Internet Engineering Task Force (IETF)                   V. Gurbani, Ed.
Request for Comments: 6872             Bell Laboratories, Alcatel-Lucent
Category: Standards Track                                 E. Burger, Ed.
ISSN: 2070-1721                                    Georgetown University
                                                              T. Anjali
                                       Illinois Institute of Technology
                                                            H. Abdelnur
                                                              O. Festor
                                                                  INRIA
                                                          February 2013


The Common Log Format (CLF) for the Session Initiation Protocol (SIP):
                   Framework and Information Model

Abstract

  Well-known web servers such as Apache and web proxies like Squid
  support event logging using a common log format.  The logs produced
  using these de facto standard formats are invaluable to system
  administrators for troubleshooting a server and tool writers to craft
  tools that mine the log files and produce reports and trends.
  Furthermore, these log files can also be used to train anomaly
  detection systems and feed events into a security event management
  system.  The Session Initiation Protocol (SIP) does not have a common
  log format, and, as a result, each server supports a distinct log
  format that makes it unnecessarily complex to produce tools to do
  trend analysis and security detection.  This document describes a
  framework, including requirements and analysis of existing
  approaches, and specifies an information model for development of a
  SIP common log file format that can be used uniformly by user agents,
  proxies, registrars, and redirect servers as well as back-to-back
  user agents.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc6872.




Gurbani, et al.              Standards Track                    [Page 1]

RFC 6872                         SIP CLF                   February 2013


Copyright Notice

  Copyright (c) 2013 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1. Introduction ....................................................3
  2. Terminology .....................................................4
  3. Problem Statement ...............................................4
  4. What SIP CLF Is and What It Is Not ..............................5
  5. Alternative Approaches to SIP CLF ...............................5
     5.1. SIP CLF and Call Detail Records ............................6
     5.2. SIP CLF and Packet Capture Tools ...........................6
     5.3. SIP CLF and Syslog .........................................7
     5.4. SIP CLF and IPFIX ..........................................8
  6. Motivation and Use Cases ........................................8
  7. Challenges in Establishing a SIP CLF ...........................10
  8. Information Model ..............................................11
     8.1. SIP CLF Mandatory Fields ..................................11
     8.2. Mandatory Fields and SIP Entities .........................13
  9. Examples .......................................................14
     9.1. UAC Registration ..........................................15
     9.2. Direct Call between Alice and Bob .........................17
     9.3. Single Downstream Branch Call .............................20
     9.4. Forked Call ...............................................25
  10. Security Considerations .......................................35
  11. Operational Guidance ..........................................37
  12. Acknowledgments ...............................................37
  13. References ....................................................37
     13.1. Normative References .....................................37
     13.2. Informative References ...................................38









Gurbani, et al.              Standards Track                    [Page 2]

RFC 6872                         SIP CLF                   February 2013


1.  Introduction

  Servers executing on Internet hosts produce log records as part of
  their normal operations.  Some log records are, in essence, a summary
  of an application-layer protocol data unit (PDU) that captures, in
  precise terms, an event that was processed by the server.  These log
  records serve many purposes including analysis and troubleshooting.

  Well-known web servers such as Apache and web proxies like Squid
  support event logging using a Common Log Format (CLF), the common
  structure for logging requests and responses serviced by the web
  server.  It can be argued that a good part of the success of Apache
  has been its CLF because it allowed third parties to produce tools
  that analyzed the data and generated traffic reports and trends.  The
  Apache CLF has been so successful that not only did it become the de
  facto standard in producing logging data for web servers but also
  many commercial web servers can be configured to produce logs in this
  format.  An example of the Apache CLF is depicted next:

            %h      %l     %u       %t   \"%r\"   %s    %b
       remotehost rfc931 authuser [date] request status bytes

  remotehost:  Remote hostname (or IP number if DNS hostname is not
               available or if DNSLookup is Off.

  rfc931:      The remote logname of the user.

  authuser:    The username by which the user has authenticated
               himself.

  [date]:      Date and time of the request.

  request:     The request line exactly as it came from the client.

  status:      The HTTP status code returned to the client.

  bytes:       The content-length of the document transferred.

  The inspiration for the SIP CLF is the Apache CLF.  However, the
  state machinery for an HTTP transaction is much simpler than that of
  the SIP transaction (as evidenced in Section 7).  The SIP CLF needs
  to do considerably more.

  This document outlines the problem statement that argues for a SIP
  CLF.  In addition, it provides an information model pertaining to the
  minimum set of SIP headers and fields that must be logged.  This
  document does not prescribe a specific representation format for the




Gurbani, et al.              Standards Track                    [Page 3]

RFC 6872                         SIP CLF                   February 2013


  SIP CLF record and, instead, allows other documents to define a
  representation format.  [RFC6873] is an example of a representation
  format that provides a UTF-8-based logging scheme.

2.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [RFC2119].

  RFC 3261 [RFC3261] defines additional terms used in this document
  that are specific to the SIP domain such as "proxy"; "registrar";
  "redirect server"; "user agent server" or "UAS"; "user agent client"
  or "UAC"; "back-to-back user agent" or "B2BUA"; "dialog";
  "transaction"; "server transaction".

  This document uses the term "SIP server" that is defined to include
  the following SIP entities: user agent server, registrar, redirect
  server, a SIP proxy in the role of user agent server, and a B2BUA in
  the role of a user agent server.

3.  Problem Statement

  The Session Initiation Protocol (SIP) [RFC3261] is an Internet
  multimedia session signaling protocol.  A typical deployment of SIP
  in an enterprise will consist of SIP entities from multiple vendors.
  Each SIP entity produces logs using a proprietary format.  The result
  of multiplicity of the log file formats is the inability of the
  support staff to easily trace a call from one entity to another or
  even to craft common tools that will perform trend analysis,
  debugging and troubleshooting problems uniformly across the SIP
  entities from multiple vendors.

  Furthermore, the log file must be easily accessible by command-line
  tools for simple text processing.  This allows ad hoc queries against
  the elements in the log file to retrieve a log record.  Furthermore,
  the log file must be in a format that allows for rapid searches of a
  particular log record (or records).  Because of the large number of
  records expected in the log file, the records must be in a format
  that allows for rapid scanning and ease of skipping records that do
  not match a search criterion.  Finally, the generation of the log
  file must not impose undue burden on the SIP implementation in the
  form of additional libraries that may not be uniformly available on
  different platforms and operating environments where a SIP entity
  generating a log file record may be found.






Gurbani, et al.              Standards Track                    [Page 4]

RFC 6872                         SIP CLF                   February 2013


  SIP does not currently have a common log format, and this document
  serves to provide the rationale to establish a SIP CLF and identifies
  the required minimal information that must appear in any SIP CLF
  record.

4.  What SIP CLF Is and What It Is Not

  The SIP CLF is a standardized manner of producing a log file.  This
  format can be used by SIP clients, SIP servers, proxies, and B2BUAs.
  The SIP CLF is simply an easily digestible log of currently occurring
  events and past transactions.  It contains enough information to
  allow humans and automata to derive relationships between discrete
  transactions handled at a SIP entity or to search for a certain
  dialog or a related set of transactions.

  The SIP CLF is amenable to quick parsing (i.e., well-delimited
  fields), and it is platform and operating system neutral.

  Due to the structure imposed by delimited fields, the SIP CLF is
  amenable to easy parsing and lends itself well to creating other
  innovative tools such as logfile parsers and trend analytic engines.

