Internet Engineering Task Force (IETF)                        R. Papneja
Request for Comments: 6894                           Huawei Technologies
Category: Informational                                      S. Vapiwala
ISSN: 2070-1721                                               J. Karthik
                                                          Cisco Systems
                                                            S. Poretsky
                                                   Allot Communications
                                                                 S. Rao
                                                   Qwest Communications
                                                            JL. Le Roux
                                                         France Telecom
                                                             March 2013


    Methodology for Benchmarking MPLS Traffic Engineered (MPLS-TE)
                       Fast Reroute Protection

Abstract

  This document describes the methodology for benchmarking MPLS Fast
  Reroute (FRR) protection mechanisms for link and node protection.
  This document provides test methodologies and testbed setup for
  measuring failover times of Fast Reroute techniques while considering
  factors (such as underlying links) that might impact
  recovery times for real-time applications bound to MPLS Traffic
  Engineered (MPLS-TE) tunnels.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Not all documents
  approved by the IESG are a candidate for any level of Internet
  Standard; see Section 2 of RFC 5741.

  Information about the current status of this document, any
  errata, and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc6894.









Papneja, et al.               Informational                     [Page 1]

RFC 6894               MPLS Protection Mechanisms             March 2013


Copyright Notice

  Copyright (c) 2013 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

  This document may contain material from IETF Documents or IETF
  Contributions published or made publicly available before November
  10, 2008.  The person(s) controlling the copyright in some of this
  material may not have granted the IETF Trust the right to allow
  modifications of such material outside the IETF Standards Process.
  Without obtaining an adequate license from the person(s) controlling
  the copyright in such materials, this document may not be modified
  outside the IETF Standards Process, and derivative works of it may
  not be created outside the IETF Standards Process, except to format
  it for publication as an RFC or to translate it into languages other
  than English.

Table of Contents

  1. Introduction ....................................................3
  2. Document Scope ..................................................5
  3. Existing Definitions and Requirements ...........................5
  4. General Reference Topology ......................................6
  5. Test Considerations .............................................7
     5.1. Failover Events ............................................7
     5.2. Failure Detection ..........................................8
     5.3. Use of Data Traffic for MPLS Protection Benchmarking .......8
     5.4. LSP and Route Scaling ......................................9
     5.5. Selection of IGP ...........................................9
     5.6. Restoration and Reversion ..................................9
     5.7. Offered Load ...............................................9
     5.8. Tester Capabilities .......................................10
     5.9. Failover Time Measurement Methods .........................10
  6. Reference Test Setup ...........................................11
     6.1. Link Protection ...........................................12
          6.1.1. Link Protection: 1-Hop Primary (from PLR)
                 and 1-Hop Backup Tail-End Tunnels ..................12




Papneja, et al.               Informational                     [Page 2]

RFC 6894               MPLS Protection Mechanisms             March 2013


          6.1.2. Link Protection: 1-Hop Primary (from PLR)
                 and 2-Hop Backup Tail-End Tunnels ..................13
          6.1.3. Link Protection: 2-Hop (or More) Primary (from PLR)
                 and 1-Hop Backup Tail-End Tunnels ..................14
          6.1.4. Link Protection: 2-Hop (or More) Primary (from PLR)
                 and 2-Hop Backup Tail-End Tunnels ..................15
     6.2. Node Protection ...........................................16
          6.2.1. Node Protection: 2-Hop Primary (from PLR)
                 and 1-Hop Backup Tail-End Tunnels ..................16
          6.2.2. Node Protection: 2-Hop Primary (from PLR)
                 and 2-Hop Backup Tail-End Tunnels ..................17
          6.2.3. Node Protection: 3-Hop (or More) Primary (from PLR)
                 and 1-Hop Backup Tail-End Tunnels ..................18
          6.2.4. Node Protection: 3-Hop (or More) Primary (from PLR)
                 and 2-Hop Backup Tail-End Tunnels ..................19
  7. Test Methodology ...............................................19
     7.1. MPLS-FRR Forwarding Performance ...........................20
          7.1.1. Head-End PLR Forwarding Performance ................20
          7.1.2. Midpoint PLR Forwarding Performance ................21
     7.2. Head-End PLR with Link Failure ............................22
     7.3. Midpoint PLR with Link Failure ............................24
     7.4. Head-End PLR with Node Failure ............................25
     7.5. Midpoint PLR with Node Failure ............................26
  8. Reporting Format ...............................................27
  9. Security Considerations ........................................29
  10. Acknowledgements ..............................................29
  11. References ....................................................29
     11.1. Normative References .....................................29
     11.2. Informative References ...................................30
  Appendix A. Fast Reroute Scalability Table ........................31
  Appendix B. Abbreviations .........................................34

1.  Introduction

  This document describes the methodology for benchmarking MPLS Fast
  Reroute (FRR) protection mechanisms.  This document uses much of the
  terminology defined in [RFC6414].

  Protection mechanisms provide recovery of client services from a
  planned or an unplanned link or node failure.  MPLS-FRR protection
  mechanisms are generally deployed in a network infrastructure where
  MPLS is used for the provisioning of point-to-point traffic
  engineered tunnels (tunnel).  MPLS-FRR protection mechanisms aim to
  reduce the service disruption period by minimizing recovery time from
  most common failures.






Papneja, et al.               Informational                     [Page 3]

RFC 6894               MPLS Protection Mechanisms             March 2013


  Network elements from different manufacturers behave differently to
  network failures, which impacts the network's ability and performance
  for failure recovery.  Therefore, it becomes imperative for service
  providers to have a common benchmark to understand the performance
  behaviors of network elements.

  There are two factors impacting service availability: frequency of
  failures and duration for which the failures persist.  Failures can
  be classified further into two types: correlated and uncorrelated.
  Correlated and uncorrelated failures may be planned or unplanned.

  Planned failures are generally predictable.  Network implementations
  should be able to handle both planned and unplanned failures and
  recover gracefully within a time frame to maintain service assurance.
  Hence, failover recovery time is one of the most important benchmarks
  that a service provider considers in choosing the building blocks for
  their network infrastructure.

  A correlated failure is a result of the occurrence of two or more
  failures.  A typical example is failure of a logical resource (e.g.,
  Layer-2 (L2) links) due to a dependency on a common physical resource
  (e.g., common conduit) that fails.  Within the context of MPLS
  protection mechanisms, failures that arise due to Shared Risk Link
  Groups (SRLGs) [RFC4202] can be considered as correlated failures.

  MPLS-FRR [RFC4090] allows for the possibility that the Label Switched
  Paths (LSPs) can be reoptimized in the minutes following failover.
  IP traffic would be rerouted according to the preferred path for the
  post-failure topology.  Thus, MPLS-FRR may include additional steps
  following the occurrence of the failure detection and failover event
  [RFC6414].

