Internet Engineering Task Force (IETF)                         J. Lennox
Request for Comments: 6904                                         Vidyo
Updates: 3711                                                 April 2013
Category: Standards Track
ISSN: 2070-1721


                   Encryption of Header Extensions
          in the Secure Real-time Transport Protocol (SRTP)

Abstract

  The Secure Real-time Transport Protocol (SRTP) provides
  authentication, but not encryption, of the headers of Real-time
  Transport Protocol (RTP) packets.  However, RTP header extensions may
  carry sensitive information for which participants in multimedia
  sessions want confidentiality.  This document provides a mechanism,
  extending the mechanisms of SRTP, to selectively encrypt RTP header
  extensions in SRTP.

  This document updates RFC 3711, the Secure Real-time Transport
  Protocol specification, to require that all future SRTP encryption
  transforms specify how RTP header extensions are to be encrypted.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc6904.














Lennox                       Standards Track                    [Page 1]

RFC 6904            Encrypted SRTP Header Extensions          April 2013


Copyright Notice

  Copyright (c) 2013 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
  2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   4
  3.  Encryption Mechanism  . . . . . . . . . . . . . . . . . . . .   4
    3.1.  Example Encryption Mask . . . . . . . . . . . . . . . . .   6
    3.2.  Header Extension Keystream Generation for Existing
          Encryption Transforms . . . . . . . . . . . . . . . . . .   7
    3.3.  Header Extension Keystream Generation for Future
          Encryption Transforms . . . . . . . . . . . . . . . . . .   8
  4.  Signaling (Setup) Information . . . . . . . . . . . . . . . .   8
    4.1.  Backward Compatibility  . . . . . . . . . . . . . . . . .   9
  5.  Security Considerations . . . . . . . . . . . . . . . . . . .  10
  6.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  11
  7.  Acknowledgments . . . . . . . . . . . . . . . . . . . . . . .  11
  8.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  11
    8.1.  Normative References  . . . . . . . . . . . . . . . . . .  11
    8.2.  Informative References  . . . . . . . . . . . . . . . . .  12
  Appendix A.  Test Vectors . . . . . . . . . . . . . . . . . . . .  13
    A.1.  Key Derivation Test Vectors . . . . . . . . . . . . . . .  13
    A.2.  Header Encryption Test Vectors Using AES-CM . . . . . . .  14















Lennox                       Standards Track                    [Page 2]

RFC 6904            Encrypted SRTP Header Extensions          April 2013


1.  Introduction

  The Secure Real-time Transport Protocol [RFC3711] specification
  provides confidentiality, message authentication, and replay
  protection for multimedia payloads sent using the Real-time Protocol
  (RTP) [RFC3550].  However, in order to preserve RTP header
  compression efficiency, SRTP provides only authentication and replay
  protection for the headers of RTP packets, not confidentiality.

  For the standard portions of an RTP header, providing only
  authentication and replay protection does not normally present a
  problem, as the information carried in an RTP header does not provide
  much information beyond that which an attacker could infer by
  observing the size and timing of RTP packets.  Thus, there is little
  need for confidentiality of the header information.

  However, the security requirements can be different for information
  carried in RTP header extensions.  A number of recent proposals for
  header extensions using the mechanism described in "A General
  Mechanism for RTP Header Extensions" [RFC5285] carry information for
  which confidentiality could be desired or essential.  Notably, two
  recent specifications ([RFC6464] and [RFC6465]) contain information
  about per-packet sound levels of the media data carried in the RTP
  payload and specify that exposing this information to an eavesdropper
  is unacceptable in many circumstances (as described in the Security
  Considerations sections of those RFCs).

  This document, therefore, defines a mechanism by which encryption can
  be applied to RTP header extensions when they are transported using
  SRTP.  As an RTP sender may wish some extension information to be
  sent in the clear (for example, it may be useful for a network
  monitoring device to be aware of RTP transmission time offsets
  [RFC5450]), this mechanism can be selectively applied to a subset of
  the header extension elements carried in an SRTP packet.

