Internet Engineering Task Force (IETF)                      D. Farinacci
Request for Comments: 6835                                      D. Meyer
Category: Informational                                    Cisco Systems
ISSN: 2070-1721                                             January 2013


       The Locator/ID Separation Protocol Internet Groper (LIG)

Abstract

  A simple tool called the Locator/ID Separation Protocol (LISP)
  Internet Groper or 'lig' can be used to query the LISP mapping
  database.  This document describes how it works.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Not all documents
  approved by the IESG are a candidate for any level of Internet
  Standard; see Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc6835.

Copyright Notice

  Copyright (c) 2013 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.







Farinacci & Meyer             Informational                     [Page 1]

RFC 6835               LISP Internet Groper (LIG)           January 2013


Table of Contents

  1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  2
  2.  Definition of Terms  . . . . . . . . . . . . . . . . . . . . .  3
  3.  Basic Overview . . . . . . . . . . . . . . . . . . . . . . . .  5
  4.  Implementation Details . . . . . . . . . . . . . . . . . . . .  6
    4.1.  LISP Router Implementation . . . . . . . . . . . . . . . .  6
    4.2.  Public Domain Host Implementation  . . . . . . . . . . . .  8
  5.  Testing the ALT  . . . . . . . . . . . . . . . . . . . . . . .  9
  6.  Future Enhancements  . . . . . . . . . . . . . . . . . . . . . 10
  7.  Deployed Network Diagnostic Tools  . . . . . . . . . . . . . . 10
  8.  Security Considerations  . . . . . . . . . . . . . . . . . . . 10
  9.  References . . . . . . . . . . . . . . . . . . . . . . . . . . 11
    9.1.  Normative References . . . . . . . . . . . . . . . . . . . 11
    9.2.  Informative References . . . . . . . . . . . . . . . . . . 11
  Appendix A.  Acknowledgments . . . . . . . . . . . . . . . . . . . 12

1.  Introduction

  The Locator/ID Separation Protocol [RFC6830] specifies an
  architecture and mechanism for replacing the addresses currently used
  by IP with two separate namespaces: Endpoint IDs (EIDs), used within
  sites, and Routing Locators (RLOCs), used on the transit networks
  that make up the Internet infrastructure.  To achieve this
  separation, LISP defines protocol mechanisms for mapping from EIDs to
  RLOCs.  In addition, LISP assumes the existence of a database to
  store and propagate those mappings globally.  Several such databases
  have been proposed, among them: a Content distribution Overlay
  Network Service for LISP [LISP-CONS], a Not-so-novel EID-to-RLOC
  Database (LISP-NERD) [RFC6837], and LISP Alternative Topology (LISP+
  ALT) [RFC6836], with LISP+ALT being the system that is currently
  being implemented and deployed on the pilot LISP network.

  In conjunction with the various mapping systems, there exists a
  network-based API called LISP Map-Server [RFC6833].  Using Map-
  Resolvers and Map-Servers allows LISP sites to query and register
  into the database in a uniform way independent of the mapping system
  used.  Sending Map-Requests to Map-Resolvers provides a secure
  mechanism to obtain a Map-Reply containing the authoritative EID-to-
  RLOC mapping for a destination LISP site.

  The 'lig' is a manual management tool to query the mapping database.
  It can be run by all devices that implement LISP, including Ingress
  Tunnel Routers (ITRs), Egress Tunnel Routers (ETRs), Proxy-ITRs,
  Proxy-ETRs, Map-Resolvers, Map-Servers, and LISP-ALT Routers, as well
  as by a host system at either a LISP-capable or non-LISP-capable
  site.




Farinacci & Meyer             Informational                     [Page 2]

RFC 6835               LISP Internet Groper (LIG)           January 2013


  The mapping database system is typically a public database used for
  wide-range connectivity across Internet sites.  The information in
  the public database is purposely not kept private so it can be
  generally accessible for public use.

