Internet Engineering Task Force (IETF)                   G. Swallow, Ed.
Request for Comments: 6427                           Cisco Systems, Inc.
Category: Standards Track                              A. Fulignoli, Ed.
ISSN: 2070-1721                                                 Ericsson
                                                      M. Vigoureux, Ed.
                                                         Alcatel-Lucent
                                                             S. Boutros
                                                    Cisco Systems, Inc.
                                                                D. Ward
                                                 Juniper Networks, Inc.
                                                          November 2011


MPLS Fault Management Operations, Administration, and Maintenance (OAM)

Abstract

  This document specifies Operations, Administration, and Maintenance
  (OAM) messages to indicate service disruptive conditions for MPLS-
  based transport network Label Switched Paths.  The notification
  mechanism employs a generic method for a service disruptive condition
  to be communicated to a Maintenance Entity Group End Point.  This
  document defines an MPLS OAM channel, along with messages to
  communicate various types of service disruptive conditions.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc6427.













Swallow, et al.              Standards Track                    [Page 1]

RFC 6427                MPLS Fault Management OAM          November 2011


Copyright Notice

  Copyright (c) 2011 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1. Introduction ....................................................3
     1.1. Terminology ................................................4
     1.2. Requirements Language ......................................5
  2. MPLS Fault Management Messages ..................................5
     2.1. MPLS Alarm Indication Signal ...............................5
          2.1.1. MPLS Link Down Indication ...........................6
     2.2. MPLS Lock Report ...........................................6
     2.3. Propagation of MPLS Fault Messages .........................7
  3. MPLS Fault Management Channel ...................................7
  4. MPLS Fault Management Message Format ............................8
     4.1. Fault Management Message TLVs ..............................9
          4.1.1. Interface Identifier TLV ...........................10
          4.1.2. Global Identifier ..................................10
  5. Sending and Receiving Fault Management Messages ................10
     5.1. Sending a Fault Management Message ........................10
     5.2. Clearing a Fault Management Indication ....................11
     5.3. Receiving a Fault Management Indication ...................11
  6. Minimum Implementation Requirements ............................12
  7. Security Considerations ........................................12
  8. IANA Considerations ............................................13
     8.1. Pseudowire Associated Channel Type ........................13
     8.2. MPLS Fault OAM Message Type Registry ......................13
     8.3. MPLS Fault OAM Flag Registry ..............................14
     8.4. MPLS Fault OAM TLV Registry ...............................14
  9. References .....................................................15
     9.1. Normative References ......................................15
     9.2. Informative References ....................................15
  10. Contributing Authors ..........................................16






Swallow, et al.              Standards Track                    [Page 2]

RFC 6427                MPLS Fault Management OAM          November 2011


1.  Introduction

  Proper operation of a transport network depends on the ability to
  quickly identify faults and focus attention on the root cause of the
  disruption.  This document defines MPLS Fault Management Operations,
  Administration, and Maintenance (OAM) messages.  When a fault occurs
  in a server (sub-)layer, Fault Management OAM messages are sent to
  clients of that server so that alarms, which otherwise would be
  generated by the subsequent disruption of the clients, may be
  suppressed.  This prevents a storm of alarms and allows operations to
  focus on the actual faulty elements of the network.

  In traditional transport networks, circuits such as T1 lines are
  typically provisioned on multiple switches.  When an event that
  causes disruption occurs on any link or node along the path of such a
  transport circuit, OAM indications are generated.  When received,
  these indications may be used to suppress alarms and/or activate a
  backup circuit.  The MPLS-based transport network provides mechanisms
  equivalent to traditional transport circuits.  Therefore, a Fault
  Management (FM) capability must be defined for MPLS.  This document
  defines FM capabilities to meet the MPLS-TP requirements as described
  in RFC 5654 [1], and the MPLS-TP Operations, Administration, and
  Maintenance requirements as described in RFC 5860 [2].  These
  mechanisms are intended to be applicable to other aspects of MPLS as
  well.  However, applicability to other types of LSPs is beyond the
  scope of this document.

  Two broad classes of service disruptive conditions are identified.

  1.  Fault: The inability of a function to perform a required action.
      This does not include an inability due to preventive maintenance,
      lack of external resources, or planned actions.

  2.  Lock: an administrative status in which it is expected that only
      test traffic, if any, and OAM (dedicated to the LSP) can be sent
      on an LSP.

