Internet Engineering Task Force (IETF)                      IJ. Wijnands
Request for Comments: 6512                                      E. Rosen
Category: Standards Track                                  Cisco Systems
ISSN: 2070-1721                                             M. Napierala
                                                                   AT&T
                                                             N. Leymann
                                                       Deutsche Telekom
                                                          February 2012


   Using Multipoint LDP When the Backbone Has No Route to the Root

Abstract

  The control protocol used for constructing Point-to-Multipoint and
  Multipoint-to-Multipoint Label Switched Paths ("MP LSPs") contains a
  field that identifies the address of a "root node".  Intermediate
  nodes are expected to be able to look up that address in their
  routing tables.  However, this is not possible if the route to the
  root node is a BGP route and the intermediate nodes are part of a
  BGP-free core.  This document specifies procedures that enable an MP
  LSP to be constructed through a BGP-free core.  In these procedures,
  the root node address is temporarily replaced by an address that is
  known to the intermediate nodes and is on the path to the true root
  node.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc6512.

Copyright Notice

  Copyright (c) 2012 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of



Wijnands, et al.             Standards Track                    [Page 1]

RFC 6512         Using mLDP with Recursive Opaque Values   February 2012


  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1. Introduction ....................................................3
  2. The Recursive Opaque Value ......................................5
     2.1. Encoding ...................................................5
     2.2. Procedures .................................................5
  3. The VPN-Recursive Opaque Value ..................................6
     3.1. Encoding ...................................................6
     3.2. Procedures .................................................7
          3.2.1. Non-Segmented Inter-AS P-Tunnels ....................7
          3.2.2. Limited Carrier's Carrier Function ..................9
  4. IANA Considerations ............................................10
  5. Security Considerations ........................................10
  6. Acknowledgments ................................................10
  7. References .....................................................11
     7.1. Normative References ......................................11
     7.2. Informative References ....................................11



























Wijnands, et al.             Standards Track                    [Page 2]

RFC 6512         Using mLDP with Recursive Opaque Values   February 2012


1.  Introduction

  The document [mLDP] extends LDP [LDP] to support multipoint Label
  Switched Paths.  These extensions are known as "Multipoint LDP", or
  more simply, as "mLDP".  [mLDP] defines several LDP Forwarding
  Equivalence Class (FEC) element encodings: "Point-to-Multipoint"
  (P2MP), "Multipoint-to-Multipoint (MP2MP) Upstream", and "MP2MP
  Downstream".

  The encoding for these three FEC elements, as defined in [mLDP], is
  shown in Figure 1.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Type      |        Address Family         | Address Length|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     ~                       Root Node Address                       ~
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |    Opaque Length              |                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
     ~                                                               ~
     |                     Opaque Value                              |
     |                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                  Figure 1: mLDP FEC Element Encoding

  Note that a P2MP or MP2MP Label Switched Path ("MP LSP") is
  identified by the combination of a "root node" and a variable length
  "opaque value".  The root node also plays a special role in the mLDP
  procedures:  mLDP messages that are "about" a particular MP LSP are
  forwarded to the LDP adjacency that is the next hop on the route to
  the root node.

  Sometimes, it is desirable for an MP LSP to pass through a part of
  the network in which there is no route to the root node.  For
  instance, consider the topology of Figure 2.

          CE1----PE1---P1---- ...----P2 ----PE2----CE2----R

                               Figure 2

  In Figure 2, CE1 and CE2 are "Customer Edge routers", R is a customer
  router at the same VPN site as CE2, and PE1 and PE2 are "Provider
  Edge routers".  Suppose that PE1 has a BGP-learned route for R, with




Wijnands, et al.             Standards Track                    [Page 3]

RFC 6512         Using mLDP with Recursive Opaque Values   February 2012


  PE2 as the BGP next hop.  Suppose also that the provider's interior
  routers (such as P1 and P2) do not have any BGP-learned routes and,
  in particular, do not have any routes to R.

