Internet Engineering Task Force (IETF)                    A. Uzelac, Ed.
Request for Comments: 6405                               Global Crossing
Category: Informational                                      Y. Lee, Ed.
ISSN: 2070-1721                                            Comcast Cable
                                                          November 2011


              Voice over IP (VoIP) SIP Peering Use Cases

Abstract

  This document depicts many common Voice over IP (VoIP) use cases for
  Session Initiation Protocol (SIP) peering.  These use cases are
  categorized into static and on-demand, and then further sub-
  categorized into direct and indirect.  These use cases are not an
  exhaustive set, but rather the most common use cases deployed today.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Not all documents
  approved by the IESG are a candidate for any level of Internet
  Standard; see Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc6405.

Copyright Notice

  Copyright (c) 2011 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.




Uzelac & Lee                  Informational                     [Page 1]

RFC 6405               VoIP SIP Peering Use Cases          November 2011


Table of Contents

  1. Introduction ....................................................2
  2. Terminology .....................................................3
  3. Reference Architecture ..........................................3
  4. Contexts of Use Cases ...........................................4
  5. Use Cases .......................................................4
     5.1. Static Peering Use Cases ...................................5
     5.2. Static Direct Peering Use Case .............................5
          5.2.1. Administrative Characteristics .....................10
          5.2.2. Options and Nuances ................................10
     5.3. Static Direct Peering Use Case - Assisting LUF and LRF ....11
          5.3.1. Administrative Characteristics .....................12
          5.3.2. Options and Nuances ................................12
     5.4. Static Indirect Peering Use Case - Assisting LUF and LRF ..12
          5.4.1. Administrative Characteristics .....................19
          5.4.2. Options and Nuances ................................19
     5.5. Static Indirect Peering Use Case ..........................19
          5.5.1. Administrative Characteristics .....................20
          5.5.2. Options and Nuances ................................21
     5.6. On-Demand Peering Use Case ................................21
          5.6.1. Administrative Characteristics .....................21
          5.6.2. Options and Nuances ................................21
  6. Acknowledgments ................................................22
  7. Security Considerations ........................................22
  8. References .....................................................22
     8.1. Normative References ......................................22
     8.2. Informative References ....................................23

1.  Introduction

  This document describes important Voice over IP (VoIP) use cases for
  SIP-based [RFC3261] peering.  These use cases are determined by the
  Session PEERing for Multimedia INTerconnect (SPEERMINT) working group
  and will assist in identifying requirements and other issues to be
  considered for future resolution by the working group.

  Only use cases related to VoIP are considered in this document.
  Other real-time SIP communications use cases, like Instant Messaging
  (IM), video chat, and presence are out of scope for this document.

  The use cases contained in this document are described as
  comprehensive as possible, but should not be considered the exclusive
  set of use cases.







Uzelac & Lee                  Informational                     [Page 2]

RFC 6405               VoIP SIP Peering Use Cases          November 2011


2.  Terminology

  This document uses terms defined in [RFC5486].  Please refer to it
  for definitions.

3.  Reference Architecture

  The diagram below provides the reader with a context for the VoIP use
  cases in this document.  Terms such as SIP Service Provider (SSP),
  Lookup Function (LUF), Location Routing Function (LRF), Signaling
  Path Border Element (SBE), and Data Path Border Element (DBE) are
  defined in [RFC5486].

  The Originating SSP (O-SSP) is the SSP originating a SIP request.
  The Terminating SSP (T-SSP) is the SSP terminating the SIP request
  originating from the O-SSP.  The assisting LUF and LRF Provider offer
  LUF and LRF services to the O-SSP.  The Indirect SSP (I-SSP) is the
  SSP providing indirect peering service(s) to the O-SSP to connect to
  the T-SSP.

   +--------------------+------------------------+--------------------+
   |  Originating SSP   |  Assisting LUF and LRF |  Terminating SSP   |
   |     Domain         |    Provider Domain     |      Domain        |
   |                    |                        |                    |
   |  +-----+  +-----+  |    +------+ +------+   |  +-----+  +-----+  |
   |  |O-LUF|  |O-LRF|  |    |A-LUF | | A-LRF|   |  |T-LUF|  |T-LRF|  |
   |  +-----+  +-----+  |    +------+ +------+   |  +-----+  +-----+  |
   |                    |                        |                    |
   | +-------+ +-----+  +------------------------+  +-----+ +-------+ |
   | |O-Proxy| |O-SBE|  |  Indirect SSP Domain   |  |T-SBE| |T-Proxy| |
   | +-------+ +-----+  |                        |  +-----+ +-------+ |
   |                    |    +-----+  +-----+    |                    |
   |    +---+  +-----+  |    |O-SBE|  |O-DBE|    |  +-----+  +---+    |
   |    |UAC|  |O-DBE|  |    +-----+  +-----+    |  |T-DBE|  |UAS|    |
   |    +---+  +-----+  |                        |  +-----+  +---+    |
   |                    |                        |                    |
   +--------------------+------------------------+--------------------+

                            General Overview

                                Figure 1

  Note that some elements included in Figure 1 are optional.








Uzelac & Lee                  Informational                     [Page 3]

RFC 6405               VoIP SIP Peering Use Cases          November 2011


4.  Contexts of Use Cases

  Use cases are sorted into two general groups: static and on-demand
  peering [RFC5486].  Each group can be further sub-divided into Direct
  Peering and Indirect Peering [RFC5486].  Although there may be some
  overlap among the use cases in these categories, there are different
  requirements between the scenarios.  Each use case must specify a
  basic set of required operations to be performed by each SSP when
  peering.