  The SIP CLF is not a billing tool.  It is not expected that
  enterprises will bill customers based on SIP CLF.  The SIP CLF
  records events at the signaling layer only and does not attempt to
  correlate the veracity of these events with the media layer.  Thus,
  it cannot be used to trigger customer billing.

  The SIP CLF is not a quality of service (QoS) measurement tool.  If
  QoS is defined as measuring the mean opinion score (MOS) of the
  received media, then SIP CLF does not aid in this task since it does
  not summarize events at the media layer.

  Finally, the SIP CLF is not a tool for supporting lawful intercept.

5.  Alternative Approaches to SIP CLF

  The sipclf working group discussed four alternative approaches to
  determine whether they fill the requirements of what is desired of a
  SIP CLF outlined in Section 3.  We conclude that while every scheme
  discussed below comes with its advantages, its disadvantages may
  preclude it from being used as a SIP CLF.  However, we stress that
  the information model contained in this document can be used to
  develop alternative representation formats when desired.  Currently,
  [RFC6873] is an example of a representation format that provides a
  UTF-8-based logging scheme that meets all the requirements of Section
  3.




Gurbani, et al.              Standards Track                    [Page 5]

RFC 6872                         SIP CLF                   February 2013


5.1.  SIP CLF and Call Detail Records

  Call Detail Records (CDRs) are used in operator networks widely and
  with the adoption of SIP, standardization bodies such as the Third
  Generation Partnership Project (3GPP) have subsequently defined SIP-
  related CDRs as well.  Today, CDRs are used to implement the
  functionality approximated by SIP CLF; however, there are important
  differences.

  First, SIP CLF operates natively at the transaction layer and
  maintains enough information in the information elements being logged
  that dialog-related data can be subsequently derived from the
  transaction logs.  Thus, esoteric SIP fields and parameters like the
  To header (including tags), the From header (including tags), the
  Command Sequence (CSeq) number, etc., are logged in SIP CLF.  By
  contrast, a CDR is used mostly for charging and thus saves
  information to facilitate that very aspect.  A CDR will most
  certainly log the public user identification of a party requesting a
  service (which may not correspond to the From header) and the public
  user identification of the party called party (which may not
  correspond to the To header).  Furthermore, the sequence numbers
  maintained by the CDR may not correspond to the SIP CSeq header.
  Thus, it will be hard to piece together the state of a dialog through
  a sequence of CDR records.

  Second, a CDR record will, in all probability, be generated at a SIP
  entity performing some form of proxy-like functionality of a B2BUA
  providing some service.  By contrast, SIP CLF is lightweight enough
  that it can be generated by a canonical SIP user agent server and
  user agent client as well, including those that execute on resource
  constrained devices (mobile phones).

  Finally, SIP is also being deployed outside of operator-managed Voice
  over IP (VoIP) networks.  Universities, research laboratories, and
  small-to medium-sized companies are deploying SIP-based VoIP
  solutions on networks owned and managed by them.  Many of the latter
  constituencies will not have an interest in generating CDRs, but they
  will like to have a concise representation of the messages being
  handled by the SIP entities in a common format.

5.2.  SIP CLF and Packet Capture Tools

  Wireshark and tcpdump are popular raw packet capture tools.
  Wireshark even contains filters that can understand SIP at the
  protocol level and break down a captured message into its individual
  header components.  While packet capture tools are appropriate to
  capture and view discrete SIP messages, they do not suffice to serve
  in the same capacity as SIP CLF for the following reasons:



Gurbani, et al.              Standards Track                    [Page 6]

RFC 6872                         SIP CLF                   February 2013


  o  Using packet capturing tools will not eliminate the need for
     agreeing to a common set of fields to represent a SIP CLF record.
     This common understanding is important for interoperability to
     allow one implementation to read a log file written by a different
     implementation.

  o  The packet capture from these tools is not easily searchable by
     simple command-line tools for text processing.

  o  Using packet capture tools requires that the underlying libraries
     related to packet capture be available for all platforms on which
     a SIP server or a SIP client can execute.  Given the different
     platforms on which a SIP client or server runs --- mobile, fixed
     host, tablet, etc. --- this may become an inhibiting factor when
     compared to the SIP client or server producing a SIP CLF record
     natively (the SIP client or server has already parsed the SIP
     message for operation on it; therefore, it seems reasonable to
     have it write the parsed tokens out to persistent store in an
     agreed upon format).

  o  If SIP messages are exchanged over a secure transport (TLS)
     packet, capture tools will be unable to decrypt them and render
     them as individual SIP headers.

  o  Using such tools and related packet capture libraries may imposes
     a dependency on a third-party library.

5.3.  SIP CLF and Syslog

  The syslog protocol [RFC5424] conveys event notification messages
  from an originator to a collector.  While the syslog protocol
  provides a packet format and transport mechanism, it does not
  describe any storage format for syslog messages.  Pragmatically,
  while the syslog protocol itself does not describe a storage format,
  the collector will write the arriving messages into a disk file.  A
  new problem arises due to the general nature of syslog: the disk file
  will contain log messages from many originators, not just SIP
  entities.  This imposes an additional burden of discarding all
  extraneous records when analyzing the disk file for SIP CLF records
  of interest.  SIP CLF records are best stored in a log file that is
  easily searchable by command-line tools.

  Other drawbacks of using syslog include the unavailability of the
  collector under certain scenarios (a mobile SIP phone may be unable
  to find a collector to which it should send the messages), and the
  need to have syslog-specific libraries available for each platform on
  which the SIP server or the SIP client can execute.  Finally, because
  of the frequency and size of SIP log messages, it is not desirable to



Gurbani, et al.              Standards Track                    [Page 7]

RFC 6872                         SIP CLF                   February 2013


  send every SIP CLF log message to the collector.  Instead, a
  judicious use of syslog could be that only certain events -- those
  that are pertinent from a network situational awareness perspective,
  or those that include a periodic statistical summary of the messages
  processed -- are sent to the collector.

5.4.  SIP CLF and IPFIX

  The IP Flow Information Export (IPFIX) protocol [RFC5101] allows
  network administrators to aggregate IP packets characterized by some
  commonality (similar packet header fields, one or more
  characteristics of the packet itself) into a flow that can be
  subsequently collected and sent to other elements for analysis and
  monitoring.  However, IPFIX is not a logging format and does not
  produce a log file that can be examined by ad hoc text processing
  tools.

6.  Motivation and Use Cases

  As SIP becomes pervasive in multiple business domains and ubiquitous
  in academic and research environments, it is beneficial to establish
  a CLF for the following reasons:

  Common reference for interpreting events:  In a laboratory
     environment or an enterprise service offering, there will
     typically be SIP entities from multiple vendors participating in
     routing requests.  Absent a common log format, each entity will
     produce output records in a native format, making it hard to
     establish commonality for tools that operate on the log file.

  Writing common tools:  A common log format allows independent tool
     providers to craft tools and applications that interpret the CLF
     data to produce insightful trend analysis and detailed traffic
     reports.  The format should be such that it retains the ability to
     be read by humans and processed using traditional Unix text
     processing tools.

  Session correlation across diverse processing elements:  In
     operational SIP networks, a request will typically be processed by
     more than one SIP server.  A SIP CLF will allow the network
     operator to trace the progression of the request (or a set of
     requests) as they traverse through the different servers to
     establish a concise diagnostic trail of a SIP session.

           Note that tracing the request through a set of servers is
           considerably less challenging if all the servers belong to
           the same administrative domain.




