Internet Engineering Task Force (IETF)                    K. Kumaki, Ed.
Request for Comments: 6882                              KDDI Corporation
Category: Experimental                                          T. Murai
ISSN: 2070-1721                          Furukawa Network Solution Corp.
                                                               D. Cheng
                                                    Huawei Technologies
                                                          S. Matsushima
                                                       Softbank Telecom
                                                               P. Jiang
                                                       KDDI Corporation
                                                             March 2013


Support for Resource Reservation Protocol Traffic Engineering (RSVP-TE)
             in Layer 3 Virtual Private Networks (L3VPNs)

Abstract

  IP Virtual Private Networks (VPNs) provide connectivity between sites
  across an IP/MPLS backbone.  These VPNs can be operated using
  BGP/MPLS, and a single Provider Edge (PE) node may provide access to
  multiple customer sites belonging to different VPNs.

  The VPNs may support a number of customer services, including RSVP
  and Resource Reservation Protocol Traffic Engineering (RSVP-TE)
  traffic.  This document describes how to support RSVP-TE between
  customer sites when a single PE supports multiple VPNs and labels are
  not used to identify VPNs between PEs.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for examination, experimental implementation, and
  evaluation.

  This document defines an Experimental Protocol for the Internet
  community.  This document is a product of the Internet Engineering
  Task Force (IETF).  It represents the consensus of the IETF
  community.  It has received public review and has been approved for
  publication by the Internet Engineering Steering Group (IESG).  Not
  all documents approved by the IESG are a candidate for any level of
  Internet Standard; see Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc6882.





Kumaki                        Experimental                      [Page 1]

RFC 6882              Support for RSVP-TE in L3VPNs           March 2013


Copyright Notice

  Copyright (c) 2013 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1. Introduction ....................................................3
     1.1. Conventions ................................................3
  2. Motivation ......................................................4
     2.1. Network Example ............................................4
  3. Protocol Extensions and Procedures ..............................5
     3.1. Object Definitions .........................................5
          3.1.1. LSP_TUNNEL_VPN-IPv4 and LSP_TUNNEL_VPN-IPv6
                 SESSION Object ......................................6
          3.1.2. LSP_TUNNEL_VPN-IPv4 and LSP_TUNNEL_VPN-IPv6
                 SENDER_TEMPLATE .....................................7
          3.1.3. LSP_TUNNEL_VPN-IPv4 and LSP_TUNNEL_VPN-IPv6
                 FILTER_SPEC Objects .................................9
          3.1.4. VPN-IPv4 and VPN-IPv6 RSVP_HOP Objects ..............9
     3.2. Handling the Messages ......................................9
          3.2.1. Path Message Processing at the Ingress PE ...........9
          3.2.2. Path Message Processing at the Egress PE ...........10
          3.2.3. Resv Processing at the Egress PE ...................11
          3.2.4. Resv Processing at the Ingress PE ..................11
          3.2.5. Other RSVP Messages ................................12
  4. Management Considerations ......................................12
     4.1. Impact on Network Operation ...............................12
  5. Security Considerations ........................................13
  6. References .....................................................13
     6.1. Normative References ......................................13
     6.2. Informative References ....................................13
  7. Acknowledgments ................................................14
  8. Contributors ...................................................14







Kumaki                        Experimental                      [Page 2]

RFC 6882              Support for RSVP-TE in L3VPNs           March 2013


1.  Introduction

  Service Providers would like to use BGP/MPLS IP VPNs [RFC4364] to
  support connections between Customer Edge (CE) sites.  As described
  in [RFC5824], these connections can be MPLS Traffic Engineered (TE)
  Label Switched Paths (LSPs) established using extensions to RSVP
  [RFC3209] for a number of different deployment scenarios.  The
  requirements for supporting MPLS-TE LSP connections across BGP/MPLS
  IP VPNs are documented in [RFC5824].

