



Mancuso, et al.               Informational                    [Page 13]

RFC 6953             PAWS Use Cases and Requirements            May 2013


4.4.  Rapid Network Deployment during Emergencies

  Organizations involved in handling emergency operations maintain an
  infrastructure that relies on dedicated spectrum for their
  operations.  However, such infrastructures are often affected by the
  disasters they handle.  To set up a replacement network, spectrum
  needs to be quickly cleared and reallocated to the crisis response
  organization.  Automation of this allocation and assignment is often
  the best solution.  A preferred option is to make use of a robust
  protocol that has been adopted and implemented by radio
  manufacturers.  A typical network topology solution might include
  wireless access links to the public Internet or private network,
  wireless ad hoc network radios working independently of a fixed
  infrastructure, and satellite links for backup where lack of
  coverage, overload, or outage of wireless access links can occur.

  Figure 5 shows an example of deployment of this scenario.

                               \|/
                                | ad hoc
                                |
                              |-|-------------|
                              | Master node   |    |-------------|
         \|/                  | with          |    | White-Space |
          | ad hoc           /| backhaul link |    | Database    |
          |             /---/ |---------------|    |-------------|
       ---|------------/                |      \           /
       | Master node   |                |       |      (--/--)
       | without       |                |        -----(       )
       | backhaul link |                |  Wireless  / Private \
       ----------------\                |    Access (   net or  )
                        \                |           \ Internet )
                         \    \|/        |      ------(        /
                          \    | ad hoc  |      |      (------)
                           \   |         |      /          \
                            \--|-------------  /Satellite   ----------
                            | Master node   | / Link        | Other  |
                            | with          |/              | nodes  |
                            | backhaul link |               ----------
                            -----------------

     Figure 5: Rapidly Deployed Network with Partly Connected Nodes

  In the ad hoc network, all nodes are master nodes that allocate radio
  frequency (RF) channels from the database (as described in
  Section 4.1).  However, the backhaul link may not be available to all
  nodes, such as depicted for the left node in the above figure.  To
  handle RF channel allocation for such nodes, a master node with a



Mancuso, et al.               Informational                    [Page 14]

RFC 6953             PAWS Use Cases and Requirements            May 2013


  backhaul link relays or proxies the database query for them.  So
  master nodes without a backhaul link follow the procedure as defined
  for clients.  The ad hoc network radios utilize the provided RF
  channels.  Details on forming and maintenance of the ad hoc network,
  including repair of segmented networks caused by segments operating
  on different RF channels, is out of scope of spectrum allocation.

4.5.  White Space Used for Local TV Broadcaster

  Available white-space spectrum can be deployed in novel ways to
  leverage the public use of hand-held and portable devices.  One such
  use is white-space spectrum used for local TV transmission of audio-
  video content to portable devices used by individuals in attendance
  at an event.  In this use case, audience members at a seminar,
  entertainment event, or other venue plug a miniature TV receiver fob
  into their laptop, computer tablet, cell phone, or other portable
  device.  A master device obtains a list of available white-space
  spectrum (as described in Section 4.1), then broadcasts audio-video
  content locally to the audience over one of the available
  frequencies.  Audience members receive the content through their
  miniature TV receivers tuned to the appropriate white-space band for
  display on the monitors of their portable devices.

  Figure 6 shows an example of deployment of this scenario.

                                               |------------|
                                               |White-Space |
                                               | Database   |
                                     .---.   / |------------|
             |-----------|          (     ) /
             |  Master   |         /       \
             |           |========( Internet)
             |-----------|         \       /
                   |                (     )
                  /|\                (---)

             (White-Space
              Broadcast)

        \|/   \|/   \|/   \|/   \|/   \|/   \|/
         |     |     |     |     |     |     |     .................
       ----- ----- ----- ----- ----- ----- -----
       |   | |   | |   | |   | |   | |   | |   |
       |   | |   | |   | |   | |   | |   | |   |
       ----- ----- ----- ----- ----- ----- -----
      USB TV receivers connected to laptops, cell phones, tablets ...