  (1)  Failover Event - Primary path (working path) fails

  (2)  Failure Detection - Failover event is detected

  (3a)  Failover - Working path switched to backup path

  (3b)  Reoptimization of working path (possible change from backup
        path)

  (4)  Restoration (see Section 3.3.5 of [RFC6414])

  (5)  Reversion (see Section 3.3.6 of [RFC6414])







Papneja, et al.               Informational                     [Page 4]

RFC 6894               MPLS Protection Mechanisms             March 2013


2.  Document Scope

  This document provides detailed test cases along with different
  topologies and scenarios that should be considered to effectively
  benchmark MPLS-FRR protection mechanisms and failover times on the
  data plane.  Different failover events and scaling considerations are
  also provided in this document.

  All benchmarking test cases defined in this document apply to
  facility backup [RFC4090].  The test cases cover a set of interesting
  failure scenarios and the associated procedures benchmark the
  performance of the Device Under Test (DUT) to recover from failures.
  Data-plane traffic is used to benchmark failover times.  Testing
  scenarios related to MPLS-TE protection mechanisms when applied to
  MPLS Transport Profile and IP fast reroute applied to MPLS networks
  were not considered and are outside the scope of this document.
  However, the test setups considered for MPLS-based L3 and L2 services
  consider LDP over MPLS RSVP-TE configurations.

  Benchmarking of correlated failures is outside the scope of this
  document.  Detection using Bidirectional Forwarding Detection (BFD)
  is outside the scope of this document, but it is mentioned in
  discussion sections.

  The performance of the control plane is outside the scope of this
  document.

  As described above, MPLS-FRR may include a reoptimization of the
  working path, with possible packet transfer impairments.
  Characterization of reoptimization is beyond the scope of this memo.

3.  Existing Definitions and Requirements

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in BCP 14 [RFC2119].
  While [RFC2119] defines the use of these key words primarily for
  Standards Track documents, this Informational document uses some of
  these key words.

  The reader is assumed to be familiar with the commonly used MPLS
  terminology, some of which is defined in [RFC4090].

  This document uses much of the terminology defined in [RFC6414].
  This document also uses existing terminology defined in other BMWG
  documents [RFC1242] [RFC2285] [RFC4689].  Appendix B provides
  abbreviations used in the document.




Papneja, et al.               Informational                     [Page 5]

RFC 6894               MPLS Protection Mechanisms             March 2013


4.  General Reference Topology

  Figure 1 illustrates the general reference topology.  It shows the
  basic reference testbed and is applicable to all the test cases
  defined in this document.  The Tester is comprised of a Traffic
  Generator (TG) and Traffic Analyzer (TA) and Emulator.  A Tester is
  connected to the test network and, depending upon the test case, the
  DUT could vary.  The Tester sends and receives IP traffic to the
  tunnel ingress and performs signaling protocol emulation to simulate
  real network scenarios in a lab environment.  The Tester may also
  support MPLS-TE signaling to act as the ingress node to the MPLS
  tunnel.  The lines in figures represent physical connections.

       +---------------------------+
       |              +------------|---------------+
       |              |            |               |
       |              |            |               |
   +--------+     +--------+    +--------+    +--------+   +--------+
TG--|   R1   |-----|   R2   |----|   R3   |    |    R4  |   |  R5    |
   |        |-----|        |----|        |----|        |---|        |
   +--------+     +--------+    +--------+    +--------+   +--------+
       |             |              |            |            |
       |             |              |            |            |
       |         +--------+         |            |           TA
       +---------|   R6   |---------+            |
                 |        |----------------------+
                 +--------+

                               Figure 1

  The tester MUST record the number of lost, duplicate, and out-of-
  order packets.  It should further record arrival and departure times
  so that failover time, Additive Latency, and Reversion Time can be
  measured.  The tester may be a single device or a test system
  emulating all the different roles along a primary or backup path.

  The label stack is dependent on the following three entities:

  (1)  Type of protection (Link versus Node)

  (2)  Number of remaining hops of the primary tunnel from the Point of
       Local Repair (PLR) [RFC6414]

  (3)  Number of remaining hops of the backup tunnel from the PLR

  Due to this dependency, it is RECOMMENDED that the benchmarking of
  failover times be performed on all the topologies provided in Section
  6.



Papneja, et al.               Informational                     [Page 6]

RFC 6894               MPLS Protection Mechanisms             March 2013


5.  Test Considerations

  This section discusses the fundamentals of MPLS Protection testing:

     (1)  The types of network events that cause failover (Section 5.1)

     (2)  Indications for failover (Section 5.2)

     (3)  The use of data traffic (Section 5.3)

     (4)  Label Switched Path Scaling (Section 5.4)

     (5)  IGP Selection (Section 5.5)

     (6)  Reversion of LSP (Section 5.6)

     (7)  Traffic generation (Section 5.7)

5.1.  Failover Events

  The failover to the backup tunnel is primarily triggered by either
  link or node failures observed downstream of the Point of Local
  Repair (PLR).  The failure events [RFC6414] are listed below.

  Link Failure Events
     - Interface Shutdown on PLR side with physical/link alarm
     - Interface Shutdown on remote side with physical/link alarm
     - Interface Shutdown on PLR side with RSVP hello enabled
     - Interface Shutdown on remote side with RSVP hello enabled
     - Interface Shutdown on PLR side with BFD
     - Interface Shutdown on remote side with BFD
     - Fiber Pull on the PLR side (both Transmit (TX) and Receive (RX)
       or just the TX)
     - Fiber Pull on the remote side (both TX and RX or just the RX)
     - Online Insertion and Removal (OIR) on PLR side
     - OIR on remote side
     - Sub-interface failure on PLR side (e.g., shutting down of a
       VLAN)
     - Sub-interface failure on remote side
     - Parent interface shutdown on PLR side (an interface bearing
       multiple sub-interfaces)
     - Parent interface shutdown on remote side

  Node Failure Events
     - A System reload initiated by either a graceful shutdown or a
       power failure
     - A system crash due to a software failure or an assert




Papneja, et al.               Informational                     [Page 7]

RFC 6894               MPLS Protection Mechanisms             March 2013


5.2.  Failure Detection

  Link failure detection [RFC6414] time depends on the link type and
  failure detection protocols running.  For Synchronous Optical Network
  (SONET) / Synchronous Digital Hierarchy (SDH), the alarm type (such
  as LOS, AIS, or RDI) can be used.  Other link types have L2 alarms,
  but they may not provide a short enough failure detection time.
  Ethernet-based links enabled with MPLS/IP do not have L2 failure
  indicators; therefore, they rely on L3 signaling for failure
  detection.  However, for directly connected devices, remote fault
  indication in the ethernet auto-negotiation scheme could be
  considered as a type of L2 link failure indicator.

