Internet Engineering Task Force (IETF)                        P. Gutmann
Request for Comments: 6476                        University of Auckland
Category: Standards Track                                   January 2012
ISSN: 2070-1721


          Using Message Authentication Code (MAC) Encryption
              in the Cryptographic Message Syntax (CMS)

Abstract

  This document specifies the conventions for using Message
  Authentication Code (MAC) encryption with the Cryptographic Message
  Syntax (CMS) authenticated-enveloped-data content type.  This mirrors
  the use of a MAC combined with an encryption algorithm that's already
  employed in IPsec, Secure Socket Layer / Transport Layer Security
  (SSL/TLS) and Secure SHell (SSH), which is widely supported in
  existing crypto libraries and hardware and has been extensively
  analysed by the crypto community.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc6476.

Copyright Notice

  Copyright (c) 2012 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.



Gutmann                      Standards Track                    [Page 1]

RFC 6476                  MAC Encryption in CMS             January 2012


Table of Contents

  1. Introduction ....................................................2
     1.1. Conventions Used in This Document ..........................2
  2. Background ......................................................2
  3. CMS Encrypt-and-Authenticate Overview ...........................3
     3.1. Rationale ..................................................3
  4. CMS Encrypt-and-Authenticate ....................................4
     4.1. Encrypt-and-Authenticate Message Processing ................5
     4.2. Rationale ..................................................6
     4.3. Test Vectors ...............................................8
  5. SMIMECapabilities Attribute ....................................12
  6. Security Considerations ........................................12
  7. IANA Considerations ............................................13
  8. Acknowledgements ...............................................14
  9. References .....................................................14
     9.1. Normative References ......................................14
     9.2. Informative References ....................................14

1.  Introduction

  This document specifies the conventions for using MAC-authenticated
  encryption with the Cryptographic Message Syntax (CMS) authenticated-
  enveloped-data content type.  This mirrors the use of a MAC combined
  with an encryption algorithm that's already employed in IPsec, SSL/
  TLS and SSH, which is widely supported in existing crypto libraries
  and hardware and has been extensively analysed by the crypto
  community.

1.1.  Conventions Used in This Document

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

2.  Background

  Integrity-protected encryption is a standard feature of session-
  oriented security protocols like [IPsec], [SSH], and [TLS].  Until
  recently, however, integrity-protected encryption wasn't available
  for message-based security protocols like CMS, although [OpenPGP]
  added a form of integrity protection by encrypting a SHA-1 hash of
  the message alongside the message contents to provide authenticate-
  and-encrypt protection.  Usability studies have shown that users
  expect encryption to provide integrity protection [Garfinkel],
  creating cognitive dissonance problems when the security mechanisms
  don't in fact provide this assurance.




Gutmann                      Standards Track                    [Page 2]

RFC 6476                  MAC Encryption in CMS             January 2012


  This document applies the same encrypt-and-authenticate mechanism
  already employed in IPsec, SSH, and SSL/TLS to CMS (technically some
  of these actually use authenticate-and-encrypt rather than encrypt-
  and-authenticate, since what's authenticated is the plaintext and not
  the ciphertext).  This mechanism is widely supported in existing
  crypto libraries and hardware and has been extensively analysed by
  the crypto community [EncryptThenAuth].

3.  CMS Encrypt-and-Authenticate Overview

  Conventional CMS encryption uses a content-encryption key (CEK) to
  encrypt a message payload, with the CEK typically being in turn
  encrypted by a key-encryption key (KEK).  Authenticated encryption
  requires two keys: one for encryption and a second one for
  authentication.  Like other mechanisms that use authenticated
  encryption, this document employs a pseudorandom function (PRF) to
  convert a single block of keying material into the two keys required
  for encryption and authentication.  This converts the standard CMS
  encryption operation:

      KEK( CEK ) || CEK( data )

  into:

      KEK( master_secret ) || MAC( CEK( data ) )

  where the MAC key MAC-K and encryption key CEK-K are derived from the
  master_secret via:

      MAC-K := PRF( master_secret, "authentication" );
      CEK-K := PRF( master_secret, "encryption" );

3.1.  Rationale

  There are several possible means of deriving the two keys required
  for the encrypt-and-authenticate process from the single key normally
  provided by the key exchange or key transport mechanisms.  Several of
  these, however, have security or practical issues.  For example, any
  mechanism that uses the single exchanged key in its entirety for
  encryption (using, perhaps, PRF( key ) as the MAC key) can be
  converted back to unauthenticated data by removing the outer MAC
  layer and rewriting the CMS envelope back to plain EnvelopedData or
  EncryptedData.  By applying the PRF intermediate step, any attempt at
  a rollback attack will result in a decryption failure.