Gurbani, et al.              Standards Track                    [Page 8]

RFC 6872                         SIP CLF                   February 2013


  Message correlation across transactions:  A SIP CLF can enable a
     quick lookup of all messages that comprise a transaction (e.g.,
     "Find all messages corresponding to server transaction X,
     including all forked branches.").

  Message correlation across dialogs:  A SIP CLF can correlate
     transactions that comprise a dialog (e.g., "Find all messages for
     dialog created by Call-ID C, From tag F and To tag T.").

  Trend analysis:  A SIP CLF allows an administrator to collect data
     and spot patterns or trends in the information (e.g., "What is the
     domain where the most sessions are routed to between 9:00 AM and
     1:00 PM?").

  Train anomaly detection systems:  A SIP CLF will allow for the
     training of anomaly detection systems that once trained can
     monitor the CLF file to trigger an alarm on the subsequent
     deviations from accepted patterns in the data set.  Currently,
     anomaly detection systems monitor the network and parse raw
     packets that comprise a SIP message -- a process that is
     unsuitable for anomaly detection systems [rieck2008].  With all
     the necessary event data at their disposal, network operations
     managers and information technology operation managers are in a
     much better position to correlate, aggregate, and prioritize log
     data to maintain situational awareness.

  Testing:  A SIP CLF allows for automatic testing of SIP equipment by
     writing tools that can parse a SIP CLF file to ensure behavior of
     a device under test.

  Troubleshooting:  A SIP CLF can enable cursory troubleshooting of a
     SIP entity (e.g., "How long did it take to generate a final
     response for the INVITE associated with Call-ID X?").

  Offline analysis:  A SIP CLF allows for offline analysis of the data
     gathered.  Once a SIP CLF file has been generated, it can be
     transported (subject to the security considerations in Section 10)
     to a host with appropriate computing resources to perform
     subsequent analysis.

  Real-time monitoring:  A SIP CLF allows administrators to visually
     notice the events occurring at a SIP entity in real-time providing
     accurate situational awareness.








Gurbani, et al.              Standards Track                    [Page 9]

RFC 6872                         SIP CLF                   February 2013


7.  Challenges in Establishing a SIP CLF

  Establishing a CLF for SIP is a challenging task.  The behavior of a
  SIP entity is more complex when compared to the equivalent HTTP
  entity.

  Base protocol services such as parallel or serial forking elicit
  multiple final responses.  Ensuing delays between sending a request
  and receiving a final response all add complexity when considering
  what fields should comprise a CLF and in what manner.  Furthermore,
  unlike HTTP, SIP groups multiple discrete transactions into a dialog,
  and these transactions may arrive at a varying inter-arrival rate at
  a proxy.  For example, the BYE transaction usually arrives much after
  the corresponding INVITE transaction was received, serviced, and
  expunged from the transaction list.  Nonetheless, it is advantageous
  to relate these transactions such that automata or a human monitoring
  the log file can construct a set consisting of related transactions.

  ACK requests in SIP need careful consideration as well.  In SIP, an
  ACK is a special method that is associated with an INVITE only.  It
  does not require a response; furthermore, if it is acknowledging a
  non-2xx response, then the ACK is considered part of the original
  INVITE transaction.  If it is acknowledging a 2xx-class response,
  then the ACK is a separate transaction consisting of a request only
  (i.e., there is not a response for an ACK request).  CANCEL is
  another method that is tied to an INVITE transaction, but unlike ACK,
  the CANCEL request elicits a final response.

  While most requests elicit a response immediately, the INVITE request
  in SIP can remain in a pending state at a proxy as it forks branches
  downstream or at a user agent server while it alerts the user.
  [RFC3261] instructs the server transaction to send a 1xx-class
  provisional response if a final response is delayed for more than 200
  ms.  A SIP CLF log file needs to include such provisional responses
  because they help train automata associated with anomaly detection
  systems and provide some positive feedback for a human observer
  monitoring the log file.

  Finally, beyond supporting native SIP actors such as proxies,
  registrars, redirect servers, and user agent servers (UASs), it is
  beneficial to derive a common log format that supports B2BUA
  behavior, which may vary considerably depending on the specific
  nature of the B2BUA.








Gurbani, et al.              Standards Track                   [Page 10]

RFC 6872                         SIP CLF                   February 2013


8.  Information Model

  This document defines the mandatory fields that MUST occur in a SIP
  CLF record.  The maximum size (in number of bytes) for a SIP CLF
  field is 4096 bytes.  This limit is the same regardless of whether
  the SIP CLF field is a meta-field (see "Timestamp" and
  "Directionality" defined below) or a normal SIP header.  If the body
  of the SIP message is to be logged, it MUST conform to this limit as
  well.

  SIP bodies may contain characters that do not form a valid UTF-8
  sequence.  As such, the logging of bodies requires understanding
  trade-offs with respect to a specific logging format to determine if
  the body can be logged as is or some encoding will be required.  The
  specific syntax and semantics used to log SIP bodies MUST be defined
  by the specific representation format document used to generate the
  SIP CLF record.

  The information model supports extensibility by providing the
  capability to log "optional fields".  Optional fields are those SIP
  header fields (or field components) that are not mandatory (see
  Section 8.1 for the mandatory field list).  Optional fields may
  contain SIP headers or other elements present in a SIP message (for
  example, the Reason-Phrase element from the Status-Line production
  rule in RFC 3261 [RFC3261]).  Optional fields may also contain
  additional information that a particular vendor desires to log.  The
  specific syntax and semantics to be accorded to optional fields MUST
  be defined by the specific representation format used to generate the
  SIP CLF record.

8.1.  SIP CLF Mandatory Fields

  The following SIP CLF fields are defined as the minimal information
  that MUST appear in any SIP CLF record:

  Timestamp:  Date and time of the request or response represented as
     the number of seconds and milliseconds since the Unix epoch.

  Message type:  An indicator of whether the SIP message is a request
     or a response.  The allowable values for this field are 'R' (for
     Request) and 'r' (for response).

  Directionality:  An indicator of whether the SIP message is received
     by the SIP entity or sent by the SIP entity.  The allowable values
     for this field are 's' (for message sent) and 'r' (for message
     received).





Gurbani, et al.              Standards Track                   [Page 11]

RFC 6872                         SIP CLF                   February 2013


  Transport:  The transport over which a SIP message is sent or
     received.  The allowable values for the transport are governed by
     the "transport" production rule in Section 25.1 of RFC 3261
     [RFC3261].

  Source-address:  The IPv4 or IPv6 address of the sender of the SIP
     message.

  Source-port:  The source port number of the sender of the SIP
     message.

  Destination-address:  The IPv4 or IPv6 address of the recipient of
     the SIP message.

  Destination-port:  The port number of the recipient of the SIP
     message.

  From:  The From URI.  For the sake of brevity, URI parameters should
     not be logged.

  From tag:  The tag parameter of the From header.

  To:  The To URI.  For the sake of brevity, URI parameters should not
     be logged.

  To tag:  The tag parameter of the To header.  Note that the tag
     parameter will be absent in the initial request that forms a
     dialog.

  Callid:  The Call-ID.

  CSeq-Method:  The method from the CSeq header.

  CSeq-Number:  The number from the CSeq header.

  R-URI:  The Request-URI, including any URI parameters.

  Status:  The SIP response status code.

  SIP proxies may fork, creating several client transactions that
  correlate to a single server transaction.  Responses arriving on
  these client transactions or new requests (CANCEL, ACK) sent on the
  client transaction need log file entries that correlate with a server
  transaction.  Similarly, a B2BUA may create one or more client
  transactions in response to an incoming request.  These transactions
  will require correlation as well.  The last two information model
  elements provide this correlation.