  In such an environment, unicast data packets from CE1 addressed to R
  would get encapsulated by PE1, tunneled to PE2, decapsulated by PE2,
  and forwarded to CE2.

  Suppose now that CE1 is trying to set up an MP LSP whose root is R,
  and the intention is that the provider's network will participate in
  the construction of the LSP.  Then, the mLDP messages identifying the
  LSP must be passed from CE1 to PE1, from PE1 to P1, ..., from P2 to
  PE2, from PE2 to CE2, and from CE2 to R.

  To begin the process, CE1 creates an MP FEC element with the address
  of R as the root node address and passes that FEC element via mLDP to
  PE1.  However, PE1 cannot use this same FEC element to identify the
  LSP in the LDP messages it sends to P1, because P1 does not have a
  route to R.

  However, PE1 does know that PE2 is the BGP next hop on the path to R.
  What is needed is a method whereby:

  -  PE1 can tell P1 to set up an LSP as if the root node were PE2,

  -  PE2 can determine that the LSP in question is really rooted at R,
     not at PE2 itself, and

  -  PE2 can determine the original FEC element that CE1 passed to PE1,
     so that PE2 can pass it on to CE2.

  This document defines the procedures that allow CE1 to create an LSP
  rooted at R.  These procedures require PE1 to modify the MP FEC
  element before sending an mLDP message to P1.  The modified FEC
  element has PE2 as the root and the original FEC element as the
  opaque value.  This requires a new type of opaque value.  Since the
  opaque value contains a FEC element, we call this a "Recursive Opaque
  Value".  When PE2 sends an mLDP message to CE2, it replaces the FEC
  element with the opaque value, thus undoing the recursion.  Details
  are in Section 2.

  Section 3 defines the "VPN-Recursive Opaque Value".  Whereas the
  "Recursive Opaque Value" carries the original FEC, the "VPN-Recursive
  Opaque Value" carries the original FEC plus a Route Distinguisher
  (RD).  This is applicable when MP LSPs are being used to carry the
  multicast traffic of a VPN [MVPN].  Details are in Section 3.





Wijnands, et al.             Standards Track                    [Page 4]

RFC 6512         Using mLDP with Recursive Opaque Values   February 2012


  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

2.  The Recursive Opaque Value

2.1.  Encoding

  We define a new type of opaque value, the Recursive Opaque Value.
  This is a "basic type", identified by a 1-octet type field.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Type = 7     |         Length                |               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+               |
      ~                                                               ~
      |                 P2MP or MP2MP FEC Element                     |
      |                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                     Figure 3: Recursive Opaque Value

  The value field of the Recursive Opaque Value is itself a P2MP or
  MP2MP FEC element, encoded exactly as specified in [mLDP], with a
  type field, a length field, and value field of its own.  The length
  of the Recursive Opaque Value thus includes the lengths of the type,
  length, and value fields of the contained FEC element.

2.2.  Procedures

  In the topology of Figure 2, let us suppose that CE1 sends PE1 an MP
  FEC element whose root node is R and whose opaque value is Q.  We
  will refer to this FEC element as "CE1-FEC".  We may think of CE1-FEC
  as an ordered pair, as follows:

      CE1-FEC = <root=R, opaque_value=Q>.

  PE1 determines that the root node R matches a BGP route, with a BGP
  next hop of PE2.  PE1 also knows by its configuration that the
  interior routers on the path to PE2 are "BGP-free" and thus have no
  route to R.

  PE1 therefore creates a new MP FEC element, whose root node address
  is the address of PE2 and whose opaque value is a Recursive Opaque
  Value whose value field contains CE1-FEC.  We refer to this FEC
  element as PE2-FEC:



Wijnands, et al.             Standards Track                    [Page 5]

RFC 6512         Using mLDP with Recursive Opaque Values   February 2012


      PE2-FEC = <root=PE2, opaque_value=CE1-FEC>, i.e.,

      PE2-FEC = <root=PE2, opaque_value=<root=R,
                                         opaque_value=Q>>

  PE1 then sends this FEC element to P1.

