Internet Engineering Task Force (IETF)                           S. Shin
Request for Comments: 6628                                     K. Kobara
Category: Experimental                                              AIST
ISSN: 2070-1721                                                June 2012


         Efficient Augmented Password-Only Authentication and
                        Key Exchange for IKEv2

Abstract

  This document describes an efficient augmented password-only
  authentication and key exchange (AugPAKE) protocol where a user
  remembers a low-entropy password and its verifier is registered in
  the intended server.  In general, the user password is chosen from a
  small set of dictionary words that allows an attacker to perform
  exhaustive searches (i.e., off-line dictionary attacks).  The AugPAKE
  protocol described here is secure against passive attacks, active
  attacks, and off-line dictionary attacks (on the obtained messages
  with passive/active attacks), and also provides resistance to server
  compromise (in the context of augmented PAKE security).  In addition,
  this document describes how the AugPAKE protocol is integrated into
  the Internet Key Exchange Protocol version 2 (IKEv2).

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for examination, experimental implementation, and
  evaluation.

  This document defines an Experimental Protocol for the Internet
  community.  This document is a product of the Internet Engineering
  Task Force (IETF).  It represents the consensus of the IETF
  community.  It has received public review and has been approved for
  publication by the Internet Engineering Steering Group (IESG).  Not
  all documents approved by the IESG are a candidate for any level of
  Internet Standard; see Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc6628.










Shin & Kobara                 Experimental                      [Page 1]

RFC 6628         Most Efficient Augmented PAKE for IKEv2       June 2012


Copyright Notice

  Copyright (c) 2012 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1. Introduction ....................................................3
     1.1. Keywords ...................................................4
  2. AugPAKE Specification ...........................................4
     2.1. Underlying Group ...........................................4
     2.2. Notation ...................................................5
          2.2.1. Password Processing .................................6
     2.3. Protocol ...................................................7
          2.3.1. Initialization ......................................7
          2.3.2. Actual Protocol Execution ...........................7
  3. Security Considerations .........................................9
     3.1. General Assumptions ........................................9
     3.2. Security against Passive Attacks ..........................10
     3.3. Security against Active Attacks ...........................10
          3.3.1. Impersonation Attacks on User U ....................10
          3.3.2. Impersonation Attacks on Server S ..................11
          3.3.3. Man-in-the-Middle Attacks ..........................11
     3.4. Security against Off-line Dictionary Attacks ..............12
     3.5. Resistance to Server Compromise ...........................12
  4. Implementation Consideration ...................................13
  5. AugPAKE for IKEv2 ..............................................13
     5.1. Integration into IKEv2 ....................................13
     5.2. Payload Formats ...........................................15
          5.2.1. Notify Payload .....................................15
          5.2.2. Generic Secure Password Method Payload .............16
  6. IANA Considerations ............................................16
  7. References .....................................................16
     7.1. Normative References ......................................16
     7.2. Informative References ....................................17
  Appendix A.  Evaluation by PAKE Selection Criteria.................19





Shin & Kobara                 Experimental                      [Page 2]

RFC 6628         Most Efficient Augmented PAKE for IKEv2       June 2012


1.  Introduction

  In the real world, many applications, such as Web mail and Internet
  banking/shopping/trading, require secure channels between
  participating parties.  Such secure channels can be established by
  using an authentication and key exchange (AKE) protocol, which allows
  the involved parties to authenticate each other and to generate a
  temporary session key.  The temporary session key is used to protect
  the subsequent communications between the parties.

  Until now, password-only AKE (called PAKE) protocols have attracted
  much attention because password-only authentication is very
  convenient to the users.  However, it is not trivial to design a
  secure PAKE protocol due to the existence of off-line dictionary
  attacks on passwords.  These attacks are possible since passwords are
  chosen from a relatively-small dictionary that allows for an attacker
  to perform the exhaustive searches.  This problem was brought forth
  by Bellovin and Merritt [BM92], and many subsequent works have been
  conducted in the literature (see some examples in [IEEEP1363.2]).  A
  PAKE protocol is said to be secure if the best attack an active
  attacker can take is restricted to the on-line dictionary attacks,
  which allows a guessed password to be checked only by interacting
  with the honest party.

