Internet Engineering Task Force (IETF)                         M. Tuexen
Request for Comments: 6951              Muenster Univ. of Appl. Sciences
Category: Standards Track                                     R. Stewart
ISSN: 2070-1721                                           Adara Networks
                                                               May 2013


UDP Encapsulation of Stream Control Transmission Protocol (SCTP) Packets
                for End-Host to End-Host Communication

Abstract

  This document describes a simple method of encapsulating Stream
  Control Transmission Protocol (SCTP) packets into UDP packets and its
  limitations.  This allows the usage of SCTP in networks with legacy
  NATs that do not support SCTP.  It can also be used to implement SCTP
  on hosts without directly accessing the IP layer, for example,
  implementing it as part of the application without requiring special
  privileges.

  Please note that this document only describes the functionality
  required within an SCTP stack to add on UDP encapsulation, providing
  only those mechanisms for two end-hosts to communicate with each
  other over UDP ports.  In particular, it does not provide mechanisms
  to determine whether UDP encapsulation is being used by the peer, nor
  the mechanisms for determining which remote UDP port number can be
  used.  These functions are out of scope for this document.

  This document covers only end-hosts and not tunneling (egress or
  ingress) endpoints.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc6951.







Tuexen & Stewart             Standards Track                    [Page 1]

RFC 6951            UDP Encapsulation of SCTP Packets           May 2013


Copyright Notice

  Copyright (c) 2013 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
  2.  Conventions . . . . . . . . . . . . . . . . . . . . . . . . .   3
  3.  Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . .   3
    3.1.  Portable SCTP Implementations . . . . . . . . . . . . . .   3
    3.2.  Legacy NAT Traversal  . . . . . . . . . . . . . . . . . .   4
  4.  Unilateral Self-Address Fixing (UNSAF) Considerations . . . .   4
  5.  SCTP over UDP . . . . . . . . . . . . . . . . . . . . . . . .   4
    5.1.  Architectural Considerations  . . . . . . . . . . . . . .   4
    5.2.  Packet Format . . . . . . . . . . . . . . . . . . . . . .   5
    5.3.  Encapsulation Procedure . . . . . . . . . . . . . . . . .   6
    5.4.  Decapsulation Procedure . . . . . . . . . . . . . . . . .   7
    5.5.  ICMP Considerations . . . . . . . . . . . . . . . . . . .   7
    5.6.  Path MTU Considerations . . . . . . . . . . . . . . . . .   7
    5.7.  Handling of Embedded IP Addresses . . . . . . . . . . . .   8
    5.8.  Explicit Congestion Notification (ECN) Considerations . .   8
  6.  Socket API Considerations . . . . . . . . . . . . . . . . . .   8
    6.1.  Get or Set the Remote UDP Encapsulation Port Number
          (SCTP_REMOTE_UDP_ENCAPS_PORT) . . . . . . . . . . . . . .   9
  7.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   9
  8.  Security Considerations . . . . . . . . . . . . . . . . . . .   9
  9.  Acknowledgments . . . . . . . . . . . . . . . . . . . . . . .  10
  10. References  . . . . . . . . . . . . . . . . . . . . . . . . .  10
    10.1.  Normative References . . . . . . . . . . . . . . . . . .  10
    10.2.  Informative References . . . . . . . . . . . . . . . . .  11










Tuexen & Stewart             Standards Track                    [Page 2]

RFC 6951            UDP Encapsulation of SCTP Packets           May 2013


1.  Introduction

  This document describes a simple method of encapsulating SCTP packets
  into UDP packets.  SCTP, as defined in [RFC4960], runs directly over
  IPv4 or IPv6.  There are two main reasons for encapsulating SCTP
  packets:

  o  To allow SCTP traffic to pass through legacy NATs, which do not
     provide native SCTP support as specified in [BEHAVE] and
     [NATSUPP].

  o  To allow SCTP to be implemented on hosts that do not provide
     direct access to the IP layer.  In particular, applications can
     use their own SCTP implementation if the operating system does not
     provide one.

  SCTP provides the necessary congestion control and reliability
  service that UDP does not perform.