  The mechanism defined by this document encrypts packets' header
  extensions using the same cryptographic algorithms and parameters as
  are used to encrypt the packets' RTP payloads.  This document defines
  how this is done for the encryption transforms defined in [RFC3711],
  [RFC5669], and [RFC6188], which are the SRTP encryption transforms
  defined by Standards Track RFCs at the time of this writing.  It also
  updates [RFC3711] to indicate that specifications of future SRTP
  encryption transforms must define how header extension encryption is
  to be performed.







Lennox                       Standards Track                    [Page 3]

RFC 6904            Encrypted SRTP Header Extensions          April 2013


2.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [RFC2119] and
  indicate requirement levels for compliant implementations.

3.  Encryption Mechanism

  Encrypted header extension elements are carried in the same manner as
  non-encrypted header extension elements, as defined by [RFC5285].
  The one- or two-byte header of the extension elements is not
  encrypted, nor is any of the header extension padding.  If multiple
  different header extension elements are being encrypted, they have
  separate element identifier values, just as they would if they were
  not encrypted.  Similarly, encrypted and non-encrypted header
  extension elements have separate identifier values.

  Encrypted header extension elements are carried only in packets
  encrypted using the Secure Real-time Transport Protocol [RFC3711].
  To encrypt (or decrypt) encrypted header extension elements, an SRTP
  participant first uses the SRTP key derivation algorithm, specified
  in Section 4.3.1 of [RFC3711], to generate header encryption and
  header salting keys, using the same pseudorandom function family as
  is used for the key derivation for the SRTP session.  These keys are
  derived as follows:

  o  k_he (SRTP header encryption): <label> = 0x06, n=n_e.

  o  k_hs (SRTP header salting key): <label> = 0x07, n=n_s.

  where n_e and n_s are from the cryptographic context: the same size
  encryption key and salting key are used as are used for the SRTP
  payload.  Additionally, the same master key, master salt, index, and
  key_derivation_rate are used as for the SRTP payload.  (Note that
  since RTP headers, including header extensions, are authenticated in
  SRTP, no new authentication key is needed for header extensions.)

  A header extension keystream is generated for each packet containing
  encrypted header extension elements.  The details of how this header
  extension keystream is generated depend on the encryption transform
  that is used for the SRTP packet.  For encryption transforms that
  have been standardized as of the date of publication of this
  document, see Section 3.2; for requirements for new transforms, see
  Section 3.3.






Lennox                       Standards Track                    [Page 4]

RFC 6904            Encrypted SRTP Header Extensions          April 2013


  After the header extension keystream is generated, the SRTP
  participant then computes an encryption mask for the header
  extension, identifying the portions of the header extension that are,
  or are to be, encrypted.  (For an example of this procedure, see
  Section 3.1.)  This encryption mask corresponds to the entire
  payload of each header extension element that is encrypted.  It does
  not include any non-encrypted header extension elements, any
  extension element headers, or any padding octets.  The encryption
  mask has all-bits-1 octets (i.e., hexadecimal 0xff) for header
  extension octets that are to be encrypted and all-bits-0 octets for
  header extension octets that are not to be encrypted.  The set of
  extension elements to be encrypted is communicated between the sender
  and the receiver using the signaling mechanisms described in
  Section 4.

  This encryption mask is computed separately for every packet that
  carries a header extension.  Based on the non-encrypted portions of
  the headers and the signaled list of encrypted extension elements, a
  receiver can always determine the correct encryption mask for any
  encrypted header extension.

  The SRTP participant bitwise-ANDs the encryption mask with the
  keystream to produce a masked keystream.  It then bitwise
  exclusive-ORs the header extension with this masked keystream to
  produce the ciphertext version of the header extension.  (Thus,
  octets indicated as all-bits-1 in the encrypted mask are encrypted,
  whereas those indicated as all-bits-0 are not.)