Gutmann                      Standards Track                    [Page 3]

RFC 6476                  MAC Encryption in CMS             January 2012


  The option chosen here -- the use of a PRF to derive the necessary
  sets of keying material from a master secret -- is well-established
  through its use in IPsec, SSH, and SSL/TLS and is widely supported in
  both crypto libraries and in encryption hardware.

  The PRF used is Password-Based Key Derivation Function 2 (PBKDF2)
  because its existing use in CMS makes it the most obvious candidate
  for such a function.  In the future, if a universal PRF -- for
  example, [HKDF] -- is adopted, then this can be substituted for
  PBKDF2 by specifying it in the prfAlgorithm field covered in
  Section 4.

  The resulting processing operations consist of a combination of the
  operations used for the existing CMS content types EncryptedData and
  AuthenticatedData, allowing them to be implemented relatively simply
  using existing code.

4.  CMS Encrypt-and-Authenticate

  The encrypt-and-authenticate mechanism is implemented within the
  existing CMS RecipientInfo framework by defining a new pseudo-
  algorithm type, authEnc, which is used in place of a monolithic
  encrypt and hash algorithm.  The RecipientInfo is used as a key
  container for the master secret used by the pseudo-algorithm from
  which the encryption and authentication keys for existing single-
  purpose encrypt-only and MAC-only algorithms are derived.  Thus,
  instead of using the RecipientInfo to communicate (for example) an
  AES or HMAC-SHA1 key, it communicates a master secret from which the
  required AES encryption and HMAC-SHA1 authentication keys are
  derived.

  The authEnc pseudo-algorithm comes in two forms: one conveying
  128 bits of keying material and one conveying 256 bits:

      id-smime OBJECT IDENTIFIER ::= { iso(1) member-body(2)
                  us(840) rsadsi(113549) pkcs(1) pkcs9(9) 16 }

      id-alg  OBJECT IDENTIFIER ::= { id-smime 3 }

      id-alg-authEnc-128 OBJECT IDENTIFIER ::= { id-alg 15 }
      id-alg-authEnc-256 OBJECT IDENTIFIER ::= { id-alg 16 }










Gutmann                      Standards Track                    [Page 4]

RFC 6476                  MAC Encryption in CMS             January 2012


   The algorithm parameters are as follows:

      AuthEncParams ::= SEQUENCE {
          prfAlgorithm   [0] AlgorithmIdentifier DEFAULT PBKDF2,
          encAlgorithm       AlgorithmIdentifier,
          macAlgorithm       AlgorithmIdentifier
          }

     prfAlgorithm is the PRF algorithm used to convert the master
     secret into the encryption and MAC keys.  The default PRF is
     [PBKDF2], which in turn has a default PRF algorithm of HMAC-SHA1.
     When this default setting is used, the PBKDF2-params 'salt'
     parameter is an empty string, and the 'iterationCount' parameter
     is one, turning the KDF into a pure PRF.

     encAlgorithm is the encryption algorithm and associated parameters
     to be used to encrypt the content.

     macAlgorithm is the MAC algorithm and associated parameters to be
     used to authenticate/integrity-protect the content.

  When the prfAlgorithm AlgorithmIdentifier is used in conjunction with
  PBKDF2 to specify a PRF other than the default PBKDF2-with-HMAC-SHA1
  one, the PBKDF2-params require that two additional algorithm
  parameters be specified.  The 'salt' parameter MUST be an empty
  (zero-length) string, and the 'iterationCount' parameter MUST be one,
  since these values aren't used in the PRF process.  In their encoded
  form as used for the PBKDF2-params, these two parameters have the
  value 08 00 02 01 01.

  As a guideline for authors specifying the use of PRFs other than
  PBKDF2, any additional parameters such as salts, tags, and
  identification strings SHOULD be set to empty strings, and any
  iteration count SHOULD be set to one.