  An augmented PAKE protocol (e.g., [BM93], [RFC2945], [ISO]) provides
  extra protection for server compromise in the sense that an attacker,
  who obtains a password verifier from a server, cannot impersonate the
  corresponding user without performing off-line dictionary attacks on
  the password verifier.  This additional security is known as
  "resistance to server compromise".  The AugPAKE protocol described in
  this document is an augmented PAKE, which also achieves measurable
  efficiency over some previous works (i.e., SRP [RFC2945] and AMP
  [ISO]).  We believe the following (see [SKI10] for the formal
  security proof): 1) The AugPAKE protocol is secure against passive
  attacks, active attacks, and off-line dictionary attacks (on the
  obtained messages with passive/active attacks), and 2) It provides
  resistance to server compromise.  At the same time, the AugPAKE
  protocol has similar computational efficiency to the plain Diffie-
  Hellman key exchange [DH76] that does not provide authentication by
  itself.  Specifically, the user and the server need to compute 2 and
  2.17 modular exponentiations, respectively, in the AugPAKE protocol.
  After excluding pre-computable costs, the user and the server are
  required to compute only 1 and 1.17 modular exponentiations,
  respectively.  Compared with SRP [RFC2945] and AMP [ISO], the AugPAKE
  protocol is more efficient 1) than SRP in terms of the user's
  computational costs and 2) than AMP in terms of the server's
  computational costs.




Shin & Kobara                 Experimental                      [Page 3]

RFC 6628         Most Efficient Augmented PAKE for IKEv2       June 2012


  This document also describes how the AugPAKE protocol is integrated
  into IKEv2 [RFC5996].

1.1.  Keywords

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [RFC2119].

2.  AugPAKE Specification

2.1.  Underlying Group

  The AugPAKE protocol can be implemented over the following group.

  o  Let p and q be sufficiently large primes such that q is a divisor
     of ((p - 1) / 2), and every factor of ((p - 1) / 2) are also
     primes comparable to q in size.  This p is called a "secure"
     prime.  By G, we denote a multiplicative subgroup of prime order q
     over the field GF(p), the integers modulo p.  Let g be a generator
     for the subgroup G so that all the subgroup elements are generated
     by g.  The group operation is denoted multiplicatively (in modulo
     p).

  By using a secure prime p, the AugPAKE protocol has computational
  efficiency gains.  Specifically, it does not require the order check
  of elements received from the counterpart party.  Note that the
  groups defined in Discrete Logarithm Cryptography [SP800-56A] and RFC
  5114 [RFC5114] are not necessarily the above secure prime groups.

  Alternatively, one can implement the AugPAKE protocol over the
  following groups.

  o  Let p and q be sufficiently large primes such that p = (2 * q) +
     1.  This p is called a "safe" prime.  By G, we denote a
     multiplicative subgroup of prime order q over the field GF(p), the
     integers modulo p.  Let g be any element of G other than 1.  For
     example, g = h^2 mod p where h is a primitive element.  The group
     operation is denoted multiplicatively (in modulo p).

  o  Let p and q be sufficiently large primes such that q is a divisor
     of ((p - 1) / 2).  By G, we denote a multiplicative subgroup of
     prime order q over the field GF(p), the integers modulo p.  Let g
     be a generator for the subgroup G so that all the subgroup
     elements are generated by g.  The group operation is denoted
     multiplicatively (in modulo p).  If p is not a "secure" prime, the
     AugPAKE protocol MUST perform the order check of received
     elements.



Shin & Kobara                 Experimental                      [Page 4]

RFC 6628         Most Efficient Augmented PAKE for IKEv2       June 2012


2.2.  Notation

  The AugPAKE protocol is a two-party protocol where a user and a
  server authenticate each other and generate a session key.  The
  following notation is used in this document:

  U
     The user's identity (e.g., as defined in [RFC4282]).  It is a
     string in {0,1}^* where {0,1}^* indicates a set of finite binary
     strings.

  S
     The server's identity (e.g., as defined in [RFC4282]).  It is a
     string in {0,1}^*.

  b = H(a)
     A binary string a is given as input to a secure one-way hash
     function H (e.g., SHA-2 family [FIPS180-3]), which produces a
     fixed-length output b.  The hash function H maps {0,1}^* to
     {0,1}^k, where {0,1}^k indicates a set of binary strings of length
     k and k is a security parameter.

  b = H'(a)
     A binary string a is given as input to a secure one-way hash
     function H', which maps the input a in {0,1}^* to the output b in
     Z_q^*, where Z_q^* is a set of positive integers modulo prime q.

  a | b
     It denotes a concatenation of binary strings a and b in {0,1}^*.

  0x
     A hexadecimal value is shown preceded by "0x".

  X * Y mod p
     It indicates a multiplication of X and Y modulo prime p.

  X = g^x mod p
     The g^x indicates a multiplication computation of g by x times.
     The resultant value modulo prime p is assigned to X.  The discrete
     logarithm problem says that it is computationally hard to compute
     the discrete logarithm x from X, g, and p.

  w
     The password remembered by the user.  This password may be used as
     an effective password (instead of itself) in the form of H'(0x00 |
     U | S | w).





Shin & Kobara                 Experimental                      [Page 5]

RFC 6628         Most Efficient Augmented PAKE for IKEv2       June 2012


  W
     The password verifier registered in the server.  This password
     verifier is computed as follows: W = g^w mod p where the user's
     password w is used itself, or W = g^w' mod p where the effective
     password w' = H'(0x00 | U | S | w) is used.

  bn2bin(X)
     It indicates a conversion of a multiple precision integer X to the
     corresponding binary string.  If X is an element over GF(p), its
     binary representation MUST have the same bit length as the binary
     representation of prime p.