  In order to establish a customer MPLS-TE LSP over a BGP/MPLS IP VPN,
  it is necessary for the RSVP-TE control messages, including the Path
  and Resv messages described in [RFC3209], to be handled appropriately
  by the Provider Edge (PE) routers.  [RFC4364] allows RSVP messages
  sent within a VPN's context to be handled just like any other VPN
  data.  In such a solution, the RSVP-TE component at a PE that sends
  messages toward a remote PE must process the messages in the context
  of the VPN and must ensure that the messages are correctly labeled.
  Similarly, when a message sent across the core is received by a PE,
  both labels must indicate the correct VPN context.

  Implementation of the standards-based solution described in the
  previous paragraph is possible, but requires proper support on the
  PE.  In particular, a PE must be able to process RSVP messages within
  the context of the appropriate VPN Routing and Forwarding (VRF).
  This may be easy to achieve in some implementations, but in others,
  it is not so easy.

  This document defines experimental formats and mechanisms that follow
  a different approach.  The documented approach enables the VPN
  identifier to be carried in the RSVP-TE protocol message so that
  there is no requirement for label-based VRF identification on the PE.

  The experiment proposed by this document does not negate the label-
  based approach supported by [RFC4364].  The experiment is intended to
  enable research into alternate methods of supporting RSVP-TE within
  VPNs.

1.1.  Conventions

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED",  "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [RFC2119].








Kumaki                        Experimental                      [Page 3]

RFC 6882              Support for RSVP-TE in L3VPNs           March 2013


2.  Motivation

  If multiple BGP/MPLS IP VPNs are supported at the same PE, new RSVP-
  TE extensions are required so that RSVP-TE control messages from the
  CEs can be handled appropriately by the PE.

2.1.  Network Example

  Figure 1 ("Customer MPLS TE LSPs in the context of BGP/MPLS IP VPNs")
  shows two VPNs supported by a core IP/MPLS network.  Both VPNs have
  customer sites on the two PEs shown in the figure.  The customer
  sites operate MPLS-TE LSPs.

  Here, we make the following set of assumptions:

  o  VPN1 and VPN2 are for different customers.
  o  CE1 and CE3 are head-end routers.
  o  CE2 and CE4 are tail-end routers.
  o  The same address (e.g., 192.0.2.1) is assigned at CE2 and CE4.

       <--------Customer MPLS-TE LSP for VPN1-------->

     .......                                        .......
     . --- .    ---      ---       ---      ---     . --- .
     .|CE1|----|PE1|----|P1 |-----|P2 |----|PE2|-----|CE2|.
     . --- .    ---      ---       ---      ---     . --- .
     .......     |                           |      .......
     (VPN1)      |                           |      (VPN1)
                 |                           |
     .......     |                           |      .......
     . --- .     |                           |      . --- .
     .|CE3|------+                           +-------|CE4|.
     . --- .                                        . --- .
     .......                                        .......
     (VPN2)                                         (VPN2)

       <--------Customer MPLS-TE LSP for VPN2-------->
                 ^                           ^
                 |                           |
            VRF instance                VRF instance

     <-Customer->    <---BGP/MPLS IP VPN--->   <-Customer->
        network                                   network

     Figure 1: Customer MPLS TE LSPs in the context of BGP/MPLS IP VPNs






Kumaki                        Experimental                      [Page 4]

RFC 6882              Support for RSVP-TE in L3VPNs           March 2013


     Consider that customers in VPN1 and VPN2 would like to establish
     customer MPLS-TE LSPs between their sites (i.e., between CE1 and
     CE2, and between CE3 and CE4).  In this situation, the following
     RSVP-TE Path messages would be sent:

     1. CE1 would send a Path message to PE1 to establish the MPLS-TE
        LSP (VPN1) between CE1 and CE2.

     2. CE3 would also send a Path message to PE1 to establish the
        MPLS-TE LSP (VPN2) between CE1 and CE2.

  After receiving each Path message, PE1 can identify the customer
  context for each Path message from the incoming interface over which
  the message was received.  PE1 forwards the messages to PE2 using the
  routing mechanisms described in [RFC4364] and [RFC4659].