  The header extension encryption process does not include the "defined
  by profile" or "length" fields of the header extension, only the
  field that Section 5.3.1 of [RFC3550] calls "header extension"
  proper, starting with the first [RFC5285] ID and length.  Thus, both
  the encryption mask and the keystream begin at this point.

  This header extension encryption process could, equivalently, be
  computed by considering the encryption mask as a mixture of the
  encrypted and unencrypted headers, i.e., as

      EncryptedHeader = (Encrypt(Key, Plaintext) AND MASK) OR
                        (Plaintext AND (NOT MASK))

  where Encrypt is the encryption function, MASK is the encryption
  mask, and AND, OR, and NOT are bitwise operations.  This formulation
  of the encryption process might be preferred by implementations for
  which encryption is performed by a separate module and cannot be
  modified easily.





Lennox                       Standards Track                    [Page 5]

RFC 6904            Encrypted SRTP Header Extensions          April 2013


  The SRTP authentication tag is computed across the encrypted header
  extension, i.e., the data that is actually transmitted on the wire.
  Thus, header extension encryption MUST be done before the
  authentication tag is computed, and authentication tag validation
  MUST be done on the encrypted header extensions.  For receivers,
  header extension decryption SHOULD be done only after the receiver
  has validated the packet's message authentication tag, and the
  receiver MUST NOT take any actions based on decrypted headers, prior
  to validating the authentication tag, that could affect the security
  or proper functioning of the system.

3.1.  Example Encryption Mask

  If a sender wished to send a header extension containing an encrypted
  SMPTE timecode [RFC5484] with ID 1, a plaintext transmission time
  offset [RFC5450] with ID 2, an encrypted audio level indication
  [RFC6464] with ID 3, and an encrypted NTP timestamp [RFC6051] with ID
  4, the plaintext RTP header extension might look like this:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  ID=1 | len=7 |     SMTPE timecode (long form)                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       SMTPE timecode (continued)                              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | SMTPE (cont'd)|  ID=2 | len=2 | toffset                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | toffset (ct'd)|  ID=3 | len=0 | audio level   |  ID=4 | len=6 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       NTP timestamp (Variant B)                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       NTP timestamp (Variant B, cont'd)       | padding = 0   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

        Figure 1: Structure of Plaintext Example Header Extension















Lennox                       Standards Track                    [Page 6]

RFC 6904            Encrypted SRTP Header Extensions          April 2013


  The corresponding encryption mask would then be:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0 0 0 0 0 0 0 0|1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |1 1 1 1 1 1 1 1|0 0 0 0 0 0 0 0|0 0 0 0 0 0 0 0|0 0 0 0 0 0 0 0|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0 0 0 0 0 0 0 0|0 0 0 0 0 0 0 0|1 1 1 1 1 1 1 1|0 0 0 0 0 0 0 0|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1|0 0 0 0 0 0 0 0|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

         Figure 2: Encryption Mask for Example Header Extension

  In the mask, the octets corresponding to the payloads of the
  encrypted header extension elements are set to all-1 values, and the
  octets corresponding to non-encrypted header extension elements,
  element headers, and header extension padding are set to all-zero
  values.

3.2.  Header Extension Keystream Generation for Existing Encryption
     Transforms

  For the AES-CM and AES-f8 transforms [RFC3711], the SEED-CTR
  transform [RFC5669], and the AES_192_CM and AES_256_CM transforms
  [RFC6188], the header extension keystream SHALL be generated for each
  packet containing encrypted header extension elements using the same
  encryption transform and Initialization Vector (IV) as are used for
  that packet's SRTP payload, except that the SRTP encryption and
  salting keys k_e and k_s are replaced by the SRTP header encryption
  and header salting keys k_he and k_hs, respectively, as defined
  above.

  For the SEED-CCM and SEED-GCM transforms [RFC5669], the header
  extension keystream SHALL be generated using the algorithm specified
  above for the SEED-CTR algorithm.  (Because the Authenticated
  Encryption with Associated Data (AEAD) transform used on the payload
  in these algorithms includes the RTP header, including the RTP header
  extension, in its Associated Authenticated Data (AAD), counter-mode
  encryption for the header extension is believed to be of equivalent
  cryptographic strength to the CCM and GCM transforms.)