            Figure 6: White Space Used for Local TV Broadcast



Mancuso, et al.               Informational                    [Page 15]

RFC 6953             PAWS Use Cases and Requirements            May 2013


5.  Requirements

5.1.  Data Model Requirements

  D.1  The data model MUST support specifying the geolocation of the
       white-space device, the uncertainty in meters, the height and
       its uncertainty, and the percentage of confidence in the
       location determination.  The data model MUST support [WGS84].

  D.2  The data model MUST support specifying the data and other
       applicable requirements of the rule set that applies to the
       white-space device at a specified location.

  D.3  The data model MUST support device description data that
       identifies a white-space device (serial number, certification
       IDs, etc.) and describes device characteristics, such as device
       class (fixed, mobile, portable, indoor, outdoor, etc.), Radio
       Access Technology (RAT), etc.

  D.4  The data model MUST support specifying a manufacturer's serial
       number for a white-space device.

  D.5  The data model MUST support specifying the antenna- and
       radiation-related parameters of the white-space device, such as:

          antenna height

          antenna gain

          maximum output power, Equivalent Isotropic Radiated Power
          (EIRP) in dBm (decibels referenced to 1 milliwatt)

          antenna radiation pattern (directional dependence of the
          strength of the radio signal from the antenna)

          spectrum mask with lowest and highest possible frequency

          spectrum mask in dBr (decibels referenced to an arbitrary
          reference level) from peak transmit power in EIRP, with
          specific power limit at any frequency linearly interpolated
          between adjacent points of the spectrum mask

          measurement resolution bandwidth for EIRP measurements

  D.6  The data model MUST support specifying owner and operator
       contact information for a transmitter.  This includes the name
       of the transmitter owner and the name, postal address, email
       address, and phone number of the transmitter operator.



Mancuso, et al.               Informational                    [Page 16]

RFC 6953             PAWS Use Cases and Requirements            May 2013


  D.7  The data model MUST support specifying spectrum availability.
       Spectrum units are specified by low and high frequencies and may
       have an optional channel identifier.  The data model MUST
       support a schedule including start time and stop time for
       spectrum unit availability.  The data model MUST support maximum
       power level for each spectrum unit.

  D.8  The data model MUST support specifying spectrum availability
       information for a single location and an area (e.g., a polygon
       defined by multiple location points or a geometric shape such as
       a circle).

  D.9  The data model MUST support specifying the frequencies and power
       levels selected for use by a white-space device in the
       acknowledgment message.

5.2.  Protocol Requirements

  P.1   The master device identifies a database to which it can
        register, make spectrum availability requests, etc.  The
        protocol MUST support the discovery of an appropriate database
        given a location provided by the master device.  The master
        device MAY select a database by discovery at run time or by
        means of a pre-programmed URI.  The master device MAY validate
        discovered or configured database addresses against a list of
        known databases (e.g., a list of databases approved by a
        regulatory body).

  P.2   The protocol MUST support the database informing the master of
        the regulatory rules (rule set) that applies to the master
        device (or any slave devices on whose behalf the master is
        contacting the database) at a specified location.

  P.3   The protocol MUST provide the ability for the database to
        authenticate the master device.

  P.4   The protocol MUST provide the ability for the master device to
        verify the authenticity of the database with which it is
        interacting.

  P.5   The messages sent by the master device to the database and the
        messages sent by the database to the master device MUST support
        integrity protection.

  P.6   The protocol MUST provide the capability for messages sent by
        the master device and database to be encrypted.





Mancuso, et al.               Informational                    [Page 17]

RFC 6953             PAWS Use Cases and Requirements            May 2013


  P.7   Tracking of master or slave device uses of white-space spectrum
        by database administrators, regulatory agencies, and others who
        have access to a white-space database could be considered
        invasive of privacy, including privacy regulations in specific
        environments.  The PAWS protocol SHOULD support privacy-
        sensitive handling of device-provided data where such
        protection is feasible, allowed, and desired.

  P.8   The protocol MUST support the master device registering with
        the database; see Device Registration (Section 3.3).

  P.9   The protocol MUST support a registration acknowledgment
        indicating the success or failure of the master device
        registration.

