Internet Engineering Task Force (IETF)                      E. Ivov, Ed.
Request for Comments: 6465                                         Jitsi
Category: Standards Track                                E. Marocco, Ed.
ISSN: 2070-1721                                           Telecom Italia
                                                              J. Lennox
                                                                  Vidyo
                                                          December 2011


      A Real-time Transport Protocol (RTP) Header Extension for
                Mixer-to-Client Audio Level Indication

Abstract

  This document describes a mechanism for RTP-level mixers in audio
  conferences to deliver information about the audio level of
  individual participants.  Such audio level indicators are transported
  in the same RTP packets as the audio data they pertain to.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc6465.

Copyright Notice

  Copyright (c) 2011 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.




Ivov, et al.                 Standards Track                    [Page 1]

RFC 6465         Mixer-to-Client Audio Level Indication    December 2011


Table of Contents

  1. Introduction ....................................................2
  2. Terminology .....................................................4
  3. Protocol Operation ..............................................4
  4. Audio Levels ....................................................5
  5. Signaling Information ...........................................7
  6. Security Considerations .........................................9
  7. IANA Considerations ............................................10
  8. Acknowledgments ................................................10
  9. References .....................................................10
     9.1. Normative References ......................................10
     9.2. Informative References ....................................11
  Appendix A. Reference Implementation ..............................12
     A.1. AudioLevelCalculator.java .................................12

1.  Introduction

  "A Framework for Conferencing with the Session Initiation Protocol
  (SIP)" [RFC4353] presents an overall architecture for multi-party
  conferencing.  Among others, the framework borrows from RTP [RFC3550]
  and extends the concept of a mixer entity "responsible for combining
  the media streams that make up a conference, and generating one or
  more output streams that are delivered to recipients".  Every
  participant would hence receive, in a flat single stream, media
  originating from all the others.

  Using such centralized mixer-based architectures simplifies support
  for conference calls on the client side, since they would hardly
  differ from one-to-one conversations.  However, the method also
  introduces a few limitations.  The flat nature of the streams that a
  mixer would output and send to participants makes it difficult for
  users to identify the original source of what they are hearing.

  Mechanisms that allow the mixer to send to participants cues on
  current speakers (e.g., the contributing source (CSRC) fields in RTP
  [RFC3550]) only work for speaking/silent binary indications.  There
  are, however, a number of use cases where one would require more
  detailed information.  Possible examples include the presence of
  background chat/noise/music/typing, someone breathing noisily in
  their microphone, or other cases where identifying the source of the
  disturbance would make it easy to remove it (e.g., by sending a
  private IM to the concerned party asking them to mute their
  microphone).  A more advanced scenario could involve an intense
  discussion between multiple participants that the user does not
  personally know.  Audio level information would help better recognize
  the speakers by associating with them complex (but still human
  readable) characteristics like loudness and speed, for example.



Ivov, et al.                 Standards Track                    [Page 2]

RFC 6465         Mixer-to-Client Audio Level Indication    December 2011


  One way of presenting such information in a user-friendly manner
  would be for a conferencing client to attach audio level indicators
  to the corresponding participant-related components in the user
  interface.  One possible example is displayed in Figure 1, where
  levels can help users determine that Alice is currently the active
  speaker, Carol is mute, and Bob and Dave are sending some background
  noise.

                        ________________________
                       |                        |
                       |  00:42 |  Weekly Call  |
                       |________________________|
                       |                        |
                       |                        |
                       | Alice |======    | (S) |
                       |                        |
                       | Bob   |=         |     |
                       |                        |
                       | Carol |          | (M) |
                       |                        |
                       | Dave  |===       |     |
                       |                        |
                       |________________________|

    Figure 1: Displaying Detailed Speaker Information to the User by
               Including Audio Level for Every Participant

  Implementing a user interface like the above requires analysis of the
  media sent from other participants.  In a conventional audio
  conference, this is only possible for the mixer, since all other
  conference participants are generally receiving a single, flat audio
  stream and therefore have no immediate way of determining individual
  audio levels.