  As far as the interior routers are concerned, they are being
  requested to build an MP LSP whose root node is PE2.  They MUST NOT
  interpret the opaque value at all.

  When PE2-FEC arrives at PE2, PE2 notes that it (PE2) is the
  identified root node and that the opaque value is a Recursive Opaque
  Value.  Therefore, PE2 MUST replace PE2-FEC with the contents of the
  Recursive Opaque Value (i.e., with CE1-FEC) before doing any further
  processing.  This will result in CE1-FEC being sent on to CE2, and
  further from CE2 to R.  Note that CE1-FEC will contain the LSP root
  node specified by CE1; the presumption is that PE2 has a route to
  this root node.

3.  The VPN-Recursive Opaque Value

3.1.  Encoding

  We define a new type of opaque value, the VPN-Recursive Opaque Value.
  This is a "basic type", identified by a 1-octet type field.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Type = 8     |         Length                |               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+               |
      |                                                               |
      |       Route Distinguisher (8 octets)          +-+-+-+-+-+-+-+-+
      |                                               |               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+               |
      ~                                                               ~
      |                 P2MP or MP2MP FEC Element                     |
      |                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                     Figure 4: VPN-Recursive Opaque Value








Wijnands, et al.             Standards Track                    [Page 6]

RFC 6512         Using mLDP with Recursive Opaque Values   February 2012


  The value field of the VPN-Recursive Opaque Value consists of an
  8-octet Route Distinguisher (RD), followed by a P2MP or MP2MP FEC
  element, encoded exactly as specified in [mLDP], with a type field, a
  length field, and value field of is own.  The length of the
  VPN-Recursive Opaque Value thus includes the 8 octets of RD plus the

  lengths of the type, length, and values fields of the contained FEC
  element.

3.2.  Procedures

3.2.1.  Non-Segmented Inter-AS P-Tunnels

  Consider the inter-AS (Autonomous System) VPN scenario depicted in
  Figure 5.

          PE1 --- P1 ---- ASBR1 ... ASBR2 ---- P2 ---- PE2

                               Figure 5

  Suppose this is an "option B" VPN interconnect ([VPN], Section 10).
  This means that the Autonomous System Border Router (ASBR) in the
  first Autonomous System (i.e., ASBR1) does not have a route to PE
  routers in other ASes (such as PE2).  Suppose also that the Multicast
  VPN (MVPN) policy is to instantiate Provider Multicast Service
  Interfaces (PMSIs) [MVPN] using mLDP and that "non-segmented inter-AS
  P-tunnels" [MVPN] are being used.

  In this scenario, PE1 may need to join a P2MP or MP2MP LSP whose root
  is PE2.  P1 has no route to PE2, and all PE1 knows about the route to
  PE2 is that ASBR1 is the BGP next hop.  Since P1 has no root to PE2,
  PE1 needs to originate an mLDP message with a FEC element that
  identifies ASBR1 as the root.  This FEC element must contain enough
  information to enable ASBR1 to find the next hop towards PE2 even
  though ASBR1 does not have a route to PE2.

  Although ASBR1 does not have a route to PE2, it does have a BGP
  Intra-AS Inclusive PMSI (I-PMSI) auto-discovery (A-D) route [MVPN]
  whose Network Layer Reachability Information (NLRI) contains PE2's IP
  address together with a particular RD.  PE1 also has this Inter-AS
  I-PMSI A-D route.  The LSP needs to be set up along the path
  established by the Intra-AS I-PMSI A-D routes.  Therefore, one must
  use a Recursive FEC element that contains the RD as well as the
  address of PE2.  The "VPN-Recursive FEC Element" defined herein is
  used for this purpose.






Wijnands, et al.             Standards Track                    [Page 7]

RFC 6512         Using mLDP with Recursive Opaque Values   February 2012


  This enables us to provide the same functionality for mLDP P-tunnels
  that is provided for PIM P-tunnels in Section 8.1.3.2 of [MVPN]
  through the use of the MVPN Join Attribute.

