Independent Submission                                       J. Bankoski
Request for Comments: 6386                                   J. Koleszar
Category: Informational                                       L. Quillio
ISSN: 2070-1721                                               J. Salonen
                                                             P. Wilkins
                                                                  Y. Xu
                                                            Google Inc.
                                                          November 2011


                  VP8 Data Format and Decoding Guide

Abstract

  This document describes the VP8 compressed video data format,
  together with a discussion of the decoding procedure for the format.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This is a contribution to the RFC Series, independently of any other
  RFC stream.  The RFC Editor has chosen to publish this document at
  its discretion and makes no statement about its value for
  implementation or deployment.  Documents approved for publication by
  the RFC Editor are not a candidate for any level of Internet
  Standard; see Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc6386.

Copyright Notice

  Copyright (c) 2011 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.







Bankoski, et al.              Informational                     [Page 1]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


Table of Contents

  1. Introduction ....................................................4
  2. Format Overview .................................................5
  3. Compressed Frame Types ..........................................7
  4. Overview of Compressed Data Format ..............................8
  5. Overview of the Decoding Process ................................9
  6. Description of Algorithms ......................................14
  7. Boolean Entropy Decoder ........................................16
     7.1. Underlying Theory of Coding ...............................17
     7.2. Practical Algorithm Description ...........................18
     7.3. Actual Implementation .....................................20
  8. Compressed Data Components .....................................25
     8.1. Tree Coding Implementation ................................27
     8.2. Tree Coding Example .......................................28
  9. Frame Header ...................................................30
     9.1. Uncompressed Data Chunk ...................................30
     9.2. Color Space and Pixel Type (Key Frames Only) ..............33
     9.3. Segment-Based Adjustments .................................34
     9.4. Loop Filter Type and Levels ...............................35
     9.5. Token Partition and Partition Data Offsets ................36
     9.6. Dequantization Indices ....................................37
     9.7. Refresh Golden Frame and Altref Frame .....................38
     9.8. Refresh Last Frame Buffer .................................39
     9.9. DCT Coefficient Probability Update ........................39
     9.10. Remaining Frame Header Data (Non-Key Frame) ..............40
     9.11. Remaining Frame Header Data (Key Frame) ..................41
  10. Segment-Based Feature Adjustments .............................41
  11. Key Frame Macroblock Prediction Records .......................42
     11.1. mb_skip_coeff ............................................42
     11.2. Luma Modes ...............................................42
     11.3. Subblock Mode Contexts ...................................45
     11.4. Chroma Modes .............................................46
     11.5. Subblock Mode Probability Table ..........................47
  12. Intraframe Prediction .........................................50
     12.1. mb_skip_coeff ............................................51
     12.2. Chroma Prediction ........................................51
     12.3. Luma Prediction ..........................................54
  13. DCT Coefficient Decoding ......................................60
     13.1. Macroblock without Non-Zero Coefficient Values ...........61
     13.2. Coding of Individual Coefficient Values ..................61
     13.3. Token Probabilities ......................................63
     13.4. Token Probability Updates ................................68
     13.5. Default Token Probability Table ..........................73