2.  Conventions

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

3.  Use Cases

  This section discusses two important use cases for encapsulating SCTP
  into UDP.

3.1.  Portable SCTP Implementations

  Some operating systems support SCTP natively.  For other operating
  systems, implementations are available but require special privileges
  to install and/or use them.  In some cases, a kernel implementation
  might not be available at all.  When providing an SCTP implementation
  as part of a user process, most operating systems require special
  privileges to access the IP layer directly.

  Using UDP encapsulation makes it possible to provide an SCTP
  implementation as part of a user process that does not require any
  special privileges.

  A crucial point for implementing SCTP in user space is that the
  source address of outgoing packets needs to be controlled.  This is
  not an issue if the SCTP stack can use all addresses configured at





Tuexen & Stewart             Standards Track                    [Page 3]

RFC 6951            UDP Encapsulation of SCTP Packets           May 2013


  the IP layer as source addresses.  However, it is an issue when also
  using the address management required for NAT traversal, described in
  Section 5.7.

3.2.  Legacy NAT Traversal

  Using UDP encapsulation allows SCTP communication when traversing
  legacy NATs (i.e, those NATs not supporting SCTP as described in
  [BEHAVE] and [NATSUPP]).  For single-homed associations, IP addresses
  MUST NOT be listed in the INIT and INIT-ACK chunks.  To use multiple
  addresses, the dynamic address reconfiguration extension described in
  [RFC5061] MUST be used only with wildcard addresses in the ASCONF
  chunks (Address Configuration Change Chunks) in combination with
  [RFC4895].

  For multihomed SCTP associations, the address management as described
  in Section 5.7 MUST be performed.

  SCTP sends periodic HEARTBEAT chunks on all idle paths.  These can
  keep the NAT state alive.

4.  Unilateral Self-Address Fixing (UNSAF) Considerations

  As [RFC3424] requires a limited scope, this document only covers SCTP
  endpoints dealing with legacy constraints as described in Section 3.
  It doesn't cover generic tunneling endpoints.

  Obviously, the exit strategy is to use hosts supporting SCTP natively
  and middleboxes supporting SCTP as specified in [BEHAVE] and
  [NATSUPP].

5.  SCTP over UDP

5.1.  Architectural Considerations

  UDP-encapsulated SCTP is normally communicated between SCTP stacks
  using the IANA-assigned UDP port number 9899 (sctp-tunneling) on both
  ends.  There are circumstances where other ports may be used on
  either end: As stated earlier, implementations in the application
  space might be required to use ports other than the registered port.
  Since NAT boxes might change UDP port numbers, the receiver might
  observe other UDP port numbers than were used by the sender.
  Discovery of alternate ports is outside of the scope of this
  document, but this section describes considerations for SCTP stack
  design in light of their potential use.

  Each SCTP stack uses a single local UDP encapsulation port number as
  the destination port for all its incoming SCTP packets.  While the



Tuexen & Stewart             Standards Track                    [Page 4]

RFC 6951            UDP Encapsulation of SCTP Packets           May 2013


  uniqueness of the local UDP encapsulation port number is not
  necessarily required for the protocol, this greatly simplifies
  implementation design, since different ports for each address would
  require a sender implementation to choose the appropriate port while
  doing source address selection.  Using a single local UDP
  encapsulation port number per host is not possible if the SCTP stack
  is implemented as part of each application, there are multiple
  applications, and some of the applications want to use the same IP
  address.

  An SCTP implementation supporting UDP encapsulation MUST maintain a
  remote UDP encapsulation port number per destination address for each
  SCTP association.  Again, because the remote stack may be using ports
  other than the well-known port, each port may be different from each
  stack.  However, because of remapping of ports by NATs, the remote
  ports associated with different remote IP addresses may not be
  identical, even if they are associated with the same stack.

  Implementation note: Because the well-known port might not be used,
  implementations need to allow other port numbers to be specified as a
  local or remote UDP encapsulation port number through APIs.

5.2.  Packet Format

  To encapsulate an SCTP packet, a UDP header as defined in [RFC0768]
  is inserted between the IP header as defined in [RFC0791] and the
  SCTP common header as defined in [RFC4960].