  Within this document, a further term is defined: server-failure.  A
  server-failure occurs when a fault condition or conditions have
  persisted long enough to consider the required service function of
  the server (sub-)layer to have terminated.  In the case of a
  protected server, this would mean that the working facilities and any
  protection facilities have all suffered faults of the required
  duration.

  This document specifies an MPLS OAM channel called an "MPLS-OAM Fault
  Management (FM)" channel.  A single message format and a set of
  procedures are defined to communicate service disruptive conditions



Swallow, et al.              Standards Track                    [Page 3]

RFC 6427                MPLS Fault Management OAM          November 2011


  from the location where they occur to the end points of LSPs that are
  affected by those conditions.  Multiple message types and flags are
  used to indicate and qualify the particular condition.

  Corresponding to the two classes of service disruptive conditions
  listed above, two messages are defined to communicate the type of
  condition.  These are known as:

     Alarm Indication Signal (AIS)

     Lock Report (LKR)

1.1.  Terminology

  ACH: Associated Channel Header

  ACh: Associated Channel

  CC: Continuity Check

  FM: Fault Management

  GAL: Generic Associated Channel Label

  LOC: Loss of Continuity

  LSP: Label Switched Path

  MEP: Maintenance Entity Group End Point

  MPLS: Multiprotocol Label Switching

  MPLS-TP: MPLS Transport Profile

  MS-PW: Multi-Segment Pseudowire

  OAM: Operations, Administration, and Maintenance

  PHP: Penultimate Hop Pop

  PW: Pseudowire

  TLV: Type, Length, Value








Swallow, et al.              Standards Track                    [Page 4]

RFC 6427                MPLS Fault Management OAM          November 2011


1.2.  Requirements Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [3].

2.  MPLS Fault Management Messages

  This document defines two messages to indicate service disruptive
  conditions, Alarm Indication Signal and Lock Report.  The semantics
  of the individual messages are described in subsections below.  Fault
  OAM messages are applicable to LSPs used in the MPLS Transport
  Profile.  Such LSPs are bound to specific server layers based upon
  static configuration or signaling in a client/server relationship.

  Fault Management messages are carried in-band of the client LSP or
  MS-PW by using the Associated Channel Header (ACH).  For LSPs other
  than PWs, the ACH is identified by the Generic Associated Channel
  Label (GAL) as defined in RFC 5586 [4].  To facilitate recognition
  and delivery of Fault Management messages, the Fault Management
  Channel is identified by a unique Associated Channel (ACh) code
  point.

  Fault OAM messages are generated by intermediate nodes where a client
  LSP is switched.  When a server (sub-)layer, e.g., a link or
  bidirectional LSP, used by the client LSP fails, the intermediate
  node sends Fault Management messages downstream towards the end point
  of the LSP.  The messages are sent to the client MEPs by inserting
  them into the affected client LSPs in the direction downstream of the
  fault location.  These messages are sent periodically until the
  condition is cleared.

2.1.  MPLS Alarm Indication Signal

  The MPLS Alarm Indication Signal (AIS) message is generated in
  response to detecting faults in the server (sub-)layer.  The AIS
  message SHOULD be sent as soon as the condition is detected, but MAY
  be delayed owing to processing in an implementation, and MAY be
  suppressed if protection is achieved very rapidly.  For example, an
  AIS message may be sent during a protection switching event and would
  cease being sent (or cease being forwarded by the protection switch
  selector) if the protection switch was successful in restoring the
  link.  However, an implementation may instead wait to see if the
  protection switch is successful prior to sending any AIS messages.







Swallow, et al.              Standards Track                    [Page 5]

RFC 6427                MPLS Fault Management OAM          November 2011


  The primary purpose of the AIS message is to suppress alarms in the
  layer network above the level at which the fault occurs.  When the
  Link Down Indication is set, the AIS message can be used to trigger
  recovery mechanisms.

2.1.1.  MPLS Link Down Indication

  The Link Down Indication (LDI) is communicated by setting the L-Flag
  to 1.  A node sets the L-Flag in the AIS message in response to
  detecting a failure in the server layer.  A node MUST NOT set the
  L-Flag until the fault has been determined to be a server-failure.  A
  node MUST set the L-Flag if the fault has been determined to be a
  server-failure.  For example, during a server layer protection
  switching event, a node MUST NOT set the L-Flag.  However, if the
  protection switch was unsuccessful in restoring the link within the
  expected repair time, the node MUST set the L-Flag.