  P.10  The protocol MUST support an available spectrum request from
        the master device to the database, which may include one or
        more of the data items listed in Data Model Requirements
        (Section 5.1).  The request may include data that the master
        device sends on its own behalf and/or on behalf of one or more
        slave devices.

  P.11  The protocol MUST support an available spectrum response from
        the database to the master device, which may include one or
        more of the data items listed in Data Model Requirements
        (Section 5.1).  The response may include data related to master
        and/or slave device operation.

  P.12  The protocol MUST support a spectrum usage message from the
        master device to the database, which may include one or more of
        the data items listed in Data Model Requirements (Section 5.1).
        The message may include data that the master device sends on
        its own behalf and/or on behalf of one or more slave devices.

  P.13  The protocol MUST support a spectrum usage message
        acknowledgment.

  P.14  The protocol MUST support a validation request from the master
        device to the database to validate a slave device, which should
        include information necessary to identify the slave device to
        the database.

  P.15  The protocol MUST support a validation response from the
        database to the master to indicate if the slave device is
        validated by the database.  The validation response MUST
        indicate the success or failure of the validation request.





Mancuso, et al.               Informational                    [Page 18]

RFC 6953             PAWS Use Cases and Requirements            May 2013


  P.16  The protocol MUST support the capability for the database to
        inform master devices of changes to spectrum availability
        information.

5.3.  Operational Requirements

  This section contains operational requirements of a database-device
  system, independent of the requirements of the protocol for
  communication between the database and devices.

  O.1  The master device must be able to connect to the database to
       send requests to the database and receive responses to, and
       acknowledgments of, its requests from the database.

  O.2  A master device MUST be able to determine its location including
       uncertainty and confidence level.  A fixed master device may use
       a location programmed at installation.

  O.3  The master device MUST be configured to understand and comply
       with the requirements of the rule set of the regulatory body
       that apply to its operation at its location.

  O.4  A master device MUST query the database for the available
       spectrum at a specified location before starting radio
       transmission in white space at that location.

  O.5  A master device MUST be able to query the database for the
       available spectrum on behalf of a slave device at a specified
       location before the slave device starts radio transmission in
       white space at that location.

  O.6  The database MUST respond to an available spectrum request.

5.4.  Guidelines

  White-space technology itself is expected to evolve and include
  attributes such as coexistence and interference avoidance, spectrum
  brokering, alternative spectrum bands, etc.  The design of the data
  model and protocol should be cognizant of the evolving nature of
  white-space technology and consider the following set of guidelines
  in the development of the data model and protocol:

  1.  The data model SHOULD provide a modular design separating
      messaging-specific, administrative-specific, and spectrum-
      specific parts into distinct modules.

  2.  The protocol SHOULD support determination of which
      administrative-specific and spectrum-specific modules are used.



Mancuso, et al.               Informational                    [Page 19]

RFC 6953             PAWS Use Cases and Requirements            May 2013


6.  Security Considerations

  PAWS is a protocol whereby a master device requests a schedule of
  available spectrum at its location (or the location of its slave
  devices) before it (or they) can operate using those frequencies.
  Whereas the information provided by the database must be accurate and
  conform to applicable regulatory rules, the database cannot enforce,
  through the protocol, that a client device uses only the spectrum it
  provided.  In other words, devices can put energy in the air and
  cause interference without asking the database.  Hence, PAWS security
  considerations do not include protection against malicious use of the
  white-space spectrum.

  Threat model for the PAWS protocol:

     Assumptions:

        The link between the master device and the database can be
        wired or wireless and provides IP connectivity.  It is assumed
        that an attacker has full access to the network medium between
        the master device and the database.  The attacker may be able
        to eavesdrop on any communications between these entities.

     Threat 1: User modifies a device to masquerade as another valid
     certified device

        A master device identifies itself to the database in order to
        obtain information about available spectrum.  Without suitable
        protection mechanisms, devices can listen to registration
        exchanges and later register with the database by claiming the
        identity of another device.