  These can include:

  o  Peer Discovery - Peer discovery via a Lookup Function (LUF) to
     determine the Session Establishment Data (SED) [RFC5486] of the
     request.  In VoIP use cases, a request normally contains a phone
     number.  The O-SSP will input the phone number to the LUF and the
     LUF will normally return a SIP address of record (AOR) [RFC3261]
     that contains a domain name.

  o  Next-Hop Routing Determination - Resolving the SED information is
     necessary to route the request to the T-SSP.  The LRF is used for
     this determination.  After obtaining the SED, the O-SSP may use
     the standard procedure defined in [RFC3263] to discover the next-
     hop address.

  o  Call setup - SSPs that are interconnecting to one another may also
     define specifics on what peering policies need to be used when
     contacting the next hop in order to a) reach the next hop at all
     and b) prove that the sender is a legitimate peering partner.
     Examples: hard-code transport (TCP/UDP/TLS), non-standard port
     number, specific source IP address (e.g., in a private Layer 3
     network), which TLS client certificate [RFC5246] to use, and other
     authentication schemes.

  o  Call reception - This step ensures that the type of relationship
     (static or on-demand, indirect or direct) is understood and
     acceptable.  For example, the receiving SBE needs to determine
     whether the INVITE it received really came from a trusted member.

5.  Use Cases

  Please note there are intra-domain message flows within the use cases
  to serve as supporting background information.  Only inter-domain
  communications are germane to this document.







Uzelac & Lee                  Informational                     [Page 4]

RFC 6405               VoIP SIP Peering Use Cases          November 2011


5.1.  Static Peering Use Cases

  Static peering [RFC5486] describes the use case when two SSPs form a
  peering relationship with some form of association established prior
  to the exchange of traffic.  Pre-association is a prerequisite to
  static peering.  Static peering is used in cases when two peers want
  a consistent and tightly controlled approach to peering.  In this
  scenario, a number of variables, such as an identification method
  (remote proxy IP address) and Quality-of-Service (QoS) parameters,
  can be defined upfront and known by each SSP prior to peering.

5.2.  Static Direct Peering Use Case

  This is the simplest form of a peering use case.  Two SSPs negotiate
  and agree to establish a SIP peering relationship.  The peer
  connection is statically configured and the peer SSPs are directly
  connected.  The peers may exchange interconnection parameters such as
  Differentiated Service Code Point (DSCP) [RFC2474] policies, the
  maximum number of requests per second, and proxy location prior to
  establishing the interconnection.  Typically, the T-SSP only accepts
  traffic originating directly from the trusted peer.

        +--------------------+             +---------------------+
        |        O-SSP       |             |        T-SSP        |
        |       +-----+      |             |       +-----+       |
        |       |O-LUF|      |             |       |T-LUF|       |
        |       |O-LRF|      |             |      /|T-LRF|       |
        |      /+-----+\     |             |     / +-----+       |
        |    (2)     (4,5,6) |             |    /                |
        |    /           \   |             |   /(8,9)            |
        |+-------+     +-----+             +-----+      +-------+|
        ||O-Proxy|-(3)-|O-SBE+-----(7)-----+T-SBE|-(10)-|T-Proxy||
        |+-------+     +-----+             +-----+      +-------+|
        |    |               |             |                |    |
        |   (1)              |             |               (11)  |
        |    |               |             |                |    |
        | +-----+      +-----+             +-----+       +-----+ |
        | | UAC +======|O-DBE+=====(12)====+T-DBE|=======+ UAS | |
        | +-----+      +-----+             +-----+       +-----+ |
        +--------------------+             +---------------------+
             example.com                         example.net


                     Static Direct Peering Use Case

                                Figure 2





Uzelac & Lee                  Informational                     [Page 5]

RFC 6405               VoIP SIP Peering Use Cases          November 2011


  The following is a high-level depiction of the use case:

  1.   The User Agent Client (UAC) initiates a call via SIP INVITE to
       O-Proxy.  O-Proxy is the home proxy for UAC.

        INVITE sip:[email protected];user=phone SIP/2.0
        Via: SIP/2.0/TCP client.example.com:5060
          ;branch=z9hG4bK74bf9
        Max-Forwards: 10
        From: Alice <sip:[email protected];user=phone>
          ;tag=12345
        To: Bob <sip:[email protected];user=phone>
        Call-ID: abcde
        CSeq: 1 INVITE
        <allOneLine>
        Contact: <sip:[email protected];user=phone;
        transport=tcp>
        </allOneLine>

  Note that UAC inserted its Fully Qualified Domain Name (FQDN) in the
  VIA and CONTACT headers.  This example assumes that UAC has its own
  FQDN.

  2.   UAC knows the User Agent Server's (UAS's) TN, but does not know
       UAS's domain.  It appends its own domain to generate the SIP URI
       in the Request-URI and TO header.  O-Proxy checks the Request-
       URI and discovers that the Request-URI contains the user
       parameter "user=phone".  This parameter signifies that the
       Request-URI is a phone number.  So O-Proxy will extract the TN
       from the Request-URI and query the LUF for SED information from
       a routing database.  In this example, the LUF is an ENUM
       [RFC6116] database.  The ENUM entry looks similar to this:

         $ORIGIN 0.0.1.0.5.5.5.7.1.9.1.e164.arpa.
         IN NAPTR (
           10
           100
           "u"
           "E2U+SIP"
           "!^.*$!sip:[email protected]!"
           . )

  This SED data can be provisioned by O-SSP or populated by the T-SSP.

  3.   O-Proxy examines the SED and discovers the domain is external.
       Given the O-Proxy's internal routing policy, O-Proxy decides to
       use O-SBE to reach T-SBE.  O-Proxy routes the INVITE request to
       O-SBE and adds a Route header that contains O-SBE.