Bankoski, et al.              Informational                     [Page 2]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  14. DCT and WHT Inversion and Macroblock Reconstruction ...........76
     14.1. Dequantization ...........................................76
     14.2. Inverse Transforms .......................................78
     14.3. Implementation of the WHT Inversion ......................78
     14.4. Implementation of the DCT Inversion ......................81
     14.5. Summation of Predictor and Residue .......................83
  15. Loop Filter ...................................................84
     15.1. Filter Geometry and Overall Procedure ....................85
     15.2. Simple Filter ............................................87
     15.3. Normal Filter ............................................91
     15.4. Calculation of Control Parameters ........................95
  16. Interframe Macroblock Prediction Records ......................97
     16.1. Intra-Predicted Macroblocks ..............................97
     16.2. Inter-Predicted Macroblocks ..............................98
     16.3. Mode and Motion Vector Contexts ..........................99
     16.4. Split Prediction ........................................105
  17. Motion Vector Decoding .......................................108
     17.1. Coding of Each Component ................................108
     17.2. Probability Updates .....................................110
  18. Interframe Prediction ........................................113
     18.1. Bounds on, and Adjustment of, Motion Vectors ............113
     18.2. Prediction Subblocks ....................................115
     18.3. Sub-Pixel Interpolation .................................115
     18.4. Filter Properties .......................................118
  19. Annex A: Bitstream Syntax ....................................120
     19.1. Uncompressed Data Chunk .................................121
     19.2. Frame Header ............................................122
     19.3. Macroblock Data .........................................130
  20. Attachment One: Reference Decoder Source Code ................133
     20.1. bit_ops.h ...............................................133
     20.2. bool_decoder.h ..........................................133
     20.3. dequant_data.h ..........................................137
     20.4. dixie.c .................................................138
     20.5. dixie.h .................................................151
     20.6. dixie_loopfilter.c ......................................158
     20.7. dixie_loopfilter.h ......................................170
     20.8. idct_add.c ..............................................171
     20.9. idct_add.h ..............................................174
     20.10. mem.h ..................................................175
     20.11. modemv.c ...............................................176
     20.12. modemv.h ...............................................192
     20.13. modemv_data.h ..........................................193
     20.14. predict.c ..............................................198
     20.15. predict.h ..............................................231
     20.16. tokens.c ...............................................232
     20.17. tokens.h ...............................................242
     20.18. vp8_prob_data.h ........................................243
     20.19. vpx_codec_internal.h ...................................252



Bankoski, et al.              Informational                     [Page 3]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


     20.20. vpx_decoder.h ..........................................263
     20.21. vpx_decoder_compat.h ...................................271
     20.22. vpx_image.c ............................................285
     20.23. vpx_image.h ............................................291
     20.24. vpx_integer.h ..........................................298
     20.25. AUTHORS File ...........................................299
     20.26. LICENSE ................................................301
     20.27. PATENTS ................................................302
  21. Security Considerations ......................................302
  22. References ...................................................303
     22.1. Normative Reference .....................................303
     22.2. Informative References ..................................303

1.  Introduction

  This document describes the VP8 compressed video data format,
  together with a discussion of the decoding procedure for the format.
  It is intended to be used in conjunction with, and as a guide to, the
  reference decoder source code provided in Attachment One
  (Section 20).  If there are any conflicts between this narrative and
  the reference source code, the reference source code should be
  considered correct.  The bitstream is defined by the reference source
  code and not this narrative.

  Like many modern video compression schemes, VP8 is based on
  decomposition of frames into square subblocks of pixels, prediction
  of such subblocks using previously constructed blocks, and adjustment
  of such predictions (as well as synthesis of unpredicted blocks)
  using a discrete cosine transform (hereafter abbreviated as DCT).  In
  one special case, however, VP8 uses a Walsh-Hadamard transform
  (hereafter abbreviated as WHT) instead of a DCT.

  Roughly speaking, such systems reduce datarate by exploiting the
  temporal and spatial coherence of most video signals.  It is more
  efficient to specify the location of a visually similar portion of a
  prior frame than it is to specify pixel values.  The frequency
  segregation provided by the DCT and WHT facilitates the exploitation
  of both spatial coherence in the original signal and the tolerance of
  the human visual system to moderate losses of fidelity in the
  reconstituted signal.

  VP8 augments these basic concepts with, among other things,
  sophisticated usage of contextual probabilities.  The result is a
  significant reduction in datarate at a given quality.