Lennox                       Standards Track                    [Page 7]

RFC 6904            Encrypted SRTP Header Extensions          April 2013


  For the NULL encryption transform [RFC3711], the header extension
  keystream SHALL be all-zero.

3.3.  Header Extension Keystream Generation for Future Encryption
     Transforms

  When new SRTP encryption transforms are defined, this document
  updates [RFC3711] as follows: in addition to the rules specified in
  Section 6 of RFC 3711, the Standards Track RFC defining the new
  transform MUST specify how the encryption transform is to be used
  with header extension encryption.

  It is RECOMMENDED that new transformations follow the same mechanisms
  as are defined in Section 3.2 of this document if they are applicable
  and are believed to be cryptographically adequate for the transform
  in question.

4.  Signaling (Setup) Information

  Encrypted header extension elements are signaled in the Session
  Description Protocol (SDP) extmap attribute using the URI
  "urn:ietf:params:rtp-hdrext:encrypt" followed by the URI of the
  header extension element being encrypted, as well as any
  extensionattributes that extension normally takes.  Figure 3 gives a
  formal Augmented Backus-Naur Form (ABNF) [RFC5234] showing this
  grammar extension, extending the grammar defined in [RFC5285].

  enc-extensionname = %x75.72.6e.3a.69.65.74.66.3a.70.61.72.61.6d.73.3a
      %x72.74.70.2d.68.64.72.65.78.74.3a.65.6e.63.72.79.70.74
      ; "urn:ietf:params:rtp-hdrext:encrypt" in lower case

  extmap =/ mapentry SP enc-extensionname SP extensionname
      [SP extensionattributes]

  ; extmap, mapentry, extensionname, and extensionattributes
  ; are defined in [RFC5285]

                Figure 3: Syntax of the "encrypt" extmap

  Thus, for example, to signal an SRTP session using encrypted SMPTE
  timecodes [RFC5484], while simultaneously signaling plaintext
  transmission time offsets [RFC5450], an SDP document could contain
  the text shown in Figure 4 (line breaks have been added for
  formatting).







Lennox                       Standards Track                    [Page 8]

RFC 6904            Encrypted SRTP Header Extensions          April 2013


  m=audio 49170 RTP/SAVP 0
  a=crypto:1 AES_CM_128_HMAC_SHA1_32 \
    inline:NzB4d1BINUAvLEw6UzF3WSJ+PSdFcGdUJShpX1Zj|2^20|1:32
  a=extmap:1 urn:ietf:params:rtp-hdrext:encrypt \
      urn:ietf:params:rtp-hdrext:smpte-tc 25@600/24
  a=extmap:2 urn:ietf:params:rtp-hdrext:toffset

        Figure 4: Sample SDP Document Offering Encrypted Headers

  This example uses SDP security descriptions [RFC4568] for SRTP
  keying, but this is merely for illustration.  Any SRTP keying
  mechanism to establish session keys will work.

  The extmap SDP attribute is defined in [RFC5285] as being either a
  session or media attribute.  If the extmap for an encrypted header
  extension is specified as a media attribute, it MUST be specified
  only for media that use SRTP-based RTP profiles.  If such an extmap
  is specified as a session attribute, there MUST be at least one media
  in the SDP session that uses an SRTP-based RTP profile.  The session-
  level extmap applies to all the SRTP-based media in the session and
  MUST be ignored for all other (non-SRTP or non-RTP) media.

  The "urn:ietf:params:rtp-hdrext:encrypt" extension MUST NOT be
  recursively applied to itself.

4.1.  Backward Compatibility

  Following the procedures in [RFC5285], an SDP endpoint that does not
  understand the "urn:ietf:params:rtp-hdrext:encrypt" extension URI
  will ignore the extension and, for SDP offer/answer, will negotiate
  not to use it.