Uzelac & Lee                  Informational                     [Page 6]

RFC 6405               VoIP SIP Peering Use Cases          November 2011


        INVITE sip:[email protected];user=phone SIP/2.0
        Via: SIP/2.0/TCP o-proxy.example.com:5060
          ;branch=z9hG4bKye8ad
        Via: SIP/2.0/TCP client.example.com:5060
          ;branch=z9hG4bK74bf9;received=192.0.1.1
        Max-Forwards: 9
        Route: <sip:o-sbe1.example.com;lr>
        Record-Route: <sip:o-proxy.example.com;lr>
        From: Alice <sip:[email protected];user=phone>
          ;tag=12345
        To: Bob <sip:[email protected];user=phone>
        Call-ID: abcde
        CSeq: 1 INVITE
        <allOneLine>
        Contact: <sip:[email protected];user=phone;
        transport=tcp>
        </allOneLine>

  4.   O-SBE receives the requests and pops the top entry of the Route
       header that contains "o-sbe1.example.com".  O-SBE examines the
       Request-URI and does an LRF for "example.net".  In this example,
       the LRF is a Naming Authority Pointer (NAPTR) DNS query
       [RFC3403] of the domain name.  O-SBE receives a NAPTR response
       from the LRF.  The response looks similar to this:

         IN NAPTR (
           50
           50
           "S"
           "SIP+D2T"
           ""
           _sip._tcp.t-sbe.example.net. )

         IN NAPTR (
           90
           50
           "S"
           "SIP+D2U"
           ""
           _sip._udp.t-sbe.example.net. )

  5.   Given the lower order for TCP in the NAPTR response, O-SBE
       decides to use TCP as the transport protocol, so it sends an SRV
       DNS query for the SRV record [RFC2782] for "_sip._tcp.t-
       sbe.example.net." to O-LRF.






Uzelac & Lee                  Informational                     [Page 7]

RFC 6405               VoIP SIP Peering Use Cases          November 2011


       ;;     priority  weight   port  target
       IN SRV 0         2        5060  t-sbe1.example.net.
       IN SRV 0         1        5060  t-sbe2.example.net.

  6.   Given the higher weight for "t-sbe1.example.net", O-SBE sends an
       A record DNS query for "t-sbe1.example.net." to get the A
       record:

         ;; DNS ANSWER
         t-sbe1.example.net.   IN A   192.0.2.100
         t-sbe1.example.net.   IN A   192.0.2.101

  7.   O-SBE sends the INVITE to T-SBE.  O-SBE is the egress point to
       the O-SSP domain, so it should ensure subsequent mid-dialog
       requests traverse via itself.  If O-SBE chooses to act as a
       back-to-back user agent (B2BUA) [RFC3261], it will generate a
       new INVITE request in next step.  If O-SBE chooses to act as a
       proxy, it should record-route to stay in the call path.  In this
       example, O-SBE is a B2BUA.

        INVITE sip:[email protected];user=phone SIP/2.0
        Via: SIP/2.0/TCP o-sbe1.example.com:5060
          ;branch= z9hG4bK2d4zzz
        Max-Forwards: 8
        From: Alice <sip:[email protected];user=phone>
          ;tag=54321
        To: Bob <sip:[email protected];user=phone>
        Call-ID: abcde-osbe1
        CSeq: 1 INVITE
        <allOneLine>
        Contact: <sip:[email protected];user=phone;
        transport=tcp>
        </allOneLine>

  Note that O-SBE may re-write the Request-URI with the target domain
  in the SIP URI.  Some proxy implementations will only accept the
  request if the Request-URI contains their own domains.

  8.   T-SBE determines the called party home proxy and directs the
       call to the called party.  T-SBE may use ENUM lookup or other
       internal mechanism to locate the home proxy.  If T-SSP uses ENUM
       lookup, this internal ENUM entry is different from the external
       ENUM entry populated for O-SSP.  In this example, the internal
       ENUM query returns the UAS's home proxy.







Uzelac & Lee                  Informational                     [Page 8]

RFC 6405               VoIP SIP Peering Use Cases          November 2011


        $ORIGIN 0.0.1.0.5.5.5.7.1.9.1.e164.arpa.
        IN NAPTR (
          10
          100
          "u"
          "E2U+SIP"
          "!^.*$!sip:[email protected]!"
          . )

  9.   T-SBE receives the NAPTR record, and following the requirements
       in [RFC3263], queries DNS for the SRV records indicated by the
       NAPTR result.  Not finding any, the T-SBE then queries DNS for
       the A record of domain "t-proxy.example.net.".

         ;; DNS ANSWER
         t-proxy.example.net.   IN A   192.0.2.2

  10.  T-SBE is a B2BUA, so it generates a new INVITE and sends it to
       UAS's home proxy:

        INVITE sip:[email protected];user=phone SIP/2.0
        Via: SIP/2.0/TCP t-sbe1.example.net:5060
          ;branch= z9hG4bK28uyyy
        Max-Forwards: 7
        From: Alice <sip:[email protected];user=phone>
          ;tag=54321
        To: Bob <sip:[email protected];user=phone>
        Call-ID: abcde-tsbe1
        CSeq: 1 INVITE
        <allOneLine>
        Contact: <sip:[email protected];user=phone;
        transport=tcp>
        </allOneLine>


















Uzelac & Lee                  Informational                     [Page 9]

RFC 6405               VoIP SIP Peering Use Cases          November 2011


  11.  Finally, UAS's home proxy forwards the INVITE request to the
       UAS.

        INVITE sip:[email protected];user=phone SIP/2.0
        Via: SIP/2.0/TCP t-proxy.example.net:5060
          ;branch= z9hG4bK28u111
        Via: SIP/2.0/TCP t-sbe1.example.net:5060
          ;branch= z9hG4bK28uyyy; received=192.2.0.100
        Max-Forwards: 6
        Record-Route: <sip:t-proxy.example.net:5060;lr>,
          <sip:t-sbe1.example.net:5060;lr>
        From: Alice <sip:[email protected];user=phone>
          ;tag=54321
        To: Bob <sip:[email protected];user=phone>
        Call-ID: abcde-tsbe1
        CSeq: 1 INVITE
        <allOneLine>
        Contact: <sip:[email protected];user=phone;
        transport=tcp>
        </allOneLine>

  12.  RTP is established between the UAC and UAS.  Note that the media
       shown in Figure 2 passes through O-DBE and T-DBE, but the use of
       DBE is optional.