  Figure 1 shows the packet format of an encapsulated SCTP packet when
  IPv4 is used.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                         IPv4 Header                           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                         UDP Header                            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                      SCTP Common Header                       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                        SCTP Chunk #1                          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                           ...                                 |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                        SCTP Chunk #n                          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    Figure 1: An SCTP/UDP/IPv4 Packet



Tuexen & Stewart             Standards Track                    [Page 5]

RFC 6951            UDP Encapsulation of SCTP Packets           May 2013


  The packet format for an encapsulated SCTP packet when using IPv6 as
  defined in [RFC2460] is shown in Figure 2.  Please note that the
  number m of IPv6 extension headers can be 0.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                      IPv6 Base Header                         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                    IPv6 Extension Header #1                   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                           ...                                 |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                    IPv6 Extension Header #m                   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                         UDP Header                            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                      SCTP Common Header                       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                        SCTP Chunk #1                          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                           ...                                 |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                        SCTP Chunk #n                          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    Figure 2: An SCTP/UDP/IPv6 Packet

5.3.  Encapsulation Procedure

  Within the UDP header, the source port MUST be the local UDP
  encapsulation port number of the SCTP stack, and the destination port
  MUST be the remote UDP encapsulation port number maintained for the
  association and the destination address to which the packet is sent
  (see Section 5.1).

  Because the SCTP packet is the UDP payload, the length of the UDP
  packet MUST be the length of the SCTP packet plus the size of the UDP
  header.

  The SCTP checksum MUST be computed for IPv4 and IPv6, and the UDP
  checksum SHOULD be computed for IPv4 and IPv6.  (See [RFC0768]
  regarding IPv4; see [RFC2460] and [RFC6936] regarding IPv6.)
  Although UDP with a zero checksum over IPv6 is allowed under certain
  constraints [RFC6936], this document does not specify mechanisms for
  this mode.  Deployed support may be limited; also, at the time of
  writing, the use of a zero UDP checksum would be counter to the goal
  of legacy NAT traversal.



Tuexen & Stewart             Standards Track                    [Page 6]

RFC 6951            UDP Encapsulation of SCTP Packets           May 2013


5.4.  Decapsulation Procedure

  When an encapsulated packet is received, the UDP header is removed.
  Then, the generic lookup is performed, as done by an SCTP stack
  whenever a packet is received, to find the association for the
  received SCTP packet.  After finding the SCTP association (which
  includes checking the verification tag), the UDP source port MUST be
  stored as the encapsulation port for the destination address the SCTP
  packet is received from (see Section 5.1).

  When a non-encapsulated SCTP packet is received by the SCTP stack,
  the encapsulation of outgoing packets belonging to the same
  association and the corresponding destination address MUST be
  disabled.

5.5.  ICMP Considerations

  When receiving ICMP or ICMPv6 response packets, there might not be
  enough bytes in the payload to identify the SCTP association that the
  SCTP packet triggering the ICMP or ICMPv6 packet belongs to.  If a
  received ICMP or ICMPv6 packet cannot be related to a specific SCTP
  association or the verification tag cannot be verified, it MUST be
  discarded silently.  In particular, this means that the SCTP stack
  MUST NOT rely on receiving ICMP or ICMPv6 messages.  Implementation
  constraints could prevent processing received ICMP or ICMPv6
  messages.

  If received ICMP or ICMPv6 messages are processed, the following
  mapping SHOULD apply:

  1.  ICMP messages with type 'Destination Unreachable' and code 'Port
      Unreachable' SHOULD be treated as ICMP messages with type
      'Destination Unreachable' and code 'Protocol Unreachable'.  See
      [RFC0792] for more details.

  2.  ICMPv6 messages with type 'Destination Unreachable' and code
      'Port Unreachable' SHOULD be treated as ICMPv6 messages with type
      'Parameter Problem' and code 'unrecognized Next Header type
      encountered'.  See [RFC4443] for more details.

5.6.  Path MTU Considerations

  If an SCTP endpoint starts to encapsulate the packets of a path, it
  MUST decrease the Path MTU of that path by the size of the UDP
  header.  If it stops encapsulating them, the Path MTU SHOULD be
  increased by the size of the UDP header.