  When the Path messages are received at PE2, that node needs to
  distinguish the messages and determine which applies to VPN1 and
  which to VPN2 so that the right forwarding state can be established
  and so that the messages can be passed on to the correct CE.
  Although the messages arrive at PE2 with an MPLS label that
  identifies the VPN, the messages are delivered to the RSVP-TE
  component on PE2, and the context of the core VPN LSP (i.e., the
  label) is lost.  Some RSVP-TE protocol mechanism is therefore needed
  to embed the VPN identifier within the RSVP-TE message.

  Similarly, Resv messages sent from PE2 to PE1 need an RSVP-TE
  mechanism to assign them to the correct VPN.

3.  Protocol Extensions and Procedures

  This section defines the additional RSVP-TE objects to meet the
  requirements described in Section 2.  These objects are new variants
  of the SESSION, SENDER_TEMPLATE, and FILTERSPEC objects.  They act as
  identifiers and allow PEs to distinguish Path/Resv messages per VPN
  in the context of BGP/MPLS IP VPNs.  Section 3.1 defines the new
  object types, and Section 3.2 defines the specific procedures for
  handling RSVP messages.

3.1.  Object Definitions

  This experiment will be carried out using the following private Class
  Types.  This document identifies these Class Types as
  "C-Type = EXPn".







Kumaki                        Experimental                      [Page 5]

RFC 6882              Support for RSVP-TE in L3VPNs           March 2013


  Class = SESSION, LSP_TUNNEL_VPN-IPv4 C-Type = EXP1
  Class = SESSION, LSP_TUNNEL_VPN-IPv6 C-Type = EXP2
  Class = SENDER_TEMPLATE, LSP_TUNNEL_VPN-IPv4 C-Type = EXP3
  Class = SENDER_TEMPLATE, LSP_TUNNEL_VPN-IPv6 C-Type = EXP4
  Class = FILTER SPECIFICATION, LSP_TUNNEL_VPN-IPv4 C-Type = EXP5
  Class = FILTER SPECIFICATION, LSP_TUNNEL_VPN-IPv6 C-Type = EXP6

3.1.1.  LSP_TUNNEL_VPN-IPv4 and LSP_TUNNEL_VPN-IPv6 SESSION Object

  The LSP_TUNNEL_VPN-IPv4 (or LSP_TUNNEL_VPN-IPv6) SESSION object
  appears in RSVP-TE messages that ordinarily contain a SESSION object
  and that are sent between the ingress PE and egress PE in either
  direction.  This object MUST NOT be included in any RSVP-TE message
  that is sent outside of the provider's backbone.

  The LSP_TUNNEL_VPN-IPv6 SESSION object is analogous to the
  LSP_TUNNEL_VPN-IPv4 SESSION object, using a VPN-IPv6 address
  ([RFC4659]) instead of a VPN-IPv4 address ([RFC4364]).

  Experimenters MUST ensure that there is no conflict between the
  private Class Types used for this experiment and other Class Types
  used by the PEs.

  The formats of the SESSION objects are as follows:

    Class = SESSION, LSP_TUNNEL_VPN-IPv4 C-Type = EXP1

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  +                                                               +
  |            VPN-IPv4 Tunnel Endpoint Address (12 bytes)        |
  +                                                               +
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  MUST be zero                 |      Tunnel ID                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       Extended Tunnel ID                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+











Kumaki                        Experimental                      [Page 6]

RFC 6882              Support for RSVP-TE in L3VPNs           March 2013


    Class = SESSION, LSP_TUNNEL_VPN-IPv6 C-Type = EXP2

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  +                                                               +
  |                                                               |
  +                                                               +
  |                                                               |
  +       VPN-IPv6 Tunnel Endpoint Address (24 bytes)             +
  |                                                               |
  +                                                               +
  |                                                               |
  +                                                               +
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  MUST be zero                 |      Tunnel ID                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  +                                                               +
  |                                                               |
  +                  Extended Tunnel ID (16 bytes)                +
  |                                                               |
  +                                                               +
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The VPN-IPv4 or VPN-IPv6 tunnel endpoint address field contains an
  address of the VPN-IPv4 or VPN-IPv6 address family encoded as
  specified in [RFC4364] or [RFC4659], respectively.