2.  Definition of Terms

  Map-Server:   a network infrastructure component that learns EID-to-
     RLOC mapping entries from an authoritative source (typically, an
     ETR, though static configuration or another out-of-band mechanism
     may be used).  A Map-Server advertises these mappings in the
     distributed mapping database.

  Map-Resolver:   a network infrastructure component that accepts LISP
     Encapsulated Map-Requests, typically from an ITR, quickly
     determines whether or not the destination IP address is part of
     the EID namespace; if it is not, a Negative Map-Reply is
     immediately returned.  Otherwise, the Map-Resolver finds the
     appropriate EID-to-RLOC mapping by consulting the distributed
     mapping database system.

  Routing Locator (RLOC):   the IPv4 or IPv6 address of an Egress
     Tunnel Router (ETR).  It is the output of an EID-to-RLOC mapping
     lookup.  An EID maps to one or more RLOCs.  Typically, RLOCs are
     numbered from topologically aggregatable blocks that are assigned
     to a site at each point to which it attaches to the global
     Internet.  Thus, the topology is defined by the connectivity of
     provider networks, and RLOCs can be thought of as Provider-
     Assigned (PA) addresses.  Multiple RLOCs can be assigned to the
     same ETR device or to multiple ETR devices at a site.

  Endpoint ID (EID):   a 32-bit (for IPv4) or 128-bit (for IPv6) value
     used in the source and destination address fields of the first
     (most inner) LISP header of a packet.  The host obtains a
     destination EID the same way it obtains a destination address
     today, for example, through a DNS lookup.  The source EID is
     obtained via existing mechanisms used to set a host's "local" IP
     address.  An EID is allocated to a host from an EID-prefix block
     associated with the site where the host is located.  An EID can be
     used by a host to refer to other hosts.  EIDs must not be used as
     LISP RLOCs.  Note that EID blocks may be assigned in a
     hierarchical manner, independent of the network topology, to
     facilitate scaling of the mapping database.  In addition, an EID
     block assigned to a site may have site-local structure
     (subnetting) for routing within the site; this structure is not
     visible to the global routing system.





Farinacci & Meyer             Informational                     [Page 3]

RFC 6835               LISP Internet Groper (LIG)           January 2013


  EID-to-RLOC Cache:   a short-lived, on-demand table in an ITR that
     stores, tracks, and is responsible for timing-out and otherwise
     validating EID-to-RLOC mappings.  This cache is distinct from the
     full "database" of EID-to-RLOC mappings; the cache is dynamic,
     local to the ITR(s), and relatively small, while the database is
     distributed, relatively static, and much more global in scope.

  EID-to-RLOC Database:   a global distributed database that contains
     all known EID-prefix to RLOC mappings.  Each potential ETR
     typically contains a small piece of the database: the EID-to-RLOC
     mappings for the EID prefixes "behind" the router.  These map to
     one of the router's own, globally-visible, IP addresses.

  Encapsulated Map-Request (EMR):   an EMR is a Map-Request message
     that is encapsulated with another LISP header using UDP
     destination port number 4342.  It is used so an ITR, PITR, or a
     system initiating a 'lig' command can get the Map-Request to a
     Map-Resolver by using locator addresses.  When the Map-Request is
     decapsulated by the Map-Resolver, it will be forwarded on the ALT
     network to the Map-Server that has injected the EID-prefix for a
     registered site.  The Map-Server will then encapsulate the Map-
     Request in a LISP packet and send it to an ETR at the site.  The
     ETR will then return an authoritative reply to the system that
     initiated the request.  See [RFC6830] for packet format details.

  Ingress Tunnel Router (ITR):   An ITR is a router that accepts an IP
     packet with a single IP header (more precisely, an IP packet that
     does not contain a LISP header).  The router treats this "inner"
     IP destination address as an EID and performs an EID-to-RLOC
     mapping lookup.  The router then prepends an "outer" IP header
     with one of its globally routable RLOCs in the source address
     field and the result of the mapping lookup in the destination
     address field.  Note that this destination RLOC may be an
     intermediate, proxy device that has better knowledge of the EID-
     to-RLOC mapping closer to the destination EID.  In general, an ITR
     receives IP packets from site end-systems on one side and sends
     LISP-encapsulated IP packets toward the Internet on the other
     side.

