Internet Engineering Task Force (IETF)                       S. Krishnan
Request for Comments: 6788                                   A. Kavanagh
Category: Standards Track                                       B. Varga
ISSN: 2070-1721                                                 Ericsson
                                                               S. Ooghe
                                                         Alcatel-Lucent
                                                            E. Nordmark
                                                                  Cisco
                                                          November 2012


                    The Line-Identification Option

Abstract

  In Ethernet-based aggregation networks, several subscriber premises
  may be logically connected to the same interface of an Edge Router.
  This document proposes a method for the Edge Router to identify the
  subscriber premises using the contents of the received Router
  Solicitation messages.  The applicability is limited to broadband
  network deployment scenarios in which multiple user ports are mapped
  to the same virtual interface on the Edge Router.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc6788.















Krishnan, et al.             Standards Track                    [Page 1]

RFC 6788                     Line-ID Option                November 2012


Copyright Notice

  Copyright (c) 2012 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1. Introduction ....................................................3
     1.1. Terminology ................................................4
     1.2. Conventions Used in This Document ..........................6
  2. Applicability Statement .........................................6
  3. Issues with Identifying the Subscriber Premises in an
     N:1 VLAN Model ..................................................7
  4. Basic Operation .................................................7
  5. AN Behavior .....................................................8
     5.1. On Initialization ..........................................8
     5.2. On Receiving a Router Solicitation from the End-Device .....8
     5.3. On Receiving a Router Advertisement from the Edge Router ...9
          5.3.1. Identifying Tunneled Router Advertisements ..........9
     5.4. On Detecting a Subscriber Circuit Coming Up ................9
     5.5. On Detecting Edge Router Failure ..........................10
     5.6. RS Retransmission Algorithm ...............................10
  6. Edge Router Behavior ...........................................10
     6.1. On Receiving a Tunneled Router Solicitation from the AN ...10
     6.2. On Sending a Router Advertisement Towards the End-Device ..10
     6.3. Sending Periodic Unsolicited Router Advertisements
          Towards the End-Device ....................................11
  7. Line-Identification Option (LIO) ...............................12
     7.1. Encoding of Line ID .......................................13
  8. Garbage Collection of Unused Prefixes ..........................14
  9. Interactions with Secure Neighbor Discovery ....................14
  10. Acknowledgements ..............................................14
  11. Security Considerations .......................................14
  12. IANA Considerations ...........................................14
  13. References ....................................................15
     13.1. Normative References .....................................15
     13.2. Informative References ...................................16




Krishnan, et al.             Standards Track                    [Page 2]

RFC 6788                     Line-ID Option                November 2012


1.  Introduction

  Digital Subscriber Line (DSL) is a widely deployed access technology
  for Broadband Access for Next Generation Networks.  While traditional
  DSL access networks were Point-to-Point Protocol (PPP) [RFC1661]
  based, some networks are migrating from the traditional PPP access
  model into a pure IP-based Ethernet aggregated access environment.
  Architectural and topological models of an Ethernet aggregation
  network in the context of DSL aggregation are described in [TR101].

  +----+   +----+    +----------+
  |Host|---| RG |----|          |
  +----+   +----+    |          |
                     |    AN    |\
  +----+   +----+    |          | \
  |Host|---| RG |----|          |  \
  +----+   +----+    +----------+   \                    +----------+
                                     \                   |          |
                                   +-------------+       |          |
                                   | Aggregation |       |  Edge    |
                                   |   Network   |-------|  Router  |
                                   +-------------+       |          |
                                     /                   |          |
                     +----------+   /                    +----------+
                     |          |  /
  +----+   +----+    |          | /
  |Host|---| RG |----|    AN    |/
  +----+   +----+    |          |
                     |          |
                     +----------+

             Figure 1: Broadband Forum Network Architecture



















Krishnan, et al.             Standards Track                    [Page 3]

RFC 6788                     Line-ID Option                November 2012


  One of the Ethernet and Gigabit-capable Passive Optical Network
  (GPON) aggregation models specified in this document bridges sessions
  from multiple user ports behind a DSL Access Node (AN), also referred
  to as a Digital Subscriber Line Access Multiplexer (DSLAM), into a
  single VLAN in the aggregation network.  This is called the N:1 VLAN
  allocation model.