  The Tunnel ID and Extended Tunnel ID are identical to the same fields
  in the LSP_TUNNEL_IPv4 and LSP_TUNNEL_IPv6 SESSION objects as per
  [RFC3209].

3.1.2.  LSP_TUNNEL_VPN-IPv4 and LSP_TUNNEL_VPN-IPv6 SENDER_TEMPLATE
       Objects

  The LSP_TUNNEL_VPN-IPv4 (or LSP_TUNNEL_VPN-IPv6) SENDER_TEMPLATE
  object appears in RSVP-TE messages that ordinarily contain a
  SENDER_TEMPLATE object and that are sent between ingress PE and
  egress PE in either direction, such as Path, PathError, and PathTear
  messages.  The object MUST NOT be included in any RSVP-TE messages
  that are sent outside of the provider's backbone.






Kumaki                        Experimental                      [Page 7]

RFC 6882              Support for RSVP-TE in L3VPNs           March 2013


  The format of the object is as follows:

    Class = SENDER_TEMPLATE, LSP_TUNNEL_VPN-IPv4 C-Type = EXP3

   0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  +                                                               +
  |            VPN-IPv4 Tunnel Sender Address (12 bytes)          |
  +                                                               +
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  MUST be zero                 |            LSP ID             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Class = SENDER_TEMPLATE, LSP_TUNNEL_VPN-IPv6 C-Type = EXP4

   0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  +                                                               +
  |                                                               |
  +                                                               +
  |                                                               |
  +         VPN-IPv6 Tunnel Sender Address (24 bytes)             +
  |                                                               |
  +                                                               +
  |                                                               |
  +                                                               +
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  MUST be zero                 |            LSP ID             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The VPN-IPv4 or VPN-IPv6 tunnel sender address field contains an
  address of the VPN-IPv4 or VPN-IPv6 address family encoded as
  specified in [RFC4364] or [RFC4659], respectively.

  The LSP ID is identical to the LSP ID field in the LSP_TUNNEL_IPv4
  and LSP_TUNNEL_IPv6 SENDER_TEMPLATE objects as per [RFC3209].









Kumaki                        Experimental                      [Page 8]

RFC 6882              Support for RSVP-TE in L3VPNs           March 2013


3.1.3.  LSP_TUNNEL_VPN-IPv4 and LSP_TUNNEL_VPN-IPv6 FILTER_SPEC Objects

  The LSP_TUNNEL_VPN-IPv4 (or LSP_TUNNEL_VPN-IPv6) FILTER_SPEC object
  appears in RSVP-TE messages that ordinarily contain a FILTER_SPEC
  object and that are sent between ingress PE and egress PE in either
  direction, such as Resv, ResvError, and ResvTear messages.  The
  object MUST NOT be included in any RSVP-TE messages that are sent
  outside of the provider's backbone.

  Class = FILTER SPECIFICATION, LSP_TUNNEL_VPN-IPv4 C-Type = EXP5

     The format of the LSP_TUNNEL_VPN-IPv4 FILTER_SPEC object is
     identical to the LSP_TUNNEL_VPN-IPv4 SENDER_TEMPLATE object.

  Class = FILTER SPECIFICATION, LSP_TUNNEL_VPN-IPv6 C-Type = EXP6

     The format of the LSP_TUNNEL_VPN-IPv6 FILTER_SPEC object is
     identical to the LSP_TUNNEL_VPN-IPv6 SENDER_TEMPLATE object.

3.1.4.  VPN-IPv4 and VPN-IPv6 RSVP_HOP Objects

  The formats of the VPN-IPv4 and VPN-IPv6 RSVP_HOP objects are
  identical to the RSVP_HOP objects described in [RFC6016].