Bankoski, et al.              Informational                     [Page 4]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  Unlike some similar schemes (the older MPEG formats, for example),
  VP8 specifies exact values for reconstructed pixels.  Specifically,
  the specification for the DCT and WHT portions of the reconstruction
  does not allow for any "drift" caused by truncation of fractions.
  Rather, the algorithm is specified using fixed-precision integer
  operations exclusively.  This greatly facilitates the verification of
  the correctness of a decoder implementation and also avoids
  difficult-to-predict visual incongruities between such
  implementations.

  It should be remarked that, in a complete video playback system, the
  displayed frames may or may not be identical to the reconstructed
  frames.  Many systems apply a final level of filtering (commonly
  referred to as postprocessing) to the reconstructed frames prior to
  viewing.  Such postprocessing has no effect on the decoding and
  reconstruction of subsequent frames (which are predicted using the
  completely specified reconstructed frames) and is beyond the scope of
  this document.  In practice, the nature and extent of this sort of
  postprocessing is dependent on both the taste of the user and on the
  computational facilities of the playback environment.

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [RFC2119].

2.  Format Overview

  VP8 works exclusively with an 8-bit YUV 4:2:0 image format.  In this
  format, each 8-bit pixel in the two chroma planes (U and V)
  corresponds positionally to a 2x2 block of 8-bit luma pixels in the
  Y plane; coordinates of the upper left corner of the Y block are of
  course exactly twice the coordinates of the corresponding chroma
  pixels.  When we refer to pixels or pixel distances without
  specifying a plane, we are implicitly referring to the Y plane or to
  the complete image, both of which have the same (full) resolution.

  As is usually the case, the pixels are simply a large array of bytes
  stored in rows from top to bottom, each row being stored from left to
  right.  This "left to right" then "top to bottom" raster-scan order
  is reflected in the layout of the compressed data as well.

  Provision has been made in the VP8 bitstream header for the support
  of a secondary YUV color format, in the form of a reserved bit.

  Occasionally, at very low datarates, a compression system may decide
  to reduce the resolution of the input signal to facilitate efficient
  compression.  The VP8 data format supports this via optional
  upscaling of its internal reconstruction buffer prior to output (this



Bankoski, et al.              Informational                     [Page 5]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  is completely distinct from the optional postprocessing discussed
  earlier, which has nothing to do with decoding per se).  This
  upsampling restores the video frames to their original resolution.
  In other words, the compression/decompression system can be viewed as
  a "black box", where the input and output are always at a given
  resolution.  The compressor might decide to "cheat" and process the
  signal at a lower resolution.  In that case, the decompressor needs
  the ability to restore the signal to its original resolution.

  Internally, VP8 decomposes each output frame into an array of
  macroblocks.  A macroblock is a square array of pixels whose Y
  dimensions are 16x16 and whose U and V dimensions are 8x8.
  Macroblock-level data in a compressed frame occurs (and must be
  processed) in a raster order similar to that of the pixels comprising
  the frame.

  Macroblocks are further decomposed into 4x4 subblocks.  Every
  macroblock has 16 Y subblocks, 4 U subblocks, and 4 V subblocks.  Any
  subblock-level data (and processing of such data) again occurs in
  raster order, this time in raster order within the containing
  macroblock.

  As discussed in further detail below, data can be specified at the
  levels of both macroblocks and their subblocks.

  Pixels are always treated, at a minimum, at the level of subblocks,
  which may be thought of as the "atoms" of the VP8 algorithm.  In
  particular, the 2x2 chroma blocks corresponding to 4x4 Y subblocks
  are never treated explicitly in the data format or in the algorithm
  specification.

  The DCT and WHT always operate at a 4x4 resolution.  The DCT is used
  for the 16Y, 4U, and 4V subblocks.  The WHT is used (with some but
  not all prediction modes) to encode a 4x4 array comprising the
  average intensities of the 16 Y subblocks of a macroblock.  These
  average intensities are, up to a constant normalization factor,
  nothing more than the 0th DCT coefficients of the Y subblocks.  This
  "higher-level" WHT is a substitute for the explicit specification of
  those coefficients, in exactly the same way as the DCT of a subblock
  substitutes for the specification of the pixel values comprising the
  subblock.  We consider this 4x4 array as a second-order subblock
  called Y2, and think of a macroblock as containing 24 "real"
  subblocks and, sometimes, a 25th "virtual" subblock.  This is dealt
  with further in Section 13.