     +----------+
     |          |
     |          |
     |    AN    |\
     |          | \
     |          |  \ VLANx
     +----------+   \                    +----------+
                     \                   |          |
                   +-------------+       |          |
                   | Aggregation | VLANx |  Edge    |
                   |   Network   |-------|  Router  |
                   +-------------+       |          |
                     /                   |          |
     +----------+   /                    +----------+
     |          |  / VLANx
     |          | /
     |    AN    |/
     |          |
     |          |
     +----------+

                        Figure 2: n:1 VLAN model

1.1.  Terminology

  1:1 VLAN               A broadband network deployment scenario in
                         which each user port is mapped to a different
                         VLAN on the Edge Router.  The uniqueness of
                         the mapping is maintained in the Access Node
                         and across the aggregation network.

  N:1 VLAN               A broadband network deployment scenario in
                         which multiple user ports are mapped to the
                         same VLAN on the Edge Router.  The user ports
                         may be located in the same or different Access
                         Nodes.

  GPON                   Gigabit-capable Passive Optical Network is an
                         optical access network that has been
                         introduced into the Broadband Forum
                         architecture in [TR156].



Krishnan, et al.             Standards Track                    [Page 4]

RFC 6788                     Line-ID Option                November 2012


  AN                     A DSL or a GPON Access Node.  The Access Node
                         terminates the physical layer (e.g., DSL
                         termination function or GPON termination
                         function), may physically aggregate other
                         nodes implementing such functionality, or may
                         perform both functions at the same time.  This
                         node contains at least one standard Ethernet
                         interface that serves as its "northbound"
                         interface into which it aggregates traffic
                         from several user ports or Ethernet-based
                         "southbound" interfaces.  It does not
                         implement an IPv6 stack but performs some
                         limited inspection/modification of IPv6
                         packets.  The IPv6 functions required on the
                         Access Node are described in Section 5 of
                         [TR177].

  Aggregation Network    The part of the network stretching from the
                         Access Nodes to the Edge Router.  In the
                         context of this document, the aggregation
                         network is considered to be Ethernet based,
                         providing standard Ethernet interfaces at the
                         edges, for connecting the Access Nodes and the
                         broadband network.  It is comprised of
                         Ethernet switches that provide very limited IP
                         functionality (e.g., IGMP snooping, Multicast
                         Listener Discovery (MLD) snooping, etc.).

  RG                     A residential gateway device.  It can be a
                         Layer-3 (routed) device or a Layer-2 (bridged)
                         device.  The residential gateway for Broadband
                         Forum networks is defined in [TR124].

  Edge Router            The Edge Router, also known as the Broadband
                         Network Gateway (BNG), is the first IPv6 hop
                         for the user.  In cases where the RG is
                         bridged, the BNG acts as the default router
                         for the hosts behind the RG.  In cases where
                         the RG is routed, the BNG acts as the default
                         router for the RG itself.  This node
                         implements IPv6 router functionality.

  Host                   A node that implements IPv6 host
                         functionality.







Krishnan, et al.             Standards Track                    [Page 5]

RFC 6788                     Line-ID Option                November 2012


  End-Device             A node that sends Router Solicitations and
                         processes received Router Advertisements.
                         When a Layer-3 (L3) RG is used, it is
                         considered an end-device in the context of
                         this document.  When a Layer-2 (L2) RG is
                         used, the host behind the RG is considered to
                         be an end-device in the context of this
                         document.

1.2.  Conventions Used in This Document

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL","SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

2.  Applicability Statement

  The Line-Identification Option (LIO) is intended to be used only for
  the N:1 VLAN deployment model.  For the other VLAN deployment models,
  line identification can be achieved differently.  The mechanism
  described in this document allows the connection of hosts that only
  support IPv6 stateless address auto-configuration to attach to
  networks that use the N:1 VLAN deployment model.

  When the Dynamic Host Configuration Protocol (DHCP) [RFC3315] is used
  for IPv6 address assignment, it has the side-effect of providing end-
  device-initiated reliability as well as inactivity detection.  The
  reliability is provided by the end-device continuing to retransmit
  DHCP messages until it receives a response), and inactivity is
  detected by the end-device not renewing its DHCP lease.  The "IPv6
  Stateless Address Autoconfiguration" protocol [RFC4862] was not
  designed to satisfy such requirements [RSDA].  While this option
  improves the reliability of operation in deployments that use Router
  Solicitations rather than DHCP, there are some limitations as
  specified below.

