Internet Engineering Task Force (IETF)                       S. Poretsky
Request for Comments: 6412                          Allot Communications
Category: Informational                                        B. Imhoff
ISSN: 2070-1721                                              F5 Networks
                                                          K. Michielsen
                                                          Cisco Systems
                                                          November 2011


Terminology for Benchmarking Link-State IGP Data-Plane Route Convergence

Abstract

  This document describes the terminology for benchmarking link-state
  Interior Gateway Protocol (IGP) route convergence.  The terminology
  is to be used for benchmarking IGP convergence time through
  externally observable (black-box) data-plane measurements.  The
  terminology can be applied to any link-state IGP, such as IS-IS and
  OSPF.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Not all documents
  approved by the IESG are a candidate for any level of Internet
  Standard; see Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc6412.

Copyright Notice

  Copyright (c) 2011 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must




Poretsky, et al.              Informational                     [Page 1]

RFC 6412          IGP Convergence Benchmark Terminology    November 2011


  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

  This document may contain material from IETF Documents or IETF
  Contributions published or made publicly available before November
  10, 2008.  The person(s) controlling the copyright in some of this
  material may not have granted the IETF Trust the right to allow
  modifications of such material outside the IETF Standards Process.
  Without obtaining an adequate license from the person(s) controlling
  the copyright in such materials, this document may not be modified
  outside the IETF Standards Process, and derivative works of it may
  not be created outside the IETF Standards Process, except to format
  it for publication as an RFC or to translate it into languages other
  than English.




































Poretsky, et al.              Informational                     [Page 2]

RFC 6412          IGP Convergence Benchmark Terminology    November 2011


Table of Contents

  1.  Introduction and Scope . . . . . . . . . . . . . . . . . . . .  4
  2.  Existing Definitions . . . . . . . . . . . . . . . . . . . . .  4
  3.  Term Definitions . . . . . . . . . . . . . . . . . . . . . . .  5
    3.1.  Convergence Types  . . . . . . . . . . . . . . . . . . . .  5
      3.1.1.  Route Convergence  . . . . . . . . . . . . . . . . . .  5
      3.1.2.  Full Convergence . . . . . . . . . . . . . . . . . . .  5
    3.2.  Instants . . . . . . . . . . . . . . . . . . . . . . . . .  6
      3.2.1.  Traffic Start Instant  . . . . . . . . . . . . . . . .  6
      3.2.2.  Convergence Event Instant  . . . . . . . . . . . . . .  6
      3.2.3.  Convergence Recovery Instant . . . . . . . . . . . . .  7
      3.2.4.  First Route Convergence Instant  . . . . . . . . . . .  8
    3.3.  Transitions  . . . . . . . . . . . . . . . . . . . . . . .  8
      3.3.1.  Convergence Event Transition . . . . . . . . . . . . .  8
      3.3.2.  Convergence Recovery Transition  . . . . . . . . . . .  9
    3.4.  Interfaces . . . . . . . . . . . . . . . . . . . . . . . . 10
      3.4.1.  Local Interface  . . . . . . . . . . . . . . . . . . . 10
      3.4.2.  Remote Interface . . . . . . . . . . . . . . . . . . . 10
      3.4.3.  Preferred Egress Interface . . . . . . . . . . . . . . 10
      3.4.4.  Next-Best Egress Interface . . . . . . . . . . . . . . 11
    3.5.  Benchmarking Methods . . . . . . . . . . . . . . . . . . . 11
      3.5.1.  Rate-Derived Method  . . . . . . . . . . . . . . . . . 11
      3.5.2.  Loss-Derived Method  . . . . . . . . . . . . . . . . . 14
      3.5.3.  Route-Specific Loss-Derived Method . . . . . . . . . . 15
    3.6.  Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . 17
      3.6.1.  Full Convergence Time  . . . . . . . . . . . . . . . . 17
      3.6.2.  First Route Convergence Time . . . . . . . . . . . . . 18
      3.6.3.  Route-Specific Convergence Time  . . . . . . . . . . . 18
      3.6.4.  Loss-Derived Convergence Time  . . . . . . . . . . . . 20
      3.6.5.  Route Loss of Connectivity Period  . . . . . . . . . . 21
      3.6.6.  Loss-Derived Loss of Connectivity Period . . . . . . . 22
    3.7.  Measurement Terms  . . . . . . . . . . . . . . . . . . . . 23
      3.7.1.  Convergence Event  . . . . . . . . . . . . . . . . . . 23
      3.7.2.  Convergence Packet Loss  . . . . . . . . . . . . . . . 23
      3.7.3.  Connectivity Packet Loss . . . . . . . . . . . . . . . 24
      3.7.4.  Packet Sampling Interval . . . . . . . . . . . . . . . 24
      3.7.5.  Sustained Convergence Validation Time  . . . . . . . . 25
      3.7.6.  Forwarding Delay Threshold . . . . . . . . . . . . . . 26
    3.8.  Miscellaneous Terms  . . . . . . . . . . . . . . . . . . . 26
      3.8.1.  Impaired Packet  . . . . . . . . . . . . . . . . . . . 26
  4.  Security Considerations  . . . . . . . . . . . . . . . . . . . 27
  5.  Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 27
  6.  Normative References . . . . . . . . . . . . . . . . . . . . . 27







Poretsky, et al.              Informational                     [Page 3]

RFC 6412          IGP Convergence Benchmark Terminology    November 2011


1.  Introduction and Scope

  This document is a companion to [Po11m], which contains the
  methodology to be used for benchmarking link-state Interior Gateway
  Protocol (IGP) convergence by observing the data plane.  The purpose
  of this document is to introduce new terms required to complete
  execution of the Link-State IGP Data-Plane Route Convergence
  methodology [Po11m].