  Egress Tunnel Router (ETR):   An ETR is a router that accepts an IP
     packet where the destination address in the "outer" IP header is
     one of its own RLOCs.  The router strips the "outer" header and
     forwards the packet based on the next IP header found.  In
     general, an ETR receives LISP-encapsulated IP packets from the
     Internet on one side and sends decapsulated IP packets to site
     end-systems on the other side.  ETR functionality does not have to
     be limited to a router device.  A server host can be the endpoint
     of a LISP tunnel as well.



Farinacci & Meyer             Informational                     [Page 4]

RFC 6835               LISP Internet Groper (LIG)           January 2013


  Proxy-ITR (PITR):   A PITR, also known as a PTR, is defined and
     described in [RFC6832].  A PITR acts like an ITR but does so on
     behalf of non-LISP sites that send packets to destinations at LISP
     sites.

  Proxy-ETR (PETR):   A PETR is defined and described in [RFC6832].  A
     PETR acts like an ETR but does so on behalf of LISP sites that
     send packets to destinations at non-LISP sites.

  xTR:   An xTR is a reference to an ITR or ETR when direction of data
     flow is not part of the context description. xTR refers to the
     router that is the tunnel endpoint; it is used synonymously with
     the term "tunnel router".  For example, "an xTR can be located at
     the Customer Edge (CE) router" means that both ITR and ETR
     functionality is at the CE router.

  Provider-Assigned (PA) Addresses:   PA addresses are an address block
     assigned to a site by each service provider to which a site
     connects.  Typically, each block is a sub-block of a service-
     provider Classless Inter-Domain Routing (CIDR) [RFC4632] block and
     is aggregated into the larger block before being advertised into
     the global Internet.  Traditionally, IP multihoming has been
     implemented by each multihomed site acquiring its own globally
     visible prefix.  LISP uses only topologically assigned and
     aggregatable address blocks for RLOCs, eliminating this
     demonstrably non-scalable practice.

3.  Basic Overview

  When the 'lig' command is run, a Map-Request is sent for a
  destination EID.  When a Map-Reply is returned, the contents are
  displayed to the user.  The information displayed includes:

  o  The EID-prefix for the site that the queried destination EID
     matches.

  o  The locator address of the Map Replier.

  o  The Locator-Set for the mapping entry, which includes the locator
     address, up/down status, priority, and weight of each Locator.

  o  A round-trip-time estimate for the Map-Request/Map-Reply exchange.

  A possible syntax for a 'lig' command could be:

      lig <destination> [source <source>] [to <map-resolver>]





Farinacci & Meyer             Informational                     [Page 5]

RFC 6835               LISP Internet Groper (LIG)           January 2013


  Parameter description:

  <destination>:  is either a Fully Qualified Domain Name (FQDN) or a
     destination EID for a remote LISP site.

  source <source>:  is an optional source EID to be inserted in the
     'Source EID' field of the Map-Request.

  to <map-resolver>:  is an optional FQDN or RLOC address for a Map-
     Resolver.

  The 'lig' utility has two use cases.  The first is a way to query the
  mapping database for a particular EID.  The other is to verify if a
  site has registered successfully with a Map-Server.

  The first usage has already been described.  Verifying registration
  is called "ligging yourself"; it happens as follows.  In the 'lig'
  initiator, a Map-Request is sent for one of the EIDs for the 'lig'
  initiator's site.  The Map-Request is then returned to one of the
  ETRs for the 'lig'-initiating site.  In response to the Map-Request,
  a Map-Reply is sent back to the locator address of the 'lig'
  initiator (note the Map-Reply could be sent by the 'lig' initiator).
  That Map-Reply is processed, and the mapping data for the 'lig'-
  initiating site is displayed for the user.  Refer to the syntax in
  Section 4.1 for an implementation of "ligging yourself".  However,
  for host-based implementations within a LISP site, "lig self" is less
  useful since the host may not have an RLOC with which to receive a
  Map-Reply.  But, 'lig' can be used in a non-LISP site, as well as
  from infrastructure hosts, to get mapping information.