  MPLS has different failure detection techniques, such as BFD, or use
  of RSVP hellos.  These methods can be used for the L3 failure
  indicators required by ethernet-based links or for some other non-
  ethernet-based links to help improve failure detection time.
  However, these fast failure detection mechanisms are out of scope.

  The test procedures in this document can be used for local failure or
  remote failure scenarios for comprehensive benchmarking and to
  evaluate failover performance independent of the failure detection
  techniques.

5.3.  Use of Data Traffic for MPLS Protection Benchmarking

  Currently, end customers use packet loss as a key metric for failover
  time [RFC6414].  Failover Packet Loss [RFC6414] is an externally
  observable event and has a direct impact on application performance.
  MPLS protection is expected to minimize packet loss in the event of a
  failure.  For this reason, it is important to develop a standard
  router benchmarking methodology for measuring MPLS protection that
  uses packet loss as a metric.  At a known rate of forwarding, packet
  loss can be measured and the failover time can be determined.
  Measurement of control-plane signaling to establish backup paths is
  not enough to verify failover.  Failover is best determined when
  packets are actually traversing the backup path.

  An additional benefit of using packet loss for calculation of
  failover time is that it allows use of a black-box test environment.
  Data traffic is offered at line-rate to the DUT, an emulated network
  failure event is forced to occur, and packet loss is externally
  measured to calculate the convergence time.  This setup is
  independent of the DUT architecture.

  In addition, this methodology considers the packets in error and
  duplicate packets [RFC4689] that could have been generated during the
  failover process.  The methodologies consider lost, out-of-order



Papneja, et al.               Informational                     [Page 8]

RFC 6894               MPLS Protection Mechanisms             March 2013


  [RFC4689], and duplicate packets to be impaired packets that
  contribute to the failover time.

5.4.  LSP and Route Scaling

  Failover time performance may vary with the number of established
  primary and backup tunnel LSPs and installed routes.  However, the
  procedure outlined here should be used for any number of LSPs (L) and
  any number of routes protected by the PLR (R).  The values of L and R
  must be recorded.

5.5.  Selection of IGP

  The underlying IGP could be ISIS-TE or OSPF-TE for the methodology
  proposed here.  See [RFC6412] for IGP options to consider and report.

5.6.  Restoration and Reversion

  Path restoration [RFC6414] provides a method to restore an alternate
  primary LSP upon failure and to switch traffic from the backup path
  to the restored primary path (reversion).  In MPLS-FRR, reversion
  [RFC6414] can be implemented as Global Reversion or Local Reversion.
  It is important to include restoration and reversion as a step in
  each test case to measure the amount of packet loss, out-of-order
  packets, or duplicate packets that are produced.

  Note: In addition to restoration and reversion, reoptimization can
  take place while the failure is still not recovered but it depends on
  the user configuration and reoptimization timers.

5.7.  Offered Load

  It is suggested that there be three or more traffic streams as long
  as there is a steady and constant rate of flow for all of the
  streams.  In order to monitor the DUT performance for recovery times,
  a set of route prefixes should be advertised before traffic is sent.
  The traffic should be configured towards these routes.

  Prefix-dependency behaviors are key in IP, and tests with route-
  specific flows spread across the routing table will reveal this
  dependency.  Generating traffic to all of the prefixes reachable by
  the protected tunnel (probably in a Round-Robin fashion, where the
  traffic is destined to all the prefixes but one prefix at a time in a
  cyclic manner) is not recommended.  Round-Robin traffic generation is
  not recommended to all prefixes, as time to hit all the prefixes may
  be higher than the failover time.  This phenomenon will reduce the
  granularity of the measured results, and the results observed may not
  be accurate.



Papneja, et al.               Informational                     [Page 9]

RFC 6894               MPLS Protection Mechanisms             March 2013


5.8.  Tester Capabilities

  It is RECOMMENDED that the Tester used to execute each test case have
  the following capabilities:

     1. Ability to establish MPLS-TE tunnels and push/pop labels.

     2. Ability to produce a failover event [RFC6414].

     3. Ability to insert a timestamp in each data packet's IP payload.

     4. An internal time clock to control timestamping, time
        measurements, and time calculations.

     5. Ability to disable or tune specific L2 and L3 protocol
        functions on any interface.

     6. Ability to react upon the receipt of path error from the PLR.

  The Tester MAY be capable of making non-data-plane convergence
  observations and use those observations for measurements.

5.9.  Failover Time Measurement Methods

  Failover time [RFC6414] is calculated using one of the following
  three methods:

     1. Packet-Loss-Based Method (PLBM): (Number of packets dropped/
        packets per second * 1000) milliseconds.  This method could
        also be referred to as the Loss-Derived method.

     2. Time-Based Loss Method (TBLM): This method relies on the
        ability of the traffic generators to provide statistics that
        reveal the duration of failure in milliseconds based on when
        the packet loss occurred (interval between non-zero packet loss
        and zero loss).

     3. Timestamp-Based Method (TBM): This method of failover
        calculation is based on the timestamp that gets transmitted as
        payload in the packets originated by the generator.  The
        traffic analyzer records the timestamp of the last packet
        received before the failover event and the first packet after
        the failover and derives the time based on the difference
        between these two timestamps.  Note: The payload could also
        contain sequence numbers for out-of-order packet calculation
        and duplicate packets.





Papneja, et al.               Informational                    [Page 10]

RFC 6894               MPLS Protection Mechanisms             March 2013


  TBM would be able to detect reversion impairments beyond loss; thus,
  it is RECOMMENDED as the failover time method.

6.  Reference Test Setup

  In addition to the general reference topology shown in Figure 1, this
  section provides detailed insight into various proposed test setups
  that should be considered for comprehensively benchmarking the
  failover time in different roles along the primary tunnel.

  This section proposes a set of topologies that covers all the
  scenarios for local protection.  All of these topologies can be
  mapped to the reference topology shown in Figure 1.  Topologies
  provided in this section refer to the testbed required to benchmark
  failover time when the DUT is configured as a PLR in either head-end
  or midpoint role.  Provided with each topology below is the label
  stack at the PLR.  Penultimate Hop Popping (PHP) MAY be used and must
  be reported when used.