  IGP convergence time is measured by observing the data plane through
  the Device Under Test (DUT) at the Tester.  The methodology and
  terminology to be used for benchmarking IGP convergence can be
  applied to IPv4 and IPv6 traffic and link-state IGPs such as
  Intermediate System to Intermediate System (IS-IS) [Ca90][Ho08], Open
  Shortest Path First (OSPF) [Mo98] [Co08], and others.

2.  Existing Definitions

  This document uses existing terminology defined in other IETF
  documents.  Examples include, but are not limited to:

         Throughput                       [Br91], Section 3.17
         Offered Load                     [Ma98], Section 3.5.2
         Forwarding Rate                  [Ma98], Section 3.6.1
         Device Under Test (DUT)          [Ma98], Section 3.1.1
         System Under Test (SUT)          [Ma98], Section 3.1.2
         Out-of-Order Packet              [Po06], Section 3.3.4
         Duplicate Packet                 [Po06], Section 3.3.5
         Stream                           [Po06], Section 3.3.2
         Forwarding Delay                 [Po06], Section 3.2.4
         IP Packet Delay Variation (IPDV) [De02], Section 1.2
         Loss Period                      [Ko02], Section 4

  The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in BCP 14, RFC 2119
  [Br97].  RFC 2119 defines the use of these keywords to help make the
  intent of Standards Track documents as clear as possible.  While this
  document uses these keywords, this document is not a Standards Track
  document.











Poretsky, et al.              Informational                     [Page 4]

RFC 6412          IGP Convergence Benchmark Terminology    November 2011


3.  Term Definitions

3.1.  Convergence Types

3.1.1.  Route Convergence

  Definition:

     The process of updating all components of the router, including
     the Routing Information Base (RIB) and Forwarding Information Base
     (FIB), along with software and hardware tables, with the most
     recent route change(s) such that forwarding for a route entry is
     successful on the Next-Best Egress Interface (Section 3.4.4).

  Discussion:

     In general, IGP convergence does not necessarily result in a
     change in forwarding.  But the test cases in [Po11m] are specified
     such that the IGP convergence results in a change of egress
     interface for the measurement data-plane traffic.  Due to this
     property of the test case specifications, Route Convergence can be
     observed externally by the rerouting of the measurement data-plane
     traffic to the Next-Best Egress Interface (Section 3.4.4).

  Measurement Units:

     N/A

  See Also:

     Next-Best Egress Interface, Full Convergence

3.1.2.  Full Convergence

  Definition:

     Route Convergence for all routes in the Forwarding Information
     Base (FIB).

  Discussion:

     In general, IGP convergence does not necessarily result in a
     change in forwarding.  But the test cases in [Po11m] are specified
     such that the IGP convergence results in a change of egress
     interface for the measurement data-plane traffic.  Due to this
     property of the test cases specifications, Full Convergence can be
     observed externally by the rerouting of the measurement data-plane
     traffic to the Next-Best Egress Interface (Section 3.4.4).



Poretsky, et al.              Informational                     [Page 5]

RFC 6412          IGP Convergence Benchmark Terminology    November 2011


  Measurement Units:

     N/A

  See Also:

     Next-Best Egress Interface, Route Convergence

3.2.  Instants

3.2.1.  Traffic Start Instant

  Definition:

     The time instant the Tester sends out the first data packet to the
     DUT.

  Discussion:

     If using the Loss-Derived Method (Section 3.5.2) or the Route-
     Specific Loss-Derived Method (Section 3.5.3) to benchmark IGP
     convergence time, and the applied Convergence Event
     (Section 3.7.1) does not cause instantaneous traffic loss for all
     routes at the Convergence Event Instant (Section 3.2.2), then the
     Tester SHOULD collect a timestamp on the Traffic Start Instant in
     order to measure the period of time between the Traffic Start
     Instant and Convergence Event Instant.

  Measurement Units:

     seconds (and fractions), reported with resolution sufficient to
     distinguish between different instants

  See Also:

     Loss-Derived Method, Route-Specific Loss-Derived Method,
     Convergence Event, Convergence Event Instant

3.2.2.  Convergence Event Instant

  Definition:

     The time instant that a Convergence Event (Section 3.7.1) occurs.








Poretsky, et al.              Informational                     [Page 6]

RFC 6412          IGP Convergence Benchmark Terminology    November 2011


  Discussion:

     If the Convergence Event (Section 3.7.1) causes instantaneous
     traffic loss on the Preferred Egress Interface (Section 3.4.3),
     the Convergence Event Instant is observable from the data plane as
     the instant that no more packets are received on the Preferred
     Egress Interface.

     The Tester SHOULD collect a timestamp on the Convergence Event
     Instant if the Convergence Event does not cause instantaneous
     traffic loss on the Preferred Egress Interface (Section 3.4.3).

  Measurement Units:

     seconds (and fractions), reported with resolution sufficient to
     distinguish between different instants

  See Also:

     Convergence Event, Preferred Egress Interface

3.2.3.  Convergence Recovery Instant

  Definition:

     The time instant that Full Convergence (Section 3.1.2) has
     completed.

  Discussion:

     The Full Convergence completed state MUST be maintained for an
     interval of duration equal to the Sustained Convergence Validation
     Time (Section 3.7.5) in order to validate the Convergence Recovery
     Instant.

     The Convergence Recovery Instant is observable from the data plane
     as the instant the DUT forwards traffic to all destinations over
     the Next-Best Egress Interface (Section 3.4.4) without
     impairments.