  For backward compatibility with endpoints that do not implement this
  specification, in a negotiated session (whether using offer/answer or
  some other means), best-effort encryption of a header extension
  element is possible: an endpoint MAY offer the same header extension
  element both encrypted and unencrypted.  An offerer MUST offer only
  best-effort negotiation when lack of confidentiality would be
  acceptable in the backward-compatible case.  Answerers (or equivalent
  peers in a negotiation) that understand header extension encryption
  SHOULD choose the encrypted form of the offered header extension
  element and mark the unencrypted form "inactive", unless they have an
  explicit reason to prefer the unencrypted form.  In all cases,
  answerers MUST NOT negotiate the use of, and senders MUST NOT send,
  both encrypted and unencrypted forms of the same header extension.






Lennox                       Standards Track                    [Page 9]

RFC 6904            Encrypted SRTP Header Extensions          April 2013


  Note that, as always, users of best-effort encryption MUST be
  cautious of bid-down attacks, where a man-in-the-middle attacker
  removes a higher-security option, forcing endpoints to negotiate a
  lower-security one.  Appropriate countermeasures depend on the
  signaling protocol in use, but users can ensure, for example, that
  signaling is integrity-protected.

5.  Security Considerations

  The security properties of header extension elements protected by the
  mechanism in this document are equivalent to those for SRTP payloads.

  The mechanism defined in this document does not provide
  confidentiality about which header extension elements are used for a
  given SRTP packet, only for the content of those header extension
  elements.  This appears to be in the spirit of SRTP itself, which
  does not encrypt RTP headers.  If this is a concern, an alternate
  mechanism would be needed to provide confidentiality.

  For the two-byte-header form of header extension elements (0x100N,
  where "N" is the appbits field), this mechanism does not provide any
  protection to zero-length header extension elements (for which their
  presence or absence is the only information they carry).  It also
  does not provide any protection for the appbits (field 256, the
  lowest four bits of the "defined by profile" field) of the two-byte
  headers.  Neither of these features is present in the one-byte-header
  form of header extension elements (0xBEDE), so these limitations do
  not apply in that case.

  This mechanism cannot protect RTP header extensions that do not use
  the mechanism defined in [RFC5285].

  This document does not specify the circumstances in which extension
  header encryption should be used.  Documents defining specific header
  extension elements should provide guidance on when encryption is
  appropriate for these elements.

  If a middlebox does not have access to the SRTP authentication keys,
  it has no way to verify the authenticity of unencrypted RTP header
  extension elements (or the unencrypted RTP header), even though it
  can monitor them.  Therefore, such middleboxes MUST treat such
  headers as untrusted and potentially generated by an attacker, in the
  same way as they treat unauthenticated traffic.  (This does not mean
  that middleboxes cannot view and interpret such traffic, of course,
  only that appropriate skepticism needs to be maintained about the
  results of such interpretation.)





Lennox                       Standards Track                   [Page 10]

RFC 6904            Encrypted SRTP Header Extensions          April 2013


  There is no mechanism defined to protect header extensions with
  different algorithms or encryption keys than are used to protect the
  RTP payloads.  In particular, it is not possible to provide
  confidentiality for a header extension while leaving the payload in
  cleartext.

  The dangers of using weak or NULL authentication with SRTP, described
  in Section 9.5 of [RFC3711], apply to encrypted header extensions as
  well.  In particular, since some header extension elements will have
  some easily guessed plaintext bits, strong authentication is REQUIRED
  if an attacker setting such bits could have a meaningful effect on
  the behavior of the system.

  The technique defined in this document can be applied only to
  encryption transforms that work by generating a pseudorandom
  keystream and bitwise exclusive-ORing it with the plaintext, such as
  CTR or f8.  It will not work with ECB, CBC, or any other encryption
  method that does not use a keystream.

