Internet Engineering Task Force (IETF)                     A. Malis, Ed.
Request for Comments: 6827                        Verizon Communications
Obsoletes: 5787                                           A. Lindem, Ed.
Updates: 5786                                                   Ericsson
Category: Standards Track                          D. Papadimitriou, Ed.
ISSN: 2070-1721                                           Alcatel-Lucent
                                                           January 2013


            Automatically Switched Optical Network (ASON)
                     Routing for OSPFv2 Protocols

Abstract

  The ITU-T has defined an architecture and requirements for operating
  an Automatically Switched Optical Network (ASON).

  The Generalized Multiprotocol Label Switching (GMPLS) protocol suite
  is designed to provide a control plane for a range of network
  technologies.  These include optical networks such as time division
  multiplexing (TDM) networks including the Synchronous Optical
  Network/Synchronous Digital Hierarchy (SONET/SDH), Optical Transport
  Networks (OTNs), and lambda switching optical networks.

  The requirements for GMPLS routing to satisfy the requirements of
  ASON routing and an evaluation of existing GMPLS routing protocols
  are provided in other documents.  This document defines extensions to
  the OSPFv2 Link State Routing Protocol to meet the requirements for
  routing in an ASON.

  Note that this work is scoped to the requirements and evaluation
  expressed in RFC 4258 and RFC 4652 and the ITU-T Recommendations that
  were current when those documents were written.  Future extensions or
  revisions of this work may be necessary if the ITU-T Recommendations
  are revised or if new requirements are introduced into a revision of
  RFC 4258.  This document obsoletes RFC 5787 and updates RFC 5786.















Malis, et al.                Standards Track                    [Page 1]

RFC 6827            ASON Routing for OSPFv2 Protocols       January 2013


Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc6827.

Copyright Notice

  Copyright (c) 2013 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.























Malis, et al.                Standards Track                    [Page 2]

RFC 6827            ASON Routing for OSPFv2 Protocols       January 2013


Table of Contents

  1. Introduction ....................................................4
     1.1. Conventions Used in This Document ..........................5
  2. Routing Areas, OSPF Areas, and Protocol Instances ...............5
  3. Terminology and Identification ..................................6
  4. Reachability ....................................................7
  5. Link Attribute ..................................................8
     5.1. Local Adaptation ...........................................8
     5.2. Bandwidth Accounting .......................................9
  6. Routing Information Scope .......................................9
     6.1. Link Advertisement (Local and Remote TE Router ID Sub-TLV) .9
     6.2. Reachability Advertisement (Local TE Router ID Sub-TLV) ...11
  7. Routing Information Dissemination ..............................11
     7.1. Import/Export Rules .......................................12
     7.2. Loop Prevention ...........................................12
          7.2.1. Inter-RA Export Upward/Downward Sub-TLVs ...........13
          7.2.2. Inter-RA Export Upward/Downward Sub-TLV Processing .13
  8. OSPFv2 Scalability .............................................14
  9. Security Considerations ........................................15
  10. IANA Considerations ...........................................15
     10.1. Sub-TLVs of the Link TLV .................................15
     10.2. Sub-TLVs of the Node Attribute TLV .......................16
     10.3. Sub-TLVs of the Router Address TLV .......................16
  11. Management Considerations .....................................17
     11.1. Routing Area (RA) Isolation ..............................17
     11.2. Routing Area (RA) Topology/Configuration Changes .........17
  12. Comparison to Requirements in RFC 4258 ........................17
  13. References ....................................................25
     13.1. Normative References .....................................25
     13.2. Informative References ...................................25
  14. Acknowledgements ..............................................26
     14.1. RFC 5787 Acknowledgements ................................26
  Appendix A. ASON Terminology ......................................27
  Appendix B. ASON Routing Terminology ..............................28
  Appendix C. Changes from RFC 5787 .................................29















Malis, et al.                Standards Track                    [Page 3]

RFC 6827            ASON Routing for OSPFv2 Protocols       January 2013


1.  Introduction

  The Generalized Multiprotocol Label Switching (GMPLS) [RFC3945]
  protocol suite is designed to provide a control plane for a range of
  network technologies.  These include optical networks such as time
  division multiplexing (TDM) networks including SONET/SDH, Optical
  Transport Networks (OTNs), and lambda switching optical networks.

  The ITU-T defines the architecture of the Automatically Switched
  Optical Network (ASON) in [G.8080].

  [RFC4258] describes the routing requirements for the GMPLS suite of
  routing protocols to support the capabilities and functionality of
  ASON control planes identified in [G.7715] and in [G.7715.1].

  [RFC4652] evaluates the IETF Link State routing protocols against the
  requirements identified in [RFC4258].  Section 7.1 of [RFC4652]
  summarizes the capabilities to be provided by OSPFv2 [RFC2328] in
  support of ASON routing.  This document describes the OSPFv2
  specifics for ASON routing.

  Multi-layer transport networks are constructed from multiple networks
  of different technologies operating in a client-server relationship.
  The ASON routing model includes the definition of routing levels that
  provide scaling and confidentiality benefits.  In multi-level
  routing, domains called routing areas (RAs) are arranged in a
  hierarchical relationship.  Note that as described in [RFC4652],
  there is no implied relationship between multi-layer transport
  networks and multi-level routing.  The multi-level routing mechanisms
  described in this document work for both single-layer and multi-layer
  networks.

  Implementations may support a hierarchical routing topology (multi-
  level) for multiple transport network layers and/or a hierarchical
  routing topology for a single transport network layer.

  This document describes the processing of the generic (technology-
  independent) link attributes that are defined in [RFC3630],
  [RFC4202], and [RFC4203] and that are extended in this document.  As
  described in Section 5.2, technology-specific traffic engineering
  attributes and their processing may be defined in other documents
  that complement this document.









Malis, et al.                Standards Track                    [Page 4]

RFC 6827            ASON Routing for OSPFv2 Protocols       January 2013


  Note that this work is scoped to the requirements and evaluation
  expressed in [RFC4258] and [RFC4652] and the ITU-T Recommendations
  that were current when those documents were written.  Future
  extensions or revisions of this work may be necessary if the ITU-T
  Recommendations are revised or if new requirements are introduced
  into a revision of [RFC4258].

1.1.  Conventions Used in This Document

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED",  "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [RFC2119].

  The reader is assumed to be familiar with the terminology and
  requirements developed in [RFC4258] and the evaluation outcomes
  described in [RFC4652].

  General ASON terminology is provided in Appendix A.  ASON routing
  terminology is described in Appendix B.

2.  Routing Areas, OSPF Areas, and Protocol Instances

  An ASON routing area (RA) represents a partition of the transport
  plane, and its identifier is used within the control plane as the
  representation of this partition.

  RAs are hierarchically contained: a higher-level (parent) RA contains
  lower-level (child) RAs that in turn MAY also contain RAs.  Thus, RAs
  contain RAs that recursively define successive hierarchical RA
  levels.  Routing information may be exchanged between levels of the
  RA hierarchy, i.e., Level N+1 and N, where Level N represents the RAs
  contained by Level N+1.  The links connecting RAs may be viewed as
  external links (inter-RA links), and the links representing
  connectivity within an RA may be viewed as internal links (intra-RA
  links).  The external links to an RA at one level of the hierarchy
  may be internal links in the parent RA.  Intra-RA links of a child RA
  MAY be hidden from the parent RA's view [RFC4258].