Gurbani, et al.              Standards Track                   [Page 12]

RFC 6872                         SIP CLF                   February 2013


  Server-Txn:  Server transaction identification code - the transaction
     identifier associated with the server transaction.
     Implementations can reuse the server transaction identifier (the
     topmost branch-id of the incoming request, with or without the
     magic cookie), or they could generate a unique identification
     string for a server transaction (this identifier needs to be
     locally unique to the server only).  This identifier is used to
     correlate ACKs and CANCELs to an INVITE transaction; it is also
     used to aid in forking as explained later in this section.  (See
     Section 9 for usage.)

  Client-Txn:  Client transaction identification code - this field is
     used to associate client transactions with a server transaction
     for forking proxies or B2BUAs.  Upon forking, implementations can
     reuse the value they inserted into the topmost Via header's branch
     parameter, or they can generate a unique identification string for
     the client transaction.  (See Section 9 for usage.)

  This information model applies to all SIP entities --- a UAC, UAS,
  proxy, B2BUA, registrar, and redirect server.  The SIP CLF fields
  prescribed for a proxy are equally applicable to the B2BUA.
  Similarly, the SIP CLF fields prescribed for a UAS are equally
  applicable to registrars and redirect servers.

  The next section specifies the individual SIP CLF information model
  elements that form a log record for specific instances of a SIP
  entity.  It is understood that a SIP CLF record is extensible using
  extension mechanisms appropriate to the specific representation used
  to generate the SIP CLF record.  This document, however, does not
  prescribe a specific representation format, and it limits the
  discussion to the mandatory data elements described above.

8.2.  Mandatory Fields and SIP Entities

  Each SIP CLF record must contain all the mandatory information model
  elements outlined in Section 8.1.  This document does not specify a
  representation of a logging format; it is expected that other
  documents will do so.

  An element may not always have an appropriate value to provide for
  one of these fields, for example, the R-URI field is not applicable
  when logging a response, the Status field is not applicable when
  logging a request, the To tag is not known when a request is first
  sent out, etc.  As all the mandatory fields are required to appear in
  the SIP CLF record, the representation document MUST define how to
  indicate a field that is not applicable in the context that the SIP





Gurbani, et al.              Standards Track                   [Page 13]

RFC 6872                         SIP CLF                   February 2013


  CLF record was generated.  Similarly, to handle parsing errors in a
  field, the representation document MUST define a means to indicate
  that a field cannot be parsed.

  The Client-Txn field is always applicable to a UAC.  The Server-Txn
  field does not apply to a UAC unless the element is also acting as a
  UAS, and the message associated to this log record corresponds to a
  message handled by that UAS.  For instance, a proxy forwarding a
  request will populate both the Client-Txn and Server-Txn fields in
  the record corresponding to the forwarded request.

  The Server-Txn field is always applicable to a UAS.  The Client-Txn
  field does not apply to a UAS unless the element is also acting as a
  UAC, and the message associated to this log record corresponds to a
  message handled by that UAC.  For instance, a proxy forwarding a
  response will populate both the Server-Txn and Client-Txn fields in
  the record corresponding to the forwarded response.  However, a proxy
  would only populate the Client-Txn field when creating a log record
  corresponding to a request.

9.  Examples

  The examples use only the mandatory data elements defined in Section
  8.1.  Extension elements are not considered and neither are SIP
  bodies.  When a given mandatory field is not applicable to a SIP
  entity, we use the horizontal dash ("-") to represent it.

  There are five principals in the examples below.  They are the
  following: Alice, the initiator of requests.  Alice's user agent uses
  IPv4 address 198.51.100.1, port 5060.  P1 is a proxy that Alice's
  request traverse on their way to Bob, the recipient of the requests.
  P1 also acts as a registrar to Alice.  P1 uses an IPv4 address of
  198.51.100.10, port 5060.  Bob has two instances of his user agent
  running on different hosts.  The first instance uses an IPv4 address
  of 203.0.113.1, port 5060 and the second instance uses an IPv6
  address of 2001:db8::9, port 5060.  P2 is a proxy responsible for
  Bob's domain.  Table 1 summarizes these addresses.














Gurbani, et al.              Standards Track                   [Page 14]

RFC 6872                         SIP CLF                   February 2013


       +-------------------+--------------------+-------------------+
       | Principal         | IP:port            | Host/Domain name  |
       +-------------------+--------------------+-------------------+
       | Alice             | 198.51.100.1:5060  | alice.example.com |
       | P1                | 198.51.100.10:5060 | p1.example.com    |
       | P2                | 203.0.113.200:5060 | p2.example.net    |
       | Bob UA instance 1 | 203.0.113.1:5060   | bob1.example.net  |
       | Bob UA instance 2 | [2001:db8::9]:5060 | bob2.example.net  |
       +-------------------+--------------------+-------------------+

                   Principal to IP Address Assignment

                                 Table 1

  Illustrative examples of SIP CLF follow.

9.1.  UAC Registration

  Alice sends a registration registrar P1 and receives a 2xx-class
  response.  The register requests causes Alice's UAC to produce a log
  record shown below.

       Timestamp: 1275930743.699
       Message Type: R
       Directionality: s
       Transport: udp
       CSeq-Number: 1
       CSeq-Method: REGISTER
       R-URI: sip:example.com
       Destination-address: 198.51.100.10
       Destination-port: 5060
       Source-address: 198.51.100.1
       Source-port: 5060
       To: sip:example.com
       To tag: -
       From: sip:[email protected]
       From tag: 76yhh
       Call-ID: [email protected]
       Status: -
       Server-Txn: -
       Client-Txn: c-tr-1










Gurbani, et al.              Standards Track                   [Page 15]

RFC 6872                         SIP CLF                   February 2013


  After some time, Alice's UAC will receive a response from the
  registrar.  The response causes Alice's agent to produce a log record
  shown below.

       Timestamp: 1275930744.100
       Message Type: r
       Directionality: r
       Transport: udp
       CSeq-Number: 1
       CSeq-Method: REGISTER
       R-URI: -
       Destination-address: 198.51.100.1
       Destination-port: 5060
       Source-address: 198.51.100.10
       Source-port: 5060
       To: sip:example.com
       To tag: reg-1-xtr
       From: sip:[email protected]
       From tag: 76yhh
       Call-ID: [email protected]
       Status: 100
       Server-Txn: -
       Client-Txn: c-tr-1




























Gurbani, et al.              Standards Track                   [Page 16]

RFC 6872                         SIP CLF                   February 2013


9.2.  Direct Call between Alice and Bob

  In this example, Alice sends a session initiation request directly to
  Bob's agent (instance 1).  Bob's agent accepts the session
  invitation.  We first present the SIP CLF logging from the vantage
  point of Alice's UAC.  In line 1, Alice's user agent sends out the
  INVITE.  Shortly, it receives a "180 Ringing" (line 2), followed by a
  "200 OK" response (line 3).  Upon the receipt of the 2xx-class
  response, Alice's user agent sends out an ACK request (line 4).