  Measurement Units:

     seconds (and fractions), reported with resolution sufficient to
     distinguish between different instants







Poretsky, et al.              Informational                     [Page 7]

RFC 6412          IGP Convergence Benchmark Terminology    November 2011


  See Also:

     Sustained Convergence Validation Time, Full Convergence, Next-Best
     Egress Interface

3.2.4.  First Route Convergence Instant

  Definition:

     The time instant the first route entry completes Route Convergence
     (Section 3.1.1)

  Discussion:

     Any route may be the first to complete Route Convergence.  The
     First Route Convergence Instant is observable from the data plane
     as the instant that the first packet that is not an Impaired
     Packet (Section 3.8.1) is received from the Next-Best Egress
     Interface (Section 3.4.4) or, for the test cases with Equal Cost
     Multi-Path (ECMP) or Parallel Links, the instant that the
     Forwarding Rate on the Next-Best Egress Interface (Section 3.4.4)
     starts to increase.

  Measurement Units:

     seconds (and fractions), reported with resolution sufficient to
     distinguish between different instants

  See Also:

     Route Convergence, Impaired Packet, Next-Best Egress Interface

3.3.  Transitions

3.3.1.  Convergence Event Transition

  Definition:

     A time interval following a Convergence Event (Section 3.7.1) in
     which the Forwarding Rate on the Preferred Egress Interface
     (Section 3.4.3) gradually reduces to zero.

  Discussion:

     The Forwarding Rate during a Convergence Event Transition may or
     may not decrease linearly.





Poretsky, et al.              Informational                     [Page 8]

RFC 6412          IGP Convergence Benchmark Terminology    November 2011


     The Forwarding Rate observed on the DUT egress interface(s) may or
     may not decrease to zero.

     The Offered Load, the number of routes, and the Packet Sampling
     Interval (Section 3.7.4) influence the observations of the
     Convergence Event Transition using the Rate-Derived Method
     (Section 3.5.1).

  Measurement Units:

     seconds (and fractions)

  See Also:

     Convergence Event, Preferred Egress Interface, Packet Sampling
     Interval, Rate-Derived Method

3.3.2.  Convergence Recovery Transition

  Definition:

     A time interval following the First Route Convergence Instant
     (Section 3.4.4) in which the Forwarding Rate on the DUT egress
     interface(s) gradually increases to equal to the Offered Load.

  Discussion:

     The Forwarding Rate observed during a Convergence Recovery
     Transition may or may not increase linearly.

     The Offered Load, the number of routes, and the Packet Sampling
     Interval (Section 3.7.4) influence the observations of the
     Convergence Recovery Transition using the Rate-Derived Method
     (Section 3.5.1).

  Measurement Units:

     seconds (and fractions)

  See Also:

     First Route Convergence Instant, Packet Sampling Interval, Rate-
     Derived Method








Poretsky, et al.              Informational                     [Page 9]

RFC 6412          IGP Convergence Benchmark Terminology    November 2011


3.4.  Interfaces

3.4.1.  Local Interface

  Definition:

     An interface on the DUT.

  Discussion:

     A failure of a Local Interface indicates that the failure occurred
     directly on the DUT.

  Measurement Units:

     N/A

  See Also:

     Remote Interface

3.4.2.  Remote Interface

  Definition:

     An interface on a neighboring router that is not directly
     connected to any interface on the DUT.

  Discussion:

     A failure of a Remote Interface indicates that the failure
     occurred on a neighbor router's interface that is not directly
     connected to the DUT.

  Measurement Units:

     N/A

  See Also:

     Local Interface

3.4.3.  Preferred Egress Interface

  Definition:

     The outbound interface from the DUT for traffic routed to the
     preferred next-hop.



Poretsky, et al.              Informational                    [Page 10]

RFC 6412          IGP Convergence Benchmark Terminology    November 2011


  Discussion:

     The Preferred Egress Interface is the egress interface prior to a
     Convergence Event (Section 3.7.1).

  Measurement Units:

     N/A

  See Also:

     Convergence Event, Next-Best Egress Interface

3.4.4.  Next-Best Egress Interface

  Definition:

     The outbound interface or set of outbound interfaces in an Equal
     Cost Multipath (ECMP) set or parallel link set of the Device Under
     Test (DUT) for traffic routed to the second-best next-hop.

  Discussion:

     The Next-Best Egress Interface becomes the egress interface after
     a Convergence Event (Section 3.4.4).

     For the test cases in [Po11m] using test topologies with an ECMP
     set or parallel link set, the term Preferred Egress Interface
     refers to all members of the link set.

  Measurement Units:

     N/A

  See Also:

     Convergence Event, Preferred Egress Interface

3.5.  Benchmarking Methods

3.5.1.  Rate-Derived Method

  Definition:

     The method to calculate convergence time benchmarks from observing
     the Forwarding Rate each Packet Sampling Interval (Section 3.7.4).





Poretsky, et al.              Informational                    [Page 11]

RFC 6412          IGP Convergence Benchmark Terminology    November 2011


  Discussion:

     Figure 1 shows an example of the Forwarding Rate change in time
     during convergence as observed when using the Rate-Derived Method.

          ^         Traffic                      Convergence
     Fwd  |         Start                        Recovery
     Rate |         Instant                      Instant
          | Offered  ^                             ^
          | Load --> ----------\                   /-----------
          |                     \                 /<--- Convergence
          |                      \     Packet    /      Recovery
          |       Convergence --->\     Loss    /       Transition
          |       Event            \           /
          |       Transition        \---------/ <-- Max Packet Loss
          |
          +--------------------------------------------------------->
                          ^                   ^                 time
                     Convergence         First Route
                     Event Instant       Convergence Instant

                  Figure 1: Rate-Derived Convergence Graph

     To enable collecting statistics of Out-of-Order Packets per flow
     (see [Th00], Section 3), the Offered Load SHOULD consist of
     multiple Streams [Po06], and each Stream SHOULD consist of a
     single flow .  If sending multiple Streams, the measured traffic
     statistics for all Streams MUST be added together.