4.  Implementation Details

4.1.  LISP Router Implementation

  The Cisco LISP prototype implementation has support for 'lig' for
  IPv4 and IPv6.  The command line description is:

      lig <dest-eid> [source <source-eid>] [to <mr>] [count <1-5>]

  This command initiates the LISP Internet Groper.  It is similar to
  the DNS analogue 'dig' but works on the LISP mapping database.  When
  this command is invoked, the local system will send a Map-Request to
  the configured Map-Resolver.  When a Map-Reply is returned, its
  contents will be displayed to the user.  By default, up to three Map-
  Requests are sent if no Map-Reply is returned, but, once a Map-Reply
  is returned, no other Map-Requests are sent.  The destination can
  take a DNS name, or an IPv4 or IPv6 EID address.  The <source-eid>
  can be one of the EID addresses assigned to the site in the default



Farinacci & Meyer             Informational                     [Page 6]

RFC 6835               LISP Internet Groper (LIG)           January 2013


  Virtual Routing and Forwarding (VRF) table.  When <mr> is specified,
  then the Map-Request is sent to the address.  Otherwise, the Map-
  Request is sent to a configured Map-Resolver.  When a Map-Resolver is
  not configured, then the Map-Request is sent on the ALT network if
  the local router is attached to the ALT.  When "count <1-5>" is
  specified, 1, 2, 3, 4, or 5 Map-Requests are sent.

  Some sample output:

    router# lig abc.example.com
    Send map-request to 10.0.0.1 for 192.168.1.1 ...
    Received map-reply from 10.0.0.2 with rtt 0.081468 secs

    Map-Cache entry for abc.example.com EID 192.168.1.1:
    192.168.1.0/24, uptime: 13:59:59, expires: 23:59:58,
                    via map-reply, auth
      Locator          Uptime    State  Priority/Weight  Packets In/Out
      10.0.0.2         13:59:59  up     1/100            0/14

  Using 'lig' to "lig yourself" is accomplished with the following
  syntax:

      lig {self | self6} [source <source-eid>] [to <mr>] [count <1-5>]

  Use this command for a simple way to see if the site is registered
  with the mapping database system.  The destination-EID address for
  the Map-Request will be the first configured EID-prefix for the site
  (with the host bits set to 0).  For example, if the site's EID-prefix
  is 192.168.1.0/24, the destination-EID for the Map-Request is
  192.168.1.0.  The source-EID address for the Map-Request will also be
  192.168.1.0 (in this example), and the Map-Request is sent to the
  configured Map-Resolver.  If the Map-Resolver and Map-Server are the
  same LISP system, then the "lig self" is testing if the Map-Resolver
  can "turn back a Map-Request to the site".  If another Map-Resolver
  is used, it can test that the site's EID-prefix has been injected
  into the ALT infrastructure, in which case the 'lig' Map-Request is
  processed by the Map-Resolver and propagated through each ALT-Router
  hop to the site's registered Map-Server.  Then, the Map-Server
  returns the Map-Request to the originating site.  In that case, an
  xTR at the originating site sends a Map-Reply to the source of the
  Map-Request (could be itself or another xTR for the site).  All other
  command parameters are described above.  Using "lig self6" tests for
  registering of IPv6 EID-prefixes.