3.2.  Handling the Messages

  This section describes how the RSVP-TE messages are handled.
  Handling of these messages assumes that, in the context of BGP/MPLS
  IP VPNs, the ingress and egress PEs have RSVP-TE capabilities.

3.2.1.  Path Message Processing at the Ingress PE

  When a Path message arrives at the ingress PE (PE1 in Figure 1), the
  PE needs to establish suitable Path state and forward the Path
  message on to the egress PE (PE2 in Figure 1).  Below, we describe
  the message handling process at the ingress PE.

     1. CE1 sends a Path message to PE1 to establish the MPLS-TE LSP
        (VPN1) between CE1 and CE2.  The Path message is addressed to
        the eventual destination (the receiver at the remote customer
        site) and carries the IP Router Alert option, in accordance
        with [RFC2205].  The ingress PE must recognize the router
        alert, intercept these messages, and process them as RSVP-TE
        signaling messages.







Kumaki                        Experimental                      [Page 9]

RFC 6882              Support for RSVP-TE in L3VPNs           March 2013


     2. When the ingress PE receives a Path message from a CE that is
        addressed to the receiver, the VRF that is associated with the
        incoming interface can be identified.  (This step does not
        deviate from current behavior.)

     3. The tunnel endpoint address of the receiver is looked up in the
        appropriate VRF, and the BGP next hop for that tunnel endpoint
        address is identified.  The next hop is the egress PE.

     4. A new LSP_TUNNEL_VPN-IPv4/VPN-IPv6 SESSION object is
        constructed, containing the Route Distinguisher (RD) that is
        part of the VPN-IPv4/VPN-IPv6 route prefix for this tunnel
        endpoint address, and the IPv4/IPv6 tunnel endpoint address
        from the original SESSION object.

     5. A new LSP_TUNNEL_VPN-IPv4/IPv6 SENDER_TEMPLATE object is
        constructed, with the original IPv4/IPv6 tunnel sender address
        from the incoming SENDER_TEMPLATE plus the RD that is used by
        the PE to advertise the prefix for the customers VPN.

     6. A new Path message is sent containing all the objects from the
        original Path message, replacing the original SESSION and
        SENDER_TEMPLATE objects with the new
        LSP_TUNNEL_VPN-IPv4/VPN-IPv6 type objects.  This Path message
        is sent directly to the egress PE (the next hop that was
        determined in Step 3) without the IP Router Alert option.

3.2.2.  Path Message Processing at the Egress PE

  Below, we describe the message handling process at the egress PE.

     1. When a Path message arrives at the egress PE (PE2 in Figure 1),
        it is addressed to the PE itself and is handed to RSVP for
        processing.

     2. The router extracts the RD and IPv4/IPv6 address from the
        LSP_TUNNEL_VPN-IPv4/VPN-IPv6 SESSION object and determines the
        local VRF context by finding a matching VPN-IPv4 prefix with
        the specified RD that has been advertised by this router into
        BGP.

     3. The entire incoming RSVP message, including the VRF
        information, is stored as part of the Path state.








Kumaki                        Experimental                     [Page 10]

RFC 6882              Support for RSVP-TE in L3VPNs           March 2013


     4. The egress PE can now construct a Path message that differs
        from the Path message it received in the following ways:

        a. Its tunnel endpoint address is the IP address extracted from
           the SESSION object.

        b. The SESSION and SENDER_TEMPLATE objects have been converted
           back to IPv4-type/IPv6-type by discarding the attached RD.

        c. The RSVP_HOP object contains the IP address of the outgoing
           interface of the egress PE and a Logical Interface Handle
           (LIH), as per normal RSVP processing.

     5. The egress PE then sends the Path message towards its tunnel
        endpoint address over the interface identified in Step 4c.
        This Path message carries the IP Router Alert option, as
        required by [RFC2205].

3.2.3.  Resv Processing at the Egress PE

  When a receiver at the customer site originates a Resv message for
  the session, normal RSVP procedures apply until the Resv, making its
  way back towards the sender, arrives at the "egress" PE (it is the
  egress with respect to the direction of data flow, i.e., PE2 in
  Figure 1).  Upon arriving at PE2, the SESSION and FILTER_SPEC objects
  in the Resv message, and the VRF in which the Resv was received, are
  used to find the matching Path state that was stored previously.