     The destination addresses for the Offered Load MUST be distributed
     such that all routes or a statistically representative subset of
     all routes are matched and each of these routes is offered an
     equal share of the Offered Load.  It is RECOMMENDED to send
     traffic to all routes, but a statistically representative subset
     of all routes can be used if required.

     At least one packet per route for all routes matched in the
     Offered Load MUST be offered to the DUT within each Packet
     Sampling Interval.  For maximum accuracy, the value of the Packet
     Sampling Interval SHOULD be as small as possible, but the presence
     of IP Packet Delay Variation (IPDV) [De02] may require that a
     larger Packet Sampling Interval be used.

     The Offered Load, IPDV, the number of routes, and the Packet
     Sampling Interval influence the observations for the Rate-Derived
     Method.  It may be difficult to identify the different convergence
     time instants in the Rate-Derived Convergence Graph.  For example,




Poretsky, et al.              Informational                    [Page 12]

RFC 6412          IGP Convergence Benchmark Terminology    November 2011


     it is possible that a Convergence Event causes the Forwarding Rate
     to drop to zero, while this may not be observed in the Forwarding
     Rate measurements if the Packet Sampling Interval is too large.

     IPDV causes fluctuations in the number of received packets during
     each Packet Sampling Interval.  To account for the presence of
     IPDV in determining if a convergence instant has been reached,
     Forwarding Delay SHOULD be observed during each Packet Sampling
     Interval.  The minimum and maximum number of packets expected in a
     Packet Sampling Interval in presence of IPDV can be calculated
     with Equation 1.

   number of packets expected in a Packet Sampling Interval
     in presence of IP Packet Delay Variation
       = expected number of packets without IP Packet Delay Variation
         +/-( (maxDelay - minDelay) * Offered Load)
   where minDelay and maxDelay indicate (respectively) the minimum and
   maximum Forwarding Delay of packets received during the Packet
   Sampling Interval

                               Equation 1

     To determine if a convergence instant has been reached, the number
     of packets received in a Packet Sampling Interval is compared with
     the range of expected number of packets calculated in Equation 1.

     If packets are going over multiple ECMP members and one or more of
     the members has failed, then the number of received packets during
     each Packet Sampling Interval may vary, even excluding presence of
     IPDV.  To prevent fluctuation of the number of received packets
     during each Packet Sampling Interval for this reason, the Packet
     Sampling Interval duration SHOULD be a whole multiple of the time
     between two consecutive packets sent to the same destination.

     Metrics measured at the Packet Sampling Interval MUST include
     Forwarding Rate and Impaired Packet count.

     To measure convergence time benchmarks for Convergence Events
     (Section 3.7.1) that do not cause instantaneous traffic loss for
     all routes at the Convergence Event Instant, the Tester SHOULD
     collect a timestamp of the Convergence Event Instant
     (Section 3.2.2), and the Tester SHOULD observe Forwarding Rate
     separately on the Next-Best Egress Interface.








Poretsky, et al.              Informational                    [Page 13]

RFC 6412          IGP Convergence Benchmark Terminology    November 2011


     Since the Rate-Derived Method does not distinguish between
     individual traffic destinations, it SHOULD NOT be used for any
     route specific measurements.  Therefore, the Rate-Derived Method
     SHOULD NOT be used to benchmark Route Loss of Connectivity Period
     (Section 3.6.5).

  Measurement Units:

     N/A

  See Also:

     Packet Sampling Interval, Convergence Event, Convergence Event
     Instant, Next-Best Egress Interface, Route Loss of Connectivity
     Period

3.5.2.  Loss-Derived Method

  Definition:

     The method to calculate the Loss-Derived Convergence Time
     (Section 3.6.4) and Loss-Derived Loss of Connectivity Period
     (Section 3.6.6) benchmarks from the amount of Impaired Packets
     (Section 3.8.1).

  Discussion:

     To enable collecting statistics of Out-of-Order Packets per flow
     (see [Th00], Section 3), the Offered Load SHOULD consist of
     multiple Streams [Po06], and each Stream SHOULD consist of a
     single flow .  If sending multiple Streams, the measured traffic
     statistics for all Streams MUST be added together.

     The destination addresses for the Offered Load MUST be distributed
     such that all routes or a statistically representative subset of
     all routes are matched and each of these routes is offered an
     equal share of the Offered Load.  It is RECOMMENDED to send
     traffic to all routes, but a statistically representative subset
     of all routes can be used if required.

     Loss-Derived Method SHOULD always be combined with the Rate-
     Derived Method in order to observe Full Convergence completion.
     The total amount of Convergence Packet Loss is collected after
     Full Convergence completion.







Poretsky, et al.              Informational                    [Page 14]

RFC 6412          IGP Convergence Benchmark Terminology    November 2011


     To measure convergence time and loss of connectivity benchmarks
     for Convergence Events that cause instantaneous traffic loss for
     all routes at the Convergence Event Instant, the Tester SHOULD
     observe the Impaired Packet count on all DUT egress interfaces
     (see Connectivity Packet Loss (Section 3.7.3)).

     To measure convergence time benchmarks for Convergence Events that
     do not cause instantaneous traffic loss for all routes at the
     Convergence Event Instant, the Tester SHOULD collect timestamps of
     the Start Traffic Instant and of the Convergence Event Instant,
     and the Tester SHOULD observe Impaired Packet count separately on
     the Next-Best Egress Interface (see Convergence Packet Loss
     (Section 3.7.2)).