  The setting of the L-Flag can be predetermined based on the
  protection state.  For example, if a server layer is protected and
  both the working and protection paths are available, the node should
  send AIS with the L-Flag clear upon detecting a fault condition.  If
  the server layer is unprotected, or the server layer is protected but
  only the active path is available, the node should send AIS with the
  L-Flag set upon detecting a loss of continuity (LOC) condition.  Note
  again that the L-Flag is not set until a server-failure has been
  declared.  Thus, if there is any hold-off timer associated with the
  LOC, then the L-Flag is not set until that timer has expired.

  The receipt of an AIS message with the L-Flag set MAY be treated as
  the equivalent of LOC at the client layer.  The choice of treatment
  is related to the rate at which the Continuity Check (CC) function is
  running.  In a normal transport environment, CC is run at a high rate
  in order to detect a failure within tens of milliseconds.  In such an
  environment, the L-Flag MAY be ignored and the AIS message is used
  solely for alarm suppression.

  In more general MPLS environments, the CC function may be running at
  a much slower rate.  In this environment, the Link Down Indication
  enables faster switch-over upon a failure occurring along the client
  LSP.

2.2.  MPLS Lock Report

  The MPLS Lock Report (LKR) message is generated when a server
  (sub-)layer entity has been administratively locked.  Its purpose is
  to communicate the locked condition to the client-layer entities.
  When a server layer is administratively locked, it is not available
  to carry client traffic.  The purpose of the LKR message is to



Swallow, et al.              Standards Track                    [Page 6]

RFC 6427                MPLS Fault Management OAM          November 2011


  suppress alarms in the layer network above the level at which the
  administrative lock occurs and to allow the clients to differentiate
  the lock condition from a fault condition.  While the primary purpose
  of the LKR message is to suppress alarms, similar to AIS with the LDI
  (L-Flag set), the receipt of an LKR message can be treated as the
  equivalent of loss of continuity at the client layer.

2.3.  Propagation of MPLS Fault Messages

  MPLS-TP allows for a hierarchy of LSPs.  When the client MEP of an
  LSP (that is also acting as a server layer) receives FM indications,
  the following rules apply.  If the CC function is disabled for the
  server LSP, a node SHOULD generate AIS messages toward any clients
  when either the AIS or LKR indication is raised.  Note that the
  L-Flag is not automatically propagated.  The rules of Section 2.1.1
  apply.  In particular, the L-Flag is not set until a server-failure
  has been declared.

3.  MPLS Fault Management Channel

  The MPLS Fault Management channel is identified by the ACH as defined
  in RFC 5586 [4] with the Associated Channel Type set to the MPLS
  Fault Management (FM) code point = 0x0058.  The FM Channel does not
  use ACh TLVs and MUST NOT include the ACh TLV header.  The ACH with
  the FM ACh code point is shown below.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |0 0 0 1|Version|   Reserved    |       0x0058 FM Channel       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               ~
     ~                  MPLS Fault Management Message                ~
     ~                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Figure 1: ACH Indication of the MPLS Fault Management Channel

  The first three fields are defined in RFC 5586 [4].

  The Fault Management Channel is 0x0058.










Swallow, et al.              Standards Track                    [Page 7]

RFC 6427                MPLS Fault Management OAM          November 2011


4.  MPLS Fault Management Message Format

  The format of the Fault Management message is shown below.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Vers  | Resvd |   Msg Type    |     Flags     | Refresh Timer |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Total TLV Len |                                               ~
     +-+-+-+-+-+-+-+-+              TLVs                             ~
     ~                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 2: MPLS Fault OAM Message Format

  Version

     The Version Number is currently 1.

  Reserved

     This field MUST be set to zero on transmission and ignored on
     receipt.

  Message Type

     The Message Type indicates the type of condition as listed in the
     table below.

     Msg Type           Description
     --------           -----------------------------
        0               Reserved
        1               Alarm Indication Signal (AIS)
        2               Lock Report (LKR)

  Flags

     Two flags are defined.  The reserved flags in this field MUST be
     set to zero on transmission and ignored on receipt.

           +-+-+-+-+-+-+-+-+
           | Reserved  |L|R|
           +-+-+-+-+-+-+-+-+

            Figure 3: Flags





Swallow, et al.              Standards Track                    [Page 8]

RFC 6427                MPLS Fault Management OAM          November 2011


     L-Flag

        Link Down Indication.  The L-Flag only has significance in the
        AIS message.  For the LKR message, the L-Flag MUST be set to
        zero and ignored on receipt.  See Section 2.1.1 for details on
        setting this bit.