5.2.1.  Administrative Characteristics

  The static direct peering use case is typically implemented in a
  scenario where there is a strong degree of trust between the two
  administrative domains.  Both administrative domains typically sign a
  peering agreement that states clearly the policies and terms.

5.2.2.  Options and Nuances

  In Figure 2, O-SSP and T-SSP peer via SBEs.  Normally, the operator
  will deploy the SBE at the edge of its administrative domain.  The
  signaling traffic will pass between two networks through the SBEs.
  The operator has many reasons to deploy an SBE.  For example, the
  O-SSP may use [RFC1918] addresses for their UA and proxies.  These
  addresses are not routable in the target network.  The SBE can
  perform a NAT function.  Also, the SBE eases the operation cost for
  deploying or removing Layer 5 network elements.  Consider the
  deployment architecture where multiple proxies connect to a single
  SBE.  An operator can add or remove a proxy without coordinating with
  the peer operator.  The peer operator "sees" only the SBE.  As long
  as the SBE is maintained in the path, the peer operator does not need
  to be notified.




Uzelac & Lee                  Informational                    [Page 10]

RFC 6405               VoIP SIP Peering Use Cases          November 2011


  When an operator deploys SBEs, the operator is required to advertise
  the SBE to the peer LRF so that the peer operator can locate the SBE
  and route the traffic to the SBE accordingly.

  SBE deployment is a decision within an administrative domain.  Either
  one or both administrative domains can decide to deploy SBE(s).  To
  the peer network, most important is to identify the next-hop address.
  This decision does not affect the network's ability to identify the
  next-hop address.

5.3.  Static Direct Peering Use Case - Assisting LUF and LRF

  This use case shares many properties with the Static Direct Peering
  Use Case Section 5.2.  There must exist a pre-association between the
  O-SSP and T-SSP.  The difference is O-SSP will use the Assisting LUF/
  LRF Provider for LUF and LRF.  The LUF/LRF Provider stores the SED to
  reach T-SSP and provides it to O-SSP when O-SSP requests it.

                           +-----------------+
                           |LUF/LRF Provider |
                           |                 |
                           |     +-------+   |
                           |   +-+ A-LUF |   |
                           |  /  | A-LRF |   |
      +--------------------+ /  ++-------+   +---------------------+
      |       O-SSP        |/  /             |         T-SSP       |
      |       +------------/(4,5,6)          |        +-----+      |
      |      /             | /               |        |T-LUF|      |
      |    (2)           +-+/                |      +-|T-LRF|      |
      |    /            /  |                 |     /  +-----+      |
      |   /            /   |                 |    /(8,9)           |
      |+-------+     +-----+                 +-----+      +-------+|
      ||O-Proxy|-(3)-|O-SBE+-------(7)-------+T-SBE|-(10)-|T-Proxy||
      |+-------+     +-----+                 +-----+      +-------+|
      |    |               |                 |                |    |
      |   (1)              |                 |              (11)   |
      |    |               |                 |                |    |
      | +-----+      +-----+                 +-----+       +-----+ |
      | | UAC +======|O-DBE+=======(12)======+T-DBE+=======+ UAS | |
      | +-----+      +-----+                 +-----+       +-----+ |
      +--------------------+                 +---------------------+
            example.com                            example.net


            Static Direct Peering with Assisting LUF and LRF

                                Figure 3




Uzelac & Lee                  Informational                    [Page 11]

RFC 6405               VoIP SIP Peering Use Cases          November 2011


  The call flow looks almost identical to Static Direct Peering Use
  Case except that Steps 2, 4, 5, and 6 involve the LUF/LRF Provider
  instead of happening in O-SSP domain.

  Similar to Static Direct Peering Use Case, the O-DBE and T-DBE in
  Figure 3 are optional.

5.3.1.  Administrative Characteristics

  The LUF/LRF Provider supplies the LUF and LRF services for the O-SSP.
  Taken together, the LUF/LRF Provider, O-SSP, and T-SSP form a trusted
  administrative domain.  To reach the T-SSP, the O-SSP must still
  require pre-arranged agreements for the peer relationship with the
  T-SSP.  The Layer 5 policy is maintained in the O-SSP and T-SSP
  domains, and the LUF/LRF Provider may not be aware of any Layer 5
  policy between the O-SSP and T-SSP.

  A LUF/LRF Provider can serve multiple administrative domains.  The
  LUF/LRF Provider typically does not share SED from one administrative
  domain to another administrative domain without appropriate
  permission.

5.3.2.  Options and Nuances

  The LUF/LRF Provider can use multiple methods to provide SED to the
  O-SSP.  The most commonly used are an ENUM lookup and a SIP Redirect.
  The O-SSP should negotiate with the LUF/LRF Provider regarding which
  query method it will use prior to sending a request to the LUF/LRF
  Provider.

  The LUF/LRF Providers must be populated with the T-SSP's AORs and
  SED.  Currently, this procedure is non-standardized and labor
  intensive.  A more detailed description of this problem has been
  documented in the work in progress [DRINKS].

5.4.  Static Indirect Peering Use Case - Assisting LUF and LRF

  The difference between a Static Direct Use Case and a Static Indirect
  Use Case lies within the Layer 5 relationship maintained by the O-SSP
  and T-SSP.  In the Indirect use case, the O-SSP and T-SSP do not have
  direct Layer 5 connectivity.  They require one or multiple Indirect
  Domains to assist with routing the SIP messages and possibly the
  associated media.