  U -> S: msg
     It indicates a message transmission that the user U sends a
     message msg to the server S.

  U:
     It indicates a local computation of user U (without any outgoing
     messages).

2.2.1.  Password Processing

  The input password MUST be processed according to the rules of the
  [RFC4013] profile of [RFC3454].  The password SHALL be considered a
  "stored string" per [RFC3454], and unassigned code points are
  therefore prohibited.  The output SHALL be the binary representation
  of the processed UTF-8 character string.  Prohibited output and
  unassigned code points encountered in SASLprep pre-processing SHALL
  cause a failure of pre-processing, and the output SHALL NOT be used
  with the AugPAKE protocol.

  The following table shows examples of how various character data is
  transformed by the rules of the [RFC4013] profile.

  #  Input            Output     Comments
  -  -----            ------     --------
  1  I<U+00AD>X       IX         SOFT HYPHEN mapped to nothing
  2  user             user       no transformation
  3  USER             USER       case preserved, will not match #2
  4  <U+00AA>         a          output is NFKC, input in ISO 8859-1
  5  <U+2168>         IX         output is NFKC, will match #1
  6  <U+0007>                    Error - prohibited character
  7  <U+0627><U+0031>            Error - bidirectional check








Shin & Kobara                 Experimental                      [Page 6]

RFC 6628         Most Efficient Augmented PAKE for IKEv2       June 2012


2.3.  Protocol

  The AugPAKE protocol consists of two phases: initialization and
  actual protocol execution.  The initialization phase SHOULD be
  finished in a secure manner between the user and the server, and it
  is performed all at once.  Whenever the user and the server need to
  establish a secure channel, they can run the actual protocol
  execution through an open network (i.e., the Internet) in which an
  active attacker exists.

2.3.1.  Initialization

  U -> S: (U, W)
     The user U computes W = g^w' mod p, where w' is the effective
     password, and transmits W to the server S.  The W is registered in
     the server as the password verifier of user U.  Of course, user U
     just remembers password w only.

  If resistance to server compromise is not necessary and a node needs
  to act as both initiator and responder, e.g., as a gateway, then the
  node can store w' instead of W even when it acts as server S.  In
  either case, server S SHOULD NOT store any plaintext passwords.

  As noted above, this phase SHOULD be performed securely and all at
  once.

2.3.2.  Actual Protocol Execution

  The actual protocol execution of the AugPAKE protocol allows the user
  and the server to share an authenticated session key through an open
  network (see Figure 1).




















Shin & Kobara                 Experimental                      [Page 7]

RFC 6628         Most Efficient Augmented PAKE for IKEv2       June 2012


  +-----------------+                              +------------------+
  |     User U      |                              |  Server S (U,W)  |
  |                 |            (U, X)            |                  |
  |                 |----------------------------->|                  |
  |                 |                              |                  |
  |                 |            (S, Y)            |                  |
  |                 |<-----------------------------|                  |
  |                 |                              |                  |
  |                 |             V_U              |                  |
  |                 |----------------------------->|                  |
  |                 |                              |                  |
  |                 |             V_S              |                  |
  |                 |<-----------------------------|                  |
  |                 |                              |                  |
  +-----------------+                              +------------------+

                   Figure 1: Actual Protocol Execution

  U -> S: (U, X)
     The user U chooses a random element x from Z_q^* and computes its
     Diffie-Hellman public value X = g^x mod p.  The user sends the
     first message (U, X) to the server S.

  S -> U: (S, Y)
     If the received X from user U is 0, 1, or -1 (mod p), server S
     MUST terminate the protocol execution.  Otherwise, the server
     chooses a random element y from Z_q^* and computes Y = (X *
     (W^r))^y mod p where r = H'(0x01 | U | S | bn2bin(X)).  Note that
     X^y * g^(w * r * y) mod p can be computed from y and (w * r * y)
     efficiently using Shamir's trick [MOV97].  Then, server S sends
     the second message (S, Y) to the user U.

  U -> S: V_U
     If the received Y from server S is 0, 1, or -1 (mod p), user U
     MUST terminate the protocol execution.  Otherwise, the user
     computes K = Y^z mod p where z = 1 / (x + (w * r)) mod q and r =
     H'(0x01 | U | S | bn2bin(X)).  Also, user U generates an
     authenticator V_U = H(0x02 | U | S | bn2bin(X) | bn2bin(Y) |
     bn2bin(K)).  Then, the user sends the third message V_U to the
     server S.