  Figures 2 through 9 use the following convention and are subset of
  Figure 1:

     a) HE is Head-End
     b) T/E is Tail-End
     c) MID is Midpoint
     d) MP is Merge Point
     e) PLR is Point of Local Repair
     f) PRI is Primary Path
     g) BKP denotes Backup Path and Nodes
     h) UR is Upstream Router





















Papneja, et al.               Informational                    [Page 11]

RFC 6894               MPLS Protection Mechanisms             March 2013


6.1.  Link Protection

6.1.1.  Link Protection: 1-Hop Primary (from PLR) and 1-Hop Backup
       Tail-End Tunnels

              +-------+  +--------+    +--------+
              |  R1   |  |   R2   | PRI|   R3   |
              | UR/HE |--| HE/MID |----| MP/T/E |
              |       |  |  PLR   |----|        |
              +-------+  +--------+ BKP+--------+

                            Figure 2

         Traffic            No. of Labels   No. of labels
                            before failure  after failure
         IP TRAFFIC (P-P)         0             0
         Layer3 VPN (PE-PE)       1             1
         Layer3 VPN (PE-P)        2             2
         Layer2 VC (PE-PE)        1             1
         Layer2 VC (PE-P)         2             2
         Midpoint LSPs            0             0

  Please note the following:

  a) For the P-P case, R2 and R3 act as P routers
  b) For the PE-PE cases, R2 acts as a PE and R3 acts as a remote PE
  c) For the PE-P cases, R2 acts as a PE router, R3 acts as a P router,
     and R5 acts as a remote PE router (please refer to Figure 1 for
     complete setup)
  d) For the midpoint case, R1, R2, and R3 act as HE, midpoint/PLR, and
     tail-end, respectively (as shown in the figure above)




















Papneja, et al.               Informational                    [Page 12]

RFC 6894               MPLS Protection Mechanisms             March 2013


6.1.2.  Link Protection: 1-Hop Primary (from PLR) and 2-Hop Backup
       Tail-End Tunnels

            +-------+    +--------+    +--------+
            |  R1   |    |  R2    |    |   R3   |
            | UR/HE |    | HE/MID |PRI | MP/T/E |
            |       |----|  PLR   |----|        |
            +-------+    +--------+    +--------+
                             |BKP               |
                             |    +--------+    |
                             |    |   R6   |    |
                             |----|  BKP   |----|
                                  |   MID  |
                                  +--------+

                          Figure 3

         Traffic            No. of Labels   No. of labels
                            before failure  after failure
         IP TRAFFIC (P-P)       0              1
         Layer3 VPN (PE-PE)     1              2
         Layer3 VPN (PE-P)      2              3
         Layer2 VC (PE-PE)      1              2
         Layer2 VC (PE-P)       2              3
         Midpoint LSPs          0              1

  Please note the following:

  a) For the P-P case, R2 and R3 act as P routers
  b) For PE-PE cases, R2 acts as a PE and R3 acts as a remote PE
  c) For PE-P cases, R2 acts as a PE router, R3 acts as a P router, and
     R5 acts as a remote PE router (please refer to Figure 1 for
     complete setup)
  d) For the midpoint case, R1, R2, and R3 act as HE, midpoint/PLR, and
     tail-end, respectively (as shown in the figure above)
















Papneja, et al.               Informational                    [Page 13]

RFC 6894               MPLS Protection Mechanisms             March 2013


6.1.3.  Link Protection: 2-Hop (or More) Primary (from PLR) and 1-Hop
       Backup Tail-End Tunnels

            +--------+    +--------+    +--------+      +--------+
            |  R1    |    | R2     |PRI |   R3   |PRI   |   R4   |
            |  UR/HE |----| HE/MID |----| MP/MID |------|  T/E   |
            |        |    | PLR    |----|        |      |        |
            +--------+    +--------+ BKP+--------+      +--------+

                                  Figure 4

         Traffic            No. of Labels   Num of labels
                            before failure  after failure
         IP TRAFFIC (P-P)       1                1
         Layer3 VPN (PE-PE)     2                2
         Layer3 VPN (PE-P)      3                3
         Layer2 VC (PE-PE)      2                2
         Layer2 VC (PE-P)       3                3
         Midpoint LSPs          1                1

  Please note the following:

  a) For the P-P case, R2, R3, and R4 act as P routers
  b) For PE-PE cases, R2 acts as a PE and R4 acts as a remote PE c) For
     PE-P cases, R2 acts as a PE router, R3 acts as a P router, and R5
     acts as remote PE router (please refer to Figure 1 for complete
     setup)
  d) For the midpoint case, R1, R2, R3, and R4 act as HE, midpoint/PLR,
     and tail-end, respectively (as shown in the figure above)






















Papneja, et al.               Informational                    [Page 14]

RFC 6894               MPLS Protection Mechanisms             March 2013


6.1.4.  Link Protection: 2-Hop (or More) Primary (from PLR) and 2-Hop
       Backup Tail-End Tunnels

            +--------+    +--------+PRI +--------+  PRI +--------+
            |  R1    |    |  R2    |    |   R3   |      |   R4   |
            | UR/HE  |----| HE/MID |----|  MP/MID|------|  T/E   |
            |        |    | PLR    |    |        |      |        |
            +--------+    +--------+    +--------+      +--------+
                          BKP|              |
                             |   +--------+ |
                             |   |   R6   | |
                             +---|  BKP   |-
                                 |  MID   |
                                 +--------+

                                  Figure 5

         Traffic            No. of Labels   No. of labels
                            before failure  after failure
         IP TRAFFIC (P-P)       1              2
         Layer3 VPN (PE-PE)     2              3
         Layer3 VPN (PE-P)      3              4
         Layer2 VC (PE-PE)      2              3
         Layer2 VC (PE-P)       3              4
         Midpoint LSPs          1              2

  Please note the following:

  a) For the P-P case, R2, R3, and R4 act as P routers
  b) For PE-PE cases, R2 acts as a PE and R4 acts as a remote PE
  c) For PE-P cases, R2 acts as a PE router, R3 acts as a P router, and
     R5 acts as remote PE router (please refer to Figure 1 for complete
     setup)
  d) For the midpoint case, R1, R2, R3 and R4 act as HE, midpoint/PLR,
     and tail-end, respectively (as shown in the figure above)
















Papneja, et al.               Informational                    [Page 15]

RFC 6894               MPLS Protection Mechanisms             March 2013


6.2.  Node Protection

6.2.1.  Node Protection: 2-Hop Primary (from PLR) and 1-Hop Backup
       Tail-End Tunnels

            +--------+    +--------+    +--------+      +--------+
            |  R1    |    |  R2    |PRI |   R3   | PRI  |   R4   |
            | UR/HE  |----| HE/MID |----|  MID   |------| MP/T/E |
            |        |    |  PLR   |    |        |      |        |
            +--------+    +--------+    +--------+      +--------+
                            |BKP                          |
                             -----------------------------

                                 Figure 6

         Traffic            No. of Labels   No. of labels
                            before failure  after failure
         IP TRAFFIC (P-P)       1             0
         Layer3 VPN (PE-PE)     2             1
         Layer3 VPN (PE-P)      3             2
         Layer2 VC (PE-PE)      2             1
         Layer2 VC (PE-P)       3             2
         Midpoint LSPs          1             0