  An ASON RA can be mapped to an OSPF area, but the hierarchy of ASON
  RA levels does not map to the hierarchy of OSPF areas.  Instead,
  successive hierarchical levels of RAs MUST be represented by separate
  instances of the protocol.  Thus, inter-level routing information
  exchange (as described in Section 7) involves the export and import
  of routing information between protocol instances.







Malis, et al.                Standards Track                    [Page 5]

RFC 6827            ASON Routing for OSPFv2 Protocols       January 2013


  An ASON RA may therefore be identified by the combination of its OSPF
  Instance ID and its OSPF Area ID.  With proper and careful network-
  wide configuration, this can be achieved using just the OSPF Area ID,
  and this process is RECOMMENDED in this document.  These concepts are
  discussed in Section 7.

  A key ASON requirement is the support of multiple transport planes or
  layers.  Each transport node has associated topology (links and
  reachability), which is used for ASON routing.

3.  Terminology and Identification

  This section describes the mapping of key ASON entities to OSPF
  entities.  Appendix A contains a complete glossary of ASON routing
  terminology.

  There are three categories of identifiers used for ASON routing
  (G.7715.1): transport-plane names, control-plane identifiers for
  components, and Signaling Communications Network (SCN) addresses.
  This section discusses the mapping between ASON routing identifiers
  and corresponding identifiers defined for GMPLS routing and how these
  support the physical (or logical) separation of transport-plane
  entities and control-plane components.  GMPLS supports this
  separation of identifiers and planes.

  In the context of OSPF Traffic Engineering (TE), an ASON transport
  node corresponds to a unique OSPF TE node.  An OSPF TE node is
  uniquely identified by the TE Router Address TLV [RFC3630].  In this
  document, the TE Router Address is referred to as the TE Router ID.
  In GMPLS, TE router addresses are advertised as reachable in both the
  control and transport planes, see Section 4 below.  Furthermore, the
  TE Router ID should not be confused with the OSPF Router ID that
  uniquely identifies an OSPF router within an OSPF routing domain
  [RFC2328] and is in a name space for control-plane components.

  The Router Address top-level TLV definition, processing, and usage
  are largely unchanged from [RFC3630].  This TLV specifies a stable
  OSPF TE node IP address, i.e., the IP address is always reachable
  when there is IP connectivity to the associated OSPF TE node.

  ASON defines a Routing Controller (RC) as an entity that handles
  (abstract) information needed for routing and the routing information
  exchange with peering RCs by operating on the Routing Database (RDB).
  ASON defines a Protocol Controller (PC) as an entity that handles
  protocol-specific message exchanges according to the reference point
  over which the information is exchanged (e.g., E-NNI, I-NNI) and
  internal exchanges with the RC [RFC4258].  In this document, an OSPF
  router advertising ASON TE topology information will perform both the



Malis, et al.                Standards Track                    [Page 6]

RFC 6827            ASON Routing for OSPFv2 Protocols       January 2013


  functions of the RC and PC.  The OSPF routing domain comprises the
  control plane, and each OSPF router is uniquely identified by its
  OSPF Router ID [RFC2328].

4.  Reachability

  In ASON, reachability information describes the set of endpoints that
  are reachable by the associated node in the transport plane.
  Reachability information represents transport-plane resources, e.g.,
  an optical cross-connect interface, and uses transport-plane
  identifiers.

  In order to advertise blocks of reachable address prefixes, a
  summarization mechanism is introduced that is based on the techniques
  described in [RFC5786].  For ASON reachability advertisement, blocks
  of reachable address prefixes are advertised together with the
  associated transport-plane node.  The transport-plane node is
  identified in OSPF TE Link State Advertisements (LSAs) by its TE
  Router ID, as discussed in Section 6.

  In order to support ASON reachability advertisement, the Node
  Attribute TLV defined in [RFC5786] is used to advertise the
  combination of a TE Router ID and its set of associated reachable
  address prefixes.  The Node Attribute TLV can contain the following
  sub-TLVs:

     - Local TE Router ID sub-TLV: Length: 4; Defined in Section 6.2
     - Node IPv4 Local Address sub-TLV: Length: variable; [RFC5786]
     - Node IPv6 Local Address sub-TLV: Length: variable; [RFC5786]

  A router may support multiple transport nodes as discussed in
  Section 6 and, as a result, may be required to advertise reachability
  separately for each transport node.  As a consequence, it MUST be
  possible for the router to originate more than one TE LSA containing
  the Node Attribute TLV when used for ASON reachability advertisement.

  Hence, the Node Attribute TLV [RFC5786] advertisement rules are
  relaxed.  A Node Attribute TLV MAY appear in more than one TE LSA
  originated by the RC when the RC is advertising reachability
  information for a different transport node identified by the Local TE
  Router sub-TLV (refer to Section 6.2).

  As specified in [RFC3630], TE-advertised router addresses are also
  advertised as reachable in the control plane and are therefore also
  valid identifiers in the ASON SCN name space.






Malis, et al.                Standards Track                    [Page 7]

RFC 6827            ASON Routing for OSPFv2 Protocols       January 2013


5.  Link Attribute

  With the exception of local adaptation (described below), the mapping
  of link attributes and characteristics to OSPF TE Link TLV sub-TLVs
  is unchanged [RFC4652].  OSPF TE Link TLV sub-TLVs are described in
  [RFC3630] and [RFC4203].  Advertisement of this information SHOULD be
  supported on a per-layer basis, i.e., one TE LSA per unique switching
  capability and bandwidth granularity combination.

5.1.  Local Adaptation

  Local adaptation is defined as a TE link attribute (i.e., sub-TLV)
  that describes the cross/inter-layer relationships.

  The Interface Switching Capability Descriptor (ISCD) TE Attribute
  [RFC4202] identifies the ability of the TE link to support cross-
  connection to another link within the same layer.  When advertising
  link adaptation, it also identifies the ability to use a locally
  terminated connection that belongs to one layer as a data link for
  another layer (adaptation capability).  However, the information
  associated with the ability to terminate connections within that
  layer (referred to as the termination capability) is advertised with
  the adaptation capability.

  For instance, a link between two optical cross-connects will contain
  at least one ISCD attribute describing the Lambda Switching Capable
  (LSC) switching capability.  Conversely, a link between an optical
  cross-connect and an IP/MPLS Label Switching Router (LSR) will
  contain at least two ISCD attributes, one for the description of the
  LSC termination capability and one for the Packet Switching Capable
  (PSC) adaptation capability.

  In OSPFv2, the Interface Switching Capability Descriptor (ISCD) is a
  sub-TLV (type 15) of the top-level Link TLV (type 2) [RFC4203].  The
  adaptation and termination capabilities are advertised using two
  separate ISCD sub-TLVs within the same top-level Link TLV.

  An interface MAY have more than one ISCD sub-TLV, per [RFC4202] and
  [RFC4203].  Hence, the corresponding advertisements should not result
  in any compatibility issues.











Malis, et al.                Standards Track                    [Page 8]

RFC 6827            ASON Routing for OSPFv2 Protocols       January 2013


5.2.  Bandwidth Accounting

  GMPLS routing defines an ISCD that provides, among other things, the
  quantities of the maximum/minimum available bandwidth per priority
  for Label Switched Paths (LSPs).  One or more ISCD sub-TLVs can be
  associated with an interface, per [RFC4202] and [RFC4203].  This
  information, combined with the Unreserved Bandwidth Link TLV sub-TLV
  [RFC3630], provides the basis for bandwidth accounting.