6.  IANA Considerations

  This document defines a new extension URI to the RTP Compact Header
  Extensions subregistry of the Real-Time Transport Protocol (RTP)
  Parameters registry, according to the following data:

     Extension URI:  urn:ietf:params:rtp-hdrext:encrypt
     Description:    Encrypted header extension element
     Contact:        [email protected]
     Reference:      RFC 6904

7.  Acknowledgments

  Thanks to Benoit Claise, Roni Even, Stephen Farrell, Kevin Igoe, Joel
  Jaeggli, David McGrew, David Singer, Robert Sparks, Magnus
  Westerlund, Qin Wu, and Felix Wyss for their comments and suggestions
  in the development of this specification.

8.  References

8.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC3550]  Schulzrinne, H., Casner, S., Frederick, R., and V.
             Jacobson, "RTP: A Transport Protocol for Real-Time
             Applications", STD 64, RFC 3550, July 2003.




Lennox                       Standards Track                   [Page 11]

RFC 6904            Encrypted SRTP Header Extensions          April 2013


  [RFC3711]  Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
             Norrman, "The Secure Real-time Transport Protocol (SRTP)",
             RFC 3711, March 2004.

  [RFC5234]  Crocker, D. and P. Overell, "Augmented BNF for Syntax
             Specifications: ABNF", STD 68, RFC 5234, January 2008.

  [RFC5285]  Singer, D. and H. Desineni, "A General Mechanism for RTP
             Header Extensions", RFC 5285, July 2008.

  [RFC5669]  Yoon, S., Kim, J., Park, H., Jeong, H., and Y. Won, "The
             SEED Cipher Algorithm and Its Use with the Secure Real-
             Time Transport Protocol (SRTP)", RFC 5669, August 2010.

  [RFC6188]  McGrew, D., "The Use of AES-192 and AES-256 in Secure
             RTP", RFC 6188, March 2011.

8.2.  Informative References

  [RFC4568]  Andreasen, F., Baugher, M., and D. Wing, "Session
             Description Protocol (SDP) Security Descriptions for Media
             Streams", RFC 4568, July 2006.

  [RFC5450]  Singer, D. and H. Desineni, "Transmission Time Offsets in
             RTP Streams", RFC 5450, March 2009.

  [RFC5484]  Singer, D., "Associating Time-Codes with RTP Streams", RFC
             5484, March 2009.

  [RFC6051]  Perkins, C. and T. Schierl, "Rapid Synchronisation of RTP
             Flows", RFC 6051, November 2010.

  [RFC6464]  Lennox, J., Ivov, E., and E. Marocco, "A Real-time
             Transport Protocol (RTP) Header Extension for Client-to-
             Mixer Audio Level Indication", RFC 6464, December 2011.

  [RFC6465]  Ivov, E., Marocco, E., and J. Lennox, "A Real-time
             Transport Protocol (RTP) Header Extension for Mixer-to-
             Client Audio Level Indication", RFC 6465, December 2011.












Lennox                       Standards Track                   [Page 12]

RFC 6904            Encrypted SRTP Header Extensions          April 2013


Appendix A.  Test Vectors

A.1.  Key Derivation Test Vectors

  This section provides test data for the header extension key
  derivation function, using AES-128 in Counter Mode.  (The algorithms
  and keys used are the same as those for the test vectors in Appendix
  B.3 of [RFC3711].)

  The inputs to the key derivation function are the 16-octet master key
  and the 14-octet master salt:

     master key: E1F97A0D3E018BE0D64FA32C06DE4139

     master salt: 0EC675AD498AFEEBB6960B3AABE6

  Following [RFC3711], the input block for AES-CM is generated by
  exclusive-ORing the master salt with the concatenation of the
  encryption key label 0x06 with (index DIV kdr), then padding on the
  right with two null octets, which implements the multiply-by-2^16
  operation (see Section 4.3.3 of [RFC3711]).  The resulting value is
  then AES-CM-encrypted using the master key to get the cipher key.

    index DIV kdr:                    000000000000
    label:                          06
    master salt:      0EC675AD498AFEEBB6960B3AABE6
    --------------------------------------------------
    XOR:              0EC675AD498AFEEDB6960B3AABE6     (x, PRF input)

    x*2^16:           0EC675AD498AFEEDB6960B3AABE60000 (AES-CM input)

    hdr. cipher key:  549752054D6FB708622C4A2E596A1B93 (AES-CM output)


  Next, we show how the cipher salt is generated.  The input block for
  AES-CM is generated by exclusive-ORing the master salt with the
  concatenation of the encryption salt label.  That value is padded and
  encrypted as above.