     Since Loss-Derived Method does not distinguish between traffic
     destinations and the Impaired Packet statistics are only collected
     after Full Convergence completion, this method can only be used to
     measure average values over all routes.  For these reasons, Loss-
     Derived Method can only be used to benchmark Loss-Derived
     Convergence Time (Section 3.6.4) and Loss-Derived Loss of
     Connectivity Period (Section 3.6.6).

     Note that the Loss-Derived Method measures an average over all
     routes, including the routes that may not be impacted by the
     Convergence Event, such as routes via non-impacted members of ECMP
     or parallel links.

  Measurement Units:

     N/A

  See Also:

     Loss-Derived Convergence Time, Loss-Derived Loss of Connectivity
     Period, Connectivity Packet Loss, Convergence Packet Loss

3.5.3.  Route-Specific Loss-Derived Method

  Definition:

     The method to calculate the Route-Specific Convergence Time
     (Section 3.6.3) benchmark from the amount of Impaired Packets
     (Section 3.8.1) during convergence for a specific route entry.








Poretsky, et al.              Informational                    [Page 15]

RFC 6412          IGP Convergence Benchmark Terminology    November 2011


  Discussion:

     To benchmark Route-Specific Convergence Time, the Tester provides
     an Offered Load that consists of multiple Streams [Po06].  Each
     Stream has a single destination address matching a different route
     entry, for all routes or a statistically representative subset of
     all routes.  Each Stream SHOULD consist of a single flow (see
     [Th00], Section 3).  Convergence Packet Loss is measured for each
     Stream separately.

     Route-Specific Loss-Derived Method SHOULD always be combined with
     the Rate-Derived Method in order to observe Full Convergence
     completion.  The total amount of Convergence Packet Loss
     (Section 3.7.2) for each Stream is collected after Full
     Convergence completion.

     Route-Specific Loss-Derived Method is the RECOMMENDED method to
     measure convergence time benchmarks.

     To measure convergence time and loss of connectivity benchmarks
     for Convergence Events that cause instantaneous traffic loss for
     all routes at the Convergence Event Instant, the Tester SHOULD
     observe Impaired Packet count on all DUT egress interfaces (see
     Connectivity Packet Loss (Section 3.7.3)).

     To measure convergence time benchmarks for Convergence Events that
     do not cause instantaneous traffic loss for all routes at the
     Convergence Event Instant, the Tester SHOULD collect timestamps of
     the Start Traffic Instant and of the Convergence Event Instant,
     and the Tester SHOULD observe packet loss separately on the Next-
     Best Egress Interface (see Convergence Packet Loss
     (Section 3.7.2)).

     Since Route-Specific Loss-Derived Method uses traffic streams to
     individual routes, it observes Impaired Packet count as it would
     be experienced by a network user.  For this reason, Route-Specific
     Loss-Derived Method is RECOMMENDED to measure Route-Specific
     Convergence Time benchmarks and Route Loss of Connectivity Period
     benchmarks.

  Measurement Units:

     N/A

  See Also:

     Route-Specific Convergence Time, Route Loss of Connectivity
     Period, Connectivity Packet Loss, Convergence Packet Loss



Poretsky, et al.              Informational                    [Page 16]

RFC 6412          IGP Convergence Benchmark Terminology    November 2011


3.6.  Benchmarks

3.6.1.  Full Convergence Time

  Definition:

     The time duration of the period between the Convergence Event
     Instant and the Convergence Recovery Instant as observed using the
     Rate-Derived Method.

  Discussion:

     Using the Rate-Derived Method, Full Convergence Time can be
     calculated as the time difference between the Convergence Event
     Instant and the Convergence Recovery Instant, as shown in Equation
     2.

       Full Convergence Time =
           Convergence Recovery Instant - Convergence Event Instant

                               Equation 2

     The Convergence Event Instant can be derived from the Forwarding
     Rate observation or from a timestamp collected by the Tester.

     For the test cases described in [Po11m], it is expected that Full
     Convergence Time equals the maximum Route-Specific Convergence
     Time when benchmarking all routes in the FIB using the Route-
     Specific Loss-Derived Method.

     It is not possible to measure Full Convergence Time using the
     Loss-Derived Method.

  Measurement Units:

     seconds (and fractions)

  See Also:

     Full Convergence, Rate-Derived Method, Route-Specific Loss-Derived
     Method, Convergence Event Instant, Convergence Recovery Instant










Poretsky, et al.              Informational                    [Page 17]

RFC 6412          IGP Convergence Benchmark Terminology    November 2011


3.6.2.  First Route Convergence Time

  Definition:

     The duration of the period between the Convergence Event Instant
     and the First Route Convergence Instant as observed using the
     Rate-Derived Method.

  Discussion:

     Using the Rate-Derived Method, First Route Convergence Time can be
     calculated as the time difference between the Convergence Event
     Instant and the First Route Convergence Instant, as shown with
     Equation 3.

     First Route Convergence Time =
         First Route Convergence Instant - Convergence Event Instant

                               Equation 3

     The Convergence Event Instant can be derived from the Forwarding
     Rate observation or from a timestamp collected by the Tester.

     For the test cases described in [Po11m], it is expected that First
     Route Convergence Time equals the minimum Route-Specific
     Convergence Time when benchmarking all routes in the FIB using the
     Route-Specific Loss-Derived Method.

     It is not possible to measure First Route Convergence Time using
     the Loss-Derived Method.