  Please note the following:

  a) For the P-P case, R2, R3, and R4 act as P routers
  b) For PE-PE cases, R2 acts as a PE and R4 acts as a remote PE
  c) For PE-P cases, R2 acts as a PE router, R4 acts as a P router, and
     R5 acts as remote PE router (please refer to Figure 1 for complete
     setup)
  d) For the midpoint case, R1, R2, R3, and R4 act as HE, midpoint/PLR,
     and tail-end, respectively (as shown in the figure above)


















Papneja, et al.               Informational                    [Page 16]

RFC 6894               MPLS Protection Mechanisms             March 2013


6.2.2.  Node Protection: 2-Hop Primary (from PLR) and 2-Hop Backup
       Tail-End Tunnels

            +--------+    +--------+    +--------+    +--------+
            |  R1    |    |  R2    |    |   R3   |    |   R4   |
            | UR/HE  |    | HE/MID |PRI |  MID   |PRI | MP/T/E |
            |        |----|  PLR   |----|        |----|        |
            +--------+    +--------+    +--------+    +--------+
                            |                            |
                         BKP|         +--------+         |
                            |         |   R6   |         |
                             ---------|  BKP   |---------
                                      |  MID   |
                                      +--------+

                                  Figure 7

         Traffic            No. of Labels   No. of labels
                            before failure   after failure
         IP TRAFFIC (P-P)       1              1
         Layer3 VPN (PE-PE)     2              2
         Layer3 VPN (PE-P)      3              3
         Layer2 VC (PE-PE)      2              2
         Layer2 VC (PE-P)       3              3
         Midpoint LSPs         1              1

  Please note the following:

  a) For the P-P case, R2, R3, and R4 act as P routers
  b) For PE-PE cases, R2 acts as a PE and R4 acts as a remote PE
  c) For PE-P cases, R2 acts as a PE router, R4 acts as a P router, and
     R5 acts as remote PE router (please refer to Figure 1 for complete
     setup)
  d) For the midpoint case, R1, R2, R3, and R4 act as HE, midpoint/PLR,
     and tail-end, respectively (as shown in the figure above)
















Papneja, et al.               Informational                    [Page 17]

RFC 6894               MPLS Protection Mechanisms             March 2013


6.2.3.  Node Protection: 3-Hop (or More) Primary (from PLR) and 1-Hop
       Backup Tail-End Tunnels

        +--------+  +--------+PRI+--------+PRI+--------+PRI+--------+
        |  R1    |  |  R2    |   |   R3   |   |   R4   |   |   R5   |
        | UR/HE  |--| HE/MID |---| MID    |---|  MP    |---|  T/E   |
        |        |  |  PLR   |   |        |   |        |   |        |
        +--------+  +--------+   +--------+   +--------+   +--------+
                    BKP|                          |
                        --------------------------

                                  Figure 8

         Traffic            No. of Labels  No. of labels
                            before failure  after failure
         IP TRAFFIC (P-P)       1             1
         Layer3 VPN (PE-PE)     2             2
         Layer3 VPN (PE-P)      3             3
         Layer2 VC (PE-PE)      2             2
         Layer2 VC (PE-P)       3             3
         Midpoint LSPs          1             1

  Please note the following:

  a) For the P-P case, R2, R3, R4, and R5 act as P routers
  b) For PE-PE cases, R2 acts as a PE and R5 acts as a remote PE
  c) For PE-P cases, R2 acts as a PE router, R4 acts as a P router, and
     R5 acts as remote PE router (please refer to Figure 1 for complete
     setup)
  d) For the midpoint case, R1, R2, R3, R4, and R5 act as HE,
     midpoint/PLR, and tail-end, respectively (as shown in the figure
     above)



















Papneja, et al.               Informational                    [Page 18]

RFC 6894               MPLS Protection Mechanisms             March 2013


6.2.4.  Node Protection: 3-Hop (or More) Primary (from PLR) and 2-Hop
       Backup Tail-End Tunnels

     +--------+   +--------+   +--------+   +--------+   +--------+
     |  R1    |   |  R2    |   |   R3   |   |   R4   |   |   R5   |
     | UR/HE  |   | HE/MID |PRI|  MID   |PRI|  MP    |PRI|  T/E   |
     |        |-- |  PLR   |---|        |---|        |---|        |
     +--------+   +--------+   +--------+   +--------+   +--------+
                   BKP|                          |
                      |         +--------+       |
                      |         |  R6    |       |
                       ---------|  BKP   |-------
                                |  MID   |
                                +--------+

                                 Figure 9

         Traffic            No. of Labels   No. of labels
                            before failure   after failure
         IP TRAFFIC (P-P)       1             2
         Layer3 VPN (PE-PE)     2             3
         Layer3 VPN (PE-P)      3             4
         Layer2 VC (PE-PE)      2             3
         Layer2 VC (PE-P)       3             4
         Midpoint LSPs          1             2

  Please note the following:

  a) For the P-P case, R2, R3, R4, and R5 act as P routers
  b) For PE-PE cases, R2 acts as a PE and R5 acts as a remote PE
  c) For PE-P cases, R2 acts as a PE router, R4 acts as a P router,
     and R5 acts as remote PE router (please refer to Figure 1 for
     complete setup)
  d) For the midpoint case, R1, R2, R3, R4, and R5 act as HE,
     midpoint/PLR, and tail-end, respectively (as shown in the
     figure above)

7.  Test Methodology

  The procedure described in this section can be applied to all eight
  base test cases and the associated topologies.  The backup as well as
  the primary tunnels are configured to be alike in terms of bandwidth
  usage.  In order to benchmark failover with all possible label stack
  depth applicable (as seen with current deployments), it is
  RECOMMENDED to perform all of the test cases provided in this
  section.  The forwarding performance test cases in Section 7.1 MUST
  be performed prior to performing the failover test cases.




Papneja, et al.               Informational                    [Page 19]

RFC 6894               MPLS Protection Mechanisms             March 2013


  The considerations of Section 4 of [RFC2544] are applicable when
  evaluating the results obtained using these methodologies as well.

7.1.  MPLS-FRR Forwarding Performance

  Benchmarking failover time [RFC6414] for MPLS protection first
  requires a baseline measurement of the forwarding performance of the
  test topology, including the DUT.  Forwarding performance is
  benchmarked by the throughput as defined in [RFC5695] and measured in
  units of packets per second (pps).  This section provides two test
  cases to benchmark forwarding performance.  These are with the DUT
  configured as a head-end PLR, midpoint PLR, and egress PLR.