Shin & Kobara                 Experimental                      [Page 8]

RFC 6628         Most Efficient Augmented PAKE for IKEv2       June 2012


  S -> U: V_S
     If the received V_U from user U is not equal to H(0x02 | U | S |
     bn2bin(X) | bn2bin(Y) | bn2bin(K)) where K = g^y mod p, server S
     MUST terminate the protocol execution.  Otherwise, the server
     generates an authenticator V_S = H(0x03 | U | S | bn2bin(X) |
     bn2bin(Y) | bn2bin(K)) and a session key SK = H(0x04 | U | S |
     bn2bin(X) | bn2bin(Y) | bn2bin(K)).  Then, server S sends the
     fourth message V_S to the user U.

  U:
     If the received V_S from server S is not equal to H(0x03 | U | S |
     bn2bin(X) | bn2bin(Y) | bn2bin(K)), user U MUST terminate the
     protocol execution.  Otherwise, the user generates a session key
     SK = H(0x04 | U | S | bn2bin(X) | bn2bin(Y) | bn2bin(K)).

  In the actual protocol execution, the sequential order of message
  exchanges is very important to avoid any possible attacks.  For
  example, if the server S sends the second message (S, Y) and the
  fourth message V_S together, any attacker can easily derive the
  correct password w with off-line dictionary attacks.

  The session key SK, shared only if the user and the server
  authenticate each other successfully, MAY be generated by using a key
  derivation function (KDF) [SP800-108].  After generating SK, the user
  and the server MUST delete all the internal states (e.g., Diffie-
  Hellman exponents x and y) from memory.

  For the formal proof [SKI10] of the AugPAKE protocol, we need to
  slightly change the computation of Y (in the above S -> U: (S, Y))
  and K (in the above S -> U: V_S) as follows: Y = (X * (W^r))^y' and K
  = g^y' where y' = H'(0x05 | bn2bin(y)).

3.  Security Considerations

  This section shows why the AugPAKE protocol (i.e., the actual
  protocol execution) is secure against passive attacks, active
  attacks, and off-line dictionary attacks, and also provides
  resistance to server compromise.

3.1.  General Assumptions

  o  An attacker is computationally bounded.

  o  Any hash functions used in the AugPAKE protocol are secure in
     terms of pre-image resistance (one-wayness), second pre-image
     resistance, and collision resistance.





Shin & Kobara                 Experimental                      [Page 9]

RFC 6628         Most Efficient Augmented PAKE for IKEv2       June 2012


3.2.  Security against Passive Attacks

  An augmented PAKE protocol is said to be secure against passive
  attacks in the sense that an attacker, who eavesdrops the exchanged
  messages, cannot compute an authenticated session key (shared between
  the honest parties in the protocol).

  In the AugPAKE protocol, an attacker can get the messages (U, X),
  (S,Y), V_U, V_S by eavesdropping, and then wants to compute the
  session key SK.  That is, the attacker's goal is to derive the
  correct K from the obtained messages X and Y, because the hash
  functions are secure and the only secret in the computation of SK is
  K = g^y mod p.  Note that

  X =     g^x mod p and

  Y =     (X * (W^r))^y = X^y * W^(r * y) = X^y * (g^y)^t = X^y * K^t

  hold where t = w' * r mod q.  Though t is determined from possible
  password candidates and X, the only way for the attacker to extract K
  from X and Y is to compute X^y.  However, the probability for the
  attacker to compute X^y is negligible in the security parameter for
  the underlying groups since both x and y are random elements chosen
  from Z_q^*.  Therefore, the AugPAKE protocol is secure against
  passive attacks.

3.3.  Security against Active Attacks

  An augmented PAKE protocol is said to be secure against active
  attacks in the sense that an attacker, who completely controls the
  exchanged messages, cannot compute an authenticated session key
  (shared with the honest party in the protocol) with the probability
  better than that of on-line dictionary attacks.  In other words, the
  probability for an active attacker to compute the session key is
  restricted by the on-line dictionary attacks where it grows linearly
  to the number of interactions with the honest party.

  In the AugPAKE protocol, the user (respectively, the server) computes
  the session key SK only if the received authenticator V_S
  (respectively, V_U) is valid.  There are three cases to be considered
  in the active attacks.

3.3.1.  Impersonation Attacks on User U

  When an attacker impersonates the user U, the attacker can compute
  the same SK (to be shared with the server S) only if the
  authenticator V_U is valid.  For a valid authenticator V_U, the
  attacker has to compute the correct K from X and Y because the hash



Shin & Kobara                 Experimental                     [Page 10]

RFC 6628         Most Efficient Augmented PAKE for IKEv2       June 2012


  functions are secure.  In this impersonation attack, the attacker of
  course knows the discrete logarithm x of X and guesses a password w''
  from the password dictionary.  So, the probability for the attacker
  to compute the correct K is bounded by the probability of w = w''.
  That is, this impersonation attack is restricted by the on-line
  dictionary attacks where the attacker can try a guessed password
  communicating with the honest server S.  Therefore, the AugPAKE
  protocol is secure against impersonation attacks on user U.