4.1.  Encrypt-and-Authenticate Message Processing

  The randomly generated master secret to be communicated via the
  RecipientInfo(s) is converted to separate encryption and
  authentication keys and applied to the encrypt-and-authenticate
  process as follows.  The notation "PRF( key, salt, iterations )" is
  used to denote an application of the PRF to the given keying value
  and salt, for the given number of iterations:








Gutmann                      Standards Track                    [Page 5]

RFC 6476                  MAC Encryption in CMS             January 2012


  1.  The MAC algorithm key is derived from the master secret via:

          MAC-K ::= PRF( master_secret, "authentication", 1 );

  2.  The encryption algorithm key is derived from the master
      secret via:

          Enc-K ::= PRF( master_secret, "encryption", 1 );

  3.  The data is processed as described in [AuthEnv], and specifically
      since the mechanisms used are a union of EncryptedData
      and AuthenticatedData, as per [CMS].  The one exception to
      this is that the
      EncryptedContentInfo.ContentEncryptionAlgorithmIdentifier data is
      MACed before the encrypted content is MACed.  The EncryptedData
      processing is applied to the data first, and then the
      AuthenticatedData processing is applied to the result, so that
      the nesting is as follows:

          MAC( contentEncrAlgoID || encrypt( content ) );

  4.  If authenticated attributes are present, then they are encoded as
      described in [AuthEnv] and MACed after the encrypted content, so
      that the processing is as follows:

          MAC( contentEncrAlgoID || encrypt( content ) || authAttr );

4.2.  Rationale

  When choosing between encrypt-and-authenticate and authenticate-and-
  encrypt, the more secure option is encrypt-and-authenticate.  There
  has been extensive analysis of this in the literature; the best
  coverage is probably [EncryptThenAuth].

  The EncryptedContentInfo.ContentEncryptionAlgorithmIdentifier is the
  SEQUENCE containing the id-alg-authEnc-128/id-alg-authEnc-256 OBJECT
  IDENTIFIER and its associated AuthEncParams.  This data is MACed
  exactly as encoded, without any attempt to re-code it into a
  canonical form like DER.

  The EncryptedContentInfo.ContentEncryptionAlgorithmIdentifier must be
  protected alongside the encrypted content; otherwise, an attacker
  could manipulate the encrypted data indirectly by manipulating the
  encryption algorithm parameters, which wouldn't be detected through
  MACing the encrypted content alone.  For example, by changing the
  encryption IV, it's possible to modify the results of the decryption
  after the encrypted data has been verified via a MAC check.




Gutmann                      Standards Track                    [Page 6]

RFC 6476                  MAC Encryption in CMS             January 2012


  The authEnc pseudo-algorithm has two "key sizes" rather than the one-
  size-fits-all that the PRF impedance-matching would provide.  This is
  done to address real-world experience in the use of AES keys, where
  users demanded AES-256 alongside AES-128 because of some perception
  that the former was "twice as good" as the latter.  Providing an
  option for keys that go to 11 avoids potential user acceptance
  problems when someone notices that the authEnc pseudo-key has "only"
  128 bits when they expect their AES keys to be 256 bits long.

  Using a fixed-length key rather than making it a user-selectable
  parameter is done for the same reason as AES's quantised key lengths:
  there's no benefit to allowing, say, 137-bit keys over basic 128- and
  256-bit lengths; it adds unnecessary complexity; if the lengths are
  user-defined, then there'll always be someone who wants keys that go
  up to 12.  Providing a choice of two commonly used lengths gives
  users the option of choosing a "better" key size should they feel the
  need, while not overloading the system with unneeded flexibility.

  The use of the PRF AlgorithmIdentifier presents some problems,
  because it's usually not specified in a manner that allows it to be
  easily used as a straight KDF.  For example, PBKDF2 has the following
  parameters:

      PBKDF2-params ::= SEQUENCE {
          salt OCTET STRING,
          iterationCount INTEGER (1..MAX),
          prf AlgorithmIdentifier {{PBKDF2-PRFs}}
                                  DEFAULT algid-hmacWithSHA1
          }

  of which only the prf AlgorithmIdentifier is used here.  In order to
  avoid having to define new AlgorithmIdentifiers for each possible
  PRF, this specification sets any parameters not required for KDF
  functionality to no-op values.  In the case of PBKDF2, this means
  that the salt has length zero and the iteration count is set to one,
  with only the prf AlgorithmIdentifier playing a part in the
  processing.  Although it's not possible to know what form other
  PRFs-as-KDFs will take, a general note for their application within
  this specification is that any non-PRF parameters should similarly be
  set to no-op values.