Farinacci & Meyer             Informational                     [Page 7]

RFC 6835               LISP Internet Groper (LIG)           January 2013


  Some sample output for "ligging yourself":

    router# lig self
    Send loopback map-request to 10.0.0.1 for 192.168.2.0 ...
    Received map-reply from 10.0.0.3 with rtt 0.001592 secs

    Map-Cache entry for EID 192.168.2.0:
    192.168.2.0/24, uptime: 00:00:02, expires: 23:59:57
                    via map-reply, self
      Locator       Uptime    State  Priority/Weight  Packets In/Out
      10.0.0.3      00:00:02  up     1/100            0/0


    router# lig self6
    Send loopback map-request to 10.0.0.1 for 2001:db8:1:: ...
    Received map-reply from 10::1 with rtt 0.044372 secs

    Map-Cache entry for EID 192:168:1:::
    2001:db8:1::/48, uptime: 00:00:01, expires: 23:59:58
                     via map-reply, self
      Locator          Uptime    State  Priority/Weight  Packets In/Out
      10.0.0.3         00:00:01  up     1/100            0/0
      2001:db8:ffff::1 00:00:01  up     2/0              0/0

4.2.  Public Domain Host Implementation

  There is a public domain implementation that can run on any x86-based
  system.  The only requirement is that the system that initiates 'lig'
  must have an address assigned from the locator namespace.

      lig [-d] <eid> -m <map-resolver> [-c <count>] [-t <timeout>]

  Parameter description:

  -d:  prints additional protocol debug output.

  <eid>:  the destination EID or FQDN of a LISP host.

  -m <map-resolver>:  the RLOC address or FQDN of a Map-Resolver.

  -c <count>:  the number of Map-Requests to send before the first Map-
     Reply is returned.  The default value is 3.  The range is from 1
     to 5.

  -t <timeout>:  the amount of time, in seconds, before another Map-
     Request is sent when no Map-Reply is returned.  The default value
     is 2 seconds.  The range is from 1 to 5.




Farinacci & Meyer             Informational                     [Page 8]

RFC 6835               LISP Internet Groper (LIG)           January 2013


  Some sample output:

    % lig xyz.example.com -m 10.0.0.1
    Send map-request to 10.0.0.1 for 192.168.1.1 ...
    Received map-reply from 10.0.0.2 with rtt 0.04000 sec

    Mapping entry for EID 192.168.1.1:
    192.168.1.0/24, record ttl: 60
     Locator           State     Priority/Weight
     10.0.0.1          up        1/25
     10.0.0.2          up        1/25
     10.0.0.3          up        1/25
     10.0.0.4          up        2/25

  The public domain implementation of 'lig' is available at
  <http://github.com/LISPmob/lig>.

5.  Testing the ALT

  There are cases where a Map-Reply is returned from a 'lig' request,
  but the user doesn't really know how much of the mapping
  infrastructure was tested.  There are two cases to consider --
  avoiding the ALT and traversing the ALT.

  When an ITR sends a 'lig' request to its Map-Resolver for a
  destination-EID, the Map-Resolver could also be configured as a Map-
  Server.  And if the destination-EID is for a site that registers with
  this Map-Server, the Map-Request is sent to the site directly without
  testing the ALT.  This occurs because the Map-Server is the source of
  the advertisement for the site's EID-prefix.  So, if the map-reply is
  returned to the 'lig'-requesting site, you cannot be sure that other
  sites can reach the same destination-EID.

  If a Map-Resolver is used that is not a Map-Server for the EID-prefix
  being sought, then the ALT infrastructure can be tested.  This test
  case is testing the functionality of the Map-Resolver, traversal of
  the ALT (testing BGP-over-GRE), and the Map-Server.

  It is recommended that users issue two 'lig' requests; they send Map-
  Requests to different Map-Resolvers.

  The network can have a LISP-ALT Router deployed as a "ALT looking-
  glass" node.  This type of router has BGP peering sessions with other
  ALT Routers where it does not inject any EID-prefixes into the ALT
  but just learns ones advertised by other ALT Routers and Map-Servers.
  This router is configured as a Map-Resolver. 'lig' users can point to
  the ALT looking-glass router for Map-Resolver services via the "to
  <map-resolver>" parameter on the 'lig' command.  The ALT looking-



Farinacci & Meyer             Informational                     [Page 9]

RFC 6835               LISP Internet Groper (LIG)           January 2013


  glass node can be used to 'lig' other sites as well as your own site.
  When the ALT looking-glass is used as a Map-Resolver, you can be
  assured the ALT network is being tested.