  In this use case, the O-SSP and T-SSP want to form a peer
  relationship.  For some reason, the O-SSP and T-SSP do not have
  direct Layer 5 connectivity.  The reasons may vary, for example,




Uzelac & Lee                  Informational                    [Page 12]

RFC 6405               VoIP SIP Peering Use Cases          November 2011


  business demands and/or domain policy controls.  Due to this indirect
  relationship, the signaling will traverse from the O-SSP through one
  or multiple I-SSPs to reach the T-SSP.

  In addition, the O-SSP is using a LUF/LRF Provider.  This LUF/LRF
  Provider stores the T-SSP's SED pre-populated by the T-SSP.  One
  important motivation to use the LUF/LRF Provider is that the T-SSP
  only needs to populate its SED once to the provider.  Using an LUF/
  LRF Provider allows the T-SSP to populate its SED once, while any
  O-SSP T-SSP's SED can use this LUF/LRF Provider.  Current practice
  has shown that it is rather difficult for the T-SSP to populate its
  SED to every O-SSP who must reach the T-SSP's subscribers.  This is
  especially true in the Enterprise environment.

  Note that the LUF/LRF Provider and the I-SSP can be the same provider
  or different providers.

                           +------------------+
                           | LUF/LRF Provider |
                           |       I-SSP      |
                           |      +-------+   |
                           |   ---+ A-LUF |   |
                           |  /   | A-LRF |   |
      +--------------------+ /    +-------+   +---------------------+
      |       O-SSP        |/     /           |         T-SSP       |
      |      +-------------/     /            |        +-----+      |
      |     /              |(4,5,6)           |        |T-LUF|      |
      |    /               |   /              |   +----+T-LRF|      |
      |  (2)             + +---               |  /     +-----+      |
      |  /              /  |                  | /(9,10)             |
      |+-------+     +-----+     +-----+      +-----+      +-------+|
      ||O-Proxy|-(3)-|O-SBE+-(7)-+I-SBE+-(8)--+T-SBE+-(11)-|T-Proxy||
      |+-------+     +-----+     +-----+      +-----+      +-------+|
      |    |               |                  |                |    |
      |   (1)              |                  |               (12)  |
      |    |               |                  |                |    |
      | +-----+      +-----+     +-----+      +-----+       +-----+ |
      | | UAC +=(13)=|O-DBE+=====+I-DBE+======+T-DBE+=======+ UAS | |
      | +-----+      +-----+     +-----+      +-----+       +-----+ |
      +-------------------------------------------------------------+
           example.com          example.org         example.net


   Indirect Peering via an LUF/LRF Provider and I-SSP (SIP and Media)

                                Figure 4





Uzelac & Lee                  Informational                    [Page 13]

RFC 6405               VoIP SIP Peering Use Cases          November 2011


  The following is a high-level depiction of the use case:

  1.   The UAC initiates a call via SIP INVITE to the O-Proxy.  The
       O-Proxy is the home proxy for the UAC.

        INVITE sip:[email protected];user=phone SIP/2.0
        Via: SIP/2.0/TCP client.example.com:5060
          ;branch=z9hG4bK74bf9
        Max-Forwards: 10
        From: Alice <sip:[email protected];user=phone>
          ;tag=12345
        To: Bob <sip:[email protected];user=phone>
        Call-ID: abcde
        CSeq: 1 INVITE
        <allOneLine>
        Contact: <sip:[email protected];user=phone;
        transport=tcp>
        </allOneLine>

  2.   The UAC knows the UAS's TN, but does not know the UAS's domain.
       It appends its own domain to generate the SIP URI in the
       Request-URI and TO header.  The O-Proxy checks the Request-URI
       and discovers that the Request-URI contains the user parameter
       "user=phone".  This parameter indicates that the Request-URI is
       a phone number.  So, the O-Proxy will extract the TN from the
       Request-URI and query the LUF for SED information from a routing
       database.  In this example, the LUF is an ENUM database.  The
       ENUM entry looks similar to this:

         $ORIGIN 0.0.1.0.5.5.5.7.1.9.1.e164.arpa.
         IN NAPTR (
           10
           100
           "u"
           "E2U+SIP"
           "!^.*$!sip:[email protected]!"
           . )

  Note that the response shows the next-hop is the SBE in I-SSP.
  Alternatively, the O-SSP may have a pre-association with the I-SSP.
  As such, the O-SSP will forward all requests that contain an external
  domain in the Request-URI or an unknown TN to the I-SSP.  The O-SSP
  will rely on the I-SSP to determine the T-SSP and route the request
  correctly.  In this configuration, the O-SSP can skip Steps 2, 4, 5,
  and 6 and forward the request directly to the I-SBE.  This
  configuration is commonly used in the Enterprise environment.





Uzelac & Lee                  Informational                    [Page 14]

RFC 6405               VoIP SIP Peering Use Cases          November 2011


  3.   Given the O-Proxy's internal routing policy, the O-Proxy decides
       to use the O-SBE to reach the I-SBE.  The O-Proxy routes the
       INVITE request to the O-SBE and adds a Route header that
       contains the O-SBE.