     R-Flag

        The R-Flag is clear to indicate the presence of an FM condition
        and is set to one to indicate the removal of a previously sent
        FM condition.

  Refresh Timer

     The maximum time between successive FM messages specified in
     seconds.  The range is 1 to 20.  The value 0 is not permitted.

  Total TLV Length

     The total length in bytes of all included TLVs.

4.1.  Fault Management Message TLVs

  TLVs are used in Fault Management messages to carry information that
  may not pertain to all messages as well as to allow for
  extensibility.  The TLVs currently defined are the IF_ID and the
  Global_ID.

  TLVs have the following format:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Type      |    Length     |                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               .
     |                                                               .
     .                             Value                             .
     .                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                       Figure 4: Fault TLV Format

  Type

     Encodes how the Value field is to be interpreted.





Swallow, et al.              Standards Track                    [Page 9]

RFC 6427                MPLS Fault Management OAM          November 2011


  Length

     Specifies the length of the Value field in octets.

  Value

     Octet string of Length octets that encodes information to be
     interpreted as specified by the Type field.

4.1.1.  Interface Identifier TLV

  The Interface Identifier (IF_ID) TLV carries the IF_ID as defined in
  RFC 6370 [5].  The Type is 1.  The length is 0x8.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                    MPLS-TP Node Identifier                    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                    MPLS-TP Interface Number                   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                Figure 5: Interface Identifier TLV Format

4.1.2.  Global Identifier

  The Global Identifier (Global_ID) TLV carries the Global_ID as
  defined in RFC 6370 [5].  The Type is 2.  The length is 0x4.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                   MPLS-TP Global Identifier                   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 6: Global Identifier TLV Format

5.  Sending and Receiving Fault Management Messages

5.1.  Sending a Fault Management Message

  Service disruptive conditions are indicated by sending FM messages.
  The message type is set to the value corresponding to the condition.
  The Refresh Timer is set to the maximum time between successive FM
  messages.  This value MUST NOT be changed on successive FM messages
  reporting the same incident.  If the optional clearing procedures are
  not used, then the default value is one second.  Otherwise, the
  default value is 20 seconds.



Swallow, et al.              Standards Track                   [Page 10]

RFC 6427                MPLS Fault Management OAM          November 2011


  A Global_ID MAY be included.  If the R-Flag clearing procedures are
  to be used, the IF_ID TLV MUST be included.  Otherwise, the IF_ID TLV
  MAY be included.

  The message is then sent.  Assuming the condition persists, the
  message MUST be retransmitted two more times at an interval of one
  second.  Further retransmissions are made according to the value of
  the Refresh Timer.  Retransmissions continue until the condition is
  cleared.

5.2.  Clearing a Fault Management Indication

  When a fault is cleared, a node MUST cease sending the associated FM
  messages.  Ceasing to send FM messages will clear the indication
  after 3.5 times the Refresh Timer.  To clear an indication more
  quickly, the following procedure is used.  The R-Flag of the FM
  message is set to one.  Other fields of the FM message SHOULD NOT be
  modified.  The message is sent immediately and then retransmitted two
  more times at an interval of one second.  Note, however, if another
  fault occurs, the node MUST cease these retransmissions and generate
  new FM messages for the new fault.

5.3.  Receiving a Fault Management Indication

  When an FM message is received, a MEP examines it to ensure that it
  is well formed.  If the message type is reserved or unknown, the
  message is ignored.  If the version number is unknown, the message is
  ignored.

  If the R-Flag is set to zero, the MEP checks to see if a condition
  matching the message type exists.  If it does not, the condition
  specific to the message type is entered.  An Expiration timer is set
  to 3.5 times the Refresh Timer.  If the message type matches an
  existing condition, the message is considered a refresh and the
  Expiration timer is reset.  In both cases, if an IF_ID TLV is
  present, it is recorded.

  If the R-Flag is set to one, the MEP checks to see if a condition
  matching the message type and IF_ID exists.  If it does, that
  condition is cleared.  Otherwise, the message is ignored.

  If the Expiration timer expires, the condition is cleared.