  The mechanism described in this document deals with the loss of
  subscriber-originated Router Solicitations (RSes) by initiating RSes
  at the AN, which improves robustness over solely relying on the
  end-device's few initial retransmissions of RSes.

  However, the AN retransmissions imply that some information (e.g.,
  the subscriber's MAC address) that was obtained by the Edge Router
  from subscriber-originated RSes may no longer be available.  For
  example, since there is no L2 frame received from the subscriber in
  case of an RS sent by an AN, the L2-address information of the
  end-device cannot be determined.  One piece of L2-address information
  currently used in some broadband networks is the MAC address.  For



Krishnan, et al.             Standards Track                    [Page 6]

RFC 6788                     Line-ID Option                November 2012


  this reason, the solution described in this document is NOT
  RECOMMENDED for networks that require the MAC address of the endpoint
  for identification.

  There is no indication when a subscriber is no longer active.  Thus,
  this protocol cannot be used to automatically reclaim resources, such
  as prefixes, that are associated with an active subscriber.  See
  Section 8.  Thus, this protocol is NOT RECOMMENDED for networks that
  require automatic notification when a subscriber is no longer active.

  This mechanism by itself provides no protection against the loss of
  RS-induced state in access routers that would lead to loss of IPv6
  connectivity for end-devices.  Given that regular IPv6 hosts do not
  have RS retransmission behavior that would allow automatic recovery
  from such a failure, this mechanism SHOULD only be used in
  deployments employing N:1 VLANs.

3.  Issues with Identifying the Subscriber Premises in an N:1 VLAN Model

  In a DSL- or GPON-based fixed broadband network, IPv6 end-devices are
  connected to an AN.  Today, these end-devices will typically send a
  Router Solicitation message to the Edge Router, to which the Edge
  Router responds with a Router Advertisement message.  The Router
  Advertisement typically contains a prefix that the end-devices will
  use to automatically configure an IPv6 address.  Upon sending the
  Router Solicitation message, the node connecting the end-device on
  the access circuit, typically an AN, forwards the RS to the Edge
  Router upstream over a switched network.  In such Ethernet-based
  aggregation networks, several subscriber premises may be connected to
  the same interface of an Edge Router (e.g., on the same VLAN).
  However, the Edge Router requires some information to identify the
  end-device on the circuit.  To accomplish this, the AN needs to add
  line-identification information to the Router Solicitation message
  and forward this to the Edge Router.  This is analogous to the case
  where DHCP is being used, and the line-identification information is
  inserted by a DHCP relay agent [RFC3315].  This document proposes a
  method for the Edge Router to identify the subscriber premises using
  the contents of the received Router Solicitation messages.  Note that
  there might be several end-devices located on the same subscriber
  premises.

4.  Basic Operation

  This document uses a mechanism that tunnels Neighbor Discovery (ND)
  packets inside another IPv6 packet that uses a destination option
  (Line-ID option) to convey line-identification information as
  depicted in Figure 3.  The use of the Line-ID option in any other
  IPv6 datagrams, including untunneled RS and RA messages, is not



Krishnan, et al.             Standards Track                    [Page 7]

RFC 6788                     Line-ID Option                November 2012


  defined by this document.  The ND packets are left unmodified inside
  the encapsulating IPv6 packet.  In particular, the Hop Limit field of
  the ND message is not decremented when the packet is being tunneled.
  This is because an ND message whose Hop Limit is not 255 will be
  discarded by the receiver of such messages, as described in Sections
  6.1.1 and 6.1.2 of [RFC4861].

     +----+     +----+       +-----------+
     |Host|     | AN |       |Edge Router|
     +----+     +----+       +-----------+
       |    RS     |                |
       |---------->|                |
       |           |                |
       |           |Tunneled RS(LIO)|
       |           |--------------->|
       |           |                |
       |           |Tunneled RA(LIO)|
       |           |<---------------|
       |    RA     |                |
       |<----------|                |
       |           |                |


                      Figure 3: Basic Message Flow

5.  AN Behavior

5.1.  On Initialization

  On initialization, the AN MUST join the All-BBF-Access-Nodes
  multicast group on all its upstream interfaces towards the Edge
  Router.