  In the ASON context, additional information may be included when the
  representation and information in the other advertised fields are not
  sufficient for a specific technology, e.g., SDH.  The definition of
  technology-specific information elements is beyond the scope of this
  document.  Some technologies will not require additional information
  beyond what is already defined in [RFC3630], [RFC4202], and
  [RFC4203].

6.  Routing Information Scope

  For ASON routing, the control-plane component routing adjacency
  topology (i.e., the associated Protocol Controller (PC) connectivity)
  and the transport topology are not assumed to be congruent [RFC4258].
  Hence, a single OSPF router (i.e., the PC) MUST be able to advertise
  on behalf of multiple transport-layer nodes.  The OSPF routers are
  identified by OSPF Router ID, and the transport nodes are identified
  by TE Router ID.

  The Router Address TLV [RFC3630] is used to advertise the TE Router
  ID associated with the advertising Routing Controller (RC).  TE
  Router IDs for additional transport nodes are advertised through
  specification of the Local TE Router Identifier in the Local and
  Remote TE Router TE sub-TLV and the Local TE Router Identifier
  sub-TLV described in the sections below.  These Local TE Router
  Identifiers are typically used as the local endpoints for TE LSPs
  terminating on the associated transport node.

  The use of multiple OSPF Routers to advertise TE information for the
  same transport node is not considered a required use case and is not
  discussed further in this document.

6.1.  Link Advertisement (Local and Remote TE Router ID Sub-TLV)

  When an OSPF Router advertises on behalf of multiple transport nodes,
  the link endpoints cannot be automatically assigned to a single
  transport node associated with the advertising router.  In this case,
  the local and remote transport nodes MUST be identified by TE Router
  ID to unambiguously specify the transport topology.




Malis, et al.                Standards Track                    [Page 9]

RFC 6827            ASON Routing for OSPFv2 Protocols       January 2013


  For this purpose, a new sub-TLV of the OSPFv2 TE LSA top-level Link
  TLV is introduced that defines the Local and Remote TE Router ID.

  The Type field of the Local and Remote TE Router ID sub-TLV is
  assigned the value 10 (see Section 10).  The Length field takes the
  value 8.  The Value field of this sub-TLV contains 4 octets of the
  Local TE Router Identifier followed by 4 octets of the Remote TE
  Router Identifier.  The value of the Local and Remote TE Router
  Identifier MUST NOT be set to 0.

  The format of the Local and Remote TE Router ID sub-TLV is:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |           Type (10)           |          Length (8)           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                 Local TE Router Identifier                    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                 Remote TE Router Identifier                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  This sub-TLV MUST be included as a sub-TLV of the top-level Link TLV
  if the OSPF router is advertising on behalf of one or more transport
  nodes having TE Router IDs different from the TE Router ID advertised
  in the Router Address TLV.  For consistency, this sub-TLV MUST be
  included when OSPF is used for the advertisement of ASON information
  as described herein.  If it is not included in a Link TLV, or if a
  value of 0 is specified for the Local or Remote TE Router Identifier,
  the Link TLV will not be used for transport-plane path computation.
  Additionally, the condition SHOULD be logged for possible action by
  the network operator.

  Note: The Link ID sub-TLV identifies the other end of the link (i.e.,
  Router ID of the neighbor for point-to-point links) [RFC3630].  When
  the Local and Remote TE Router ID sub-TLV is present, it MUST be used
  to identify local and remote transport node endpoints for the link
  and the Link-ID sub-TLV MUST be ignored.  In fact, when the Local and
  Remote TE Router ID sub-TLV is specified, the Link-ID sub-TLV MAY be
  omitted.  The Local and Remote TE Router ID sub-TLV, if specified,
  MUST only be specified once.  If specified more than once, instances
  other than the first will be ignored and the condition SHOULD be
  logged for possible action by the network operator.








Malis, et al.                Standards Track                   [Page 10]

RFC 6827            ASON Routing for OSPFv2 Protocols       January 2013


6.2.  Reachability Advertisement (Local TE Router ID Sub-TLV)

  When an OSPF router is advertising on behalf of multiple transport
  nodes, the routing protocol MUST be able to associate the advertised
  reachability information with the correct transport node.

  For this purpose, a new sub-TLV of the OSPFv2 TE LSA top-level Node
  Attribute TLV is introduced.  This TLV associates the local prefixes
  (see above) to a given transport node identified by the TE Router ID.

  The Type field of the Local TE Router ID sub-TLV is assigned the
  value 5 (see Section 10).  The Length field takes the value 4.  The
  Value field of this sub-TLV contains the Local TE Router Identifier
  encoded over 4 octets.

  The format of the Local TE Router ID sub-TLV is:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |             Type (5)          |          Length (4)           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                 Local TE Router Identifier                    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  This sub-TLV MUST be included as a sub-TLV of the top-level Node
  Attribute TLV if the OSPF router is advertising on behalf of one or
  more transport nodes having TE Router IDs different from the TE
  Router ID advertised in the Router Address TLV.  For consistency,
  this sub-TLV MUST be included when OSPF is used for the advertisement
  of ASON information as described herein.  If it is not included in a
  Node Attribute TLV, or if a value of 0 is specified for the Local TE
  Router Identifier, the Note Attribute TLV will not be used for
  determining ASON SCN reachability.  Additionally, the condition
  SHOULD be logged for possible action by the network operator.

7.  Routing Information Dissemination

  An ASON routing area (RA) represents a partition of the transport
  plane, and its identifier is used within the control plane as the
  representation of this partition.  An RA may contain smaller RAs
  inter-connected by links.  ASON RA levels do not map directly to OSPF
  areas.  Rather, hierarchical levels of RAs are represented by
  separate OSPF protocol instances.  However, it is useful to align the
  RA IDs and area ID in order to facilitate isolation of RAs as
  described in Section 11.1.





Malis, et al.                Standards Track                   [Page 11]

RFC 6827            ASON Routing for OSPFv2 Protocols       January 2013


  Routing Controllers (RCs) supporting multiple RAs disseminate
  information downward and upward in this ASON hierarchy.  The vertical
  routing information dissemination mechanisms described in this
  section do not introduce or imply hierarchical OSPF areas.  RCs
  supporting RAs at multiple levels are structured as separate OSPF
  instances with routing information exchange between levels described
  by import and export rules between these instances.  The
  functionality described herein does not pertain to OSPF areas or OSPF
  Area Border Router (ABR) functionality.

7.1.  Import/Export Rules

  RCs supporting RAs disseminate information upward and downward in the
  hierarchy by importing/exporting routing information as TE LSAs.  TE
  LSAs are area-scoped Opaque LSAs with Opaque type 1 [RFC3630].  The
  information that MAY be exchanged between adjacent levels includes
  the Router Address, Link, and Node Attribute top-level TLVs.

  The imported/exported routing information content MAY be transformed,
  e.g., filtered or aggregated, as long as the resulting routing
  information is consistent.  In particular, when more than one RC is
  bound to adjacent levels and both are allowed to import/export
  routing information, it is expected that these transformations are
  performed in a consistent manner.  Definition of these policy-based
  mechanisms are outside the scope of this document.

  In practice, and in order to avoid scalability and processing
  overhead, routing information imported/exported downward/upward in
  the hierarchy is expected to include reachability information (see
  Section 4) and, upon strict policy control, link topology
  information.