  Specifying a MAC key size gets a bit tricky; most MAC algorithms have
  some de facto standard key size, and for HMAC algorithms, this is
  usually the same as the hash output size.  For example, for HMAC-MD5,
  it's 128 bits; for HMAC-SHA1, it's 160 bits; and for HMAC-SHA256,
  it's 256 bits.  Other MAC algorithms also have de facto standard key
  sizes.  For example, for AES-based MACs, it's the AES key size --
  128 bits for AES-128 and 256 bits for AES-256.  This situation makes



Gutmann                      Standards Track                    [Page 7]

RFC 6476                  MAC Encryption in CMS             January 2012


  it difficult to specify the key size in a normative fashion, since
  it's dependent on the algorithm type that's being used.  If there is
  any ambiguity over which key size should be used, then it's
  RECOMMENDED that either the size be specified explicitly in the
  macAlgorithm AlgorithmIdentifier or that an RFC or similar standards
  document be created that makes the key sizes explicit.

  As with other uses of PRFs for crypto impedance-matching in
  protocols, like IPsec, SSL/TLS, and SSH, the amount of input to the
  PRF generally doesn't match the amount of output.  The general
  philosophical implications of this are covered in various analyses of
  the properties and uses of PRFs.  If you're worried about this, then
  you can try and approximately match the authEnc "key size" to the key
  size of the encryption algorithm being used, although even there, a
  perfect match for algorithms like Blowfish (448 bits) or RC5
  (832 bits) is going to be difficult.

  The term "master secret" comes from its use in SSL/TLS, which uses a
  similar PRF-based mechanism to convert its master_secret value into
  encryption and MAC keys (as do SSH and IPsec).  The master_secret
  value isn't a key in the conventional sense, but merely a secret
  value that's then used to derive two (or, in the cases of SSL/TLS,
  SSH, and IPsec, several) keys and related cryptovariables.

  Apart from the extra step added to key management, all of the
  processing is already specified as part of the definition of the
  standard CMS content-types Encrypted/EnvelopedData and
  AuthenticatedData.  This significantly simplifies both the
  specification and the implementation task, as no new content-
  processing mechanisms are introduced.

4.3.  Test Vectors

  The following test vectors may be used to verify an implementation of
  MAC-authenticated encryption.  This represents a text string
  encrypted and authenticated using the ever-popular password
  "password" via CMS PasswordRecipientInfo.  The encryption algorithm
  used for the first value is triple DES, whose short block size
  (compared to AES) makes it easier to corrupt arbitrary bytes for
  testing purposes within the self-healing Cipher Block Chaining (CBC)
  mode, which will result in correct decryption but a failed MAC check.
  The encryption algorithm used for the second value is AES.

  For the triple DES-encrypted data, corrupting a byte at positions
  192-208 can be used to check that payload-data corruption is
  detected, and corrupting a byte at positions 168-174 can be used to





Gutmann                      Standards Track                    [Page 8]

RFC 6476                  MAC Encryption in CMS             January 2012


  check that metadata corruption is detected.  The corruption in these
  byte ranges doesn't affect normal processing and so wouldn't normally
  be detected.

  The test data has the following characteristics:

     version is set to 0.

     originatorInfo isn't needed and is omitted.

     recipientInfo uses passwordRecipientInfo to allow easy testing
     with a fixed text string.

     authEncryptedContentInfo uses the authEnc128 pseudo-algorithm
     with a key of 128 bits used to derive triple DES/AES and
     HMAC-SHA1 keys.

     authAttrs aren't used and are omitted.

     mac is the 20-byte HMAC-SHA1 MAC value.

     unauthAttrs aren't used and are omitted.