  At PE1 in Figure 4, the LSP to be created is associated with a
  particular VPN Routing and Forwarding Table (VRF).  PE1 looks up in
  that VRF the Intra-AS I-PMSI A-D route originated by PE2.  It finds
  that the BGP next hop of that route is ASBR1.  So, it creates a P2MP
  or MP2MP FEC element whose root is ASBR1 and whose opaque value is a
  VPN-Recursive FEC element.  The VPN-Recursive FEC element itself
  consists of a root, an RD, and an opaque value, set as follows:

  -  The root is PE2.

  -  The RD is the RD from the NLRI of the Intra-AS A-D route
     originated by PE2.

  -  The opaque value is chosen (by some method outside the scope of
     this document) so as to be unique in the context of PE2.  (For
     example, it may have been specified in a PMSI Tunnel Attribute
     originated by PE2.)  We will refer to this opaque value as "Q".

  The resulting FEC element can be informally represented as

      <root=ASBR1, opaque_value=<root=PE2, RD, opaque_value=Q>>.

  PE1 can now begin setting up the LSP by using this FEC element in an
  LDP Label Mapping message sent towards ASBR1.

  When ASBR1 receives, over a non-VRF interface, an mLDP Label Mapping
  message containing this FEC element, it sees that it is the root and
  that the opaque value is a VPN-Recursive Opaque Value.  It parses the
  VPN-Recursive Opaque value and extracts the root value, PE2.

  If ASBR1 has a route to PE2, it continues setting up the LSP by using
  the following FEC element:

      <root=PE2, opaque_value=Q>

  However, if ASBR1 does not have a route to PE2, it looks for an
  Intra-AS I-PMSI A-D route whose NLRI contains PE2's address along
  with the specified RD value.  Say the BGP next hop of that route is
  ASBR2.  Then ASBR1 continues setting up the LSP by using the
  following FEC element:

      <root=ASBR2, opaque_value=<root=PE2, RD, opaque_value=Q>>.





Wijnands, et al.             Standards Track                    [Page 8]

RFC 6512         Using mLDP with Recursive Opaque Values   February 2012


  Note that in this case, the root has changed from ASBR1 to ASBR2, but
  the opaque value is the unchanged VPN-Recursive FEC element.

3.2.2.  Limited Carrier's Carrier Function

  Another possible use of the VPN-Recursive FEC is to provide a limited
  version of "Carrier's Carrier Service".  Referring again to the
  topology of Figure 2, suppose that PE1/PE2 are offering "Carrier's
  Carrier VPN Service" [VPN] to CE1/CE2.  CE1 sends PE1 an MP FEC
  element whose root node is R and whose opaque value is Q.  We will
  refer to this FEC element as "CE1-FEC".  However, PE1's route to R
  will be in a VRF.  Therefore, the FEC element created by PE1 must
  contain some identifier that PE2 can use to find the proper VRF in
  which to look up the address of R.

  When PE1 looks up the address of R in a VRF, it will find a route in
  the VPN-IP address family.  The next hop will be PE2, but there will
  also be a Route Distinguisher (RD) as part of that NLRI of the
  matching route.  In this case, the new FEC element created by PE1 has
  the address of PE2 as the root node address and has a VPN-Recursive
  Opaque Value.  The value field of the VPN-Recursive Opaque Value
  consists of the 8-octet RD followed by CE1-FEC.

  As far as the interior routers are concerned, they are being
  requested to build an MP LSP whose root node is PE2.  They MUST NOT
  interpret the opaque value at all.

  When an mLDP Label Mapping message containing PE2-FEC arrives at PE2
  over a VRF interface, PE2 notes that it is the identified root node
  and that the opaque value is a VPN-Recursive Opaque Value.
  Therefore, it MUST replace PE2-FEC with the contents of the
  VPN-Recursive Opaque Value (i.e., with CE1-FEC) before doing any
  further processing.  It uses the VRF to look up the path to R.  This
  will result in CE1-FEC being sent on to CE2, and presumably further
  from CE2 to R.

  In this scenario, the RD in the VPN-Recursive Opaque Value also
  ensures uniqueness of the FEC element within the inner carrier's
  network.