7.2.  Loop Prevention

  When more than one RC is bound to an adjacent level of the ASON
  hierarchy and is configured to export routing information upward or
  downward, a specific mechanism is required to avoid looping of
  routing information.  Looping is the re-advertisement of routing
  information into an RA that had previously advertised that routing
  information upward or downward into an upper or lower level RA in the
  ASON hierarchy.  For example, without loop-prevention mechanisms,
  this could happen when the RC advertising routing information
  downward in the hierarchy is not the same one that advertises routing
  information upward in the hierarchy.







Malis, et al.                Standards Track                   [Page 12]

RFC 6827            ASON Routing for OSPFv2 Protocols       January 2013


7.2.1.  Inter-RA Export Upward/Downward Sub-TLVs

  The Inter-RA Export sub-TLVs can be used to prevent the
  re-advertisement of OSPF TE routing information into an RA that
  previously advertised that information.  The type value 13 (see
  Section 10) will indicate that the associated routing information has
  been exported downward.  The type value 12 (see Section 10) will
  indicate that the associated routing information has been exported
  upward.  While it is not required for routing information exported
  downward, both sub-TLVs will include the Routing Area (RA) ID from
  which the routing information was exported.  This RA is not
  necessarily the RA originating the routing information but the RA
  from which the information was immediately exported.

  These additional sub-TLVs MAY be included in TE LSAs that include any
  of the following top-level TLVs:

     - Router Address top-level TLV
     - Link top-level TLV
     - Node Attribute top-level TLV

  The Type field of the Inter-RA Export Upward and Inter-RA Export
  Downward sub-TLVs are respectively assigned the values 12 and 13 (see
  Section 10).  The Length field in these sub-TLVs takes the value 4.
  The Value field in these sub-TLVs contains the associated RA ID.  The
  RA ID value must be a unique identifier for the RA within the ASON
  routing domain.

  The format of the Inter-RA Export Upward and Inter-RA Export Downward
  sub-TLVs is graphically depicted below:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       Upward/Downward Type    |           Length (4)          |
  |             (12/13)           |                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       Associated RA ID                        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

7.2.2.  Inter-RA Export Upward/Downward Sub-TLV Processing

  TE LSAs MAY be imported or exported downward or upward in the ASON
  routing hierarchy.  The direction and advertising RA ID are
  advertised in an Inter-RA Export Upward/Downward sub-TLV.  They MUST
  be retained and advertised in the receiving RA with the associated
  routing information.




Malis, et al.                Standards Track                   [Page 13]

RFC 6827            ASON Routing for OSPFv2 Protocols       January 2013


  When exporting routing information upward in the ASON routing
  hierarchy, any information received from a level above, i.e., tagged
  with an Inter-RA Export Downward sub-TLV, MUST NOT be exported
  upward.  Since an RA at Level N is contained by a single RA at
  Level N+1, this is the only checking that is necessary and the
  associated RA ID is used solely for informational purposes.

  When exporting routing information downward in the ASON routing
  hierarchy, any information received from a level below, i.e., tagged
  with an Inter-RA Export Upward sub-TLV, MUST NOT be exported downward
  if the target RA ID matches the RA ID associated with the routing
  information.  This additional checking is required for routing
  information exported downward since a single RA at Level N+1 may
  contain multiple RAs at Level N in the ASON routing hierarchy.  In
  other words, routing information MUST NOT be exported downward into
  the RA from which it was received.

8.  OSPFv2 Scalability

  The extensions described herein are only applicable to ASON routing
  domains, and it is not expected that the attendant reachability (see
  Section 4) and link information will ever be combined with global
  Internet or Layer 3 Virtual Private Network (VPN) routing.  If there
  were ever a requirement for a given RC to participate in both
  domains, separate OSPFv2 instances would be utilized.  However, in a
  multi-level ASON hierarchy, the potential volume of information could
  be quite large and the recommendations in this section MUST be
  followed by RCs implementing this specification.

  - Routing information exchange upward/downward in the hierarchy
    between adjacent RAs MUST, by default, be limited to reachability
    information.  In addition, several transformations such as prefix
    aggregation are RECOMMENDED to reduce the amount of information
    imported/exported by a given RC when such transformations will not
    impact consistency.

  - Routing information exchange upward/downward in the ASON hierarchy
    involving TE attributes MUST be under strict policy control.
    Pacing and min/max thresholds for triggered updates are strongly
    RECOMMENDED.

  - The number of routing levels MUST be maintained under strict policy
    control.








Malis, et al.                Standards Track                   [Page 14]

RFC 6827            ASON Routing for OSPFv2 Protocols       January 2013


9.  Security Considerations

  This document specifies the contents and processing of OSPFv2 TE LSAs
  [RFC3630] and [RFC4202].  The TE LSA extensions defined in this
  document are not used for Shortest Path First (SPF) computation and
  have no direct effect on IP routing.  Additionally, ASON routing
  domains are delimited by the usual administrative domain boundaries.

  Any mechanisms used for securing the exchange of normal OSPF LSAs can
  be applied equally to all TE LSAs used in the ASON context.
  Authentication of OSPFv2 LSA exchanges (such as OSPF cryptographic
  authentication [RFC2328] [RFC5709]) can be used to provide
  significant protection against active attacks.  [RFC5709] defines a
  mechanism for authenticating OSPFv2 packets by making use of the
  Hashed Message Authentication Code (HMAC) algorithm in conjunction
  with the SHA family of cryptographic hash functions.

  RCs implementing export/import of ASON routing information between
  RAs MUST also include policy control of both the maximum amount of
  information advertised between RAs and the maximum rate at which it
  is advertised.  This is to isolate the consequences of an RC being
  compromised to the RAs to which that subverted RC is attached.

  The "Analysis of OSPF Security According to KARP Design Guide"
  [OSPF-SEC] provides a comprehensive analysis of OSPFv2 and OSPFv3
  security relative to the requirements specified in [RFC6518].

10.  IANA Considerations

  This document defines new sub-TLVs for inclusion in OSPF TE LSAs.
  IANA has assigned values per the assignment policies for the
  registries of code points for these sub-TLVs [RFC3630].

  The following subsections summarize the required sub-TLVs.

10.1.  Sub-TLVs of the Link TLV

  This document defines the following sub-TLVs of the Link TLV
  advertised in the OSPF TE LSA:

  -  Local and Remote TE Router ID sub-TLV (10)
  -  Inter-RA Export Upward sub-TLV (12)
  -  Inter-RA Export Downward sub-TLV (13)

  Codepoints for these sub-TLVs have been allocated in the Standards
  Action range of the "Types for sub-TLVs of TE Link TLV (Value 2)"
  registry [RFC3630].




Malis, et al.                Standards Track                   [Page 15]

RFC 6827            ASON Routing for OSPFv2 Protocols       January 2013


  Note that the same values for the Inter-RA Export Upward sub-TLV and
  the Inter-RA Export Downward sub-TLV MUST be used when they appear in
  the Link TLV, Node Attribute TLV, and Router Address TLV.

10.2.  Sub-TLVs of the Node Attribute TLV

  This document defines the following sub-TLVs of the Node Attribute
  TLV advertised in the OSPF TE LSA:

     - Local TE Router ID sub-TLV (5)
     - Inter-RA Export Upward sub-TLV (12)
     - Inter-RA Export Downward sub-TLV (13)

  Codepoints for these sub-TLVs have been assigned in Standards Action
  range of the "Types for sub-TLVs of TE Node Attribute TLV (Value 5)"
  [RFC5786].