Swallow, et al.              Standards Track                   [Page 11]

RFC 6427                MPLS Fault Management OAM          November 2011


6.  Minimum Implementation Requirements

  At a minimum, an implementation MUST support the following:

  1.  Sending AIS and LKR messages at a rate of one per second.

  2.  Support of setting the L-Flag to indicate a server-failure.

  3.  Receiving AIS and LKR messages with any allowed Refresh Timer
      value.

  The following items are OPTIONAL to implement.

  1.  Sending AIS and LKR messages with values of the Refresh Timer
      other than one second.

  2.  Support of receiving the L-Flag.

  3.  Support of setting the R-Flag to a value other than zero.

  4.  Support of receiving the R-Flag.

  5.  All TLVs.

7.  Security Considerations

  MPLS-TP is a subset of MPLS and so builds upon many of the aspects of
  the security model of MPLS.  MPLS networks make the assumption that
  it is very hard to inject traffic into a network, and equally hard to
  cause traffic to be directed outside the network.  The control-plane
  protocols utilize hop-by-hop security and assume a "chain-of-trust"
  model such that end-to-end control-plane security is not used.  For
  more information on the generic aspects of MPLS security, see RFC
  5920 [8].

  This document describes a protocol carried in the G-ACh (RFC 5586
  [4]) and so is dependent on the security of the G-ACh itself.  The
  G-ACh is a generalization of the Associated Channel defined in RFC
  4385 [6].  Thus, this document relies heavily on the security
  mechanisms provided for the Associated Channel as described in those
  two documents.

  A specific concern for the G-ACh is that is can be used to provide a
  covert channel.  This problem is wider than the scope of this
  document and does not need to be addressed here, but it should be
  noted that the channel provides end-to-end connectivity and SHOULD





Swallow, et al.              Standards Track                   [Page 12]

RFC 6427                MPLS Fault Management OAM          November 2011


  NOT be policed by transit nodes.  Thus, there is no simple way of
  preventing any traffic being carried in the G-ACh between consenting
  nodes.

  A good discussion of the data-plane security of an Associated Channel
  may be found in RFC 5085 [9].  That document also describes some
  mitigation techniques.

  It should be noted that the G-ACh is essentially connection-oriented,
  so injection or modification of control messages specified in this
  document requires the subversion of a transit node.  Such subversion
  is generally considered hard to protect against in MPLS networks, and
  impossible to protect against at the protocol level.  Management-
  level techniques are more appropriate.

  Spurious fault OAM messages form a vector for a denial-of-service
  attack.  However, since these messages are carried in a control
  channel, except for one case discussed below, one would have to gain
  access to a node providing the service in order to effect such an
  attack.  Since transport networks are usually operated as a walled
  garden, such threats are less likely.

  If external MPLS traffic is mapped to an LSP via a PHP forwarding
  operation, it is possible to insert a GAL followed by a fault OAM
  message.  In such a situation, an operator SHOULD protect against
  this attack by filtering any fault OAM messages with the GAL at the
  top of the label stack.

8.  IANA Considerations

8.1.  Pseudowire Associated Channel Type

  Fault OAM requires a unique Associated Channel Type that has been
  assigned by IANA from the Pseudowire Associated Channel Types
  registry.

  Registry:
  Value        Description              TLV Follows  Reference
  -----------  -----------------------  -----------  ---------
  0x0058       Fault OAM                No           (This Document)

8.2.  MPLS Fault OAM Message Type Registry

  This section details the "MPLS Fault OAM Message Type Registry", a
  new sub-registry of the "Multiprotocol Label Switching (MPLS)
  Operations, Administration, and Management (OAM) Parameters"
  registry.  The Type space is divided into assignment ranges; the




Swallow, et al.              Standards Track                   [Page 13]

RFC 6427                MPLS Fault Management OAM          November 2011


  following terms are used in describing the procedures by which IANA
  allocates values (as defined in RFC 5226 [7]): "Standards Action" and
  "Experimental Use".

  MPLS Fault OAM Message Types take values in the range 0-255.
  Assignments in the range 0-251 are via Standards Action; values in
  the range 252-255 are for Experimental Use and MUST NOT be allocated.

  Message Types defined in this document are:

     Msg Type           Description
     --------           -----------------------------
        0               Reserved (not available for allocation)
        1               Alarm Indication Signal (AIS)
        2               Lock Report (LKR)

8.3.  MPLS Fault OAM Flag Registry

  This section details the "MPLS Fault OAM Flag Registry", a new sub-
  registry of the "Multiprotocol Label Switching (MPLS) Operations,
  Administration, and Management (OAM) Parameters" registry.  The Flag
  space ranges from 0-7.  All flags are allocated by "Standards Action"
  (as defined in RFC 5226 [7]).