  This document specifies an RTP extension header that allows such
  mixers to deliver audio level information to conference participants
  by including it directly in the RTP packets transporting the
  corresponding audio data.

  The header extension in this document is different than, but
  complementary to, the one defined in [RFC6464], which defines a
  mechanism by which clients can indicate to audio mixers the levels of
  the audio in the packets they send.








Ivov, et al.                 Standards Track                    [Page 3]

RFC 6465         Mixer-to-Client Audio Level Indication    December 2011


2.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [RFC2119].

3.  Protocol Operation

  According to RFC 3550 [RFC3550], a mixer is expected to include in
  outgoing RTP packets a list of identifiers (CSRC IDs) indicating the
  sources that contributed to the resulting stream.  The presence of
  such CSRC IDs allows RTP clients to determine, in a binary way, the
  active speaker(s) in any given moment.  The RTP Control Protocol
  (RTCP) also provides a basic mechanism to map the CSRC IDs to user
  identities through the CNAME field.  More advanced mechanisms can
  exist, depending on the signaling protocol used to establish and
  control a conference.  In the case of the Session Initiation Protocol
  [RFC3261], for example, "A Session Initiation Protocol (SIP) Event
  Package for Conference State" [RFC4575] defines a <src-id> tag that
  binds CSRC IDs to media streams and SIP URIs.

  This document describes an RTP header extension that allows mixers to
  indicate the audio level of every contributing conference participant
  (CSRC) in addition to simply indicating their on/off status.  This
  new header extension uses the general mechanism for RTP header
  extensions as described in [RFC5285].

  Each instance of this header contains a list of one-octet audio
  levels expressed in -dBov, with values from 0 to 127 representing 0
  to -127 dBov (see Figures 2 and 3).  Appendix A provides a reference
  implementation indicating one way of obtaining such values from raw
  audio samples.

  Every audio level value pertains to the CSRC identifier located at
  the corresponding position in the CSRC list.  In other words, the
  first value would indicate the audio level of the conference
  participant represented by the first CSRC identifier in that packet,
  and so forth.  The number and order of these values MUST therefore
  match the number and order of the CSRC IDs present in the same
  packet.

  When encoding audio level information, a mixer SHOULD include in a
  packet information that corresponds to the audio data being
  transported in that same packet.  It is important that these values
  follow the actual stream as closely as possible.  Therefore, a mixer
  SHOULD also calculate the values after the original contributing
  stream has undergone possible processing such as level normalization,
  and noise reduction, for example.



Ivov, et al.                 Standards Track                    [Page 4]

RFC 6465         Mixer-to-Client Audio Level Indication    December 2011


  It can sometimes happen that a conference involves more than a single
  mixer.  In such cases, each of the mixers MAY choose to relay the
  CSRC list and audio level information they receive from peer mixers
  (as long as the total CSRC count remains below 16).  Given that the
  maximum audio level is not precisely defined by this specification,
  it is likely that in such situations average audio levels would be
  perceptibly different for the participants located behind the
  different mixers.

4.  Audio Levels

  The audio level header extension carries the level of the audio in
  the RTP payload of the packet with which it is associated.  This
  information is carried in an RTP header extension element as defined
  by "A General Mechanism for RTP Header Extensions" [RFC5285].

  The payload of the audio level header extension element can be
  encoded using either the one-byte or two-byte header defined in
  [RFC5285].  Figures 2 and 3 show sample audio level encodings with
  each of these header formats.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  ID   | len=2 |0|   level 1   |0|   level 2   |0|   level 3   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

             Figure 2: Sample Audio Level Encoding Using the
                         One-Byte Header Format


      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |      ID       |     len=3     |0|   level 1   |0|   level 2   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |0|   level 3   |    0 (pad)    |               ...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

             Figure 3: Sample Audio Level Encoding Using the
                         Two-Byte Header Format