Tuexen & Stewart             Standards Track                    [Page 7]

RFC 6951            UDP Encapsulation of SCTP Packets           May 2013


  When performing Path MTU discovery as described in [RFC4820] and
  [RFC4821], it MUST be taken into account that one cannot rely on the
  feedback provided by ICMP or ICMPv6 due to the limitation laid out in
  Section 5.5.

  If the implementation does not allow control of the Don't Fragment
  (DF) bit contained in the IPv4 header, then Path MTU discovery can't
  be used.  In this case, an implementation-specific value should be
  used instead.

5.7.  Handling of Embedded IP Addresses

  When using UDP encapsulation for legacy NAT traversal, IP addresses
  that might require translation MUST NOT be put into any SCTP packet.

  This means that a multihomed SCTP association is set up initially as
  a single-homed one, and the protocol extension [RFC5061] in
  combination with [RFC4895] is used to add the other addresses.  Only
  wildcard addresses are put into the SCTP packet.

  When addresses are changed during the lifetime of an association, the
  protocol extension [RFC5061] MUST be used with wildcard addresses
  only.  If an SCTP endpoint receives an ABORT with the T-bit set, it
  MAY use this as an indication that the addresses seen by the peer
  might have changed.

5.8.  Explicit Congestion Notification (ECN) Considerations

  If the implementation supports the sending and receiving of the ECN
  bits for the IP protocols being used by an SCTP association, the ECN
  bits MUST NOT be changed during sending and receiving.

6.  Socket API Considerations

  This section describes how the socket API defined in [RFC6458] needs
  to be extended to provide a way for the application to control the
  UDP encapsulation.

  Please note that this section is informational only.

  A socket API implementation based on [RFC6458] is extended by
  supporting one new read/write socket option.









Tuexen & Stewart             Standards Track                    [Page 8]

RFC 6951            UDP Encapsulation of SCTP Packets           May 2013


6.1.  Get or Set the Remote UDP Encapsulation Port Number
     (SCTP_REMOTE_UDP_ENCAPS_PORT)

  This socket option can be used to set and retrieve the UDP
  encapsulation port number.  This allows an endpoint to encapsulate
  initial packets.

  struct sctp_udpencaps {
    sctp_assoc_t sue_assoc_id;
    struct sockaddr_storage sue_address;
    uint16_t sue_port;
  };

  sue_assoc_id:  This parameter is ignored for one-to-one style
     sockets.  For one-to-many style sockets, the application may fill
     in an association identifier or SCTP_FUTURE_ASSOC for this query.
     It is an error to use SCTP_{CURRENT|ALL}_ASSOC in sue_assoc_id.

  sue_address:  This specifies which address is of interest.  If a
     wildcard address is provided, it applies only to future paths.

  sue_port:  The UDP port number in network byte order; used as the
     destination port number for UDP encapsulation.  Providing a value
     of 0 disables UDP encapsulation.

7.  IANA Considerations

  This document refers to the already assigned UDP port 9899 (sctp-
  tunneling).  IANA has updated this assignment to refer to this
  document.  As per [RFC6335], the Assignee is [IESG] and the Contact
  is [IETF_Chair].

  Please note that the TCP port 9899 (sctp-tunneling) assignment is not
  needed anymore, and IANA has removed this TCP port number assignment
  and marked TCP port 9899 as "Reserved".

8.  Security Considerations

  Encapsulating SCTP into UDP does not add any additional security
  considerations to the ones given in [RFC4960] and [RFC5061].

  Firewalls inspecting SCTP packets must also be aware of the
  encapsulation and apply corresponding rules to the encapsulated
  packets.

  An attacker might send a malicious UDP packet towards an SCTP
  endpoint to change the encapsulation port for a single remote address
  of a particular SCTP association.  However, as specified in



Tuexen & Stewart             Standards Track                    [Page 9]

RFC 6951            UDP Encapsulation of SCTP Packets           May 2013


  Section 5.4, this requires the usage of one of the two negotiated
  verification tags.  This protects against blind attackers the same
  way as described in [RFC4960] for SCTP over IPv4 or IPv6.  Non-blind
  attackers can affect SCTP association using the UDP encapsulation
  described in this document in the same way as SCTP associations not
  using the UDP encapsulation of SCTP described here.