  The PE constructs a Resv message to send to the RSVP HOP stored in
  the Path state, i.e., the ingress PE (PE1 in Figure 1).  The LSP
  TUNNEL IPv4/IPv6 SESSION object is replaced with the same
  LSP_TUNNEL_VPN-IPv4/VPN-IPv6 SESSION object received in the Path
  message.  The LSP TUNNEL IPv4/IPv6 FILTER_SPEC object is replaced
  with a LSP_TUNNEL_VPN-IPv4/VPN-IPv6 FILTER_SPEC object, which copies
  the VPN-IPv4/VPN-IPv6 address from the LSP TUNNEL SENDER_TEMPLATE
  received in the matching Path message.

  The Resv message MUST be addressed to the IP address contained within
  the RSVP_HOP object in the Path message.

3.2.4.  Resv Processing at the Ingress PE

  When the ingress PE receives a Resv message (the ingress with respect
  to data flow, i.e., PE1 in Figure 1), the PE determines the local VRF
  context and associated Path state for this Resv message by decoding
  the received SESSION and FILTER_SPEC objects.  It is now possible to
  generate a Resv message to send to the appropriate CE.  The Resv




Kumaki                        Experimental                     [Page 11]

RFC 6882              Support for RSVP-TE in L3VPNs           March 2013


  message sent to the ingress CE contains the LSP TUNNEL IPv4/IPv6
  SESSION and LSP TUNNEL FILTER_SPEC objects, which are derived from
  the appropriate Path state.

3.2.5.  Other RSVP Messages

  Processing of other RSVP messages (i.e., PathError, PathTear,
  ResvError, ResvTear, and ResvConf) generally follows the rules
  defined in [RFC2205].  The following additional rules MUST be
  observed for messages transmitted within the VPN, i.e., between the
  PEs:

  o  The SESSION, SENDER_TEMPLATE, and FILTER_SPEC objects MUST be
     converted from LSP_TUNNEL_IPv4/LSP_TUNNEL_IPv6 [RFC3209] to
     LSP_TUNNEL_VPN-IPv4/LSP_TUNNEL_VPN-IPv6 form, respectively, and
     back again, in the same manner as described above for Path and
     Resv messages.

  o  The appropriate type of RSVP_HOP object (VPN-IPv4 or VPN-IPv6)
     MUST be used, as described in Section 8.4 of [RFC6016].

  o  Depending on the type of RSVP_HOP object received from the
     neighbor, the message MUST be MPLS encapsulated or IP
     encapsulated.

  o  The matching state and VRF MUST be determined by decoding the
     corresponding RD and IPv4 or IPv6 address in the SESSION and
     FILTER_SPEC objects.

  o  The message MUST be directly addressed to the appropriate PE,
     without using the Router Alert Option.

4.  Management Considerations

  MPLS-TE-based BGP/MPLS IP VPNs are based on a peer model.  If an
  operator would like to configure a new site to an existing VPN,
  configuration of both the CE router and the attached PE router is
  required.  The operator is not required to modify the configuration
  of PE routers connected to other sites or to modify the configuration
  of other VPNs.

4.1.  Impact on Network Operation

  It is expected that the use of the extensions specified in this
  document will not significantly increase the level of operational
  traffic.





Kumaki                        Experimental                     [Page 12]

RFC 6882              Support for RSVP-TE in L3VPNs           March 2013


  Furthermore, the additional extensions described in this document
  will have no impact on the operation of existing resiliency
  mechanisms available within MPLS-TE.

5.  Security Considerations

  This document defines RSVP-TE extensions for BGP/MPLS IP VPNs.  The
  general security issues for RSVP-TE are described in [RFC3209],
  [RFC4364] addresses the specific security considerations of BGP/MPLS
  VPNs.  General security considerations for MPLS are described in
  [RFC5920].