3.3.2.  Impersonation Attacks on Server S

  When an attacker impersonates the server S, the attacker can compute
  the same SK (to be shared with the user U) only if the authenticator
  V_S is valid.  For a valid authenticator V_S, the attacker has to
  compute the correct K from X and Y because the hash functions are
  secure.  In this impersonation attack, the attacker chooses a random
  element y and guesses a password w'' from the password dictionary so
  that

  Y =     (X * (W'^r))^y = X^y * W'^(r * y) = X^y * (g^y)^t'

  where t' = w'' * r mod q.  The probability for the attacker to
  compute the correct K is bounded by the probability of w = w''.
  Also, the attacker knows whether the guessed password is equal to w
  or not by seeing the received authenticator V_U.  However, when w is
  not equal to w'', the probability for the attacker to compute the
  correct K is negligible in the security parameter for the underlying
  groups since the attacker has to guess the discrete logarithm x
  (chosen by user U) as well.  That is, this impersonation attack is
  restricted by the on-line dictionary attacks where the attacker can
  try a guessed password communicating with the honest user U.
  Therefore, the AugPAKE protocol is secure against impersonation
  attacks on server S.

3.3.3.  Man-in-the-Middle Attacks

  When an attacker performs the man-in-the-middle attack, the attacker
  can compute the same SK (to be shared with the user U or the server
  S) only if one of the authenticators V_U, V_S is valid.  Note that if
  the attacker relays the exchanged messages honestly, it corresponds
  to the passive attacks.  In order to generate a valid authenticator
  V_U or V_S, the attacker has to compute the correct K from X and Y
  because the hash functions are secure.  So, the attacker is in the
  same situation as discussed above.  Though the attacker can test two
  passwords (one with user U and the other with server S), it does not
  change the fact that this attack is restricted by the on-line
  dictionary attacks where the attacker can try a guessed password




Shin & Kobara                 Experimental                     [Page 11]

RFC 6628         Most Efficient Augmented PAKE for IKEv2       June 2012


  communicating with the honest party.  Therefore, the AugPAKE protocol
  is also secure against man-in-the-middle attacks.

3.4.  Security against Off-line Dictionary Attacks

  An augmented PAKE protocol is said to be secure against off-line
  dictionary attacks in the sense that an attacker, who completely
  controls the exchanged messages, cannot reduce the possible password
  candidates better than on-line dictionary attacks.  Note that in the
  on-line dictionary attacks, an attacker can test one guessed password
  by running the protocol execution (i.e., communicating with the
  honest party).

  As discussed in Section 3.2, an attacker in the passive attacks does
  not compute X^y (and the correct K = g^y mod p) from the obtained
  messages X, Y.  This security analysis also indicates that, even if
  the attacker can guess a password, the K is derived independently
  from the guessed password.  Next, we consider an active attacker
  whose main goal is to perform the off-line dictionary attacks in the
  AugPAKE protocol.  As in Section 3.3, the attacker can 1) test one
  guessed password by impersonating the user U or the server S, or 2)
  test two guessed passwords by impersonating the server S (to the
  honest user U) and impersonating the user U (to the honest server S)
  in the man-in-the-middle attacks.  Whenever the honest party receives
  an invalid authenticator, the party terminates the actual protocol
  execution without sending any message.  In fact, this is important to
  prevent an attacker from testing more than one password in the active
  attacks.  Since passive attacks and active attacks cannot remove the
  possible password candidates more efficiently than on-line dictionary
  attacks, the AugPAKE protocol is secure against off-line dictionary
  attacks.

3.5.  Resistance to Server Compromise

  We consider an attacker who has obtained a (user's) password verifier
  from a server.  In the (augmented) PAKE protocols, there are two
  limitations [BJKMRSW00]: 1) the attacker can find out the correct
  password from the password verifier with the off-line dictionary
  attacks because the verifier has the same entropy as the password;
  and 2) if the attacker impersonates the server with the password
  verifier, this attack is always possible because the attacker has
  enough information to simulate the server.  An augmented PAKE
  protocol is said to provide resistance to server compromise in the
  sense that the attacker cannot impersonate the user without
  performing off-line dictionary attacks on the password verifier.

  In order to show resistance to server compromise in the AugPAKE
  protocol, we consider an attacker who has obtained the password



Shin & Kobara                 Experimental                     [Page 12]

RFC 6628         Most Efficient Augmented PAKE for IKEv2       June 2012


  verifier W and then tries to impersonate the user U without off-line
  dictionary attacks on W.  As a general attack, the attacker chooses
  two random elements c and d from Z_q^*, and computes

  X =     (g^c) * (W^d) mod p

  and sends the first message (U, X) to the server S.  In order to
  impersonate user U successfully, the attacker has to compute the
  correct K = g^y mod p where y is randomly chosen by server S.  After
  receiving Y from the server, the attacker's goal is to find out a
  value e satisfying Y^e = K mod p.  That is,

           log_g (Y^e) = log_g K mod q

           (c + (w' * d) + (w' * r)) * y * e = y mod q

           (c + w' * (d + r)) * e = 1 mod q

  where log_g K indicates the logarithm of K to the base g.  Since
  there is no off-line dictionary attacks on W, the above solution is
  that e = 1 / c mod q and d = -r mod q.  However, the latter is not
  possible since r is determined by X (i.e., r = H'(0x01 | U | S |
  bn2bin(X))) and H' is a secure hash function.  Therefore, the AugPAKE
  protocol provides resistance to server compromise.