       Timestamp: 1275930743.699
       Message Type: R
       Directionality: s
       Transport: udp
       CSeq-Number: 32
       CSeq-Method: INVITE
       R-URI: sip:[email protected]
       Destination-address: 203.0.113.1
       Destination-port: 5060
       Source-address: 198.51.100.1
       Source-port: 5060
       To: sip:[email protected]
       To tag: -
       From: sip:[email protected]
       From tag: 76yhh
       Call-ID: [email protected]
       Status: -
       Server-Txn: -
       Client-Txn: c-1-xt6






















Gurbani, et al.              Standards Track                   [Page 17]

RFC 6872                         SIP CLF                   February 2013


       Timestamp: 1275930745.002
       Message Type: r
       Directionality: r
       Transport: udp
       CSeq-Number: 32
       CSeq-Method: INVITE
       R-URI: -
       Destination-address: 198.51.100.1
       Destination-port: 5060
       Source-address: 203.0.113.1
       Source-port: 5060
       To: sip:[email protected]
       To tag: b-in6-iu
       From: sip:[email protected]
       From tag: 76yhh
       Call-ID: [email protected]
       Status: 180
       Server-Txn: -
       Client-Txn: c-1-xt6

       Timestamp: 1275930746.100
       Message Type: r
       Directionality: r
       Transport: udp
       CSeq-Number: 32
       CSeq-Method: INVITE
       R-URI: -
       Destination-address: 198.51.100.1
       Destination-port: 5060
       Source-address: 203.0.113.1
       Source-port: 5060
       To: sip:[email protected]
       To tag: b-in6-iu
       From: sip:[email protected]
       From tag: 76yhh
       Call-ID: [email protected]
       Status: 200
       Server-Txn: -
       Client-Txn: c-1-xt6












Gurbani, et al.              Standards Track                   [Page 18]

RFC 6872                         SIP CLF                   February 2013


       Timestamp: 1275930746.120
       Message Type: R
       Directionality: s
       Transport: udp
       CSeq-Number: 32
       CSeq-Method: ACK
       R-URI: sip:[email protected]
       Destination-address: 203.0.113.1
       Destination-port: 5060
       Source-address: 198.51.100.1
       Source-port: 5060
       To: sip:[email protected]
       To tag: b-in6-iu
       From: sip:[email protected]
       From tag: 76yhh
       Call-ID: [email protected]
       Status: -
       Server-Txn: -
       Client-Txn: c-1-xt6
































Gurbani, et al.              Standards Track                   [Page 19]

RFC 6872                         SIP CLF                   February 2013


9.3.  Single Downstream Branch Call

  In this example, Alice sends a session invitation request to Bob
  through proxy P1, which inserts a Record-Route header causing
  subsequent requests between Alice and Bob to traverse the proxy.  The
  SIP CLF log records appears from the vantage point of P1.  The line
  numbers below refer to Figure 1.

       Alice             P1             Bob
        +---INV--------->|               |  Line 1
        |                |               |
        |<---------100---+               |  Line 2
        |                |               |
        |                +---INV-------->|  Line 3
        |                |               |
        |                |<--------100---+  Line 4
        |                |               |
        |                |<--------180---+  Line 5
        |                |               |
        |<---------180---+               |  Line 6
        |                |               |
        |                |<--------200---+  Line 7
        |                |               |
        |<---------200---+               |  Line 8
        |                |               |
        +---ACK--------->|               |  Line 9
        |                |               |
        |                |---ACK-------->|  Line 10

                 Figure 1: Simple Proxy-Aided Call Flow





















Gurbani, et al.              Standards Track                   [Page 20]

RFC 6872                         SIP CLF                   February 2013


  1    Timestamp: 1275930743.699
       Message Type: R
       Directionality: r
       Transport: udp
       CSeq-Number: 43
       CSeq-Method: INVITE
       R-URI: sip:[email protected]
       Destination-address: 198.51.100.10
       Destination-port: 5060
       Source-address: 198.51.100.1
       Source-port: 5060
       To: sip:[email protected]
       To tag: -
       From: sip:[email protected]
       From tag: al-1
       Call-ID: [email protected]
       Status: -
       Server-Txn: s-x-tr
       Client-Txn: -

  Note that, at this point, P1 has created a server transaction
  identification code and populated the SIP CLF field Server-Txn with
  it.  P1 has not yet created a client transaction identification code;
  thus, Client-Txn contains a "-".

  2    Timestamp: 1275930744.001
       Message Type: r
       Directionality: s
       Transport: udp
       CSeq-Number: 43
       CSeq-Method: INVITE
       R-URI: -
       Destination-address: 198.51.100.1
       Destination-port: 5060
       Source-address: 198.51.100.10
       Source-port: 5060
       To: sip:[email protected]
       To tag: -
       From: sip:[email protected]
       From tag: al-1
       Call-ID: [email protected]
       Status: 100
       Server-Txn: s-x-tr
       Client-Txn: -







Gurbani, et al.              Standards Track                   [Page 21]

RFC 6872                         SIP CLF                   February 2013


  In line 3 below, P1 has created a client transaction identification
  code for the downstream branch and populated the SIP CLF field
  Client-Txn.

  3    Timestamp: 1275930744.998
       Message Type: R
       Directionality: s
       Transport: udp
       CSeq-Number: 43
       CSeq-Method: INVITE
       R-URI: sip:[email protected]
       Destination-address: 203.0.113.1
       Destination-port: 5060
       Source-address: 198.51.100.10
       Source-port: 5060
       To: sip:[email protected]
       To tag: -
       From: sip:[email protected]
       From tag: al-1
       Call-ID: [email protected]
       Status: -
       Server-Txn: s-x-tr
       Client-Txn: c-x-tr

  4    Timestamp: 1275930745.200
       Message Type: r
       Directionality: r
       Transport: udp
       CSeq-Number: 43
       CSeq-Method: INVITE
       R-URI: -
       Destination-address: 198.51.100.10
       Destination-port: 5060
       Source-address: 203.0.113.1
       Source-port: 5060
       To: sip:[email protected]
       To tag: b1-1
       From: sip:[email protected]
       From tag: al-1
       Call-ID: [email protected]
       Status: 100
       Server-Txn: s-x-tr
       Client-Txn: c-x-tr








Gurbani, et al.              Standards Track                   [Page 22]

RFC 6872                         SIP CLF                   February 2013


  5    Timestamp: 1275930745.800
       Message Type: r
       Directionality: r
       Transport: udp
       CSeq-Number: 43
       CSeq-Method: INVITE
       R-URI: -
       Destination-address: 198.51.100.10
       Destination-port: 5060
       Source-address: 203.0.113.1
       Source-port: 5060
       To: sip:[email protected]
       To tag: b1-1
       From: sip:[email protected]
       From tag: al-1
       Call-ID: [email protected]
       Status: 180
       Server-Txn: s-x-tr
       Client-Txn: c-x-tr

  6    Timestamp: 1275930746.009
       Message Type: r
       Directionality: s
       Transport: udp
       CSeq-Number: 43
       CSeq-Method: INVITE
       R-URI: -
       Destination-address: 198.51.100.1
       Destination-port: 5060
       Source-address: 198.51.100.10
       Source-port: 5060
       To: sip:[email protected]
       To tag: b1-1
       From: sip:[email protected]
       From tag: al-1
       Call-ID: [email protected]
       Status: 180
       Server-Txn: s-x-tr
       Client-Txn: c-x-tr












Gurbani, et al.              Standards Track                   [Page 23]

RFC 6872                         SIP CLF                   February 2013


  7    Timestamp: 1275930747.120
       Message Type: r
       Directionality: r
       Transport: udp
       CSeq-Number: 43
       CSeq-Method: INVITE
       R-URI: -
       Destination-address: 198.51.100.10
       Destination-port: 5060
       Source-address: 203.0.113.1
       Source-port: 5060
       To: sip:[email protected]
       To tag: b1-1
       From: sip:[email protected]
       From tag: al-1
       Call-ID: [email protected]
       Status: 200
       Server-Txn: s-x-tr
       Client-Txn: c-x-tr