5.2.  On Receiving a Router Solicitation from the End-Device

  When an end-device sends out a Router Solicitation, it is received by
  the AN.  The AN identifies these messages by looking for ICMPv6
  messages (IPv6 Next Header value of 58) with ICMPv6 type 133.  The AN
  intercepts and then tunnels the received Router Solicitation in a
  newly created IPv6 datagram with the Line-Identification Option
  (LIO).  The AN forms a new IPv6 datagram whose payload is the
  received Router Solicitation message as described in [RFC2473],
  except that the Hop Limit field of the Router Solicitation message
  MUST NOT be decremented.  If the AN has an IPv6 address, it MUST use
  this address in the Source Address field of the outer IPv6 datagram.
  Otherwise, the AN MUST copy the source address from the received
  Router Solicitation into the Source Address field of the outer IPv6
  datagram.  The destination address of the outer IPv6 datagram MUST be



Krishnan, et al.             Standards Track                    [Page 8]

RFC 6788                     Line-ID Option                November 2012


  copied from the destination address of the tunneled RS.  The AN MUST
  include a destination options header between the outer IPv6 header
  and the payload.  It MUST insert an LIO destination option and set
  the Line ID field of the option to contain the circuit identifier
  corresponding to the logical access loop port of the AN from which
  the RS was initiated.

5.3.  On Receiving a Router Advertisement from the Edge Router

  When the Edge Router sends out a tunneled Router Advertisement in
  response to the RS, it is received by the AN.  If there is an LIO
  present, the AN MUST use the line-identification data of the LIO to
  identify the subscriber agent circuit of the AN on which the RA
  should be sent.  The AN MUST then remove the outer IPv6 header of
  this tunneled RA and multicast the inner packet (the original RA) on
  this specific subscriber circuit.

5.3.1.  Identifying Tunneled Router Advertisements

  The AN can identify tunneled RAs by installing filters based on the
  destination address (All-BBF-Access-Nodes, which is a reserved
  link-local scoped multicast address) of the outer packets and the
  presence of a destination option header with an LIO destination
  option.

5.4.  On Detecting a Subscriber Circuit Coming Up

  RSes initiated by end-devices as described in Section 5.2 may be lost
  due to lack of connectivity between the AN and the end-device.  To
  ensure that the end-device will receive an RA, the AN needs to
  trigger the sending of periodic RAs on the Edge Router.  For this
  purpose, the AN needs to inform the Edge Router that a subscriber
  circuit has come up.  Each time the AN detects that a subscriber
  circuit has come up, it MUST create a Router Solicitation message as
  described in Section 6.3.7 of [RFC4861].  It MUST use the unspecified
  address as the source address of this RS.  It MUST then tunnel this
  RS towards the Edge Router as described in Section 5.2.

  In case there are connectivity issues between the AN and the Edge
  Router, the RSes initiated by the AN can be lost.  The AN SHOULD
  continue retransmitting the Router Solicitations following the
  algorithm described in Section 5.6 for a given LIO until it receives
  an RA for that specific LIO.








Krishnan, et al.             Standards Track                    [Page 9]

RFC 6788                     Line-ID Option                November 2012


5.5.  On Detecting Edge Router Failure

  When the Edge Router reboots and loses state or is replaced by a new
  Edge Router, the AN will detect it using connectivity check
  mechanisms that are already in place in broadband networks (e.g.,
  Bidirectional Forwarding Detection).  When such Edge Router failure
  is detected, the AN needs to start transmitting RSes for each of its
  subscriber circuits that have come up, as described in Section 5.4.

5.6.  RS Retransmission Algorithm

  The AN SHOULD use the exponential backoff algorithm for retransmits
  that is described in Section 14 of [RFC3315] in order to continuously
  retransmit the Router Solicitations for a given LIO until a response
  is received for that specific LIO.  The AN SHOULD use the following
  variables as input to the retransmission algorithm:

    Initial retransmission time (IRT)      1 Second
    Maximum retransmission time (MRT)     30 Seconds
    Maximum retransmission count (MRC)     0
    Maximum retransmission duration (MRD)  0

6.  Edge Router Behavior

6.1.  On Receiving a Tunneled Router Solicitation from the AN

  When the Edge Router receives a tunneled Router Solicitation
  forwarded by the AN, it needs to check if there is an LIO destination
  option present in the outer datagram.  The Edge Router can use the
  contents of the Line ID field to lookup the addressing information
  and policy that need to be applied to the line from which the Router
  Solicitation was received.  The Edge Router MUST then process the
  inner RS message as specified in [RFC4861].