4.  Implementation Consideration

  As discussed in Section 3, the AugPAKE protocol is secure against
  passive attacks, active attacks, and off-line dictionary attacks, and
  provides resistance to server compromise.  However, an attacker in
  the on-line dictionary attacks can check whether one password
  (guessed from the password dictionary) is correct or not by
  interacting with the honest party.  Let N be the number of possible
  passwords within a dictionary.  Certainly, the attacker's success
  probability grows with the probability of (I / N) where I is the
  number of interactions with the honest party.  In order to provide a
  reasonable security margin, implementation SHOULD take a
  countermeasure to the on-line dictionary attacks.  For example, it
  would take about 90 years to test 2^(25.5) passwords with a one
  minute lock-out for 3 failed password guesses (see Appendix A in
  [SP800-63]).

5.  AugPAKE for IKEv2

5.1.  Integration into IKEv2

  IKE is a primary component of IPsec in order to provide mutual
  authentication and establish security associations between two peers.



Shin & Kobara                 Experimental                     [Page 13]

RFC 6628         Most Efficient Augmented PAKE for IKEv2       June 2012


  The AugPAKE protocol, described in Section 2, can be easily
  integrated into IKEv2 [RFC5996] as a "weak" pre-shared key
  authentication method (see Figure 2).  This integrated protocol
  preserves the IKEv2 structure and security guarantees (e.g., identity
  protection).  Note that the AugPAKE protocol can be used in three
  scenarios for IKEv2: "Security Gateway to Security Gateway Tunnel",
  "Endpoint-to-Endpoint Transport", and "Endpoint to Security Gateway
  Tunnel".

   Initiator                               Responder
  -----------                             -----------

  IKE_SA_INIT:

   HDR, SAi1, KEi, Ni,
   N(SECURE_PASSWORD_METHODS)      -->
                                   <--  HDR, SAr1, KEr, Nr,
                                        N(SECURE_PASSWORD_METHODS)

  IKE_AUTH:

   HDR, SK {IDi, GSPM(PVi), [IDr,]
            SAi2, TSi, TSr}        -->
                                   <--  HDR, SK {IDr, GSPM(PVr)}
   HDR, SK {AUTHi}                 -->
                                   <--  HDR, SK {AUTHr, SAr2, TSi, TSr}

                      Figure 2: AugPAKE into IKEv2

  The changes from IKEv2 are summarized as follows:

  o  In addition to IKEv2, one round trip is added.

  o  The initiator (respectively, the responder) sends an
     N(SECURE_PASSWORD_METHODS) notification to indicate its
     willingness to use AugPAKE in the IKE_SA_INIT exchange.

  o  The added values GSPM(PVi) and GSPM(PVr) in the IKE_AUTH exchange
     correspond to X and Y of the AugPAKE protocol in Section 2,
     respectively.

  o  From K (represented as an octet string) derived in Section 2, the
     AUTH values in the IKE_AUTH exchange are computed as

        AUTHi = prf( prf(K, "AugPAKE for IKEv2"),
        <InitiatorSignedOctets> | GSPM(PVi) | GSPM(PVr) | IDi | IDr)





Shin & Kobara                 Experimental                     [Page 14]

RFC 6628         Most Efficient Augmented PAKE for IKEv2       June 2012


        AUTHr = prf( prf(K, "AugPAKE for IKEv2"),
        <ResponderSignedOctets> | GSPM(PVr) | GSPM(PVi) | IDr | IDi)

5.2.  Payload Formats

5.2.1.  Notify Payload

  The Notify Payload N(SECURE_PASSWORD_METHODS) [RFC6467], indicating a
  willingness to use AugPAKE in the IKE_SA_INIT exchange, is defined as
  follows:

                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ! Next Payload  !C!  RESERVED   !         Payload Length        !
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  !  Protocol ID  !   SPI Size    !      Notify Message Type      !
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  !                                                               !
  ~                Security Parameter Index (SPI)                 ~
  !                                                               !
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  !                                                               !
  ~                       Notification Data                       ~
  !                                                               !
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  As in [RFC5996], the Protocol ID and SPI Size SHALL be set to zero
  and, therefore, the SPI field SHALL be empty.  The Notify Message
  Type will be 16424 [RFC6467].