     Threat 2: Spoofed database

        A master device attempts to discover a database (or databases)
        that it can query for available spectrum information.  An
        attacker may attempt to spoof a database and provide responses
        to a master device that are malicious and result in the master
        device causing interference to the primary user of the
        spectrum.

     Threat 3: Modifying or jamming a query request

        An attacker may modify or jam the query request sent by a
        master device to a database.  The attacker may change the
        location of the device or its capabilities (transmit power,
        antenna height, etc.), and, as a result, the database responds
        with incorrect information about available spectrum or maximum



Mancuso, et al.               Informational                    [Page 20]

RFC 6953             PAWS Use Cases and Requirements            May 2013


        transmit power allowed.  The result of such an attack is that
        the master device can cause interference to the primary user of
        the spectrum.  It may also result in a denial of service to the
        master device if the modified database response indicates that
        no channels are available to the master device or when a jammed
        query prevents the request from reaching the database.

     Threat 4: Modifying or jamming a query response

        An attacker may modify or jam the query response sent by the
        database to a master device.  For example, an attacker may
        modify the available spectrum or power-level information
        carried in the database response.  As a result, a master device
        may use spectrum that is not available at a location or may
        transmit at a greater power level than allowed.  Such
        unauthorized use can result in interference to the primary user
        of that spectrum.  Alternatively, an attacker may modify a
        database response to indicate that no spectrum is available at
        a location (or jam the response), resulting in a denial of
        service to the master device.

     Threat 5: Third-party tracking of white-space device location and
     identity

        A master device may provide its identity in addition to its
        location in the query request.  Such location/identity
        information can be gleaned by an eavesdropper and used for
        unauthorized tracking purposes.

     Threat 6: Malicious individual acts as a database to terminate or
     unfairly limit spectrum access of devices

        A database may include a mechanism by which service and
        spectrum allocated to a master device can be revoked by sending
        a revoke message to a master device.  A malicious user can
        pretend to be a database and send a revoke message to that
        device.  This results in denial of service to the master
        device.

  The security requirements arising from the above threats are captured
  in the requirements of Section 5.2.










Mancuso, et al.               Informational                    [Page 21]

RFC 6953             PAWS Use Cases and Requirements            May 2013


7.  Acknowledgments

  The authors acknowledge Gabor Bajko, Teco Boot, Nancy Bravin, Rex
  Buddenberg, Vincent Chen, Gerald Chouinard, Stephen Farrell, Michael
  Fitch, Joel M. Halpern, Jussi Kahtava, Paul Lambert, Barry Leiba,
  Subramanian Moonesamy, Pete Resnick, Brian Rosen, Andy Sago, Peter
  Stanforth, John Stine, and Juan Carlos Zuniga for their contributions
  to this document.

8.  References

8.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [WGS84]    National Imagery and Mapping Agency, "Department of
             Defense World Geodetic System 1984, Its Definition and
             Relationships with Local Geodetic Systems", NIMA
             TR8350.2 Third Edition Amendment 1, January 2000,
             <http://earth-info.nga.mil/GandG/publications/tr8350.2/
             wgs84fin.pdf>.

8.2.  Informative References

  [CRADIO]   Cognitive Radio Technologies Proceeding (CRTP), "Federal
             Communications Commission", ET Docket No. 03-108,
             August 2010, <http://fcc.gov/oet/cognitiveradio>.

  [PAWS]     Chen, V., Ed., Das, S., Zhu, L., Malyar, J., and P.
             McCann, "Protocol to Access Spectrum Database", Work
             in Progress, May 2013.



















Mancuso, et al.               Informational                    [Page 22]

RFC 6953             PAWS Use Cases and Requirements            May 2013


Authors' Addresses

  Anthony Mancuso (editor)
  Google
  1600 Amphitheatre Parkway
  Mountain View, CA  94043
  US

  EMail: [email protected]


  Scott Probasco

  EMail: [email protected]


  Basavaraj Patil
  Cisco Systems
  2250 East President George Bush Highway
  Richardson, TX  75082
  US

  EMail: [email protected]




























Mancuso, et al.               Informational                    [Page 23]