6.2.  On Sending a Router Advertisement Towards the End-Device

  When the Edge Router sends out a Router Advertisement in response to
  a tunneled RS that included an LIO, it MUST tunnel the Router
  Advertisement in a newly created IPv6 datagram with the LIO as
  described below.  First, the Edge Router creates the Router
  Advertisement message as described in Section 6.2.3 of [RFC4861].
  The Edge Router MUST include a Prefix Information option in this RA
  that contains the prefix that corresponds to the received LIO.  (The
  LIO from the received tunneled RS is usually passed on from the Edge
  Router to some form of provisioning system that returns the prefix to
  be included in the RA.  It could e,g., be based on RADIUS.)  Then,
  the Edge Router forms the new IPv6 datagram whose payload is the
  Router Advertisement message, as described in [RFC2473], except that



Krishnan, et al.             Standards Track                   [Page 10]

RFC 6788                     Line-ID Option                November 2012


  the Hop Limit field of the Router Advertisement message MUST NOT be
  decremented.  The Edge router MUST use a link-local IPv6 address on
  the outgoing interface in the Source Address field of the outer IPv6
  datagram.  The Edge Router MUST include a destination options header
  between the outer IPv6 header and the payload.  It MUST insert an LIO
  and set the Line ID field of the option to contain the same value as
  that of the Line-ID option in the received RS.  The IPv6 destination
  address of the inner RA MUST be set to the all-nodes multicast
  address.

  If the Source Address field of the received IPv6 datagram was not the
  unspecified address, the Edge Router MUST copy this address into the
  Destination Address field of the outer IPv6 datagram sent back
  towards the AN.  The link-layer destination address of the outer IPv6
  datagram containing the outer IPv6 datagram MUST be resolved using
  regular Neighbor Discovery procedures.

  If the Source Address field of the received IPv6 datagram was the
  unspecified address, the destination address of the outer IPv6
  datagram MUST be set to the well-known link-local scope
  All-BBF-Access-Nodes multicast address (ff02::10).  The link-layer
  destination address of the tunneled RA MUST be set to the unicast
  link-layer address of the AN that sent the tunneled Router
  Solicitation that is being responded to.

  The Edge Router MUST ensure that it does not transmit tunneled RAs
  whose size is larger than the MTU of the link between the Edge Router
  and the AN, which would require that the outer IPv6 datagram undergo
  fragmentation.  This limitation is imposed because the AN may not be
  capable of handling the reassembly of such fragmented datagrams.

6.3.  Sending Periodic Unsolicited Router Advertisements Towards the
     End-Device

  After sending a tunneled Router Advertisement as specified in Section
  6.2 in response to a received RS, the Edge Router MUST store the
  mapping between the LIO and the prefixes contained in the Router
  Advertisement.  It should then initiate periodic sending of
  unsolicited Router Advertisements as described in Section 6.2.3. of
  [RFC4861] .  The Router Advertisements MUST be created and tunneled
  as described in Section 6.2.  The Edge Router MAY stop sending Router
  Advertisements if it receives a notification from the AN that the
  subscriber circuit has gone down.  This notification can be received
  out-of-band using a mechanism such as the Access Node Control
  Protocol (ANCP).  Please consult Section 8 for more details.






Krishnan, et al.             Standards Track                   [Page 11]

RFC 6788                     Line-ID Option                November 2012


7.  Line-Identification Option (LIO)

  The Line-Identification Option (LIO) is a destination option that can
  be included in IPv6 datagrams that tunnel Router Solicitation and
  Router Advertisement messages.  The use of the Line-ID option in any
  other IPv6 datagrams is not defined by this document.  Multiple Line-
  ID destination options MUST NOT be present in the same IPv6 datagram.
  The LIO has no alignment requirement.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
                                  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                  |  Option Type  | Option Length |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | LineIDLen     |     Line ID...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 4: Line-Identification Option Layout

   Option Type

      8-bit identifier of the type of option.  The option identifier
      for the Line-Identification Option (0x8C) has been allocated by
      the IANA.

   Option Length

      8-bit unsigned integer.  The length of the option (excluding the
      Option Type and Option Length fields).  The value MUST be greater
      than 0.

   LineIDLen

      8-bit unsigned integer.  The length of the Line ID field in
      number of octets.