    0  227: SEQUENCE {
    3   11:   OBJECT IDENTIFIER id-ct-authEnvelopedData
                                (1 2 840 113549 1 9 16 1 23)
   16  211:   [0] {
   19  208:     SEQUENCE {
   22    1:       INTEGER 0
   25   97:       SET {
   27   95:         [3] {
   29    1:           INTEGER 0
   32   27:           [0] {
   34    9:             OBJECT IDENTIFIER pkcs5PBKDF2
                                          (1 2 840 113549 1 5 12)
   45   14:             SEQUENCE {
   47    8:               OCTET STRING B7 EB 23 A7 6B D2 05 16
   57    2:               INTEGER 5000
          :               }
          :             }
   61   35:           SEQUENCE {
   63   11:             OBJECT IDENTIFIER pwriKEK
                                          (1 2 840 113549 1 9 16 3 9)








Gutmann                      Standards Track                    [Page 9]

RFC 6476                  MAC Encryption in CMS             January 2012


   76   20:             SEQUENCE {
   78    8:               OBJECT IDENTIFIER des-EDE3-CBC
                                            (1 2 840 113549 3 7)
   88    8:               OCTET STRING 66 91 02 45 6B 73 BB 99
          :               }
          :             }
   98   24:           OCTET STRING
          :             30 A3 7A B5 D8 F2 87 50 EC 41 04 AE 89 99 26 F0
          :             2E AE 4F E3 F3 52 2B A3
          :           }
          :         }
  124   82:       SEQUENCE {
  126    9:         OBJECT IDENTIFIER data (1 2 840 113549 1 7 1)
  137   51:         SEQUENCE {
  139   11:           OBJECT IDENTIFIER authEnc128
                                        (1 2 840 113549 1 9 16 3 15)
  152   36:           SEQUENCE {
  154   20:             SEQUENCE {
  156    8:               OBJECT IDENTIFIER des-EDE3-CBC
                                            (1 2 840 113549 3 7)
  166    8:               OCTET STRING D2 D0 81 71 4D 3D 9F 11
          :               }
  176   12:             SEQUENCE {
  178    8:               OBJECT IDENTIFIER hmacSHA (1 3 6 1 5 5 8 1 2)
  188    0:               NULL
          :               }
          :             }
          :           }
  190   16:         [0] 3A C6 06 61 41 5D 00 7D 11 35 CD 69 E1 56 CA 10
          :         }
  208   20:       OCTET STRING
          :         33 65 E8 F0 F3 07 06 86 1D A8 47 2C 6D 3A 1D 94
          :         21 40 64 7E
          :       }
          :     }
          :   }

  -----BEGIN PKCS7-----
  MIHjBgsqhkiG9w0BCRABF6CB0zCB0AIBADFho18CAQCgGwYJKoZIhvcNAQUMMA4E
  CLfrI6dr0gUWAgITiDAjBgsqhkiG9w0BCRADCTAUBggqhkiG9w0DBwQIZpECRWtz
  u5kEGDCjerXY8odQ7EEEromZJvAurk/j81IrozBSBgkqhkiG9w0BBwEwMwYLKoZI
  hvcNAQkQAw8wJDAUBggqhkiG9w0DBwQI0tCBcU09nxEwDAYIKwYBBQUIAQIFAIAQ
  OsYGYUFdAH0RNc1p4VbKEAQUM2Xo8PMHBoYdqEcsbTodlCFAZH4=
  -----END PKCS7-----







Gutmann                      Standards Track                   [Page 10]