Lennox                       Standards Track                   [Page 13]

RFC 6904            Encrypted SRTP Header Extensions          April 2013


    index DIV kdr:                    000000000000
    label:                          07
    master salt:      0EC675AD498AFEEBB6960B3AABE6

    --------------------------------------------------
    XOR:              0EC675AD498AFEECB6960B3AABE6     (x, PRF input)

    x*2^16:           0EC675AD498AFEECB6960B3AABE60000 (AES-CM input)

                      AB01818174C40D39A3781F7C2D270733 (AES-CM ouptut)

    hdr. cipher salt: AB01818174C40D39A3781F7C2D27

A.2.  Header Encryption Test Vectors Using AES-CM

  This section provides test vectors for the encryption of a header
  extension using the AES_CM cryptographic transform.

  The header extension is encrypted using the header cipher key and
  header cipher salt computed in Appendix A.1.  The header extension is
  carried in an SRTP-encrypted RTP packet with SSRC 0xCAFEBABE,
  sequence number 0x1234, and an all-zero rollover counter.

      Session Key:      549752054D6FB708622C4A2E596A1B93
      Session Salt:     AB01818174C40D39A3781F7C2D27

      SSRC:                     CAFEBABE
      Rollover Counter:                 00000000
      Sequence Number:                          1234
      ----------------------------------------------
      Init. Counter:    AB018181BE3AB787A3781F7C3F130000

  The SRTP session was negotiated to indicate that header extension ID
  values 1, 3, and 4 are encrypted.

  In hexadecimal, the header extension being encrypted is as follows
  (spaces have been added to show the internal structure of the header
  extension):

    17 414273A475262748 22 0000C8 30 8E 46 55996386B395FB 00

  This header extension is 24 bytes long.  (Its values are intended to
  represent plausible values of the header extension elements shown in
  Section 3.1, but their specific meaning is not important for the
  example.)  The header extension "defined by profile" and "length"
  fields, which in this case are BEDE 0006 in hexadecimal, are not
  included in the encryption process.




Lennox                       Standards Track                   [Page 14]

RFC 6904            Encrypted SRTP Header Extensions          April 2013


  In hexadecimal, the corresponding encryption mask selecting the
  bodies of header extensions 1, 2, and 4 (corresponding to the mask in
  Figure 2) is:

     00 FFFFFFFFFFFFFFFF 00 000000 00 FF 00 FFFFFFFFFFFFFF 00

  Finally, we compute the keystream from the session key and the
  initial counter, apply the mask to the keystream, and then exclusive-
  OR the keystream with the plaintext:

      Initial keystream:  1E19C8E1D481C779549ED1617AAA1B7A
                          FC0D933AE7ED6CC8
      Mask (hex):         00FFFFFFFFFFFFFFFF0000000000FF00
                          FFFFFFFFFFFFFF00
      Masked keystream:   0019C8E1D481C7795400000000001B00
                          FC0D933AE7ED6C00
      Plaintext:          17414273A475262748220000C8308E46
                          55996386B395FB00
      Ciphertext:         17588A9270F4E15E1C220000C8309546
                          A994F0BC54789700

Author's Address

  Jonathan Lennox
  Vidyo, Inc.
  433 Hackensack Avenue
  Seventh Floor
  Hackensack, NJ  07601
  US

  EMail: [email protected]




















Lennox                       Standards Track                   [Page 15]