  In the case of the one-byte header format, the 4-bit len field is the
  number minus one of data bytes (i.e., audio level values) transported
  in this header extension element following the one-byte header.
  Therefore, the value zero in this field indicates that one byte of
  data follows.  In the case of the two-byte header format, the 8-bit
  len field contains the exact number of audio levels carried in the



Ivov, et al.                 Standards Track                    [Page 5]

RFC 6465         Mixer-to-Client Audio Level Indication    December 2011


  extension.  RFC 3550 [RFC3550] only allows RTP packets to carry a
  maximum of 15 CSRC IDs.  Given that audio levels directly refer to
  CSRC IDs, implementations MUST NOT include more than 15 audio level
  values.  The maximum value allowed in the len field is therefore 14
  for the one-byte header format and 15 for the two-byte header format.

     Note: Audio levels in this document are defined in the same manner
     as is audio noise level in the RTP Payload Comfort Noise
     specification [RFC3389].  In [RFC3389], the overall magnitude of
     the noise level in comfort noise is encoded into the first byte of
     the payload, with spectral information about the noise in
     subsequent bytes.  This specification's audio level parameter is
     defined so as to be identical to the comfort noise payload's
     noise-level byte.

  The magnitude of the audio level itself is packed into the seven
  least significant bits of the single byte of the header extension,
  shown in Figures 2 and 3.  The least significant bit of the audio
  level magnitude is packed into the least significant bit of the byte.
  The most significant bit of the byte is unused and always set to 0.

  The audio level is expressed in -dBov, with values from 0 to 127
  representing 0 to -127 dBov. dBov is the level, in decibels, relative
  to the overload point of the system, i.e., the highest-intensity
  signal encodable by the payload format.  (Note: Representation
  relative to the overload point of a system is particularly useful for
  digital implementations, since one does not need to know the relative
  calibration of the analog circuitry.)  For example, in the case of
  u-law (audio/pcmu) audio [ITU.G711], the 0 dBov reference would be a
  square wave with values +/- 8031.  (This translates to 6.18 dBm0,
  relative to u-law's dBm0 definition in Table 6 of [ITU.G711].)

  The audio level for digital silence -- for a muted audio source, for
  example -- MUST be represented as 127 (-127 dBov), regardless of the
  dynamic range of the encoded audio format.

  The audio level header extension only carries the level of the audio
  in the RTP payload of the packet with which it is associated, with no
  long-term averaging or smoothing applied.  That level is measured as
  a root mean square of all the samples in the measured range.

  To simplify implementation of the encoding procedures described here,
  this specification provides a sample Java implementation (see
  Appendix A) of an audio level calculator that helps obtain such
  values from raw linear Pulse Code Modulation (PCM) audio samples.






Ivov, et al.                 Standards Track                    [Page 6]

RFC 6465         Mixer-to-Client Audio Level Indication    December 2011


5.  Signaling Information

  The URI for declaring the audio level header extension in a Session
  Description Protocol (SDP) extmap attribute and mapping it to a local
  extension header identifier is
  "urn:ietf:params:rtp-hdrext:csrc-audio-level".  There is no
  additional setup information needed for this extension (i.e., no
  extension attributes).

  An example attribute line in the SDP for a conference might be:

     a=extmap:7 urn:ietf:params:rtp-hdrext:csrc-audio-level

  The above mapping will most often be provided per media stream (in
  the media-level section(s) of SDP, i.e., after an "m=" line) or
  globally if there is more than one stream containing audio level
  indicators in a session.

  Presence of the above attribute in the SDP description of a media
  stream indicates that RTP packets in that stream, which contain the
  level extension defined in this document, will be carrying such an
  extension with an ID of 7.

  Conferencing clients that support audio level indicators and have no
  mixing capabilities would not be able to provide content for this
  audio level extension and would hence have to always include the
  direction parameter in the "extmap" attribute with a value of
  "recvonly".  Conference focus entities with mixing capabilities can
  omit the direction or set it to "sendrecv" in SDP offers.  Such
  entities would need to set it to "sendonly" in SDP answers to offers
  with a "recvonly" parameter and to "sendrecv" when answering other
  "sendrecv" offers.