9.  Acknowledgments

  The authors wish to thank Stewart Bryant, Dave Crocker, Gorry
  Fairhurst, Tero Kivinen, Barry Leiba, Pete Resnick, Martin
  Stiemerling, Irene Ruengeler, and Dan Wing for their invaluable
  comments.

10.  References

10.1.  Normative References

  [RFC0768]  Postel, J., "User Datagram Protocol", STD 6, RFC 768,
             August 1980.

  [RFC0791]  Postel, J., "Internet Protocol", STD 5, RFC 791, September
             1981.

  [RFC0792]  Postel, J., "Internet Control Message Protocol", STD 5,
             RFC 792, September 1981.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2460]  Deering, S.E. and R.M. Hinden, "Internet Protocol, Version
             6 (IPv6) Specification", RFC 2460, December 1998.

  [RFC4443]  Conta, A., Deering, S., and M. Gupta, "Internet Control
             Message Protocol (ICMPv6) for the Internet Protocol
             Version 6 (IPv6) Specification", RFC 4443, March 2006.

  [RFC4820]  Tuexen, M., Stewart, R., and P. Lei, "Padding Chunk and
             Parameter for the Stream Control Transmission Protocol
             (SCTP)", RFC 4820, March 2007.

  [RFC4821]  Mathis, M. and J. Heffner, "Packetization Layer Path MTU
             Discovery", RFC 4821, March 2007.

  [RFC4895]  Tuexen, M., Stewart, R., Lei, P., and E. Rescorla,
             "Authenticated Chunks for the Stream Control Transmission
             Protocol (SCTP)", RFC 4895, August 2007.




Tuexen & Stewart             Standards Track                   [Page 10]

RFC 6951            UDP Encapsulation of SCTP Packets           May 2013


  [RFC4960]  Stewart, R., "Stream Control Transmission Protocol", RFC
             4960, September 2007.

  [RFC5061]  Stewart, R., Xie, Q., Tuexen, M., Maruyama, S., and M.
             Kozuka, "Stream Control Transmission Protocol (SCTP)
             Dynamic Address Reconfiguration", RFC 5061, September
             2007.

10.2.  Informative References

  [BEHAVE]   Stewart, R., Tuexen, M., and I. Ruengeler, "Stream Control
             Transmission Protocol (SCTP) Network Address Translation",
             Work in Progress, February 2013.

  [NATSUPP]  Stewart, R., Tuexen, M., and I. Ruengeler, "Stream Control
             Transmission Protocol (SCTP) Network Address Translation
             Support", Work in Progress, February 2013.

  [RFC3424]  Daigle, L. IAB, "IAB Considerations for UNilateral Self-
             Address Fixing (UNSAF) Across Network Address
             Translation", RFC 3424, November 2002.

  [RFC6335]  Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
             Cheshire, "Internet Assigned Numbers Authority (IANA)
             Procedures for the Management of the Service Name and
             Transport Protocol Port Number Registry", BCP 165, RFC
             6335, August 2011.

  [RFC6458]  Stewart, R., Tuexen, M., Poon, K., Lei, P., and V.
             Yasevich, "Sockets API Extensions for the Stream Control
             Transmission Protocol (SCTP)", RFC 6458, December 2011.

  [RFC6936]  Fairhurst, G. and M. Westerlund, "Applicability Statement
             for the Use of IPv6 UDP Datagrams with Zero Checksums",
             RFC 6936, April 2013.
















Tuexen & Stewart             Standards Track                   [Page 11]

RFC 6951            UDP Encapsulation of SCTP Packets           May 2013


Authors' Addresses

  Michael Tuexen
  Muenster University of Applied Sciences
  Stegerwaldstrasse 39
  48565 Steinfurt
  DE

  EMail: [email protected]


  Randall R. Stewart
  Adara Networks
  Chapin, SC  29036
  US

  EMail: [email protected]


































Tuexen & Stewart             Standards Track                   [Page 12]