  The Notification Data contains the list of the 16-bit secure password
  method numbers:

                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ! Secure Password Method #1     ! Secure Password Method #2     !
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ! Secure Password Method #3     ! ...                           !
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The response Notify Payload contains exactly one 16-bit secure
  password method number (i.e., for AugPAKE here) inside the
  Notification Data field.






Shin & Kobara                 Experimental                     [Page 15]

RFC 6628         Most Efficient Augmented PAKE for IKEv2       June 2012


5.2.2.  Generic Secure Password Method Payload

  The Generic Secure Password Method (GSPM) Payload, denoted GSPM(PV)
  in Section 5.1, is defined as follows:

                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ! Next Payload  !C!  RESERVED   !         Payload Length        !
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  !                                                               !
  ~                                                               ~
  !          Data Specific to the Secure Password Method          !
  ~                                                               ~
  !                                                               !
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
               The GSPM Payload Type will be 49 [RFC6467].

  Since the GSPM(PV) value is a group element, the encoded octet string
  is actually used in the "Data Specific to the Secure Password Method"
  field.

6.  IANA Considerations

  IANA has assigned value 2 to the method name "AugPAKE" from the
  "IKEv2 Secure Password Methods" registry in [IKEV2-IANA].

7.  References

7.1.  Normative References

  [FIPS180-3]   Information Technology Laboratory, "Secure Hash
                Standard (SHS)", NIST FIPS Publication 180-3, October
                2008, <http://csrc.nist.gov/publications/fips/
                fips180-3/fips180-3_final.pdf>.

  [IKEV2-IANA]  IANA, "Internet Key Exchange Version 2 (IKEv2)
                Parameters",
                <http://www.iana.org/assignments/ikev2-parameters>.

  [RFC2119]     Bradner, S., "Key words for use in RFCs to Indicate
                Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC3454]     Hoffman, P. and M. Blanchet, "Preparation of
                Internationalized Strings ("stringprep")", RFC 3454,
                December 2002.





Shin & Kobara                 Experimental                     [Page 16]

RFC 6628         Most Efficient Augmented PAKE for IKEv2       June 2012


  [RFC4013]     Zeilenga, K., "SASLprep: Stringprep Profile for User
                Names and Passwords", RFC 4013, February 2005.

  [RFC4282]     Aboba, B., Beadles, M., Arkko, J., and P. Eronen, "The
                Network Access Identifier", RFC 4282, December 2005.

  [RFC5996]     Kaufman, C., Hoffman, P., Nir, Y., and P. Eronen,
                "Internet Key Exchange Protocol Version 2 (IKEv2)", RFC
                5996, September 2010.

  [SP800-108]   Chen, L., "Recommendation for Key Derivation Using
                Pseudorandom Functions (Revised)", NIST Special
                Publication 800-108, October 2009,
                <http://csrc.nist.gov/publications/
                nistpubs/800-108/sp800-108.pdf>.

7.2.  Informative References

  [BJKMRSW00]   Bellare, M., Jablon, D., Krawczyk, H., MacKenzie, P.,
                Rogaway, P., Swaminathan, R., and T. Wu, "Proposal for
                P1363 Study Group on Password-Based
                Authenticated-Key-Exchange Methods", IEEE P1363.2:
                Password-Based Public-Key Cryptography, Submissions to
                IEEE P1363.2 , February 2000, <http://grouper.ieee.org/
                groups/1363/passwdPK/contributions/p1363-pw.pdf>.

  [BM92]        Bellovin, S. and M. Merritt, "Encrypted Key Exchange:
                Password-based Protocols Secure against Dictionary
                Attacks", Proceedings of the IEEE Symposium on Security
                and Privacy, IEEE Computer Society, 1992.

  [BM93]        Bellovin, S. and M. Merritt, "Augmented Encrypted Key
                Exchange: A Password-based Protocol Secure against
                Dictionary Attacks and Password File Compromise",
                Proceedings of the 1st ACM Conference on Computer and
                Communication Security, ACM Press, 1993.

  [DH76]        Diffie, W. and M. Hellman, "New Directions in
                Cryptography", IEEE Transactions on Information Theory
                Volume IT-22, Number 6, 1976.











Shin & Kobara                 Experimental                     [Page 17]

RFC 6628         Most Efficient Augmented PAKE for IKEv2       June 2012


  [H10]         Harkins, D., "Password-Based Authentication in IKEv2:
                Selection Criteria and Considerations", Work in
                Progress, October 2010.

  [IEEEP1363.2] IEEE P1363.2, "Password-Based Public-Key Cryptography",
                Submissions to IEEE P1363.2 , <http://grouper.ieee.org/
                groups/1363/passwdPK/submissions.html>.

  [ISO]         ISO/IEC JTC 1/SC 27 11770-4, "Information technology --
                Security techniques -- Key management -- Part 4:
                Mechanisms based on weak secrets", April 2006,
                <http://www.iso.org/iso/iso_catalogue/catalogue_tc/
                catalogue_detail.htm?csnumber=39723>.