  Note that the same values for the Inter-RA Export Upward sub-TLV and
  the Inter-RA Export Downward sub-TLV MUST be used when they appear in
  the Link TLV, Node Attribute TLV, and Router Address TLV.

10.3.  Sub-TLVs of the Router Address TLV

  The Router Address TLV is advertised in the OSPF TE LSA [RFC3630].
  Since the TLV had no sub-TLVs defined, a "Types for sub-TLVs of
  Router Address TLV (Value 1)" registry has been defined.

  The registry guidelines for the assignment of types for sub-TLVs of
  the Router Address TLV are as follows:

     o  Types in the range 0-32767 are to be assigned via Standards
        Action.

     o  Type 0 in the aforementioned Standards Action range (0-32767)
        is reserved.

     o  Types in the range 32768-32777 are for experimental use; these
        will not be registered with IANA and MUST NOT be mentioned by
        RFCs.

     o  Types in the range 32778-65535 are not to be assigned at this
        time.  Before any assignments can be made in this range, there
        MUST be a Standards Track RFC that specifies IANA
        Considerations that covers the range being assigned.







Malis, et al.                Standards Track                   [Page 16]

RFC 6827            ASON Routing for OSPFv2 Protocols       January 2013


  This document defines the following sub-TLVs for inclusion in the
  Router Address TLV:

     - Inter-RA Export Upward sub-TLV (12)
     - Inter-RA Export Downward sub-TLV (13)

  Codepoints for these sub-TLVs have been allocated in the Standards
  Action range of the "Types for sub-TLVs of Router Address TLV
  (Value 1)" registry.

  Note that the same values for the Inter-RA Export Upward sub-TLV and
  the Inter-RA Export Downward sub-TLV MUST be used when they appear in
  the Link TLV, Node Attribute TLV, and Router Address TLV.

11.  Management Considerations

11.1. Routing Area (RA) Isolation

  If the RA ID is mapped to the OSPF Area ID as recommended in
  Section 2, OSPF [RFC2328] implicitly provides isolation.  On any
  intra-RA link, packets will only be accepted if the area ID in the
  OSPF packet header matches the area ID for the OSPF interface on
  which the packet was received.  Hence, RCs will only establish
  adjacencies and exchange reachability information (see Section 4.0)
  with RCs in the same RA.  Other mechanisms for RA isolation are
  beyond the scope of this document.

11.2.  Routing Area (RA) Topology/Configuration Changes

  The GMPLS Routing for ASON requirements [RFC4258] dictate that the
  routing protocol MUST support reconfiguration and SHOULD support
  architectural evolution.  OSPF [RFC2328] includes support for the
  dynamic introduction or removal of ASON reachability information
  through the flooding and purging of OSPF Opaque LSAs [RFC5250].
  Also, when an RA is partitioned or an RC fails, stale LSAs SHOULD NOT
  be used unless the advertising RC is reachable.  The configuration of
  OSPF RAs and the policies governing the redistribution of ASON
  reachability information between RAs are implementation issues
  outside of the OSPF routing protocol and beyond the scope of this
  document.

12.  Comparison to Requirements in RFC 4258

  The following table shows how this document complies with the
  requirements in [RFC4258].  The first column contains a requirements
  number (1-30) and the relevant section in RFC 4258.  The second
  column describes the requirement, the third column discusses the




Malis, et al.                Standards Track                   [Page 17]

RFC 6827            ASON Routing for OSPFv2 Protocols       January 2013


  compliance to that requirement, and the fourth column lists the
  relevant section in this document and/or another RFC that already
  satisfies the requirement.
















































Malis, et al.                Standards Track                   [Page 18]

RFC 6827            ASON Routing for OSPFv2 Protocols       January 2013


 +----------+---------------------------+---------------+-------------+
 | RFC 4258 |   RFC 4258 Requirement    |  Compliance   |  Reference  |
 | Section  |                           |               |             |
 |  (Req.   |                           |               |             |
 | Number)  |                           |               |             |
 +----------+---------------------------+---------------+-------------+
 | 3 (1)    | The failure of an RC, or  |  Implied by   |   Not an    |
 |          |      the failure of       | separation of |attribute of |
 |          |communications between RCs,| transport and |   routing   |
 |          |and the subsequent recovery|control plane. |  protocol.  |
 |          |from the failure condition |               |             |
 |          | MUST NOT disrupt calls in |               |             |
 |          |         progress.         |               |             |
 +----------+---------------------------+---------------+-------------+
 | 3.1 (2)  |   Multiple Hierarchical   |      Yes      | Sections 2  |
 |          |  Levels of ASON Routing   |               |    and 3.   |
 |          |       Areas (RAs).        |               |             |
 +----------+---------------------------+---------------+-------------+
 | 3.1 (3)  |   Prior to establishing   | Yes, when RA  |Section 11.1.|
 |          | communications, RCs MUST  | maps to OSPF  |             |
 |          |verify that they are bound | Area ID.      |             |
 |          |  to the same parent RA.   | Otherwise,    |             |
 |          |                           | out of scope. |             |
 +----------+---------------------------+---------------+-------------+
 | 3.1 (4)  | The RC ID MUST be unique  |      Yes      |RFC 2328 and |
 |          | within its containing RA. |               | Section 3.  |
 +----------+---------------------------+---------------+-------------+
 | 3.1 (5)  |Each RA within a carrier's |Yes - although | Sections 2, |
 |          | network SHALL be uniquely | uniqueness is | 3, and 11.1.|
 |          | identifiable. RA IDs MAY  |the operator's |             |
 |          |   be associated with a    |responsibility.|             |
 |          |transport-plane name space,|               |             |
 |          |    whereas RC IDs are     |               |             |
 |          |     associated with a     |               |             |
 |          | control-plane name space. |               |             |
 +----------+---------------------------+---------------+-------------+
 | 3.2 (6)  |   Hierarchical Routing    |      Yes      |  Section 7. |
 |          | Information Dissemination.|               |             |
 +----------+---------------------------+---------------+-------------+
 | 3.2 (7)  |    Routing Information    |      Yes      | Section 7.1.|
 |          |exchanged between levels N |               |             |
 |          |   and N+1 via separate    |               |             |
 |          |       instances and       |               |             |
 |          |      import/export.       |               |             |
 +----------+---------------------------+---------------+-------------+






Malis, et al.                Standards Track                   [Page 19]