   Line ID

      Variable-length data inserted by the AN describing the
      subscriber-agent circuit identifier corresponding to the logical
      access loop port of the AN from which the RS was initiated.  The
      line identification MUST be unique across all the ANs that share
      a link to the Edge Router, e.g., one such line- identification
      scheme is described in Section 3.9 of [TR101].  The line
      identification should be encoded as specified in Section 7.1.






Krishnan, et al.             Standards Track                   [Page 12]

RFC 6788                     Line-ID Option                November 2012


7.1.  Encoding of the Line ID Field Content

  This IPv6 Destination option is derived from an existing widely
  deployed DHCPv6 option [RFC4649], which is in turn derived from a
  widely deployed DHCPv4 option [RFC3046].  These options derive from
  and cite the basic DHCP options specification [RFC2132].  These
  widely deployed DHCP options use the Network Virtual Terminal (NVT)
  character set [RFC2132] [RFC0020].  Since the data carried in the
  Line-ID option is used in the same manner by the provisioning systems
  as the DHCP options, it is beneficial for it to maintain the same
  encoding as the DHCP options.

  The IPv6 Line ID option contains a description that identifies the
  line using only character positions (decimal 32 to decimal 126,
  inclusive) of the US-ASCII character set [X3.4] [RFC0020].
  Consistent with [RFC2132], [RFC3046], and [RFC4649], the Line ID
  field SHOULD NOT contain the US-ASCII NUL character (decimal 0).
  However, implementations receiving this option MUST NOT fail merely
  because an ASCII NUL character is (erroneously) present in the Line
  ID field.

  Some existing widely deployed implementations of Edge Routers and ANs
  that support the previously mentioned DHCP option only support
  US-ASCII and strip the high-order bit from any 8-bit characters
  entered by the device operator.  The previously mentioned DHCP
  options do not support 8-bit character sets either.  Therefore, for
  compatibility with the installed base and to maximize
  interoperability, the high-order bit of each octet in this field MUST
  be set to zero by any device inserting this option in an IPv6 packet.

  Consistent with [RFC3046] and [RFC4649], this option always uses
  binary comparison.  Therefore, two Line IDs MUST be equal when they
  match when compared byte-by-byte.  Line-ID A and Line-ID B match
  byte-by-byte when (1) A and B have the same number of bytes, and (2)
  for all byte indexes P in A: the value of A at index P has the same
  binary value as the value of B at index P.

  Two Line IDs MUST NOT be equal if they do not match byte-by-byte.
  For example, an IPv6 Line-ID option containing "f123" is not equal to
  a Line-ID option "F123".

  Intermediate systems MUST NOT alter the contents of the Line ID.









Krishnan, et al.             Standards Track                   [Page 13]

RFC 6788                     Line-ID Option                November 2012


8.  Garbage Collection of Unused Prefixes

  Following the mechanism described in this document, the broadband
  network associates a prefix to a subscriber line based on the LIO.
  Even when the subscriber line goes down temporarily, this prefix
  stays allocated to that specific subscriber line, i.e., the prefix is
  not returned to the unused pool.  When a subscriber line no longer
  needs a prefix, the prefix can be reclaimed by manual action
  dissociating the prefix from the LIO in the backend systems.

9.  Interactions with Secure Neighbor Discovery

  Since the RS/RA packets that are protected by the "SEcure Neighbor
  Discovery (SEND)" [RFC3971] are not modified in any way by the
  mechanism described in this document, there are no issues with SEND
  verification.

10.  Acknowledgements

  The authors would like to thank Margaret Wasserman, Mark Townsley,
  David Miles, John Kaippallimalil, Eric Levy-Abegnoli, Thomas Narten,
  Olaf Bonness, Thomas Haag, Wojciech Dec, Brian Haberman, Ole Troan,
  Hemant Singh, Jari Arkko, Joel Halpern, Bob Hinden, Ran Atkinson,
  Glen Turner, Kathleen Moriarty, David Sinicrope, Dan Harkins, Stephen
  Farrell, Barry Leiba, Sean Turner, Ralph Droms, and Mohammed
  Boucadair for reviewing this document and suggesting changes.

11.  Security Considerations

  The line identification information inserted by the AN or the Edge
  Router is not protected.  This means that this option may be
  modified, inserted, or deleted without being detected.  In order to
  ensure validity of the contents of the Line ID field, the network
  between the AN and the Edge Router needs to be trusted.