  In order to secure the control plane, techniques such as the TCP
  Authentication Option (TCP-AO) [RFC5925] MAY be used authenticate BGP
  messages.

  To ensure the integrity of an RSVP request, the RSVP Authentication
  mechanisms defined in [RFC2747], and updated by [RFC3097], SHOULD be
  used.

6.  References

6.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC3209]  Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
             and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
             Tunnels", RFC 3209, December 2001.

6.2.  Informative References

  [RFC2205]  Braden, R., Ed., Zhang, L., Berson, S., Herzog, S., and S.
             Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1
             Functional Specification", RFC 2205, September 1997.

  [RFC2747]  Baker, F., Lindell, B., and M. Talwar, "RSVP Cryptographic
             Authentication", RFC 2747, January 2000.

  [RFC3097]  Braden, R. and L. Zhang, "RSVP Cryptographic
             Authentication -- Updated Message Type Value", RFC 3097,
             April 2001.

  [RFC4364]  Rosen, E. and Y. Rekhter, "BGP/MPLS IP Virtual Private
             Networks (VPNs)", RFC 4364, February 2006.





Kumaki                        Experimental                     [Page 13]

RFC 6882              Support for RSVP-TE in L3VPNs           March 2013


  [RFC4659]  De Clercq, J., Ooms, D., Carugi, M., and F. Le Faucheur,
             "BGP-MPLS IP Virtual Private Network (VPN) Extension for
             IPv6 VPN", RFC 4659, September 2006.

  [RFC5824]  Kumaki, K., Ed., Zhang, R., and Y. Kamite, "Requirements
             for Supporting Customer Resource ReSerVation Protocol
             (RSVP) and RSVP Traffic Engineering (RSVP-TE) over a
             BGP/MPLS IP-VPN", RFC 5824, April 2010.

  [RFC5920]  Fang, L., Ed., "Security Framework for MPLS and GMPLS
             Networks", RFC 5920, July 2010.

  [RFC5925]  Touch, J., Mankin, A., and R. Bonica, "The TCP
             Authentication Option", RFC 5925, June 2010.

  [RFC6016]  Davie, B., Le Faucheur, F., and A. Narayanan, "Support for
             the Resource Reservation Protocol (RSVP) in Layer 3 VPNs",
             RFC 6016, October 2010.

7.  Acknowledgments

  The authors would like to express thanks to Makoto Nakamura and
  Daniel King for their helpful and useful comments and feedback.

8.  Contributors

  Chikara Sasaki
  KDDI R&D Laboratories, Inc.
  2-1-15 Ohara Fujimino
  Saitama 356-8502
  Japan
  EMail: [email protected]


  Daisuke Tatsumi
  KDDI Corporation
  2-3-2 Nishishinjuku Shinjuku-ku
  Tokyo 163-8003
  Japan
  EMail: [email protected]











Kumaki                        Experimental                     [Page 14]

RFC 6882              Support for RSVP-TE in L3VPNs           March 2013


Authors' Addresses

  Kenji Kumaki
  KDDI Corporation
  Garden Air Tower
  Iidabashi, Chiyoda-ku,
  Tokyo 102-8460
  Japan
  EMail: [email protected]


  Tomoki Murai
  Furukawa Network Solution Corp.
  5-1-9, Higashi-Yawata, Hiratsuka
  Kanagawa 254-0016
  Japan
  EMail: [email protected]


  Dean Cheng
  Huawei Technologies
  2330 Central Expressway
  Santa Clara, CA 95050
  USA
  EMail: [email protected]


  Satoru Matsushima
  Softbank Telecom
  1-9-1,Higashi-Shimbashi,Minato-Ku
  Tokyo 105-7322
  Japan
  EMail: [email protected]


  Peng Jiang
  KDDI Corporation
  Garden Air Tower
  Iidabashi, Chiyoda-ku,
  Tokyo 102-8460
  Japan
  EMail: [email protected]









Kumaki                        Experimental                     [Page 15]