  This specification only defines the use of the audio level extensions
  in audio streams.  They MUST NOT be advertised with other media
  types, such as video or text, for example.

  Figures 4 and 5 show two example offer/answer exchanges between a
  conferencing client and a focus, and between two conference focus
  entities.











Ivov, et al.                 Standards Track                    [Page 7]

RFC 6465         Mixer-to-Client Audio Level Indication    December 2011


    SDP Offer:

      v=0
      o=alice 2890844526 2890844526 IN IP6 host.example.com
      s=-
      c=IN IP6 host.example.com
      t=0 0
      m=audio 49170 RTP/AVP 0 4
      a=rtpmap:0 PCMU/8000
      a=rtpmap:4 G723/8000
      a=extmap:1/recvonly urn:ietf:params:rtp-hdrext:csrc-audio-level

    SDP Answer:

      v=0
      i=A Seminar on the session description protocol
      o=conf-focus 2890844730 2890844730 IN IP6 focus.example.net
      s=-
      c=IN IP6 focus.example.net
      t=0 0
      m=audio 52544 RTP/AVP 0
      a=rtpmap:0 PCMU/8000
      a=extmap:1/sendonly urn:ietf:params:rtp-hdrext:csrc-audio-level

     Figure 4: A Client-Initiated Example SDP Offer/Answer Exchange
            Negotiating an Audio Stream with One-Way Flow of
                         Audio Level Information
























Ivov, et al.                 Standards Track                    [Page 8]

RFC 6465         Mixer-to-Client Audio Level Indication    December 2011


    SDP Offer:

      v=0
      i=Un seminaire sur le protocole de description des sessions
      o=fr-focus 2890844730 2890844730 IN IP6 focus.fr.example.net
      s=-
      c=IN IP6 focus.fr.example.net
      t=0 0
      m=audio 49170 RTP/AVP 0
      a=rtpmap:0 PCMU/8000
      a=extmap:1/sendrecv urn:ietf:params:rtp-hdrext:csrc-audio-level

    SDP Answer:

      v=0
      i=A Seminar on the session description protocol
      o=us-focus 2890844526 2890844526 IN IP6 focus.us.example.net
      s=-
      c=IN IP6 focus.us.example.net
      t=0 0
      m=audio 52544 RTP/AVP 0
      a=rtpmap:0 PCMU/8000
      a=extmap:1/sendrecv urn:ietf:params:rtp-hdrext:csrc-audio-level

  Figure 5: An Example SDP Offer/Answer Exchange between Two Conference
   Focus Entities with Mixing Capabilities Negotiating an Audio Stream
           with Bidirectional Flow of Audio Level Information

6.  Security Considerations

  1.  This document defines a means of attributing audio level to a
      particular participant in a conference.  An attacker may try to
      modify the content of RTP packets in a way that would make audio
      activity from one participant appear to be coming from another
      participant.

  2.  Furthermore, the fact that audio level values would not be
      protected even in a Secure Real-time Transport Protocol (SRTP)
      session [RFC3711] might be of concern in some cases where the
      activity of a particular participant in a conference is
      confidential.  Also, as discussed in [SRTP-VBR-AUDIO], an
      attacker might be able to infer information about the
      conversation, possibly with phoneme-level resolution.

  3.  Both of the above are concerns that stem from the design of the
      RTP protocol itself, and they would probably also apply when
      using CSRC identifiers in the way specified in RFC 3550
      [RFC3550].  It is therefore important that, according to the



Ivov, et al.                 Standards Track                    [Page 9]

RFC 6465         Mixer-to-Client Audio Level Indication    December 2011


      needs of a particular scenario, implementors and deployers
      consider the use of header extension encryption [SRTP-ENCR-HDR]
      or a lower-level security and authentication mechanism such as
      IPsec [RFC4301], for example.