  8    Timestamp: 1275930747.300
       Message Type: r
       Directionality: s
       Transport: udp
       CSeq-Number: 43
       CSeq-Method: INVITE
       R-URI: -
       Destination-address: 198.51.100.1
       Destination-port: 5060
       Source-address: 198.51.100.10
       Source-port: 5060
       To: sip:[email protected]
       To tag: b1-1
       From: sip:[email protected]
       From tag: al-1
       Call-ID: [email protected]
       Status: 200
       Server-Txn: s-x-tr
       Client-Txn: c-x-tr












Gurbani, et al.              Standards Track                   [Page 24]

RFC 6872                         SIP CLF                   February 2013


  9    Timestamp: 1275930749.100
       Message Type: R
       Directionality: r
       Transport: udp
       CSeq-Number: 43
       CSeq-Method: ACK
       R-URI: sip:[email protected]
       Destination-address: 198.51.100.10
       Destination-port: 5060
       Source-address: 198.51.100.1
       Source-port: 5060
       To: sip:[email protected]
       To tag: b1-1
       From: sip:[email protected]
       From tag: al-1
       Call-ID: [email protected]
       Status: -
       Server-Txn: s-x-tr
       Client-Txn: c-x-tr

  10   Timestamp: 1275930749.100
       Message Type: R
       Directionality: s
       Transport: udp
       CSeq-Number: 43
       CSeq-Method: ACK
       R-URI: sip:[email protected]
       Destination-address: 203.0.113.1
       Destination-port: 5060
       Source-address: 198.51.100.10
       Source-port: 5060
       To: sip:[email protected]
       To tag: b1-1
       From: sip:[email protected]
       From tag: al-1
       Call-ID: [email protected]
       Status: -
       Server-Txn: s-x-tr
       Client-Txn: c-x-tr

9.4.  Forked Call

  In this example, Alice sends a session invitation to Bob's proxy, P2.
  P2 forks the session invitation request to two registered endpoints
  corresponding to Bob's address-of-record.  Both endpoints respond
  with provisional responses.  Shortly thereafter, one of Bob's user
  agent instances accepts the call, causing P2 to send a CANCEL request
  to the second user agent.  P2 does not Record-Route; therefore, the



Gurbani, et al.              Standards Track                   [Page 25]

RFC 6872                         SIP CLF                   February 2013


  subsequent ACK request from Alice to Bob's user agent does not
  traverse through P2 (and is not shown below).

  Figure 2 depicts the call flow.
                          Bob            Bob
       Alice      P2   (Instance 1) (Instance 2)
        +---INV--->|          |         |  Line 1
        |          |          |         |
        |<---100---+          |         |  Line 2
        |          |          |         |
        |          +---INV--->|         |  Line 3
        |          |          |         |
        |          +---INV----+-------->|  Line 4
        |          |          |         |
        |          |<---100---+         |  Line 5
        |          |          |         |
        |          |<---------+---100---+  Line 6
        |          |          |         |
        |          |<---180---+---------+  Line 7
        |          |          |         |
        |<---180---+          |         |  Line 8
        |          |          |         |
        |          |<---180---+         |  Line 9
        |          |          |         |
        |<---180---+          |         |  Line 10
        |          |          |         |
        |          |<---200---+         |  Line 11
        |          |          |         |
        |<---200---+          |         |  Line 12
        |          |          |         |
        |          +---CANCEL-+-------->|  Line 13
        |          |          |         |
        |          |<---------+---487---+  Line 14
        |          |          |         |
        |          +---ACK----+-------->|  Line 15
        |          |          |         |
        |          |<---------+---200---+  Line 16

                       Figure 2: Forked Call Flow

  The SIP CLF log appears from the vantage point of P2.  The fields
  logged are shown below; the line numbers refer to Figure 2.









Gurbani, et al.              Standards Track                   [Page 26]

RFC 6872                         SIP CLF                   February 2013


  1    Timestamp: 1275930743.699
       Message Type: R
       Directionality: r
       Transport: udp
       CSeq-Number: 43
       CSeq-Method: INVITE
       R-URI: sip:[email protected]
       Destination-address: 203.0.113.200
       Destination-port: 5060
       Source-address: 198.51.100.1
       Source-port: 5060
       To: sip:[email protected]
       To tag: -
       From: sip:[email protected]
       From tag: a1-1
       Call-ID: [email protected]
       Status: -
       Server-Txn: s-1-tr
       Client-Txn: -

  2    Timestamp: 1275930744.001
       Message Type: r
       Directionality: s
       Transport: udp
       CSeq-Number: 43
       CSeq-Method: INVITE
       R-URI: -
       Destination-address: 198.51.100.1
       Destination-port: 5060
       Source-address: 203.0.113.200
       Source-port: 5060
       To: sip:[email protected]
       To tag: -
       From: sip:[email protected]
       From tag: a1-1
       Call-ID: [email protected]
       Status: 100
       Server-Txn: s-1-tr
       Client-Txn: -












Gurbani, et al.              Standards Track                   [Page 27]

RFC 6872                         SIP CLF                   February 2013


  3    Timestamp: 1275930744.998
       Message Type: R
       Directionality: s
       Transport: udp
       CSeq-Number: 43
       CSeq-Method: INVITE
       R-URI: sip:[email protected]
       Destination-address: 203.0.113.1
       Destination-port: 5060
       Source-address: 203.0.113.200
       Source-port: 5060
       To: sip:[email protected]
       To tag: -
       From: sip:[email protected]
       From tag: a1-1
       Call-ID: [email protected]
       Status: -
       Server-Txn: s-1-tr
       Client-Txn: c-1-tr

  4    Timestamp: 1275930745.500
       Message Type: R
       Directionality: s
       Transport: udp
       CSeq-Number: 43
       CSeq-Method: INVITE
       R-URI: sip:[email protected]
       Destination-address: [2001:db8::9]
       Destination-port: 5060
       Source-address: 203.0.113.200
       Source-port: 5060
       To: sip:[email protected]
       To tag: -
       From: sip:[email protected]
       From tag: a1-1
       Call-ID: [email protected]
       Status: -
       Server-Txn: s-1-tr
       Client-Txn: c-2-tr












Gurbani, et al.              Standards Track                   [Page 28]

RFC 6872                         SIP CLF                   February 2013


  5    Timestamp: 1275930745.800
       Message Type: r
       Directionality: r
       Transport: udp
       CSeq-Number: 43
       CSeq-Method: INVITE
       R-URI: -
       Destination-address: 203.0.113.200
       Destination-port: 5060
       Source-address: 203.0.113.1
       Source-port: 5060
       To: sip:[email protected]
       To tag: b1=-1
       From: sip:[email protected]
       From tag: a1-1
       Call-ID: [email protected] 100
       Status: 100
       Server-Txn: s-1-tr
       Client-Txn: c-1-tr

  6    Timestamp: 1275930746.100
       Message Type: r
       Directionality: r
       Transport: udp
       CSeq-Number: 43
       CSeq-Method: INVITE
       R-URI: -
       Destination-address: 203.0.113.200
       Destination-port: udp
       Source-address: [2001:db8::9]
       Source-port: 5060
       To: sip:[email protected]
       To tag: b2-2
       From: sip:[email protected]
       From tag: a1-1
       Call-ID: [email protected]
       Status: 100
       Server-Txn: s-1-tr
       Client-Txn: c-2-tr