        INVITE sip:[email protected];user=phone SIP/2.0
        Via: SIP/2.0/TCP o-proxy.example.com:5060
          ;branch=z9hG4bKye8ad
        Via: SIP/2.0/TCP client.example.com:5060
          ;branch=z9hG4bK74bf9;received=192.0.1.1
        Max-Forwards: 9
        Route: <sip:o-sbe1.example.com;lr>
        Record-Route: <sip:o-proxy.example.com;lr>
        From: Alice <sip:[email protected];user=phone>
          ;tag=12345
        To: Bob <sip:[email protected];user=phone>
        Call-ID: abcde
        CSeq: 1 INVITE
        <allOneLine>
        Contact: <sip:[email protected];user=phone;
        transport=tcp>
        </allOneLine>

  4.   The O-SBE receives the requests and pops the top entry of the
       Route header that contains "sip:o-sbe1.example.com".  The O-SBE
       examines the Request-URI and does an LRF for "example.org".  In
       this example, the LRF is a NAPTR DNS query of the domain.  The
       O-SBE receives a response similar to this:

         IN NAPTR (
           50
           50
           "S"
           "SIP+D2T"
           ""
           _sip._tcp.i-sbe.example.org. )

         IN NAPTR (
           90
           50
           "S"
           "SIP+D2U"
           ""
           _sip._udp.i-sbe.example.org. )







Uzelac & Lee                  Informational                    [Page 15]

RFC 6405               VoIP SIP Peering Use Cases          November 2011


  5.   Given the lower order for TCP in the NAPTR response, the O-SBE
       decides to use TCP for transport protocol, so it sends an SRV
       DNS query for the SRV record for "_sip._tcp.i-sbe.example.org."
       to the O-LRF.

       ;;     priority  weight   port  target
       IN SRV 0         2        5060  i-sbe1.example.org.
       IN SRV 0         1        5060  i-sbe2.example.org.

  6.   Given the higher weight for "i-sbe1.example.org", the O-SBE
       sends a DNS query for an A record of "i-sbe1.example.org." to
       get the A record:

         ;; DNS ANSWER
         i-sbe1.example.org.   IN A   192.0.2.200
         i-sbe1.example.org.   IN A   192.0.2.201

  7.   The O-SBE sends the INVITE to the I-SBE.  The O-SBE is the entry
       point to the O-SSP domain, so it should ensure subsequent mid-
       dialog requests traverse via itself.  If the O-SBE chooses to
       act as a B2BUA, it will generate a new back-to-back INVITE
       request in the next step.  If the O-SBE chooses to act as proxy,
       it should record-route to stay in the call path.  In this
       example, the O-SBE is a B2BUA.

        INVITE sip:[email protected];user=phone SIP/2.0
        Via: SIP/2.0/TCP o-sbe1.example.com:5060
          ;branch= z9hG4bK2d4zzz
        Max-Forwards: 8
        Route:  <sip:i-sbe1.example.org;lr>
        From: Alice <sip:[email protected];user=phone>
          ;tag=54321
        To: Bob <sip:[email protected];user=phone>
        Call-ID: abcde-osbe1
        CSeq: 1 INVITE
        <allOneLine>
        Contact: <sip:[email protected];user=phone;
        transport=tcp>
        </allOneLine>

  8.   The I-SBE receives the request and queries its internal routing
       database on the TN.  It determines that the target belongs to
       the T-SSP.  Since the I-SBE is a B2BUA, the I-SBE generates a
       new INVITE request to the T-SSP.







Uzelac & Lee                  Informational                    [Page 16]

RFC 6405               VoIP SIP Peering Use Cases          November 2011


        INVITE sip:[email protected];user=phone SIP/2.0
        Via: SIP/2.0/TCP i-sbe1.example.org:5060
          ;branch= z9hG4bK2d4777
        Max-Forwards: 7
        Route: <sip:t-sbe1.example.net;lr>
        From: Alice <sip:[email protected];user=phone>
          ;tag=54321
        To: Bob <sip:[email protected];user=phone>
        Call-ID: abcde-isbe1
        CSeq: 1 INVITE
        <allOneLine>
        Contact: <sip:[email protected];user=phone;
        transport=tcp>
        </allOneLine>

  Note that if the I-SSP wants the media to traverse through the I-DBE,
  the I-SBE must modify the Session Description Protocol (SDP) in the
  Offer to point to its DBE.

  9.   The T-SBE determines the called party home proxy and directs the
       call to the called party.  The T-SBE may use ENUM lookup or
       another internal mechanism to locate the home proxy.  If the
       T-SSP uses ENUM lookup, this internal ENUM entry is different
       from the external ENUM entry populated for O-SSP.  This internal
       ENUM entry will contain the information to identify the next hop
       to reach the called party.  In this example, the internal ENUM
       query returns the UAS's home proxy.

        $ORIGIN 0.0.1.0.5.5.5.7.1.9.1.e164.arpa.
        IN NAPTR (
          10
          100
          "u"
          "E2U+SIP"
          "!^.*$!sip:[email protected]!"
          . )

  Note that this step is optional.  If the T-SBE has other ways to
  locate the UAS home proxy, the T-SBE can skip this step and send the
  request to the UAS's home proxy.  We show this step to illustrate one
  of the many possible ways to locate UAS's home proxy.

  10.  The T-SBE receives the NAPTR record and, following the
       requirements in [RFC3263], queries the DNS for the SRV records
       indicated by the NAPTR result.  Not finding any, the T-SBE then
       queries DNS for the A record of domain "t-proxy.example.net.".





Uzelac & Lee                  Informational                    [Page 17]

RFC 6405               VoIP SIP Peering Use Cases          November 2011


         ;; DNS ANSWER
         t-proxy.example.net.   IN A   192.0.2.2

  11.  T-SBE sends the INVITE to UAS's home proxy:

        INVITE sip:[email protected];user=phone SIP/2.0
        Via: SIP/2.0/TCP t-sbe1.example.net:5060
          ;branch= z9hG4bK28uyyy
        Max-Forwards: 6
        Record-Route: <sip:t-sbe1.example.net:5060;lr>
        From: Alice <sip:[email protected];user=phone>
          ;tag=54321
        To: Bob <sip:[email protected];user=phone>
        Call-ID: abcde-tsbe1
        CSeq: 1 INVITE
        <allOneLine>
        Contact: <sip:[email protected];user=phone;
        transport=tcp>
        </allOneLine>

  12.  Finally, the UAS's home proxy forwards the INVITE request to the
       UAS.

        INVITE sip:[email protected];user=phone SIP/2.0
        Via: SIP/2.0/TCP t-proxy.example.net:5060
          ;branch= z9hG4bK28u111
        Via: SIP/2.0/TCP t-sbe1.example.net:5060
          ;branch= z9hG4bK28uyyy; received=192.2.0.100
        Max-Forwards: 5
        Record-Route: <sip:t-proxy.example.net:5060;lr>,
          <sip:t-sbe1.example.net:5060;lr>
        From: Alice <sip:[email protected];user=phone>
          ;tag=54321
        To: Bob <sip:[email protected];user=phone>
        Call-ID: abcde-tsbe1
        CSeq: 1 INVITE
        <allOneLine>
        Contact: <sip:[email protected];user=phone;
        transport=tcp>
        </allOneLine>

  13.  In Figure 4, RTP is established between the UAC and UAS via the
       O-DBE, I-DBE and T-DBE.  The use of DBE is optional.