RFC 6827            ASON Routing for OSPFv2 Protocols       January 2013


 +----------+---------------------------+---------------+-------------+
 | 3.2 (8)  |    Routing Information    |   No - Not    |             |
 |          |exchanged between levels N |  described.   |             |
 |          | and N+1 via external link |               |             |
 |          |     (inter-RA links).     |               |             |
 +----------+---------------------------+---------------+-------------+
 | 3.2 (9)  |    Routing information    |      Yes      | Sections 4, |
 |          |   exchange MUST include   |               |6, 6.1, 6.2, |
 |          | reachability information  |               |    and 8.   |
 |          |   and MAY include, upon   |               |             |
 |          | policy decision, node and |               |             |
 |          |      link topology.       |               |             |
 +----------+---------------------------+---------------+-------------+
 | 3.2 (10) |  There SHOULD NOT be any  |Yes - separate | Sections 2  |
 |          |    dependencies on the    |  instances.   |    and 3.   |
 |          |different routing protocols|               |             |
 |          |  used within an RA or in  |               |             |
 |          |      different RAs.       |               |             |
 +----------+---------------------------+---------------+-------------+
 | 3.2 (11) |The routing protocol SHALL |      Yes      | Section 7.2.|
 |          | differentiate the routing |               |             |
 |          |information originated at a|               |             |
 |          |given-level RA from derived|               |             |
 |          |    routing information    |               |             |
 |          |  (received from external  |               |             |
 |          |   RAs), even when this    |               |             |
 |          |information is forwarded by|               |             |
 |          |  another RC at the same   |               |             |
 |          |          level.           |               |             |
 +----------+---------------------------+---------------+-------------+
 | 3.2 (12) | The routing protocol MUST |      Yes      | Section 7.2.|
 |          |  provide a mechanism to   |               |             |
 |          |    prevent information    |               |             |
 |          |propagated from a Level N+1|               |             |
 |          | RA's RC into the Level N  |               |             |
 |          |    RA's RC from being     |               |             |
 |          |  re-introduced into the   |               |             |
 |          |    Level N+1 RA's RC.     |               |             |
 +----------+---------------------------+---------------+-------------+
 | 3.2 (13) | The routing protocol MUST |      Yes      | Section 7.2.|
 |          |  provide a mechanism to   |               |             |
 |          |    prevent information    |               |             |
 |          |propagated from a Level N-1|               |             |
 |          | RA's RC into the Level N  |               |             |
 |          |    RA's RC from being     |               |             |
 |          |  re-introduced into the   |               |             |
 |          |    Level N-1 RA's RC.     |               |             |
 +----------+---------------------------+---------------+-------------+



Malis, et al.                Standards Track                   [Page 20]

RFC 6827            ASON Routing for OSPFv2 Protocols       January 2013


 +----------+---------------------------+---------------+-------------+
 | 3.2 (14) |  Instance of a Level N    |      Yes      | Sections 2, |
 |          |  routing function and an  |               |  3, and 7.  |
 |          |  instance of a Level N+1  |               |             |
 |          |  routing function in the  |               |             |
 |          |       same system.        |               |             |
 +----------+---------------------------+---------------+-------------+
 | 3.2 (15) |    The Level N routing    | Not described |     N/A     |
 |          | function is on a separate | but possible. |             |
 |          |   system than the Level   |               |             |
 |          |   N+1 routing function.   |               |             |
 +----------+---------------------------+---------------+-------------+
 | 3.3 (16) |The RC MUST support static | The automation| Sections 2  |
 |          | (i.e., operator assisted) | requirement is|and 3. Refer |
 |          | and MAY support automated | ambiguous.    | to RFC 2328 |
 |          |   configuration of the    | OSPF supports |  for OSPF   |
 |          |information describing its | auto-discovery|    auto-    |
 |          |relationship to its parent | of neighbors  | discovery.  |
 |          | and its child within the  | and topology. |             |
 |          |  hierarchical structure   | Default and   |             |
 |          |  (including RA ID and RC  | automatically |             |
 |          |           ID).            | configured    |             |
 |          |                           | polices are   |             |
 |          |                           | out of scope. |             |
 +----------+---------------------------+---------------+-------------+
 | 3.3 (17) |The RC MUST support static |Yes - when OSPF|RFC 2328 and |
 |          | (i.e., operator assisted) |area maps to RA|Section 11.1.|
 |          | and MAY support automated | discovery is  |             |
 |          |   configuration of the    |  automatic.   |             |
 |          |information describing its |               |             |
 |          | associated adjacencies to |               |             |
 |          |  other RCs within an RA.  |               |             |
 +----------+---------------------------+---------------+-------------+
 | 3.3 (18) |The routing protocol SHOULD|      Yes      |  RFC 2328.  |
 |          |support all the types of RC|               |             |
 |          | adjacencies described in  |               |             |
 |          |Section 9 of [G.7715]. The |               |             |
 |          | latter includes congruent |               |             |
 |          |topology (with distributed |               |             |
 |          |  RC) and hubbed topology  |               |             |
 |          |(e.g., note that the latter|               |             |
 |          |  does not automatically   |               |             |
 |          |  imply a designated RC).  |               |             |
 +----------+---------------------------+---------------+-------------+







Malis, et al.                Standards Track                   [Page 21]

RFC 6827            ASON Routing for OSPFv2 Protocols       January 2013


 +----------+---------------------------+---------------+-------------+
 | 3.4 (19) |The routing protocol SHOULD|      Yes      |RFC 2328, RFC|
 |          | be capable of supporting  |               |  5250, and  |
 |          |architectural evolution in |               |Section 11.2.|
 |          |  terms of the number of   |               |             |
 |          |hierarchical levels of RAs,|               |             |
 |          |as well as the aggregation |               |             |
 |          | and segmentation of RAs.  |               |             |
 +----------+---------------------------+---------------+-------------+
 |3.5.2 (20)|Advertisements MAY contain |               |             |
 |          |the following common set of|               |             |
 |          | information regardless of |               |             |
 |          | whether they are link or  |               |             |
 |          |       node related:       |               |             |
 |          |  -  RA ID of the RA to    |      Yes      |  Section    |
 |          |     which the             |               |   7.2.1.    |
 |          |     advertisement is      |               |             |
 |          |     bounded               |               |             |
 |          |  -  RC ID of the entity   |      Yes      |  RFC 2328.  |
 |          |     generating the        |               |             |
 |          |     advertisement         |               |             |
 |          |  -  Information to        |      Yes      |RFC 2328, RFC|
 |          |     uniquely identify     |               |    5250.    |
 |          |     advertisements        |               |             |
 |          |  -  Information to        |   No - Must   |             |
 |          |     determine whether an  |compare to old.|             |
 |          |     advertisement has     |               |             |
 |          |     been updated          |               |             |
 |          |  -  Information to        |      Yes      |  Section    |
 |          |     indicate when an      |               |   7.2.1.    |
 |          |     advertisement has been|               |             |
 |          |     derived from a        |               |             |
 |          |     different level RA.   |               |             |
 +----------+---------------------------+---------------+-------------+

















Malis, et al.                Standards Track                   [Page 22]