Gurbani, et al.              Standards Track                   [Page 29]

RFC 6872                         SIP CLF                   February 2013


  7    Timestamp: 1275930746.700
       Message Type: r
       Directionality: r
       Transport: udp
       CSeq-Number: 43
       CSeq-Method: INVITE
       R-URI: -
       Destination-address: 203.0.113.200
       Destination-port: udp
       Source-address: [2001:db8::9]
       Source-port: 5060
       To: sip:[email protected]
       To tag: b2-2
       From: sip:[email protected]
       From tag: a1-1
       Call-ID: [email protected]
       Status: 180
       Server-Txn: s-1-tr
       Client-Txn: c-2-tr

  8    Timestamp: 1275930746.990
       Message Type: r
       Directionality: s
       Transport: udp
       CSeq-Number: 43
       CSeq-Method: INVITE
       R-URI: -
       Destination-address: 198.51.100.1
       Destination-port: 5060
       Source-address: 203.0.113.200
       Source-port: 5060
       To: sip:[email protected]
       To tag: b2-2
       From: sip:[email protected]
       From tag: a1-1
       Call-ID: [email protected]
       Status: 180
       Server-Txn: s-1-tr
       Client-Txn: c-2-tr












Gurbani, et al.              Standards Track                   [Page 30]

RFC 6872                         SIP CLF                   February 2013


  9    Timestamp: 1275930747.100
       Message Type: r
       Directionality: r
       Transport: udp
       CSeq-Number: 43
       CSeq-Method: INVITE
       R-URI: -
       Destination-address: 203.0.113.200
       Destination-port: 5060
       Source-address: 203.0.113.1
       Source-port: 5060
       To: sip:[email protected]
       To tag: b1-1
       From: sip:[email protected]
       From tag: a1-1
       Call-ID: [email protected] 100
       Status: 180
       Server-Txn: s-1-tr
       Client-Txn: c-1-tr

  10   Timestamp: 1275930747.300
       Message Type: r
       Directionality: s
       Transport: udp
       CSeq-Number: 43
       CSeq-Method: INVITE
       R-URI: -
       Destination-address: 198.51.100.1
       Destination-port: 5060
       Source-address: 203.0.113.200
       Source-port: 5060
       To: sip:[email protected]
       To tag: b1-1
       From: sip:[email protected]
       From tag: a1-1
       Call-ID: [email protected]
       Status: 180
       Server-Txn: s-1-tr
       Client-Txn: c-2-tr












Gurbani, et al.              Standards Track                   [Page 31]

RFC 6872                         SIP CLF                   February 2013


  11   Timestamp: 1275930747.800
       Message Type: r
       Directionality: r
       Transport: udp
       CSeq-Number: 43
       CSeq-Method: INVITE
       R-URI: -
       Destination-address: 203.0.113.200
       Destination-port: 5060
       Source-address: 203.0.113.1
       Source-port: 5060
       To: sip:[email protected]
       To tag: b1-1
       From: sip:[email protected]
       From tag: a1-1
       Call-ID: [email protected] 100
       Status: 200
       Server-Txn: s-1-tr
       Client-Txn: c-1-tr

  12   Timestamp: 1275930748.000
       Message Type: r
       Directionality: s
       Transport: udp
       CSeq-Number: 43
       CSeq-Method: INVITE
       R-URI: -
       Destination-address: 198.51.100.1
       Destination-port: 5060
       Source-address: 203.0.113.200
       Source-port: 5060
       To: sip:[email protected]
       To tag: b1-1
       From: sip:[email protected]
       From tag: a1-1
       Call-ID: [email protected]
       Status: 200
       Server-Txn: s-1-tr
       Client-Txn: c-1-tr












Gurbani, et al.              Standards Track                   [Page 32]

RFC 6872                         SIP CLF                   February 2013


  13   Timestamp: 1275930748.201
       Message Type: R
       Directionality: s
       Transport: udp
       CSeq-Number: 43
       CSeq-Method: CANCEL
       R-URI: sip:[email protected]
       Destination-address: [2001:db8::9]
       Destination-port: 5060
       Source-address: 203.0.113.200
       Source-port: 5060
       To: sip:[email protected]
       To tag: b2-2
       From: sip:[email protected]
       From tag: a1-1
       Call-ID: [email protected]
       Status: -
       Server-Txn: s-1-tr
       Client-Txn: c-2-tr

  14   Timestamp: 1275930748.300
       Message Type: r
       Directionality: r
       Transport: udp
       CSeq-Number: 43
       CSeq-Method: INVITE
       R-URI: -
       Destination-address: 203.0.113.200
       Destination-port: udp
       Source-address: [2001:db8::9]
       Source-port: 5060
       To: sip:[email protected]
       To tag: b2-2
       From: sip:[email protected]
       From tag: a1-1
       Call-ID: [email protected]
       Status: 487
       Server-Txn: s-1-tr
       Client-Txn: c-2-tr












Gurbani, et al.              Standards Track                   [Page 33]

RFC 6872                         SIP CLF                   February 2013


  15   Timestamp: 1275930748.355
       Message Type: R
       Directionality: s
       Transport: udp
       CSeq-Number: 43
       CSeq-Method: ACK
       R-URI: sip:[email protected]
       Destination-address: [2001:db8::9]
       Destination-port: 5060
       Source-address: 203.0.113.200
       Source-port: 5060
       To: sip:[email protected]
       To tag: b2-2
       From: sip:[email protected]
       From tag: a1-1
       Call-ID: [email protected]
       Status: -
       Server-Txn: s-1-tr
       Client-Txn: c-2-tr

  16   Timestamp: 1275930748.698
       Message Type: r
       Directionality: r
       Transport: udp
       CSeq-Number: 43
       CSeq-Method: CANCEL
       R-URI: -
       Destination-address: 203.0.113.200
       Destination-port: udp
       Source-address: [2001:db8::9]
       Source-port: 5060
       To: sip:[email protected]
       To tag: b2-2
       From: sip:[email protected]
       From tag: a1-1
       Call-ID: [email protected]
       Status: 200
       Server-Txn: s-1-tr
       Client-Txn: c-2-tr

  The above SIP CLF log makes it easy to search for a specific
  transaction or a state of the session.  Searching for the string
  "c-1-tr" on the log records will readily yield the information that
  an INVITE was sent to sip:[email protected], it elicited a 100
  followed by a 180 and then a 200.  Because the ACK request in this
  case would be exchanged end-to-end, this element does not see (and
  therefore will not log) the ACK.




Gurbani, et al.              Standards Track                   [Page 34]

RFC 6872                         SIP CLF                   February 2013


  Searching for "c-2-tr" yields a more complex scenario of sending an
  INVITE to sip:[email protected], receiving 100 and 180.  However,
  the log makes it apparent that the request to
  sip:[email protected] was subsequently CANCEL'ed before a final
  response was generated, and that the pending INVITE returned a 487.
  The ACK to the final non-2xx response and a 200 to the CANCEL request
  complete the exchange on that branch.

10.  Security Considerations

  A log file by its nature reveals both the state of the entity
  producing it and the nature of the information being logged.  To the
  extent that this state should not be publicly accessible and that the
  information is to be considered private, appropriate file and
  directory permissions attached to the log file SHOULD be used.  It is
  outside the scope of this document to specify how to protect the log
  file while it is stored on disk; however, certain precautions can be
  taken.  Operators SHOULD consider using common administrative
  features such as disk encryption and securing log files [schneier-1].
  Operators SHOULD also consider hardening the machine on which the log
  file is stored by restricting physical access to the host as well as
  restricting access to the file itself.  Depending on the specific
  operating system and environment, the file and directory permissions
  SHOULD be set to be most restrictive such that the file is not
  publicly readable and writable and the directory where the file is
  stored is not publicly accessible.