6.  Future Enhancements

  When Negative Map-Replies have been further developed and
  implemented, 'lig' should be modified appropriately to process and
  clearly indicate how and why a Negative Map-Reply was received.
  Negative Map-Replies could be sent in the following cases: the 'lig'
  request was initiated for a non-EID address or there was rate-
  limiting on the replier.

7.  Deployed Network Diagnostic Tools

  There is a web-based interface to do auto-polling with 'lig' on the
  back-end for most of the LISP sites on the LISP test network.  The
  web page can be accessed at <http://www.lisp4.net/status>.

  There is a LISP site monitoring web-based interface that can be found
  at <http://lispmon.net>.

  At <http://baldomar.ccaba.upc.edu/lispmon>, written by the folks at
  Universitat Politecnica de Catalunya (UPC), shows a geographical map
  indicating where each LISP site resides.

8.  Security Considerations

  The use of 'lig' does not affect the security of the LISP
  infrastructure as it is simply a tool that facilities diagnostic
  querying.  See [RFC6830], [RFC6836], and [RFC6833] for descriptions
  of the security properties of the LISP infrastructure.

  'lig' provides easy access to the information in the public mapping
  database.  Therefore, it is important to protect the mapping
  information for private use.  This can be provided by disallowing
  access to specific mapping entries or to place such entries in a
  private mapping database system.













Farinacci & Meyer             Informational                    [Page 10]

RFC 6835               LISP Internet Groper (LIG)           January 2013


9.  References

9.1.  Normative References

  [RFC4632]    Fuller, V. and T. Li, "Classless Inter-domain Routing
               (CIDR): The Internet Address Assignment and Aggregation
               Plan", BCP 122, RFC 4632, August 2006.

  [RFC6830]    Farinacci, D., Fuller, V., Meyer, D., and D. Lewis, "The
               Locator/ID Separation Protocol (LISP)", RFC 6830,
               January 2013.

  [RFC6832]    Lewis, D., Meyer, D., Farinacci, D., and V. Fuller,
               "Interworking between Locator/ID Separation Protocol
               (LISP) and Non-LISP Sites", RFC 6832, January 2013.

  [RFC6833]    Farinacci, D. and V. Fuller, "Locator/ID Separation
               Protocol (LISP) Map Server Interface", RFC 6833,
               January 2013.

9.2.  Informative References

  [LISP-CONS]  Farinacci, D., Fuller, V., and D. Meyer, "LISP-CONS: A
               Content distribution Overlay Network Service for LISP",
               Work in Progress, April 2008.

  [RFC6836]    Farinacci, D., Fuller, V., Meyer, D., and D. Lewis,
               "Locator/ID Separation Protocol Alternative Logical
               Topology (LISP+ALT)", RFC 6836, January 2013.

  [RFC6837]    Lear, E., "NERD: A Not-so-novel Endpoint ID (EID) to
               Routing Locator (RLOC) Database", RFC 6837,
               January 2013.


















Farinacci & Meyer             Informational                    [Page 11]

RFC 6835               LISP Internet Groper (LIG)           January 2013


Appendix A.  Acknowledgments

  Thanks and kudos to John Zwiebel, Andrew Partan, Darrel Lewis, and
  Vince Fuller for providing critical feedback on the 'lig' design and
  prototype implementations.  To these folks, as well as all the people
  on [email protected] who tested 'lig' functionality and
  continue to do so, we extend our sincere thanks.

  This document is based on an individual contribution.

Authors' Addresses

  Dino Farinacci
  Cisco Systems
  Tasman Drive
  San Jose, CA  95134
  USA

  EMail: [email protected]


  Dave Meyer
  Cisco Systems
  170 Tasman Drive
  San Jose, CA
  USA

  EMail: [email protected]























Farinacci & Meyer             Informational                    [Page 12]