7.  IANA Considerations

  This document defines a new extension URI in the RTP Compact Header
  Extensions subregistry of the Real-Time Transport Protocol (RTP)
  Parameters registry, according to the following data:

     Extension URI: urn:ietf:params:rtp-hdrext:csrc-audio-level
     Description:   Mixer-to-client audio level indicators
     Contact:       [email protected]
     Reference:     RFC 6465

8.  Acknowledgments

  Lyubomir Marinov contributed level measurement and rendering code.

  Keith Drage, Roni Even, Miguel A. Garcia, John Elwell, Kevin P.
  Fleming, Ingemar Johansson, Michael Ramalho, Magnus Westerlund, and
  several others provided helpful feedback over the avt and avtext
  mailing lists.

  Jitsi's participation in this specification is funded by the NLnet
  Foundation.

9.  References

9.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC3550]  Schulzrinne, H., Casner, S., Frederick, R., and V.
             Jacobson, "RTP: A Transport Protocol for Real-Time
             Applications", STD 64, RFC 3550, July 2003.

  [RFC5285]  Singer, D. and H. Desineni, "A General Mechanism for RTP
             Header Extensions", RFC 5285, July 2008.










Ivov, et al.                 Standards Track                   [Page 10]

RFC 6465         Mixer-to-Client Audio Level Indication    December 2011


9.2.  Informative References

  [ITU.G711] International Telecommunication Union, "Pulse Code
             Modulation (PCM) of Voice Frequencies",
             ITU-T Recommendation G.711, November 1988.

  [RFC3261]  Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
             A., Peterson, J., Sparks, R., Handley, M., and E.
             Schooler, "SIP: Session Initiation Protocol", RFC 3261,
             June 2002.

  [RFC3389]  Zopf, R., "Real-time Transport Protocol (RTP) Payload for
             Comfort Noise (CN)", RFC 3389, September 2002.

  [RFC3711]  Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
             Norrman, "The Secure Real-time Transport Protocol (SRTP)",
             RFC 3711, March 2004.

  [RFC4301]  Kent, S. and K. Seo, "Security Architecture for the
             Internet Protocol", RFC 4301, December 2005.

  [RFC4353]  Rosenberg, J., "A Framework for Conferencing with the
             Session Initiation Protocol (SIP)", RFC 4353,
             February 2006.

  [RFC4575]  Rosenberg, J., Schulzrinne, H., and O. Levin, Ed., "A
             Session Initiation Protocol (SIP) Event Package for
             Conference State", RFC 4575, August 2006.

  [RFC6464]  Lennox, J., Ed., Ivov, E., and E. Marocco, "A Real-time
             Transport Protocol (RTP) Header Extension for Client-to-
             Mixer Audio Level Indication", RFC 6465, December 2011.

  [SRTP-ENCR-HDR]
             Lennox, J., "Encryption of Header Extensions in the Secure
             Real-Time Transport Protocol (SRTP)", Work in Progress,
             October 2011.

  [SRTP-VBR-AUDIO]
             Perkins, C. and JM. Valin, "Guidelines for the use of
             Variable Bit Rate Audio with Secure RTP", Work
             in Progress, July 2011.









Ivov, et al.                 Standards Track                   [Page 11]

RFC 6465         Mixer-to-Client Audio Level Indication    December 2011


Appendix A.  Reference Implementation

  This appendix contains Java code for a reference implementation of
  the level calculation and rendering methods.  The code is not
  normative and is by no means the only possible implementation.  Its
  purpose is to help implementors add audio level support to mixers and
  clients.

  The Java code contains an AudioLevelCalculator class that calculates
  the sound pressure level of a signal with specific samples.  It can
  be used in mixers to generate values suitable for the level extension
  headers.

  The implementation is provided in Java but does not rely on any of
  the language specifics and can be easily ported to another language.

A.1.  AudioLevelCalculator.java

  <CODE BEGINS>

  /*
     Copyright (c) 2011 IETF Trust and the persons identified
     as authors of the code.  All rights reserved.