Uzelac & Lee                  Informational                    [Page 18]

RFC 6405               VoIP SIP Peering Use Cases          November 2011


5.4.1.  Administrative Characteristics

  This use case looks very similar to the Static Direct Peering Use
  Case with Assisting LUF and LRF.  The major difference is the O-SSP
  and T-SSP do not have direct Layer 5 connectivity.  Instead, O-SSP
  connects to the T-SSP indirectly via the I-SSP.

  Typically, an LUF/LRF Provider serves multiple O-SSPs.  Two O-SSPs
  may use different I-SSPs to reach the same T-SSP.  For example,
  O-SSP1 may use I-SSP1 to reach T-SSP, but O-SSP2 may use I-SSP2 to
  reach T-SSP.  Given the O-SSP and T-SSP pair as input, the LUF/LRF
  Provider will return the SED of I-SSP that is trusted by O-SSP to
  forward the request to T-SSP.

  In this use case, there are two levels of trust relationship.  The
  first trust relationship is between the O-SSP and the LUF/LRF
  Provider.  The O-SSP trusts the LUF/LRF to provide the T-SSP's SED.
  The second trust relationship is between the O-SSP and I-SSP.  The
  O-SSP trusts the I-SSP to provide Layer 5 connectivity to assist the
  O-SSP in reaching the T-SSP.  The O-SSP and I-SSP have a pre-arranged
  agreement for policy.  Note that Figure 4 shows a single provider to
  supply both LUF/LRF and I-SSP, but O-SSP can choose two different
  providers.

5.4.2.  Options and Nuances

  Similar to the Static Direct Peering Use Case, the O-SSP and T-SSP
  may deploy SBE and DBE for NAT traversal, security, transcoding, etc.
  The I-SSP can also deploy the SBE and DBE for similar reasons (as
  depicted in Figure 4).

5.5.  Static Indirect Peering Use Case

  This use case shares many properties with the Static Indirect Use
  Case with Assisting LUF and LRF.  The difference is that the O-SSP
  uses its internal LUF/LRF to control the routing database.  By
  controlling the database, the O-SSP can apply different routing rules
  and policies to different T-SSPs.  For example, the O-SSP can use
  I-SSP1 and Policy-1 to reach T-SSP1, and use I-SSP2 and Policy-2 to
  reach T-SSP2.  Note that there could be multiple I-SSPs and multiple
  SIP routes to reach the same T-SSP; the selection process is out of
  scope of this document.









Uzelac & Lee                  Informational                    [Page 19]

RFC 6405               VoIP SIP Peering Use Cases          November 2011


     +--------------------+-------------------+---------------------+
     |       O-SSP        |       I-SSP       |         T-SSP       |
     |      +-----+       |                   |        +-----+      |
     |     -+O-LUF|       |                   |        |T-LUF|      |
     |    / |O-LRF+\      |                   |   +----+T-LRF|      |
     |   /  +-----+ \     |                   |  /     +-----+      |
     |  /(2)         \(4,5,6)                 | /(9,10)             |
     |+-------+     +-----+      +-----+      +-----+      +-------+|
     ||O-Proxy|-(3)-|O-SBE+--(7)-+I-SBE+-(8)--+T-SBE+-(11)-|T-Proxy||
     |+-------+     +-----+      +-----+      +-----+      +-------+|
     |    |               |                   |                |    |
     |   (1)              |                   |               (12)  |
     |    |               |                   |                |    |
     | +-----+      +-----+      +-----+      +-----+       +-----+ |
     | | UAC +=(13)=+O-DBE+======+I-DBE+======+T-DBE+=======+ UAS | |
     | +-----+      +-----+      +-----+      +-----+       +-----+ |
     +--------------------------------------------------------------+
          example.com          example.org          example.net


               Indirect Peering via I-SSP (SIP and Media)

                                Figure 5

5.5.1.  Administrative Characteristics

  The Static Indirect Peering Use Case is implemented in cases where no
  direct interconnection exists between the originating and terminating
  domains due to either business or physical constraints.

  O-SSP <---> I-SSP = Relationship O-I

  In the O-I relationship, typical policies, features, or functions
  that deem this relationship necessary are number portability,
  ubiquity of termination options, security certificate management, and
  masquerading of originating VoIP network gear.

  T-SSP <---> I-SSP = Relationship T-I

  In the T-I relationship, typical policies, features, or functions
  observed consist of codec "scrubbing", anonymizing, and transcoding.
  The I-SSP must record-route and stay in the signaling path.  The
  T-SSP will not accept any message sent directly from the O-SSP.








Uzelac & Lee                  Informational                    [Page 20]

RFC 6405               VoIP SIP Peering Use Cases          November 2011


5.5.2.  Options and Nuances

  In Figure 5, we show an I-DBE.  Using an I-DBE is optional.  For
  example, the I-DBE can be used when the O-SSP and T-SSP do not have a
  common codec.  To involve an I-DBE, the I-SSP should know the list of
  codecs supported by the O-SSP and T-SSP.  When the I-SBE receives the
  INVITE request, it will make a decision to invoke the I-DBE.  An
  I-DBE may also be used if the O-SSP uses Secure Real-time Transport
  Protocol (SRTP) [RFC3711] for media and T-SSP does not support SRTP.