  [MOV97]       Menezes, A., Oorschot, P., and S. Vanstone,
                "Simultaneous Multiple Exponentiation", in Handbook of
                Applied Cryptography, CRC Press, 1997.

  [RFC2945]     Wu, T., "The SRP Authentication and Key Exchange
                System", RFC 2945, September 2000.

  [RFC5114]     Lepinski, M. and S. Kent, "Additional Diffie-Hellman
                Groups for Use with IETF Standards", RFC 5114, January
                2008.

  [RFC6467]     Kivinen, T., "Secure Password Framework for Internet
                Key Exchange Version 2 (IKEv2)", RFC 6467, December
                2011.

  [SKI10]       Shin, S., Kobara, K., and H. Imai, "Security Proof of
                AugPAKE", Cryptology ePrint Archive:  Report 2010/334,
                June 2010, <http://eprint.iacr.org/2010/334>.

  [SP800-56A]   Barker, E., Johnson, D., and M. Smid, "Recommendation
                for Pair-Wise Key Establishment Schemes Using Discrete
                Logarithm Cryptography (Revised)", NIST Special
                Publication 800-56A, March 2007, <http://csrc.nist.gov/
                publications/nistpubs/800-56A/
                SP800-56A_Revision1_Mar08-2007.pdf>.

  [SP800-63]    Burr, W., Dodson, D., and W. Polk, "Electronic
                Authentication Guideline", NIST Special Publication
                800-63 Version 1.0.2, April 2006,
                <http://csrc.nist.gov/publications/
                nistpubs/800-63/SP800-63V1_0_2.pdf>.






Shin & Kobara                 Experimental                     [Page 18]

RFC 6628         Most Efficient Augmented PAKE for IKEv2       June 2012


Appendix A.  Evaluation by PAKE Selection Criteria

  Below is a self-evaluation of the AugPAKE protocol following PAKE
  selection criteria [H10].

  SEC1: AugPAKE is zero knowledge (password) proof.  It is secure
        against passive/active/off-line dictionary attacks.  It is also
        resistant to server-compromise impersonation attacks.

  SEC2: AugPAKE provides Perfect Forward Secrecy (PFS) and is secure
        against Denning-Sacco attack.

  SEC3: IKEv2 identity protection is preserved.

  SEC4: Any cryptographically secure Diffie-Hellman groups can be used.

  SEC5: The formal security proof of AugPAKE can be found at [SKI10].

  SEC6: AugPAKE can be easily used with strong credentials.

  SEC7: In the case of server compromise, an attacker has to perform
        off-line dictionary attacks while computing modular
        exponentiation with a password candidate.

  SEC8: AugPAKE is secure regardless of the transform negotiated by
        IKEv2.


  IPR1: AugPAKE was publicly disclosed on Oct. 2008.

  IPR2: AIST applied for a patent in Japan on July 10, 2008.  AIST
        would provide royal-free license of AugPAKE.

  IPR3: IPR disclosure (see https://datatracker.ietf.org/ipr/1284/)


  MISC1:  AugPAKE adds one round trip to IKEv2.

  MISC2:  The initiator needs to compute only 2 modular exponentiation
          computations while the responder needs to compute 2.17
          modular exponentiation computations.  AugPAKE needs to
          exchange 2 group elements and 2 hash values.  This is almost
          the same computation/communication costs as the plain Diffie-
          Hellman (DH) key exchange.  If we use a large (e.g.,
          2048/3072-bits) parent group, the hash size would be
          relatively small.

  MISC3:  AugPAKE has the same performance for any type of secret.



Shin & Kobara                 Experimental                     [Page 19]

RFC 6628         Most Efficient Augmented PAKE for IKEv2       June 2012


  MISC4:  Internationalization of character-based passwords can be
          supported.

  MISC5:  AugPAKE can be implemented over any ECP (Elliptic Curve Group
          over GF[P]), EC2N (Elliptic Curve Group over GF[2^N]), and
          MODP (Modular Exponentiation Group) groups.

  MISC6:  AugPAKE has request/response nature of IKEv2.

  MISC7:  No additional negotiation is needed.

  MISC8:  No Trusted Third Party (TTP) and clock synchronization

  MISC9:  No additional primitive (e.g., Full Domain Hashing (FDH)
          and/or ideal cipher) is needed.

  MISC10: As above, AugPAKE can be implemented over any ECP/EC2N
          groups.

  MISC11: Easy implementation.  We already implemented AugPAKE and have
          been testing in AIST.

Authors' Addresses

  SeongHan Shin
  AIST
  Central 2, 1-1-1, Umezono
  Tsukuba, Ibaraki 305-8568
  JP

  Phone: +81 29-861-2670
  EMail: [email protected]


  Kazukuni Kobara
  AIST

  EMail: [email protected]













Shin & Kobara                 Experimental                     [Page 20]