7.1.1.  Head-End PLR Forwarding Performance

  Objective:

     To benchmark the maximum rate (pps) on the PLR (as head-end) over
     the primary LSP and backup LSP.

     Test Setup:

     A.  Select any one topology out of the eight from Section 6.

     B.  Select or enable IP, L3 VPN, or L2 VPN services with the DUT
         as head-end PLR.

     C.  The DUT will also have two interfaces connected to the traffic
         generator/analyzer.  (If the node downstream of the PLR is not
         a simulated node, then the ingress of the tunnel should have
         one link connected to the traffic generator, and the node
         downstream of the PLR or the egress of the tunnel should have
         a link connected to the traffic analyzer).

  Procedure:

     1.   Establish the primary LSP on R2 required by the topology
          selected.

     2.   Establish the backup LSP on R2 required by the selected
          topology.

     3.   Verify that primary and backup LSPs are up and that the
          primary is protected.

     4.   Verify that Fast Reroute protection is enabled and ready.

     5.   Set up traffic streams as described in Section 5.7.



Papneja, et al.               Informational                    [Page 20]

RFC 6894               MPLS Protection Mechanisms             March 2013


     6.   Send MPLS traffic over the primary LSP at the throughput
          supported by the DUT (Section 6 of [RFC2544]).

     7.   Record the throughput over the primary LSP.

     8.   Trigger a link failure as described in Section 5.1.

     9.   Verify that the offered load gets mapped to the backup tunnel
          and measure the Additive Backup Delay [RFC6414].

     10.  30 seconds after failover, stop the offered load and measure
          the throughput, packet loss, out-of-order packets, and
          duplicate packets over the backup LSP.

     11.  Adjust the offered load and repeat steps 6 through 10 until
          the throughput values for the primary and backup LSPs are
          equal.

     12.  Record the final throughput, which corresponds to the offered
          load that will be used for the head-end PLR failover test
          cases.

7.1.2.  Midpoint PLR Forwarding Performance

  Objective:

     To benchmark the maximum rate (pps) on the PLR (as midpoint) over
     the primary LSP and backup LSP.

  Test Setup:

     A.  Select any one topology out of the eight from Section 6.

     B.  The DUT will also have two interfaces connected to the traffic
         generator.

  Procedure:

     1.   Establish the primary LSP on R1 required by the topology
          selected.

     2.   Establish the backup LSP on R2 required by the selected
          topology.

     3.   Verify that primary and backup LSPs are up and that the
          primary is protected.

     4.   Verify that Fast Reroute protection is enabled and ready.



Papneja, et al.               Informational                    [Page 21]

RFC 6894               MPLS Protection Mechanisms             March 2013


     5.   Set up traffic streams as described in Section 5.7.

     6.   Send MPLS traffic over the primary LSP at the throughput
          supported by the DUT (Section 6 of [RFC2544]).

     7.   Record the throughput over the primary LSP.

     8.   Trigger a link failure as described in Section 5.1.

     9.   Verify that the offered load gets mapped to the backup tunnel
          and measure the Additive Backup Delay [RFC6414].

     10.  30 seconds after failover, stop the offered load and measure
          the throughput, packet loss, out-of-order packets, and
          duplicate packets over the backup LSP.

     11.  Adjust the offered load and repeat steps 6 through 10 until
          the throughput values for the primary and backup LSPs are
          equal.

     12.  Record the final throughput, which corresponds to the offered
          load that will be used for the midpoint PLR failover test
          cases.

7.2.  Head-End PLR with Link Failure

  Objective:

     To benchmark the MPLS failover time due to link failure events
     described in Section 5.1 experienced by the DUT, which is the
     head-end PLR.

  Test Setup:

     A.  Select any one topology out of the eight from Section 6.

     B.  Select or enable IP, L3 VPN, or L2 VPN services with the DUT
         as head-end PLR.

     C.  The DUT will also have two interfaces connected to the traffic
         generator/analyzer.  (If the node downstream of the PLR is not
         a simulated node, then the ingress of the tunnel should have
         one link connected to the traffic generator, and the node
         downstream to the PLR or the egress of the tunnel should have
         a link connected to the traffic analyzer).






Papneja, et al.               Informational                    [Page 22]

RFC 6894               MPLS Protection Mechanisms             March 2013


  Test Configuration:

     1.  Configure the number of primaries on R2 and the backups on R2
         as required by the topology selected.

     2.  Configure the test setup to support reversion.

     3.  Advertise prefixes (as per the FRR Scalability Table in
         Appendix A) by the tail-end.

  Procedure:

     The test case in Section 7.1.1, "Head-End PLR Forwarding
     Performance", MUST be completed first to obtain the throughput to
     use as the offered load.

     1.   Establish the primary LSP on R2 required by the topology
          selected.

     2.   Establish the backup LSP on R2 required by the selected
          topology.

     3.   Verify that primary and backup LSPs are up and that the
          primary is protected.

     4.   Verify that Fast Reroute protection is enabled and ready.

     5.   Set up traffic streams for the offered load as described in
          Section 5.7.

     6.   Provide the offered load from the tester at the throughput
          [RFC1242] level obtained from the test case in Section 7.1.1.

     7.   Verify that traffic is switched over the primary LSP without
          packet loss.

     8.   Trigger a link failure as described in Section 5.1.

     9.   Verify that the offered load gets mapped to the backup tunnel
          and measure the Additive Backup Delay [RFC6414].

     10.  30 seconds after failover, stop the offered load and measure
          the total failover packet loss [RFC6414].

     11.  Calculate the failover time benchmark using the selected
          failover time calculation method (TBLM, PLBM, or TBM)
          [RFC6414].




Papneja, et al.               Informational                    [Page 23]

RFC 6894               MPLS Protection Mechanisms             March 2013


     12.  Restart the offered load and restore the primary LSP to
          verify that reversion occurs and measure the Reversion Packet
          Loss [RFC6414].

     13.  Calculate the Reversion Time benchmark using the selected
          failover time calculation method (TBLM, PLBM, or TBM)
          [RFC6414].

     14.  Verify that the head-end signals new LSP and protection
          should be in place again.

  It is RECOMMENDED that this procedure be repeated for each of the
  link failure triggers defined in Section 5.1.

7.3.  Midpoint PLR with Link Failure

  Objective:

     To benchmark the MPLS failover time due to link failure events
     described in Section 5.1 experienced by the DUT, which is the
     midpoint PLR.

  Test Setup:

     A.  Select any one topology out of the eight from Section 6.

     B.  The DUT will also have two interfaces connected to the traffic
         generator.

  Test Configuration:

     1.  Configure the number of primaries on R1 and the backups on R2
         as required by the topology selected.

     2.  Configure the test setup to support reversion.

     3.  Advertise prefixes (as per the FRR Scalability Table in
         Appendix A) by the tail-end.

  Procedure:

     The test case in Section 7.1.2, "Midpoint PLR Forwarding
     Performance", MUST be completed first to obtain the throughput to
     use as the offered load.