  The following threats may be considered for the log file while it is
  stored:

  o  An attacker may gain access to view the log file, or may
     surreptitiously make a copy of the log file for later viewing.

  o  An attacker who is unable to eavesdrop on real-time SIP traffic on
     the network, but, nonetheless, can access the log file, is able to
     easily mount replay attack or other attacks that result from
     channel eavesdropping.  Encrypting SIP traffic does not help here
     because the SIP entity generating the log file would have
     decrypted the message for processing and subsequent logging.

  o  An attacker may delete parts of --- or indeed, the whole --- file.

  Public access to the SIP log file creates more of a privacy leak when
  compared to an adversary eavesdropping cleartext SIP traffic on the
  network.  If all SIP traffic on a network segment is encrypted, then
  as noted above, special attention must be directed to the file and
  directory permissions associated with the log file to preserve




Gurbani, et al.              Standards Track                   [Page 35]

RFC 6872                         SIP CLF                   February 2013


  privacy such that only a privileged user can access the contents of
  the log file.

  Transporting SIP CLF files across the network pose special challenges
  as well.  The following threats may be considered for transferring
  log files or while transferring individual log records:

  o  An attacker may view the records;

  o  An attacker may modify the records in transit or insert previously
     captured records into the stream;

  o  An attacker may remove records in transit, or may stage a man-in-
     the-middle attack to deliver a partially or entirely falsified log
     file.

  It is also outside the scope of this document to specify protection
  methods for log files or log records that are being transferred
  between hosts; however, certain precautions can be taken.  Operators
  SHOULD require mutual authentication, channel confidentiality, and
  channel integrity while transferring the log file.  The use of a
  secure shell transport layer protocol [RFC4253] or TLS [RFC5246]
  accomplishes this.

  Even with such care, sensitive information can be leaked during or
  after the transfer.  SIP CLF fields like IP addresses and URIs
  contain potentially sensitive information.  Before transferring the
  log file across domains, operators SHOULD ensure that any fields that
  contain sensitive information are appropriately anonymized or
  obfuscated.  A specification for a format that describes which fields
  are obfuscated and with what characteristics (e.g., what correlations
  still work) is needed to allow interoperable but privacy-friendly
  exchange of SIP CLF between administrative domains.  Such a
  specification is not attempted here, but is for further study.

  The SIP CLF represents the minimum fields that lend themselves to
  trend analysis and serve as information that may be deemed useful.
  Other formats can be defined that include more headers (and the body)
  from Section 8.1.  However, where to draw a judicial line regarding
  the inclusion of non-mandatory headers can be challenging.  Clearly,
  the more information a SIP entity logs, the longer time the logging
  process will take, the more disk space the log entry will consume,
  and the more potentially sensitive information could be breached.
  Therefore, adequate trade-offs should be taken in account when
  logging more fields than the ones recommended in Section 8.1.






Gurbani, et al.              Standards Track                   [Page 36]

RFC 6872                         SIP CLF                   February 2013


  Implementers need to pay particular attention to buffer handling when
  reading or writing log files.  SIP CLF entries can be unbounded in
  length.  It would be reasonable for a full dump of a SIP message to
  be thousands of octets long.  This is of particular importance to CLF
  log parsers, as a SIP CLF log writers may add one or more extension
  fields to the message to be logged.

11.  Operational Guidance

  SIP CLF log files will take up a substantial amount of disk space
  depending on traffic volume at a processing entity and the amount of
  information being logged.  As such, any organization using SIP CLF
  should establish operational procedures for file rollovers and
  periodic retrieval of logs before rollover as appropriate to the
  needs of the organization.

  Listing such operational guidelines in this document is out of scope
  for this work.

12.  Acknowledgments

  Members of the sipping, dispatch, ipfix, and syslog working groups
  provided invaluable input to the formulation of the document.  These
  include Benoit Claise, Spencer Dawkins, John Elwell, David
  Harrington, Christer Holmberg, Hadriel Kaplan, Atsushi Kobayashi,
  Jiri Kuthan, Scott Lawrence, Chris Lonvick, Peter Musgrave, Simon
  Perreault, Adam Roach, Dan Romascanu, Robert Sparks, Brian Trammell,
  Dale Worley, Theo Zourzouvillys, and others that we have undoubtedly,
  but inadvertently, missed.

  Rainer Gerhards, David Harrington, Cullen Jennings, and Gonzalo
  Salgueiro helped tremendously in discussions related to arriving at
  the beginnings of an information model.

13.  References

13.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC3261]  Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
             A., Peterson, J., Sparks, R., Handley, M., and E.
             Schooler, "SIP: Session Initiation Protocol", RFC 3261,
             June 2002.






Gurbani, et al.              Standards Track                   [Page 37]

RFC 6872                         SIP CLF                   February 2013


13.2.  Informative References

  [RFC4253]  Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)
             Transport Layer Protocol", RFC 4253, January 2006.

  [RFC5101]  Claise, B., "Specification of the IP Flow Information
             Export (IPFIX) Protocol for the Exchange of IP Traffic
             Flow Information", RFC 5101, January 2008.

  [RFC5246]  Dierks, T. and E. Rescorla, "The Transport Layer Security
             (TLS) Protocol Version 1.2", RFC 5246, August 2008.

  [RFC5424]  Gerhards, R., "The Syslog Protocol", RFC 5424, March 2009.

  [RFC6873]  Salgueiro, G., Gurbani, V., and A. B. Roach, "Format for
             the Session Initiation Protocol (SIP) Common Log Format
             (CLF)", RFC 6873, February 2013.

  [rieck2008]
             Rieck, K., Wahl, S., Laskov, P., Domschitz, P., and K-R.
             Muller, "A Self-learning System for Detection of Anomalous
             SIP Messages", Principles, Systems and Applications of IP
             Telecommunications Services and Security for Next
             Generation Networks (IPTComm), LNCS 5310, pp. 90-106,
             2008.

  [schneier-1]
             Schneier, B. and J. Kelsey, "Secure audit logs to support
             computer forensics", ACM Transactions on Information and
             System Security (TISSEC), 2(2), pp. 159,176, May 1999.





















Gurbani, et al.              Standards Track                   [Page 38]

RFC 6872                         SIP CLF                   February 2013


Authors' Addresses

  Vijay K. Gurbani (editor)
  Bell Laboratories, Alcatel-Lucent
  1960 Lucent Lane
  Naperville, IL  60566
  USA

  EMail: [email protected]


  Eric W. Burger (editor)
  Georgetown University
  USA

  EMail: [email protected]
  URI:   http://www.standardstrack.com


  Tricha Anjali
  Illinois Institute of Technology
  316 Siegel Hall
  Chicago, IL  60616
  USA

  EMail: [email protected]


  Humberto Abdelnur
  INRIA
  INRIA - Nancy Grant Est
  Campus Scientifique
  54506, Vandoeuvre-les-Nancy Cedex
  France

  EMail: [email protected]


  Olivier Festor
  INRIA
  INRIA - Nancy Grant Est
  Campus Scientifique
  54506, Vandoeuvre-les-Nancy Cedex
  France

  EMail: [email protected]





Gurbani, et al.              Standards Track                   [Page 39]