RFC 6827            ASON Routing for OSPFv2 Protocols       January 2013


 +----------+---------------------------+---------------+-------------+
 |3.5.3 (21)|The Node Attributes' Node  |Yes - Prefixes |  RFC 5786,  |
 |          |ID and Reachability must be|   only for    | Sections 4  |
 |          |   advertised. It MAY be   | reachability. |   and 6.    |
 |          |  advertised as a set of   |               |             |
 |          |associated external (e.g., |               |             |
 |          |  User Network Interface   |               |             |
 |          |  (UNI)) address/address   |               |             |
 |          |   prefixes or a set of    |               |             |
 |          |   associated Subnetwork   |               |             |
 |          |   Point Pool (SNPP) link  |               |             |
 |          | IDs/SNPP ID prefixes, the |               |             |
 |          |selection of which MUST be |               |             |
 |          |   consistent within the   |               |             |
 |          |     applicable scope.     |               |             |
 +----------+---------------------------+---------------+-------------+
 |3.5.4 (22)| The Link Attributes' Local|      Yes      | Section 6.1.|
 |          | SNPP link ID, Remote SNPP |               |             |
 |          |link ID, and layer specific|               |             |
 |          |  characteristics must be  |               |             |
 |          |        advertised.        |               |             |
 +----------+---------------------------+---------------+-------------+
 |3.5.4 (23)| Link Signaling Attributes |      Yes      | Section 5,  |
 |          |other than Local Adaptation|               | RFC 4652 -  |
 |          |(Signal Type, Link Weight, |               |  Section    |
 |          |  Resource Class, Local    |               |   5.3.1.    |
 |          |   Connection Types, Link  |               |             |
 |          |      Capacity, Link       |               |             |
 |          |   Availability, Diversity |               |             |
 |          |          Support).        |               |             |
 +----------+---------------------------+---------------+-------------+
 |3.5.4 (24)|   Link Signaling Local    |      Yes      | Section 5.1.|
 |          |        Adaptation.        |               |             |
 +----------+---------------------------+---------------+-------------+
 |  5 (25)  |   The routing adjacency   |      Yes      | Sections 2, |
 |          |    topology (i.e., the    |               |  3, and 6.  |
 |          |associated PC connectivity |               |             |
 |          |topology) and the transport|               |             |
 |          |network topology SHALL NOT |               |             |
 |          |be assumed to be congruent.|               |             |
 +----------+---------------------------+---------------+-------------+
 |  5 (26)  |The routing topology SHALL |      Yes      |RFC 2328, RFC|
 |          |  support multiple links   |               |    3630.    |
 |          |  between nodes and RAs.   |               |             |
 +----------+---------------------------+---------------+-------------+






Malis, et al.                Standards Track                   [Page 23]

RFC 6827            ASON Routing for OSPFv2 Protocols       January 2013


 +----------+---------------------------+---------------+-------------+
 |  5 (27)  |The routing protocol SHALL |      Yes      |RFC 2328, RFC|
 |          |  converge such that the   |               |    5250.    |
 |          |  distributed Routing      |               |             |
 |          |  Databases (RDBs) become  |               |             |
 |          |synchronized after a period|               |             |
 |          |         of time.          |               |             |
 +----------+---------------------------+---------------+-------------+
 |  5 (28)  |Self-consistent information|Yes - However, | Section 7.1.|
 |          |  at the receiving level   | this is not a |             |
 |          |    resulting from any     |    routing    |             |
 |          |  transformation (filter,  |   protocol    |             |
 |          |   summarize, etc.) and    |   function.   |             |
 |          | forwarding of information |               |             |
 |          |  from one RC to RC(s) at  |               |             |
 |          |   different levels when   |               |             |
 |          |multiple RCs are bound to a|               |             |
 |          |        single RA.         |               |             |
 +----------+---------------------------+---------------+-------------+
 |  5 (29)  |    In order to support    |Partial - OSPF |RFC 2328 and |
 |          | operator-assisted changes | supports the  |  RFC 5250.  |
 |          |    in the containment     |  purging of   |             |
 |          | relationships of RAs, the |     stale     |             |
 |          |  routing protocol SHALL   |advertisements |             |
 |          |support evolution in terms |and origination|             |
 |          |     of the number of      |  of new. The  |             |
 |          |hierarchical levels of RAs.|non-disruptive |             |
 |          |  For example, support of  |  behavior is  |             |
 |          | non-disruptive operations |implementation |             |
 |          |such as adding and removing|   specific.   |             |
 |          | RAs at the top/bottom of  |               |             |
 |          | the hierarchy, adding or  |               |             |
 |          |  removing a hierarchical  |               |             |
 |          |level of RAs in or from the|               |             |
 |          |middle of the hierarchy, as|               |             |
 |          |  well as aggregation and  |               |             |
 |          |   segmentation of RAs.    |               |             |
 +----------+---------------------------+---------------+-------------+
 |  5 (30)  | A collection of links and |Yes - Within an| Sections 4  |
 |          |nodes such as a subnetwork | RA it must be |    and 6.   |
 |          |   or RA MUST be able to   |  consistent.  |             |
 |          |  represent itself to the  |               |             |
 |          | wider network as a single |               |             |
 |          | logical entity with only  |               |             |
 |          |its external links visible |               |             |
 |          | to the topology database. |               |             |
 +----------+---------------------------+---------------+-------------+




Malis, et al.                Standards Track                   [Page 24]

RFC 6827            ASON Routing for OSPFv2 Protocols       January 2013


13.  References

13.1.  Normative References

  [RFC2119]    Bradner, S., "Key words for use in RFCs to Indicate
               Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2328]    Moy, J., "OSPF Version 2", STD 54, RFC 2328, April 1998.

  [RFC3630]    Katz, D., Kompella, K., and D. Yeung, "Traffic
               Engineering (TE) Extensions to OSPF Version 2",
               RFC 3630, September 2003.

  [RFC3945]    Mannie, E., Ed., "Generalized Multi-Protocol Label
               Switching (GMPLS) Architecture", RFC 3945, October 2004.

  [RFC4202]    Kompella, K., Ed., and Y. Rekhter, Ed., "Routing
               Extensions in Support of Generalized Multi-Protocol
               Label Switching (GMPLS)", RFC 4202, October 2005.

  [RFC4203]    Kompella, K., Ed., and Y. Rekhter, Ed., "OSPF Extensions
               in Support of Generalized Multi-Protocol Label Switching
               (GMPLS)", RFC 4203, October 2005.

  [RFC5250]    Berger, L., Bryskin, I., Zinin, A., and R. Coltun, "The
               OSPF Opaque LSA Option", RFC 5250, July 2008.

  [RFC5786]    Aggarwal, R. and K. Kompella, "Advertising a Router's
               Local Addresses in OSPF Traffic Engineering (TE)
               Extensions", RFC 5786, March 2010.

13.2.  Informative References

  [RFC4258]    Brungard, D., Ed., "Requirements for Generalized Multi-
               Protocol Label Switching (GMPLS) Routing for the
               Automatically Switched Optical Network (ASON)",
               RFC 4258, November 2005.

  [RFC4652]    Papadimitriou, D., Ed., Ong, L., Sadler, J., Shew, S.,
               and D. Ward, "Evaluation of Existing Routing Protocols
               against Automatic Switched Optical Network (ASON)
               Routing Requirements", RFC 4652, October 2006.

  [RFC5709]    Bhatia, M., Manral, V., Fanto, M., White, R., Barnes,
               M., Li, T., and R. Atkinson, "OSPFv2 HMAC-SHA
               Cryptographic Authentication", RFC 5709, October 2009.





Malis, et al.                Standards Track                   [Page 25]

RFC 6827            ASON Routing for OSPFv2 Protocols       January 2013


  [RFC6518]    Lebovitz, G. and M. Bhatia, "Keying and Authentication
               for Routing Protocols (KARP) Design Guidelines",
               RFC 6518, February 2012.

  [OSPF-SEC]   Hartman, S. and Zhang, D., "Analysis of OSPF Security
               According to KARP Design Guide", Work in Progress,
               November 2012.

  [G.7715]     ITU-T Rec. G.7715/Y.1706, "Architecture and Requirements
               in the Automatically Switched Optical Network",
               June 2002.

  [G.7715.1]   ITU-T Rec. G.7715.1/Y.1706.1, "ASON Routing Architecture
               and Requirements for Link State Protocols",
               February 2004.