     Redistribution and use in source and binary forms, with
     or without modification, is permitted pursuant to, and subject
     to the license terms contained in, the Simplified BSD License
     set forth in Section 4.c of the IETF Trust's Legal Provisions
     Relating to IETF Documents (http://trustee.ietf.org/license-info).
  */

  /**
   * Calculates the audio level of specific samples of a signal
   * relative to overload.
   */
  public class AudioLevelCalculator
  {

      /**
       * Calculates the audio level of a signal with specific
       * <tt>samples</tt>.
       *
       * @param samples  the samples whose audio level we need to
       * calculate.  The samples are specified as an <tt>int</tt>
       * array starting at <tt>offset</tt>, extending <tt>length</tt>
       * number of elements, and each <tt>int</tt> element in the
       * specified range representing a sample whose audio level we




Ivov, et al.                 Standards Track                   [Page 12]

RFC 6465         Mixer-to-Client Audio Level Indication    December 2011


       * need to calculate.  Though a sample is provided in the
       * form of an <tt>int</tt> value, the sample size in bits
       * is determined by the caller via <tt>overload</tt>.
       *
       * @param offset  the offset in <tt>samples</tt> at which the
       * samples start.
       *
       * @param length  the length of the signal specified in
       * <tt>samples<tt>, starting at <tt>offset</tt>.
       *
       * @param overload  the overload (point) of <tt>signal</tt>.
       * For example, <tt>overload</tt> can be {@link Byte#MAX_VALUE}
       * for 8-bit signed samples or {@link Short#MAX_VALUE} for
       * 16-bit signed samples.
       *
       * @return  the audio level of the specified signal.
       */
      public static int calculateAudioLevel(
          int[] samples, int offset, int length,
          int overload)
      {
          /*
           * Calculate the root mean square (RMS) of the signal.
           */
          double rms = 0;

          for (; offset < length; offset++)
          {
              double sample = samples[offset];

              sample /= overload;
              rms += sample * sample;
          }
          rms = (length == 0) ? 0 : Math.sqrt(rms / length);

          /*
           * The audio level is a logarithmic measure of the
           * rms level of an audio sample relative to a reference
           * value and is measured in decibels.
           */
          double db;

          /*
           * The minimum audio level permitted.
           */
          final double MIN_AUDIO_LEVEL = -127;





Ivov, et al.                 Standards Track                   [Page 13]

RFC 6465         Mixer-to-Client Audio Level Indication    December 2011


          /*
           * The maximum audio level permitted.
           */
          final double MAX_AUDIO_LEVEL = 0;

          if (rms > 0)
          {
              /*
               * The "zero" reference level is the overload level,
               * which corresponds to 1.0 in this calculation, because
               * the samples are normalized in calculating the RMS.
               */
              db = 20 * Math.log10(rms);

              /*
               * Ensure that the calculated level is within the minimum
               * and maximum range permitted.
               */
              if (db < MIN_AUDIO_LEVEL)
                  db = MIN_AUDIO_LEVEL;
              else if (db > MAX_AUDIO_LEVEL)
                  db = MAX_AUDIO_LEVEL;
          }
          else
          {
              db = MIN_AUDIO_LEVEL;
          }

          return (int)Math.round(db);
      }
  }

  <CODE ENDS>


















Ivov, et al.                 Standards Track                   [Page 14]

RFC 6465         Mixer-to-Client Audio Level Indication    December 2011


Authors' Addresses

  Emil Ivov (editor)
  Jitsi
  Strasbourg  67000
  France

  EMail: [email protected]


  Enrico Marocco (editor)
  Telecom Italia
  Via G. Reiss Romoli, 274
  Turin  10148
  Italy

  EMail: [email protected]


  Jonathan Lennox
  Vidyo, Inc.
  433 Hackensack Avenue
  Seventh Floor
  Hackensack,  NJ  07601
  US

  EMail: [email protected]
























Ivov, et al.                 Standards Track                   [Page 15]