  Flags defined in this document are:

     Bit        Hex Value         Description
     ---        ---------         -----------
     0-5                          Unassigned
      6            0x2            L-Flag
      7            0x1            R-Flag

8.4.  MPLS Fault OAM TLV Registry

  This sections details the "MPLS Fault OAM TLV Registry", a new sub-
  registry of the "Multiprotocol Label Switching (MPLS) Operations,
  Administration, and Management (OAM) Parameters" registry.  The Type
  space is divided into assignment ranges; the following terms are used
  in describing the procedures by which IANA allocates values (as
  defined in RFC 5226 [7]): "Standards Action", "Specification
  Required", and "Experimental Use".

  MPLS Fault OAM TLVs take values in the range 0-255.  Assignments in
  the range 0-191 are via Standards Action; assignments in the range
  192-247 are made via "Specification Required"; values in the range
  248-255 are for Experimental Use and MUST NOT be allocated.





Swallow, et al.              Standards Track                   [Page 14]

RFC 6427                MPLS Fault Management OAM          November 2011


  TLVs defined in this document are:

     Value    TLV Name
     -----    -------
         0    Reserved (not available for allocation)
         1    Interface Identifier TLV
         2    Global Identifier

9.  References

9.1.  Normative References

  [1] Niven-Jenkins, B., Ed., Brungard, D., Ed., Betts, M., Ed.,
      Sprecher, N., and S. Ueno, "Requirements of an MPLS Transport
      Profile", RFC 5654, September 2009.

  [2] Vigoureux, M., Ed., Ward, D., Ed., and M. Betts, Ed.,
      "Requirements for Operations, Administration, and Maintenance
      (OAM) in MPLS Transport Networks", RFC 5860, May 2010.

  [3] Bradner, S., "Key words for use in RFCs to Indicate Requirement
      Levels", BCP 14, RFC 2119, March 1997.

  [4] Bocci, M., Ed., Vigoureux, M., Ed., and S. Bryant, Ed., "MPLS
      Generic Associated Channel", RFC 5586, June 2009.

  [5] Bocci, M., Swallow, G., and E. Gray, "MPLS Transport Profile
      (MPLS-TP) Identifiers", RFC 6370, September 2011.

  [6] Bryant, S., Swallow, G., Martini, L., and D. McPherson,
      "Pseudowire Emulation Edge-to-Edge (PWE3) Control Word for Use
      over an MPLS PSN", RFC 4385, February 2006.

  [7] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA
      Considerations Section in RFCs", BCP 26, RFC 5226, May 2008.

9.2.  Informative References

  [8] Fang, L., Ed., "Security Framework for MPLS and GMPLS Networks",
      RFC 5920, July 2010.

  [9] Nadeau, T., Ed., and C. Pignataro, Ed., "Pseudowire Virtual
      Circuit Connectivity Verification (VCCV): A Control Channel for
      Pseudowires", RFC 5085, December 2007.







Swallow, et al.              Standards Track                   [Page 15]

RFC 6427                MPLS Fault Management OAM          November 2011


10.  Contributing Authors

  Stewart Bryant
  Cisco Systems, Inc.
  250, Longwater
  Green Park, Reading  RG2 6GB
  UK

  EMail: [email protected]


  Siva Sivabalan
  Cisco Systems, Inc.
  2000 Innovation Drive
  Kanata, Ontario  K2K 3E8
  Canada

  EMail: [email protected]

































Swallow, et al.              Standards Track                   [Page 16]

RFC 6427                MPLS Fault Management OAM          November 2011


Authors' Addresses

  George Swallow (editor)
  Cisco Systems, Inc.
  300 Beaver Brook Road
  Boxborough, Massachusetts  01719
  United States

  EMail: [email protected]


  Annamaria Fulignoli (editor)
  Ericsson
  Via Moruzzi
  Pisa  56100
  Italy

  EMail: [email protected]


  Martin Vigoureux (editor)
  Alcatel-Lucent
  Route de Villejust
  Nozay  91620
  France

  EMail: [email protected]


  Sami Boutros
  Cisco Systems, Inc.
  3750 Cisco Way
  San Jose, California  95134
  USA

  EMail: [email protected]


  David Ward
  Juniper Networks, Inc.

  EMail: [email protected]









Swallow, et al.              Standards Track                   [Page 17]