     1.  Establish the primary LSP on R1 as required by the topology
         selected.




Papneja, et al.               Informational                    [Page 24]

RFC 6894               MPLS Protection Mechanisms             March 2013


     2.  Establish the backup LSP on R2 as required by the selected
         topology.

     3.  Perform steps 3 through 14 from Section 7.2, "Head-End PLR
         with Link Failure".

  It is RECOMMENDED that this procedure be repeated for each of the
  link failure triggers defined in section 5.1.

7.4.  Head-End PLR with Node Failure

  Objective:

     To benchmark the MPLS failover time due to node failure events
     described in Section 5.1 experienced by the DUT, which is the
     head-end PLR.

  Test Setup:

     A.  Select any one topology out of the eight from Section 6.

     B.  Select or enable IP, L3 VPN, or L2 VPN services with the DUT
         as head-end PLR.

     C.  The DUT will also have two interfaces connected to the traffic
         generator/analyzer.

  Test Configuration:

     1.  Configure the number of primaries on R2 and the backups on R2
         as required by the topology selected.

     2.  Configure the test setup to support reversion.

     3.  Advertise prefixes (as per the FRR Scalability Table in
         Appendix A) by the tail-end.

  Procedure:

     The test case in Section 7.1.1, "Head-End PLR Forwarding
     Performance", MUST be completed first to obtain the throughput to
     use as the offered load.

     1.  Establish the primary LSP on R2 as required by the topology
         selected.

     2.  Establish the backup LSP on R2 as required by the selected
         topology.



Papneja, et al.               Informational                    [Page 25]

RFC 6894               MPLS Protection Mechanisms             March 2013


     3.  Verify that the primary and backup LSPs are up and that the
         primary is protected.

     4.  Verify that Fast Reroute protection is enabled and ready.

     5.  Set up traffic streams for the offered load as described in
         Section 5.7.

     6.  Provide the offered load from the tester at the throughput
         [RFC1242] level obtained from the test case in Section 7.1.1.

     7.  Verify that traffic is switched over the primary LSP without
         packet loss.

     8.  Trigger a node failure as described in Section 5.1.

     9.  Perform steps 9 through 14 in Section 7.2, "Head-End PLR with
         Link Failure".

  It is RECOMMENDED that this procedure be repeated for each of the
  node failure triggers defined in Section 5.1.

7.5.  Midpoint PLR with Node Failure

  Objective:

     To benchmark the MPLS failover time due to node failure events
     described in Section 5.1 experienced by the DUT, which is the
     midpoint PLR.

  Test Setup:

     A.  Select any one topology from Sections 6.1 to 6.2.

     B.  The DUT will also have two interfaces connected to the traffic
         generator.

  Test Configuration:

     1.  Configure the number of primaries on R1 and the backups on R2
         as required by the topology selected.

     2.  Configure the test setup to support reversion.

     3.  Advertise prefixes (as per the FRR Scalability Table in
         Appendix A) by the tail-end.





Papneja, et al.               Informational                    [Page 26]

RFC 6894               MPLS Protection Mechanisms             March 2013


  Procedure:

     The test case in Section 7.1.1, "Midpoint PLR Forwarding
     Performance", MUST be completed first to obtain the throughput to
     use as the offered load.

     1.  Establish the primary LSP on R1 as required by the topology
         selected.

     2.  Establish the backup LSP on R2 as required by the selected
         topology.

     3.  Verify that the primary and backup LSPs are up and that the
         primary is protected.

     4.  Verify that Fast Reroute protection is enabled and ready.

     5.  Set up traffic streams for the offered load as described in
         Section 5.7.

     6.  Provide the offered load from the tester at the throughput
         [RFC1242] level obtained from the test case in Section 7.1.1.

     7.  Verify that traffic is switched over the primary LSP without
         packet loss.

     8.  Trigger a node failure as described in Section 5.1.

     9.  Perform steps 9 through 14 in Section 7.2, "Head-End PLR with
         Link Failure".

  It is RECOMMENDED that this procedure be repeated for each of the
  node failure triggers defined in Section 5.1.

8.  Reporting Format

  For each test, it is RECOMMENDED that the results be reported in the
  following format.

        Parameter                          Units

        IGP used for the test              ISIS-TE / OSPF-TE
        Interface types                    Gige,POS,ATM,VLAN, etc.

        Packet Sizes offered to the DUT    Bytes (at L3)

        Offered Load (Throughput)          Packets per second




Papneja, et al.               Informational                    [Page 27]

RFC 6894               MPLS Protection Mechanisms             March 2013


        IGP routes advertised              Number of IGP routes

        Penultimate Hop Popping            Used/Not Used

        RSVP hello timers                  Milliseconds

        Number of Protected tunnels        Number of tunnels

        Number of VPN routes installed     Number of VPN routes
        on the head-end

        Number of VC tunnels               Number of VC tunnels

        Number of midpoint tunnels         Number of tunnels

        Number of Prefixes protected by    Number of LSPs
        Primary

        Topology being used                Section number, and
                                           figure reference

        Failover event                     Event type

        Reoptimization                     Yes/No

     Benchmarks (to be recorded for each test case):

     Failover-
         Failover Time                        seconds
         Failover Packet Loss                 packets
         Additive Backup Delay                seconds
         Out-of-Order Packets                 packets
         Duplicate Packets                    packets
         Failover Time Calculation Method     Method Used

     Reversion-
         Reversion Time                       seconds
         Reversion Packet Loss                packets
         Additive Backup Delay                seconds
         Out-of-Order Packets                 packets
         Duplicate Packets                    packets
         Failover Time Calculation Method     Method Used









Papneja, et al.               Informational                    [Page 28]

RFC 6894               MPLS Protection Mechanisms             March 2013


9.  Security Considerations

  Benchmarking activities as described in this memo are limited to
  technology characterization using controlled stimuli in a laboratory
  environment, with dedicated address space and the constraints
  specified in the sections above.

  The benchmarking network topology will be an independent test setup
  and MUST NOT be connected to devices that may forward the test
  traffic into a production network, or misroute traffic to the test
  management network.

  Further, benchmarking is performed on a "black-box" basis, relying
  solely on measurements observable external to the DUT/SUT.

  Special capabilities SHOULD NOT exist in the DUT/SUT specifically for
  benchmarking purposes.  Any implications for network security arising
  from the DUT/SUT SHOULD be identical in the lab and in production
  networks.