5.6.  On-Demand Peering Use Case

  On-demand peering [RFC5486] describes how two SSPs form the peering
  relationship without a pre-arranged agreement.

  The basis of this use case is built on the fact that there is no pre-
  established relationship between the O-SSP and T-SSP.  The O-SSP and
  T-SSP do not share any information prior to the dialog initiation
  request.  When the O-Proxy invokes the LUF and LRF on the Request-
  URI, the terminating user information must be publicly available.
  When the O-Proxy routes the request to the T-Proxy, the T-Proxy must
  accept the request without any pre-arranged agreement with the O-SSP.

  The On-demand Peering Use Case is uncommon in production.  In this
  memo, we capture only the high-level descriptions.  Further analysis
  is expected when this use case becomes more popular.

5.6.1.  Administrative Characteristics

  The On-demand Direct Peering Use Case is typically implemented in a
  scenario where the T-SSP allows any O-SSP to reach its serving
  subscribers.  The T-SSP administrative domain does not require any
  pre-arranged agreement to accept the call.  The T-SSP makes its
  subscribers information publicly available.  This model mimics the
  Internet email model.  The sender does not need an pre-arranged
  agreement to send email to the receiver.

5.6.2.  Options and Nuances

  Similar to the Static Direct Peering Use Case, the O-SSP and T-SSP
  can decide to deploy the SBE.  Since the T-SSP is open to the public,
  the T-SSP is considered to be a higher security risk than static
  model because there is no trusted relationship between the O-SSP and
  T-SSP.  The T-SSP should protect itself from any attack launched by
  an untrusted O-SSP.






Uzelac & Lee                  Informational                    [Page 21]

RFC 6405               VoIP SIP Peering Use Cases          November 2011


6.  Acknowledgments

  Michael Haberler, Mike Mammer, Otmar Lendl, Rohan Mahy, David
  Schwartz, Eli Katz and Jeremy Barkan are the authors of the early
  individual documents.  Their use cases are captured in this document.
  Also, Jason Livingood, Daryl Malas, David Meyer, Hadriel Kaplan, John
  Elwell, Reinaldo Penno, Sohel Khan, James McEachern, Jon Peterson,
  Alexander Mayrhofer, and Jean-Francois Mule made many valuable
  comments related to this document.  The editors would also like to
  extend a special thank you to Spencer Dawkins for his detailed review
  of this document.

7.  Security Considerations

  Session interconnect for VoIP, as described in this document, has a
  wide variety of security issues that should be considered.  For
  example, if the O-SSP and T-SSP peer through public Internet, the
  O-SSP must protect the signaling channel and accept messages only
  from an authorized T-SSP.  This document does not analyze the threats
  in detail.  [RFC6404] discusses the different security threats and
  countermeasures related to VoIP peering.

8.  References

8.1.  Normative References

  [RFC1918]  Rekhter, Y., Moskowitz, R., Karrenberg, D., Groot, G., and
             E. Lear, "Address Allocation for Private Internets",
             BCP 5, RFC 1918, February 1996.

  [RFC2782]  Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS RR for
             specifying the location of services (DNS SRV)", RFC 2782,
             February 2000.

  [RFC3261]  Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
             A., Peterson, J., Sparks, R., Handley, M., and E.
             Schooler, "SIP: Session Initiation Protocol", RFC 3261,
             June 2002.

  [RFC3263]  Rosenberg, J. and H. Schulzrinne, "Session Initiation
             Protocol (SIP): Locating SIP Servers", RFC 3263,
             June 2002.

  [RFC3403]  Mealling, M., "Dynamic Delegation Discovery System (DDDS)
             Part Three: The Domain Name System (DNS) Database",
             RFC 3403, October 2002.





Uzelac & Lee                  Informational                    [Page 22]

RFC 6405               VoIP SIP Peering Use Cases          November 2011


  [RFC5486]  Malas, D. and D. Meyer, "Session Peering for Multimedia
             Interconnect (SPEERMINT) Terminology", RFC 5486,
             March 2009.

  [RFC6116]  Bradner, S., Conroy, L., and K. Fujiwara, "The E.164 to
             Uniform Resource Identifiers (URI) Dynamic Delegation
             Discovery System (DDDS) Application (ENUM)", RFC 6116,
             March 2011.

  [RFC6404]  Seedorf, J., Niccolini, S., Chen, E., and H. Scholz,
             "Session PEERing for Multimedia INTerconnect (SPEERMINT)
             Security Threats and Suggested Countermeasures", RFC 6404,
             November 2011.

8.2.  Informative References

  [DRINKS]   Channabasappa, S., "Data for Reachability of Inter/
             tra-NetworK SIP (DRINKS) Use cases and Protocol
             Requirements", Work in Progress, August 2011.

  [RFC2474]  Nichols, K., Blake, S., Baker, F., and D. Black,
             "Definition of the Differentiated Services Field (DS
             Field) in the IPv4 and IPv6 Headers", RFC 2474,
             December 1998.

  [RFC3711]  Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
             Norrman, "The Secure Real-time Transport Protocol (SRTP)",
             RFC 3711, March 2004.

  [RFC5246]  Dierks, T. and E. Rescorla, "The Transport Layer Security
             (TLS) Protocol Version 1.2", RFC 5246, August 2008.

Authors' Addresses

  Adam Uzelac (editor)
  Global Crossing
  U.S.A.

  EMail: [email protected]
  URI:   http://www.globalcrossing.com


  Yiu L.Lee (editor)
  Comcast Cable
  U.S.A.

  EMail: [email protected]
  URI:   http://www.comcast.com



Uzelac & Lee                  Informational                    [Page 23]