  Measurement Units:

     seconds (and fractions)

  See Also:

     Rate-Derived Method, Route-Specific Loss-Derived Method,
     Convergence Event Instant, First Route Convergence Instant

3.6.3.  Route-Specific Convergence Time

  Definition:

     The amount of time it takes for Route Convergence to be completed
     for a specific route, as calculated from the amount of Impaired
     Packets (Section 3.8.1) during convergence for a single route
     entry.



Poretsky, et al.              Informational                    [Page 18]

RFC 6412          IGP Convergence Benchmark Terminology    November 2011


  Discussion:

     Route-Specific Convergence Time can only be measured using the
     Route-Specific Loss-Derived Method.

     If the applied Convergence Event causes instantaneous traffic loss
     for all routes at the Convergence Event Instant, Connectivity
     Packet Loss should be observed.  Connectivity Packet Loss is the
     combined Impaired Packet count observed on Preferred Egress
     Interface and Next-Best Egress Interface.  When benchmarking
     Route-Specific Convergence Time, Connectivity Packet Loss is
     measured, and Equation 4 is applied for each measured route.  The
     calculation is equal to Equation 8 in Section 3.6.5.

  Route-Specific Convergence Time =
   Connectivity Packet Loss for specific route / Offered Load per route

                               Equation 4

     If the applied Convergence Event does not cause instantaneous
     traffic loss for all routes at the Convergence Event Instant, then
     the Tester SHOULD collect timestamps of the Traffic Start Instant
     and of the Convergence Event Instant, and the Tester SHOULD
     observe Convergence Packet Loss separately on the Next-Best Egress
     Interface.  When benchmarking Route-Specific Convergence Time,
     Convergence Packet Loss is measured, and Equation 5 is applied for
     each measured route.

  Route-Specific Convergence Time =
    Convergence Packet Loss for specific route / Offered Load per route
    - (Convergence Event Instant - Traffic Start Instant)

                               Equation 5

     The Route-Specific Convergence Time benchmarks enable minimum,
     maximum, average, and median convergence time measurements to be
     reported by comparing the results for the different route entries.
     It also enables benchmarking of convergence time when configuring
     a priority value for the route entry or entries.  Since multiple
     Route-Specific Convergence Times can be measured, it is possible
     to have an array of results.  The format for reporting Route-
     Specific Convergence Time is provided in [Po11m].

  Measurement Units:

     seconds (and fractions)





Poretsky, et al.              Informational                    [Page 19]

RFC 6412          IGP Convergence Benchmark Terminology    November 2011


  See Also:

     Route-Specific Loss-Derived Method, Convergence Event, Convergence
     Event Instant, Convergence Packet Loss, Connectivity Packet Loss,
     Route Convergence

3.6.4.  Loss-Derived Convergence Time

  Definition:

     The average Route Convergence time for all routes in the
     Forwarding Information Base (FIB), as calculated from the amount
     of Impaired Packets (Section 3.8.1) during convergence.

  Discussion:

     Loss-Derived Convergence Time is measured using the Loss-Derived
     Method.

     If the applied Convergence Event causes instantaneous traffic loss
     for all routes at the Convergence Event Instant, Connectivity
     Packet Loss (Section 3.7.3) should be observed.  Connectivity
     Packet Loss is the combined Impaired Packet count observed on
     Preferred Egress Interface and Next-Best Egress Interface.  When
     benchmarking Loss-Derived Convergence Time, Connectivity Packet
     Loss is measured, and Equation 6 is applied.

               Loss-Derived Convergence Time =
                   Connectivity Packet Loss / Offered Load

                               Equation 6

     If the applied Convergence Event does not cause instantaneous
     traffic loss for all routes at the Convergence Event Instant, then
     the Tester SHOULD collect timestamps of the Start Traffic Instant
     and of the Convergence Event Instant, and the Tester SHOULD
     observe Convergence Packet Loss (Section 3.7.2) separately on the
     Next-Best Egress Interface.  When benchmarking Loss-Derived
     Convergence Time, Convergence Packet Loss is measured and Equation
     7 is applied.


        Loss-Derived Convergence Time =
            Convergence Packet Loss / Offered Load
            - (Convergence Event Instant - Traffic Start Instant)

                               Equation 7




Poretsky, et al.              Informational                    [Page 20]

RFC 6412          IGP Convergence Benchmark Terminology    November 2011


  Measurement Units:

     seconds (and fractions)

  See Also:

     Convergence Packet Loss, Connectivity Packet Loss, Route
     Convergence, Loss-Derived Method

3.6.5.  Route Loss of Connectivity Period

  Definition:

     The time duration of packet impairments for a specific route entry
     following a Convergence Event until Full Convergence completion,
     as observed using the Route-Specific Loss-Derived Method.

  Discussion:

     In general, the Route Loss of Connectivity Period is not equal to
     the Route-Specific Convergence Time.  If the DUT continues to
     forward traffic to the Preferred Egress Interface after the
     Convergence Event is applied, then the Route Loss of Connectivity
     Period will be smaller than the Route-Specific Convergence Time.
     This is also specifically the case after reversing a failure
     event.

     The Route Loss of Connectivity Period may be equal to the Route-
     Specific Convergence Time if, as a characteristic of the
     Convergence Event, traffic for all routes starts dropping
     instantaneously on the Convergence Event Instant.  See discussion
     in [Po11m].

     For the test cases described in [Po11m], the Route Loss of
     Connectivity Period is expected to be a single Loss Period [Ko02].

     When benchmarking the Route Loss of Connectivity Period,
     Connectivity Packet Loss is measured for each route, and Equation
     8 is applied for each measured route entry.  The calculation is
     equal to Equation 4 in Section 3.6.3.

  Route Loss of Connectivity Period =
   Connectivity Packet Loss for specific route / Offered Load per route

                               Equation 8

     Route Loss of Connectivity Period SHOULD be measured using Route-
     Specific Loss-Derived Method.