12.  IANA Considerations

  This document defines a new IPv6 destination option for carrying line
  identification.  IANA has assigned the following new destination
  option type in the "Destination Options and Hop-by-Hop Options"
  registry maintained at
  <http://www.iana.org/assignments/ipv6-parameters>:

     0x8C  Line-Identification Option  [RFC6788]

  The act bits for this option are 10 and the chg bit is 0.





Krishnan, et al.             Standards Track                   [Page 14]

RFC 6788                     Line-ID Option                November 2012


  Per this document, IANA has also allocated the following well-known
  link-local scope multicast address from the "IPv6 Multicast Address
  Space Registry" located at
  <http://www.iana.org/assignments/ipv6-multicast-addresses/>:

     FF02:0:0:0:0:0:0:10  All-BBF-Access-Nodes  [RFC6788]

13.  References

13.1.  Normative References

  [RFC1661]  Simpson, W., Ed., "The Point-to-Point Protocol (PPP)", STD
             51, RFC 1661, July 1994.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2473]  Conta, A. and S. Deering, "Generic Packet Tunneling in
             IPv6 Specification", RFC 2473, December 1998.

  [RFC3315]  Droms, R., Ed., Bound, J., Volz, B., Lemon, T., Perkins,
             C., and M. Carney, "Dynamic Host Configuration Protocol
             for IPv6 (DHCPv6)", RFC 3315, July 2003.

  [RFC3971]  Arkko, J., Ed., Kempf, J., Zill, B., and P. Nikander,
             "SEcure Neighbor Discovery (SEND)", RFC 3971, March 2005.

  [RFC4861]  Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
             "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
             September 2007.

  [RFC4862]  Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
             Address Autoconfiguration", RFC 4862, September 2007.

  [TR101]    Broadband Forum, "Migration to Ethernet-based DSL
             aggregation", <http://www.broadband-forum.org/
             technical/download/TR-101.pdf>.

  [TR124]    Broadband Forum, "Functional Requirements for Broadband
             Residential Gateway Devices",
             <http://www.broadband-forum.org/technical/
             download/TR-124_Issue-2.pdf>.

  [TR156]    Broadband Forum, "Using GPON Access in the context of
             TR-101", <http://www.broadband-forum.org/
             technical/download/TR-156.pdf>.





Krishnan, et al.             Standards Track                   [Page 15]

RFC 6788                     Line-ID Option                November 2012


  [TR177]    Broadband Forum, "IPv6 in the context of TR-101",
             <www.broadband-forum.org/technical/download/TR-177.pdf>.

  [X3.4]     American National Standards Institute, "American Standard
             Code for Information Interchange (ASCII)", Standard X3.4,
             1968.

13.2.  Informative References

  [RFC0020]  Cerf, V., "ASCII format for network interchange", RFC 20,
             October 1969.

  [RFC2132]  Alexander, S. and R. Droms, "DHCP Options and BOOTP Vendor
             Extensions", RFC 2132, March 1997.

  [RFC3046]  Patrick, M., "DHCP Relay Agent Information Option", RFC
             3046, January 2001.

  [RFC4649]  Volz, B., "Dynamic Host Configuration Protocol for IPv6
             (DHCPv6) Relay Agent Remote-ID Option", RFC 4649, August
             2006.

  [RSDA]     Dec, W., "IPv6 Router Solicitation Driven Access
             Considered Harmful", Work in Progress, June 2011.



























Krishnan, et al.             Standards Track                   [Page 16]

RFC 6788                     Line-ID Option                November 2012


Authors' Addresses

  Suresh Krishnan
  Ericsson
  8400 Blvd Decarie
  Town of Mount Royal, Quebec
  Canada

  EMail: [email protected]


  Alan Kavanagh
  Ericsson
  8400 Blvd Decarie
  Town of Mount Royal, Quebec
  Canada

  EMail: [email protected]


  Balazs Varga
  Ericsson
  Konyves Kalman krt. 11. B.
  1097 Budapest
  Hungary

  EMail: [email protected]


  Sven Ooghe
  Alcatel-Lucent
  Copernicuslaan 50
  2018 Antwerp,
  Belgium

  Phone:
  EMail: [email protected]


  Erik Nordmark
  Cisco
  510 McCarthy Blvd.
  Milpitas, CA, 95035
  USA

  Phone: +1 408 527 6625
  EMail: [email protected]




Krishnan, et al.             Standards Track                   [Page 17]