10.  Acknowledgements

  We would like to thank Jean Philip Vasseur for his invaluable input
  to the document, Curtis Villamizar for his contribution in suggesting
  text on the definition and need for benchmarking Correlated failures,
  and Bhavani Parise for his textual input and review.  Additionally,
  we would like to thank Al Morton, Arun Gandhi, Amrit Hanspal, Karu
  Ratnam, Raveesh Janardan, Andrey Kiselev, and Mohan Nanduri for their
  formal reviews of this document.

11.  References

11.1.  Normative References

  [RFC1242]  Bradner, S., "Benchmarking Terminology for Network
             Interconnection Devices", RFC 1242, July 1991.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2544]  Bradner, S. and J. McQuaid, "Benchmarking Methodology for
             Network Interconnect Devices", RFC 2544, March 1999.

  [RFC4090]  Pan, P., Ed., Swallow, G., Ed., and A. Atlas, Ed., "Fast
             Reroute Extensions to RSVP-TE for LSP Tunnels", RFC 4090,
             May 2005.





Papneja, et al.               Informational                    [Page 29]

RFC 6894               MPLS Protection Mechanisms             March 2013


  [RFC5695]  Akhter, A., Asati, R., and C. Pignataro, "MPLS Forwarding
             Benchmarking Methodology for IP Flows", RFC 5695, November
             2009.

  [RFC6412]  Poretsky, S., Imhoff, B., and K. Michielsen, "Terminology
             for Benchmarking Link-State IGP Data-Plane Route
             Convergence", RFC 6412, November 2011.

  [RFC6414]  Poretsky, S., Papneja, R., Karthik, J., and S. Vapiwala,
             "Benchmarking Terminology for Protection Performance", RFC
             6414, November 2011.

11.2.  Informative References

  [RFC2285]  Mandeville, R., "Benchmarking Terminology for LAN
             Switching Devices", RFC 2285, February 1998.

  [RFC4202]  Kompella, K., Ed., and Y. Rekhter, Ed., "Routing
             Extensions in Support of Generalized Multi-Protocol Label
             Switching (GMPLS)", RFC 4202, October 2005.

  [RFC4689]  Poretsky, S., Perser, J., Erramilli, S., and S. Khurana,
             "Terminology for Benchmarking Network-layer Traffic
             Control Mechanisms", RFC 4689, October 2006.



























Papneja, et al.               Informational                    [Page 30]

RFC 6894               MPLS Protection Mechanisms             March 2013


Appendix A.  Fast Reroute Scalability Table

  This section provides the recommended numbers for evaluating the
  scalability of fast reroute implementations.  It also recommends the
  typical numbers for IGP/VPNv4 Prefixes, LSP Tunnels, and VC entries.
  Based on the features supported by the DUT, appropriate scaling
  limits can be used for the testbed.

A.1.  FRR IGP Table

     No. of Head-End TE Tunnels      IGP Prefixes

     1                               100

     1                               500

     1                               1000

     1                               2000

     1                               5000

     2 (Load Balance)                100

     2 (Load Balance)                500

     2 (Load Balance)                1000

     2 (Load Balance)                2000

     2 (Load Balance)                5000

     100                             100

     500                             500

     1000                            1000

     2000                            2000












Papneja, et al.               Informational                    [Page 31]

RFC 6894               MPLS Protection Mechanisms             March 2013


A.2.  FRR VPN Table

     No. of Head-End TE Tunnels      VPNv4 Prefixes

     1                               100

     1                               500

     1                               1000

     1                               2000

     1                               5000

     1                               10000

     1                               20000

     1                               Max

     2 (Load Balance)                100

     2 (Load Balance)                500

     2 (Load Balance)                1000

     2 (Load Balance)                2000

     2 (Load Balance)                5000

     2 (Load Balance)                10000

     2 (Load Balance)                20000

     2 (Load Balance)                Max
















Papneja, et al.               Informational                    [Page 32]

RFC 6894               MPLS Protection Mechanisms             March 2013


A.3.  FRR Midpoint LSP Table

  The number of midpoint TE LSPs could be configured at recommended
  levels -- 100, 500, 1000, 2000, or max supported number.

A.4.  FRR VC Table

     No. of Head-End TE Tunnels      VC entries

     1                               100
     1                               500
     1                               1000
     1                               2000
     1                               Max
     100                             100
     500                             500
     1000                            1000
     2000                            2000

































Papneja, et al.               Informational                    [Page 33]

RFC 6894               MPLS Protection Mechanisms             March 2013


Appendix B.  Abbreviations

  AIS      - Alarm Indication Signal
  BFD      - Bidirectional Fault Detection
  BGP      - Border Gateway Protocol
  BKP      - Backup Path and Nodes
  CE       - Customer Edge
  DUT      - Device Under Test
  FRR      - Fast Reroute
  HE       - Head-End
  IGP      - Interior Gateway Protocol
  IP       - Internet Protocol
  LOS      - Loss of Signal
  LSP      - Label Switched Path
  MID      - Midpoint
  MP       - Merge Point
  MPLS     - Multiprotocol Label Switching
  N-Nhop   - Next - Next Hop
  Nhop     - Next Hop
  OIR      - Online Insertion and Removal
  P        - Provider
  PE       - Provider Edge
  PHP      - Penultimate Hop Popping
  PLBM     - Packet-Loss-Based Method
  PLR      - Point of Local Repair
  PRI      - Primary Path
  RSVP     - Resource reSerVation Protocol
  RX       - Receive
  SRLG     - Shared Risk Link Group
  TA       - Traffic Analyzer
  TBM      - Timestamp-Based Method
  TE       - Traffic Engineering
  TG       - Traffic Generator
  TX       - Transmit
  UR       - Upstream Router
  VC       - Virtual Circuit
  VPN      - Virtual Private Network














Papneja, et al.               Informational                    [Page 34]

RFC 6894               MPLS Protection Mechanisms             March 2013


Authors' Addresses

  Rajiv Papneja
  Huawei Technologies
  2330 Central Expressway
  Santa Clara, CA  95050
  USA
  EMail: [email protected]

  Samir Vapiwala
  Cisco Systems
  300 Beaver Brook Road
  Boxborough, MA  01719
  USA
  EMail: [email protected]

  Jay Karthik
  Cisco Systems
  300 Beaver Brook Road
  Boxborough, MA  01719
  USA
  EMail: [email protected]

  Scott Poretsky
  Allot Communications
  300 TradeCenter
  Woburn, MA  01801
  USA
  EMail: [email protected]

  Shankar Rao
  Qwest Communications
  950 17th Street
  Suite 1900
  Denver, CO  80210
  USA
  EMail: [email protected]

  JL. Le Roux
  France Telecom
  2 av Pierre Marzin
  22300 Lannion
  France
  EMail: [email protected]







Papneja, et al.               Informational                    [Page 35]