RFC 6476                  MAC Encryption in CMS             January 2012


  0  253: SEQUENCE {
  3   11:   OBJECT IDENTIFIER id-ct-authEnvelopedData
                              (1 2 840 113549 1 9 16 1 23)
 16  237:   [0] {
 19  234:     SEQUENCE {
 22    1:       INTEGER 0
 25  114:       SET {
 27  112:         [3] {
 29    1:           INTEGER 0
 32   27:           [0] {
 34    9:             OBJECT IDENTIFIER pkcs5PBKDF2
                                        (1 2 840 113549 1 5 12)
 45   14:             SEQUENCE {
 47    8:               OCTET STRING E7 B7 87 DF 82 1D 12 CC
 57    2:               INTEGER 5000
        :               }
        :             }
 61   44:           SEQUENCE {
 63   11:             OBJECT IDENTIFIER pwriKEK
                                        (1 2 840 113549 1 9 16 3 9)
 76   29:             SEQUENCE {
 78    9:               OBJECT IDENTIFIER aes128-CBC
                                          (2 16 840 1 101 3 4 1 2)
 89   16:               OCTET STRING
        :               11 D9 5C 52 0A 3A BF 22 B2 30 70 EF F4 7D 6E F6
        :               }
        :             }
107   32:           OCTET STRING
        :             18 39 22 27 C3 C2 2C 2A A6 9F 2A B0 77 24 75 AA
        :             D8 58 9C CD BB 4C AE D3 0D C2 CB 1D 83 94 6C 37
        :           }
        :         }
141   91:       SEQUENCE {
143    9:         OBJECT IDENTIFIER data (1 2 840 113549 1 7 1)
154   60:         SEQUENCE {
156   11:           OBJECT IDENTIFIER authEnc128
                                      (1 2 840 113549 1 9 16 3 15)
169   45:           SEQUENCE {
171   29:             SEQUENCE {
173    9:               OBJECT IDENTIFIER aes128-CBC
                                          (2 16 840 1 101 3 4 1 2)
184   16:               OCTET STRING
        :               B7 25 02 76 84 3C 58 1B A5 30 E2 40 27 EE C3 06
        :               }







Gutmann                      Standards Track                   [Page 11]

RFC 6476                  MAC Encryption in CMS             January 2012


202   12:             SEQUENCE {
204    8:               OBJECT IDENTIFIER hmacSHA (1 3 6 1 5 5 8 1 2)
214    0:               NULL
        :               }
        :             }
        :           }
216   16:         [0] 98 36 0F 0C 79 62 36 B5 2D 2D 9E 1C 62 85 1E 10
        :         }
234   20:       OCTET STRING
        :         88 A4 C1 B2 BA 78 1B CA F9 14 B0 E5 FC D1 8D F8
        :         02 E2 B2 9E
        :       }
        :     }
        :   }

  -----BEGIN PKCS7-----
  MIH9BgsqhkiG9w0BCRABF6CB7TCB6gIBADFyo3ACAQCgGwYJKoZIhvcNAQUMMA4E
  COe3h9+CHRLMAgITiDAsBgsqhkiG9w0BCRADCTAdBglghkgBZQMEAQIEEBHZXFIK
  Or8isjBw7/R9bvYEIBg5IifDwiwqpp8qsHckdarYWJzNu0yu0w3Cyx2DlGw3MFsG
  CSqGSIb3DQEHATA8BgsqhkiG9w0BCRADDzAtMB0GCWCGSAFlAwQBAgQQtyUCdoQ8
  WBulMOJAJ+7DBjAMBggrBgEFBQgBAgUAgBCYNg8MeWI2tS0tnhxihR4QBBSIpMGy
  ungbyvkUsOX80Y34AuKyng==
  -----END PKCS7-----

5.  SMIMECapabilities Attribute

  An S/MIME client SHOULD announce the set of cryptographic functions
  that it supports by using the SMIMECapabilities attribute [SMIME].
  If the client wishes to indicate support for MAC-authenticated
  encryption, the capabilities attribute MUST contain the authEnc128
  and/or authEnc256 OID specified above with algorithm parameters
  ABSENT.  The other algorithms used in the authEnc algorithm, such as
  the MAC and encryption algorithm, are selected based on the presence
  of these algorithms in the SMIMECapabilities attribute or by mutual
  agreement.

6.  Security Considerations

  Unlike other CMS authenticated-data mechanisms, such as SignedData
  and AuthenticatedData, AuthEnv's primary transformation isn't
  authentication but encryption; so AuthEnvData may decrypt
  successfully (in other words, the primary data transformation present
  in the mechanism will succeed), but the secondary function of
  authentication using the MAC value that follows the encrypted data
  could still fail.  This can lead to a situation in which an
  implementation might output decrypted data before it reaches and
  verifies the MAC value.  In other words, decryption is performed
  inline and the result is available immediately, while the



Gutmann                      Standards Track                   [Page 12]

RFC 6476                  MAC Encryption in CMS             January 2012


  authentication result isn't available until all of the content has
  been processed.  If the implementation prematurely provides data to
  the user and later comes back to inform them that the earlier data
  was, in retrospect, tainted, this may cause users to act prematurely
  on the tainted data.