Poretsky, et al.              Informational                    [Page 21]

RFC 6412          IGP Convergence Benchmark Terminology    November 2011


  Measurement Units:

     seconds (and fractions)

  See Also:

     Route-Specific Convergence Time, Route-Specific Loss-Derived
     Method, Connectivity Packet Loss

3.6.6.  Loss-Derived Loss of Connectivity Period

  Definition:

     The average time duration of packet impairments for all routes
     following a Convergence Event until Full Convergence completion,
     as observed using the Loss-Derived Method.

  Discussion:

     In general, the Loss-Derived Loss of Connectivity Period is not
     equal to the Loss-Derived Convergence Time.  If the DUT continues
     to forward traffic to the Preferred Egress Interface after the
     Convergence Event is applied, then the Loss-Derived Loss of
     Connectivity Period will be smaller than the Loss-Derived
     Convergence Time.  This is also specifically the case after
     reversing a failure event.

     The Loss-Derived Loss of Connectivity Period may be equal to the
     Loss-Derived Convergence Time if, as a characteristic of the
     Convergence Event, traffic for all routes starts dropping
     instantaneously on the Convergence Event Instant.  See discussion
     in [Po11m].

     For the test cases described in [Po11m], each route's Route Loss
     of Connectivity Period is expected to be a single Loss Period
     [Ko02].

     When benchmarking the Loss-Derived Loss of Connectivity Period,
     Connectivity Packet Loss is measured for all routes, and Equation
     9 is applied.  The calculation is equal to Equation 6 in
     Section 3.6.4.

        Loss-Derived Loss of Connectivity Period =
           Connectivity Packet Loss for all routes / Offered Load

                               Equation 9





Poretsky, et al.              Informational                    [Page 22]

RFC 6412          IGP Convergence Benchmark Terminology    November 2011


     The Loss-Derived Loss of Connectivity Period SHOULD be measured
     using the Loss-Derived Method.

  Measurement Units:

     seconds (and fractions)

  See Also:

     Loss-Derived Convergence Time, Loss-Derived Method, Connectivity
     Packet Loss

3.7.  Measurement Terms

3.7.1.  Convergence Event

  Definition:

     The occurrence of an event in the network that will result in a
     change in the egress interface of the DUT for routed packets.

  Discussion:

     All test cases in [Po11m] are defined such that a Convergence
     Event results in a change of egress interface of the DUT.  Local
     or remote triggers that cause a route calculation that does not
     result in a change in forwarding are not considered.

  Measurement Units:

     N/A

  See Also:

     Convergence Event Instant

3.7.2.  Convergence Packet Loss

  Definition:

     The number of Impaired Packets (Section 3.8.1) as observed on the
     Next-Best Egress Interface of the DUT during convergence.

  Discussion:

     An Impaired Packet is considered as a lost packet.





Poretsky, et al.              Informational                    [Page 23]

RFC 6412          IGP Convergence Benchmark Terminology    November 2011


  Measurement Units:

     number of packets

  See Also:

     Connectivity Packet Loss

3.7.3.  Connectivity Packet Loss

  Definition:

     The number of Impaired Packets observed on all DUT egress
     interfaces during convergence.

  Discussion:

     An Impaired Packet is considered as a lost packet.  Connectivity
     Packet Loss is equal to Convergence Packet Loss if the Convergence
     Event causes instantaneous traffic loss for all egress interfaces
     of the DUT except for the Next-Best Egress Interface.

  Measurement Units:

     number of packets

  See Also:

     Convergence Packet Loss

3.7.4.  Packet Sampling Interval

  Definition:

     The interval at which the Tester (test equipment) polls to make
     measurements for arriving packets.

  Discussion:

     At least one packet per route for all routes matched in the
     Offered Load MUST be offered to the DUT within the Packet Sampling
     Interval.  Metrics measured at the Packet Sampling Interval MUST
     include Forwarding Rate and received packets.

     Packet Sampling Interval can influence the convergence graph as
     observed with the Rate-Derived Method.  This is particularly true
     when implementations complete Full Convergence in less time than
     the Packet Sampling Interval.  The Convergence Event Instant and



Poretsky, et al.              Informational                    [Page 24]

RFC 6412          IGP Convergence Benchmark Terminology    November 2011


     First Route Convergence Instant may not be easily identifiable,
     and the Rate-Derived Method may produce a larger than actual
     convergence time.

     Using a small Packet Sampling Interval in the presence of IPDV
     [De02] may cause fluctuations of the Forwarding Rate observation
     and can prevent correct observation of the different convergence
     time instants.

     The value of the Packet Sampling Interval only contributes to the
     measurement accuracy of the Rate-Derived Method.  For maximum
     accuracy, the value for the Packet Sampling Interval SHOULD be as
     small as possible, but the presence of IPDV may enforce using a
     larger Packet Sampling Interval.

  Measurement Units:

     seconds (and fractions)

  See Also:

     Rate-Derived Method

3.7.5.  Sustained Convergence Validation Time

  Definition:

     The amount of time for which the completion of Full Convergence is
     maintained without additional Impaired Packets being observed.

  Discussion:

     The purpose of the Sustained Convergence Validation Time is to
     produce convergence benchmarks protected against fluctuation in
     Forwarding Rate after the completion of Full Convergence is
     observed.  The RECOMMENDED Sustained Convergence Validation Time
     to be used is the time to send 5 consecutive packets to each
     destination with a minimum of 5 seconds.  The Benchmarking
     Methodology Working Group (BMWG) selected 5 seconds based upon
     [Br99], which recommends waiting 2 seconds for residual frames to
     arrive (this is the Forwarding Delay Threshold for the last packet
     sent) and 5 seconds for DUT restabilization.