  This way of providing Carrier's Carrier service has limited
  applicability, as it only works under the following conditions:

  -  Both the inner carrier and the outer carrier are using non-
     segmented mLDP P-tunnels.






Wijnands, et al.             Standards Track                    [Page 9]

RFC 6512         Using mLDP with Recursive Opaque Values   February 2012


  -  The inner carrier is not aggregating the P-tunnels of the outer
     carrier but is content to carry each such P-tunnel in a single
     P-tunnel of its own.

  The Carrier's Carrier scenario can be distinguished from the inter-AS
  scenario by the fact that in the former, the mLDP messages are being
  exchanged on VRF interfaces.

4.  IANA Considerations

  [mLDP] defines a registry for "The LDP MP Opaque Value Element Basic
  Type".  Two new code points have been assigned in this registry:

  -  Recursive Opaque Value: Type 7

     An opaque value of this type is itself a TLV that encodes an mLDP
     FEC type, as defined in [mLDP].

  -  VPN-Recursive Opaque Value: Type 8

     An opaque value of this type consists of an 8-octet Route
     Distinguisher as defined in [VPN], followed by a TLV that encodes
     an mLDP FEC type, as defined in [mLDP].

5.  Security Considerations

  The security considerations of [LDP] and [mLDP] apply.

  Unauthorized modification of the FEC elements defined in this
  document can disrupt the creation of the multipoint LSPs or can cause
  the multipoint LSPs to pass through parts of the network where they
  are not supposed to go.  This could potentially be used as part of an
  attack to illegitimately insert or intercept multicast traffic.
  However, since the FEC elements defined in this document are not
  inherently more vulnerable to this form of attack than are the
  previously defined FEC elements, this document does not add new
  security vulnerabilities.

  A description of general security issues for MPLS can be found in
  [RFC5920].

6.  Acknowledgments

  The authors wish to thank Toerless Eckert for his contribution to
  this work.






Wijnands, et al.             Standards Track                   [Page 10]

RFC 6512         Using mLDP with Recursive Opaque Values   February 2012


7.  References

7.1.  Normative References

  [LDP]     Andersson, L., Ed., Minei, I., Ed., and B. Thomas, Ed.,
            "LDP Specification", RFC 5036, October 2007.

  [mLDP]    Wijnands, IJ., Ed., Minei, I., Ed., Kompella, K., and B.
            Thomas, "Label Distribution Protocol Extensions for Point-
            to-Multipoint and Multipoint-to-Multipoint Label Switched
            Paths", RFC 6388, November 2011.

  [MVPN]    Rosen, E., Ed., and R. Aggarwal, Ed., "Multicast in
            MPLS/BGP IP VPNs", RFC 6513, February 2012.

  [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
            Requirement Levels", BCP 14, RFC 2119, March 1997.

  [VPN]     Rosen, E. and Y. Rekhter, "BGP/MPLS IP Virtual Private
            Networks (VPNs)", RFC 4364, February 2006.

7.2.  Informative References

  [RFC5920] Fang, L., Ed., "Security Framework for MPLS and GMPLS
            Networks", RFC 5920, July 2010.


























Wijnands, et al.             Standards Track                   [Page 11]

RFC 6512         Using mLDP with Recursive Opaque Values   February 2012


Authors' Addresses

  IJsbrand Wijnands
  Cisco Systems, Inc.
  De kleetlaan 6a Diegem 1831
  Belgium
  EMail: [email protected]

  Eric C. Rosen
  Cisco Systems, Inc.
  1414 Massachusetts Avenue
  Boxborough, MA  01719
  EMail: [email protected]

  Maria Napierala
  AT&T Labs
  200 Laurel Avenue
  Middletown, NJ  07748
  EMail: [email protected]

  Nicolai Leymann
  Deutsche Telekom
  Winterfeldtstrasse 21
  Berlin  10781
  Germany
  EMail: [email protected]

























Wijnands, et al.             Standards Track                   [Page 12]