  This situation could occur in a streaming implementation where data
  has to be made available as soon as possible (so that the initial
  plaintext is emitted before the final ciphertext and MAC value are
  read), or one where the quantity of data involved rules out buffering
  the recovered plaintext until the MAC value can be read and verified.
  In addition, an implementation that tries to be overly helpful may
  treat missing non-payload trailing data as non-fatal, allowing an
  attacker to truncate the data somewhere before the MAC value and
  thereby defeat the data authentication.  This is complicated even
  further by the fact that an implementation may not be able to
  determine, when it encounters truncated data, whether the remainder
  (including the MAC value) will arrive presently (a non-failure) or
  whether it's been truncated by an attacker and should therefore be
  treated as a MAC failure.  (Note that this same issue affects other
  types of data authentication like signed and MACed data as well,
  since an over-optimistic implementation may return data to the user
  before checking for a verification failure is possible.)

  The exact solution to these issues is somewhat implementation-
  specific, with some suggested mitigations being as follows:
  implementations should buffer the entire message if possible and
  verify the MAC before performing any decryption.  If this isn't
  possible due to streaming or message-size constraints, then
  implementations should consider breaking long messages into a
  sequence of smaller ones, each of which can be processed atomically
  as above.  If even this isn't possible, then implementations should
  make obvious to the caller or user that an authentication failure has
  occurred and that the previously returned or output data shouldn't be
  used.  Finally, any data-formatting problem, such as obviously
  truncated data or missing trailing data, should be treated as a MAC
  verification failure even if the rest of the data was processed
  correctly.

7.  IANA Considerations

  This document contains two algorithm identifiers defined by the
  S/MIME Working Group Registrar in an arc delegated by RSA to the
  S/MIME Working Group: iso(1) member-body(2) us(840) rsadsi(113549)
  pkcs(1) pkcs-9(9) smime(16) modules(0).






Gutmann                      Standards Track                   [Page 13]

RFC 6476                  MAC Encryption in CMS             January 2012


8.  Acknowledgements

  The author would like to thank Jim Schaad and the members of the
  S/MIME mailing list for their feedback on this document, and David
  Ireland for help with the test vectors.

9.  References

9.1.  Normative References

  [AuthEnv]   Housley, R., "Cryptographic Message Syntax (CMS)
              Authenticated-Enveloped-Data Content Type", RFC 5083,
              November 2007.

  [CMS]       Housley, R., "Cryptographic Message Syntax (CMS)",
              STD 70, RFC 5652, September 2009.

  [PBKDF2]    Kaliski, B., "PKCS #5: Password-Based Cryptography
              Specification Version 2", RFC 2898, September 2000.

  [RFC2119]   Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

  [SMIME]     Ramsdell, B. and S. Turner, "Secure/Multipurpose Internet
              Mail Extensions (S/MIME) Version 3.2 Message
              Specification", RFC 5751, January 2010.

9.2.  Informative References

  [EncryptThenAuth]
              Krawczyk, H., "The Order of Encryption and Authentication
              for Protecting Communications (or: How Secure Is SSL?)",
              Springer-Verlag LNCS 2139, August 2001.

  [Garfinkel] Garfinkel, S., "Design Principles and Patterns for
              Computer Systems That Are Simultaneously Secure and
              Usable", May 2005.

  [HKDF]      Krawczyk, H. and P. Eronen, "HMAC-based
              Extract-and-Expand Key Derivation Function (HKDF)",
              RFC 5869, May 2010.

  [IPsec]     Kent, S. and K. Seo, "Security Architecture for the
              Internet Protocol", RFC 4301, December 2005.

  [OpenPGP]   Callas, J., Donnerhacke, L., Finney, H., Shaw, D., and R.
              Thayer, "OpenPGP Message Format", RFC 4880,
              November 2007.



Gutmann                      Standards Track                   [Page 14]

RFC 6476                  MAC Encryption in CMS             January 2012


  [SSH]       Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
              Transport Layer Protocol", RFC 4253, January 2006.

  [TLS]       Dierks, T. and E. Rescorla, "The Transport Layer Security
              (TLS) Protocol Version 1.2", RFC 5246, August 2008.

Author's Address

  Peter Gutmann
  University of Auckland
  Department of Computer Science
  New Zealand

  EMail: [email protected]





































Gutmann                      Standards Track                   [Page 15]