  [G.805]      ITU-T Rec. G.805, "Generic Functional Architecture of
               Transport Networks)", March 2000.

  [G.8080]     ITU-T Rec. G.8080/Y.1304, "Architecture for the
               automatically switched optical network", February 2012.

14.  Acknowledgements

  The editors would like to thank Lyndon Ong, Remi Theillaud, Stephen
  Shew, Jonathan Sadler, Deborah Brungard, Lou Berger, and Adrian
  Farrel for their useful comments and suggestions.

14.1.  RFC 5787 Acknowledgements

  The author would like to thank Dean Cheng, Acee Lindem, Pandian
  Vijay, Alan Davey, Adrian Farrel, Deborah Brungard, and Ben Campbell
  for their useful comments and suggestions.

  Lisa Dusseault and Jari Arkko provided useful comments during IESG
  review.

  Question 14 of Study Group 15 of the ITU-T provided useful and
  constructive input.












Malis, et al.                Standards Track                   [Page 26]

RFC 6827            ASON Routing for OSPFv2 Protocols       January 2013


Appendix A.  ASON Terminology

  This document makes use of the following terms:

  Administrative domain: (See Recommendation [G.805].)  For the
     purposes of [G.7715.1], an administrative domain represents the
     extent of resources that belong to a single player such as a
     network operator, a service provider, or an end-user.
     Administrative domains of different players do not overlap amongst
     themselves.

  Control plane: performs the call control and connection control
     functions.  Through signaling, the control plane sets up and
     releases connections and may restore a connection in case of a
     failure.

  (Control) Domain: represents a collection of (control) entities that
     are grouped for a particular purpose.  The control plane is
     subdivided into domains matching administrative domains.  Within
     an administrative domain, further subdivisions of the control
     plane are recursively applied.  A routing control domain is an
     abstract entity that hides the details of the RC distribution.

  External NNI (E-NNI): interfaces located between protocol controllers
     between control domains.

  Internal NNI (I-NNI): interfaces located between protocol controllers
     within control domains.

  Link: (See Recommendation G.805.)  A "topological component" that
     describes a fixed relationship between a "subnetwork" or "access
     group" and another "subnetwork" or "access group".  Links are not
     limited to being provided by a single server trail.

  Management plane: performs management functions for the transport
     plane, the control plane, and the system as a whole.  It also
     provides coordination between all the planes.  The following
     management functional areas are performed in the management plane:
     performance, fault, configuration, accounting, and security
     management.

  Management domain: (See Recommendation G.805.)  A management domain
     defines a collection of managed objects that are grouped to meet
     organizational requirements according to geography, technology,
     policy, or other structure, and for a number of functional areas
     such as Fault, Configuration, Accounting, Performance, and
     Security (FCAPS), for the purpose of providing control in a
     consistent manner.  Management domains can be disjoint, contained,



Malis, et al.                Standards Track                   [Page 27]

RFC 6827            ASON Routing for OSPFv2 Protocols       January 2013


     or overlapping.  As such, the resources within an administrative
     domain can be distributed into several possible overlapping
     management domains.  The same resource can therefore belong to
     several management domains simultaneously, but a management domain
     shall not cross the border of an administrative domain.

  Subnetwork Point (SNP): The SNP is a control-plane abstraction that
     represents an actual or potential transport-plane resource.  SNPs
     (in different subnetwork partitions) may represent the same
     transport resource.  A one-to-one correspondence should not be
     assumed.

  Subnetwork Point Pool (SNPP): A set of SNPs that are grouped together
     for the purposes of routing.

  Termination Connection Point (TCP): A TCP represents the output of a
     Trail Termination function or the input to a Trail Termination
     Sink function.

  Transport plane: provides bidirectional or unidirectional transfer of
     user information, from one location to another.  It can also
     provide transfer of some control and network management
     information.  The transport plane is layered; it is equivalent to
     the Transport Network defined in Recommendation G.805.

  User Network Interface (UNI): interfaces are located between protocol
     controllers between a user and a control domain.  Note: There is
     no routing function associated with a UNI reference point.

Appendix B.  ASON Routing Terminology

  This document makes use of the following terms:

  Routing Area (RA): an RA represents a partition of the transport
     plane, and its identifier is used within the control plane as the
     representation of this partition.  Per [G.8080], an RA is defined
     by a set of subnetworks, the links that interconnect them, and the
     interfaces representing the ends of the links exiting that RA.  An
     RA may contain smaller RAs inter-connected by links.  The limit of
     subdivision results in an RA that contains two subnetworks
     interconnected by a single link.

  Routing Database (RDB): a repository for the local topology, network
     topology, reachability, and other routing information that is
     updated as part of the routing information exchange and may
     additionally contain information that is configured.  The RDB may
     contain routing information for more than one routing area (RA).




Malis, et al.                Standards Track                   [Page 28]

RFC 6827            ASON Routing for OSPFv2 Protocols       January 2013


  Routing Components: ASON routing architecture functions.  These
     functions can be classified as protocol independent (Link Resource
     Manager (LRM), Routing Controller (RC)) or protocol specific
     (Protocol Controller (PC)).

  Routing Controller (RC): handles (abstract) information needed for
     routing and the routing information exchange with peering RCs by
     operating on the RDB.  The RC has access to a view of the RDB.
     The RC is protocol independent.

  Note: Since the RDB may contain routing information pertaining to
     multiple RAs (and possibly to multiple layer networks), the RCs
     accessing the RDB may share the routing information.

  Link Resource Manager (LRM): supplies all the relevant component and
     TE link information to the RC.  It informs the RC about any state
     changes of the link resources it controls.

  Protocol Controller (PC): handles protocol-specific message exchanges
     according to the reference point over which the information is
     exchanged (e.g., E-NNI, I-NNI) and internal exchanges with the RC.
     The PC function is protocol dependent.

Appendix C.  Changes from RFC 5787

  This document contains the following changes from RFC 5787:

  1. This document will be on the Standards Track, rather than
     Experimental, and reflects experience gained from RFC 5787
     implementation and interoperability testing.  This also required
     changes to the IANA Considerations.

  2. There is a new Section 3 on Terminology and Identification to
     describe the mapping of key ASON entities to OSPF entities.

  3. Sections were reorganized to explain terminology before defining
     prefix extensions.

  4. There is a new Section 11, Management Considerations, which
     describes how existing OSPF mechanisms address ASON requirements
     on Routing Area changes.

  5. There is a new Section 12, which compares the document to the
     requirements in RFC 4258.

  6. The prefix format was changed to reference RFC 5786 rather than
     defining a separate format and The Node Attribute TLV in RFC 5786
     has been updated as a result.



Malis, et al.                Standards Track                   [Page 29]

RFC 6827            ASON Routing for OSPFv2 Protocols       January 2013


  7. Routing Information Advertisements were simplified from RFC 5787.

  8. Review comments from ITU-T SG15 and the IESG were incorporated.

Authors' Addresses

  Andrew G. Malis
  Verizon Communications
  60 Sylvan Rd.
  Waltham, MA 02451 USA

  EMail: [email protected]


  Acee Lindem
  Ericsson
  102 Carric Bend Court
  Cary, NC 27519

  EMail: [email protected]


  Dimitri Papadimitriou
  Alcatel-Lucent
  Copernicuslaan, 50
  2018 Antwerpen, Belgium

  EMail: [email protected]























Malis, et al.                Standards Track                   [Page 30]