  Measurement Units:

     seconds (and fractions)





Poretsky, et al.              Informational                    [Page 25]

RFC 6412          IGP Convergence Benchmark Terminology    November 2011


  See Also:

     Full Convergence, Convergence Recovery Instant

3.7.6.  Forwarding Delay Threshold

  Definition:

     The maximum waiting time threshold used to distinguish between
     packets with very long delay and lost packets that will never
     arrive.

  Discussion:

     Applying a Forwarding Delay Threshold allows packets with a too
     large Forwarding Delay to be considered lost, as is required for
     some applications (e.g. voice, video, etc.).  The Forwarding Delay
     Threshold is a parameter of the methodology, and it MUST be
     reported.  [Br99] recommends waiting 2 seconds for residual frames
     to arrive.

  Measurement Units:

     seconds (and fractions)

  See Also:

     Convergence Packet Loss, Connectivity Packet Loss

3.8.  Miscellaneous Terms

3.8.1.  Impaired Packet

  Definition:

     A packet that experienced at least one of the following
     impairments: loss, excessive Forwarding Delay, corruption,
     duplication, reordering.

  Discussion:

     A lost packet, a packet with a Forwarding Delay exceeding the
     Forwarding Delay Threshold, a corrupted packet, a Duplicate Packet
     [Po06], and an Out-of-Order Packet [Po06] are Impaired Packets.

     Packet ordering is observed for each individual flow (see [Th00],
     Section 3) of the Offered Load.




Poretsky, et al.              Informational                    [Page 26]

RFC 6412          IGP Convergence Benchmark Terminology    November 2011


  Measurement Units:

     N/A

  See Also:

     Forwarding Delay Threshold

4.  Security Considerations

  Benchmarking activities as described in this memo are limited to
  technology characterization using controlled stimuli in a laboratory
  environment, with dedicated address space and the constraints
  specified in the sections above.

  The benchmarking network topology will be an independent test setup
  and MUST NOT be connected to devices that may forward the test
  traffic into a production network or misroute traffic to the test
  management network.

  Further, benchmarking is performed on a "black-box" basis, relying
  solely on measurements observable external to the DUT/SUT.

  Special capabilities SHOULD NOT exist in the DUT/SUT specifically for
  benchmarking purposes.  Any implications for network security arising
  from the DUT/SUT SHOULD be identical in the lab and in production
  networks.

5.  Acknowledgements

  Thanks to Sue Hares, Al Morton, Kevin Dubray, Ron Bonica, David Ward,
  Peter De Vriendt, Anuj Dewagan, Adrian Farrel, Stewart Bryant,
  Francis Dupont, and the Benchmarking Methodology Working Group for
  their contributions to this work.

6.  Normative References

  [Br91]   Bradner, S., "Benchmarking terminology for network
           interconnection devices", RFC 1242, July 1991.

  [Br97]   Bradner, S., "Key words for use in RFCs to Indicate
           Requirement Levels", BCP 14, RFC 2119, March 1997.

  [Br99]   Bradner, S. and J. McQuaid, "Benchmarking Methodology for
           Network Interconnect Devices", RFC 2544, March 1999.

  [Ca90]   Callon, R., "Use of OSI IS-IS for routing in TCP/IP and dual
           environments", RFC 1195, December 1990.



Poretsky, et al.              Informational                    [Page 27]

RFC 6412          IGP Convergence Benchmark Terminology    November 2011


  [Co08]   Coltun, R., Ferguson, D., Moy, J., and A. Lindem, "OSPF for
           IPv6", RFC 5340, July 2008.

  [De02]   Demichelis, C. and P. Chimento, "IP Packet Delay Variation
           Metric for IP Performance Metrics (IPPM)", RFC 3393,
           November 2002.

  [Ho08]   Hopps, C., "Routing IPv6 with IS-IS", RFC 5308,
           October 2008.

  [Ko02]   Koodli, R. and R. Ravikanth, "One-way Loss Pattern Sample
           Metrics", RFC 3357, August 2002.

  [Ma98]   Mandeville, R., "Benchmarking Terminology for LAN Switching
           Devices", RFC 2285, February 1998.

  [Mo98]   Moy, J., "OSPF Version 2", STD 54, RFC 2328, April 1998.

  [Po06]   Poretsky, S., Perser, J., Erramilli, S., and S. Khurana,
           "Terminology for Benchmarking Network-layer Traffic Control
           Mechanisms", RFC 4689, October 2006.

  [Po11m]  Poretsky, S., Imhoff, B., and K. Michielsen, "Benchmarking
           Methodology for Link-State IGP Data-Plane Route
           Convergence", RFC 6413, November 2011.

  [Th00]   Thaler, D. and C. Hopps, "Multipath Issues in Unicast and
           Multicast Next-Hop Selection", RFC 2991, November 2000.























Poretsky, et al.              Informational                    [Page 28]

RFC 6412          IGP Convergence Benchmark Terminology    November 2011


Authors' Addresses

  Scott Poretsky
  Allot Communications
  300 TradeCenter
  Woburn, MA  01801
  USA

  Phone: + 1 508 309 2179
  EMail: [email protected]


  Brent Imhoff
  F5 Networks
  401 Elliott Avenue West
  Seattle, WA  98119
  USA

  Phone: + 1 314 378 2571
  EMail: [email protected]


  Kris Michielsen
  Cisco Systems
  6A De Kleetlaan
  Diegem, BRABANT  1831
  Belgium

  EMail: [email protected]






















Poretsky, et al.              Informational                    [Page 29]