  The frame layout used by the reference decoder may be found in the
  file vpx_image.h (Section 20.23).




Bankoski, et al.              Informational                     [Page 6]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


3.  Compressed Frame Types

  There are only two types of frames in VP8.

  Intraframes (also called key frames and, in MPEG terminology,
  I-frames) are decoded without reference to any other frame in a
  sequence; that is, the decompressor reconstructs such frames
  beginning from its "default" state.  Key frames provide random access
  (or seeking) points in a video stream.

  Interframes (also called prediction frames and, in MPEG terminology,
  P-frames) are encoded with reference to prior frames, specifically
  all prior frames up to and including the most recent key frame.
  Generally speaking, the correct decoding of an interframe depends on
  the correct decoding of the most recent key frame and all ensuing
  frames.  Consequently, the decoding algorithm is not tolerant of
  dropped frames: In an environment in which frames may be dropped or
  corrupted, correct decoding will not be possible until a key frame is
  correctly received.

  In contrast to MPEG, there is no use of bidirectional prediction.  No
  frame is predicted using frames temporally subsequent to it; there is
  no analog to an MPEG B-frame.

  Secondly, VP8 augments these notions with that of alternate
  prediction frames, called golden frames and altref frames
  (alternative reference frames).  Blocks in an interframe may be
  predicted using blocks in the immediately previous frame as well as
  the most recent golden frame or altref frame.  Every key frame is
  automatically golden and altref, and any interframe may optionally
  replace the most recent golden or altref frame.

  Golden frames and altref frames may also be used to partially
  overcome the intolerance to dropped frames discussed above: If a
  compressor is configured to code golden frames only with reference to
  the prior golden frame (and key frame), then the "substream" of key
  and golden frames may be decoded regardless of loss of other
  interframes.  Roughly speaking, the implementation requires (on the
  compressor side) that golden frames subsume and recode any context
  updates effected by the intervening interframes.  A typical
  application of this approach is video conferencing, in which
  retransmission of a prior golden frame and/or a delay in playback
  until receipt of the next golden frame is preferable to a larger
  retransmit and/or delay until the next key frame.







Bankoski, et al.              Informational                     [Page 7]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


4.  Overview of Compressed Data Format

  The input to a VP8 decoder is a sequence of compressed frames whose
  order matches their order in time.  Issues such as the duration of
  frames, the corresponding audio, and synchronization are generally
  provided by the playback environment and are irrelevant to the
  decoding process itself; however, to aid in fast seeking, a start
  code is included in the header of each key frame.

  The decoder is simply presented with a sequence of compressed frames
  and produces a sequence of decompressed (reconstructed) YUV frames
  corresponding to the input sequence.  As stated in the Introduction,
  the exact pixel values in the reconstructed frame are part of VP8's
  specification.  This document specifies the layout of the compressed
  frames and gives unambiguous algorithms for the correct production of
  reconstructed frames.

  The first frame presented to the decompressor is of course a key
  frame.  This may be followed by any number of interframes; the
  correct reconstruction of each frame depends on all prior frames up
  to the key frame.  The next key frame restarts this process: The
  decompressor resets to its default initial condition upon reception
  of a key frame, and the decoding of a key frame (and its ensuing
  interframes) is completely independent of any prior decoding.

  At the highest level, every compressed frame has three or more
  pieces.  It begins with an uncompressed data chunk comprising
  10 bytes in the case of key frames and 3 bytes for interframes.  This
  is followed by two or more blocks of compressed data (called
  partitions).  These compressed data partitions begin and end on byte
  boundaries.

  The first compressed partition has two subsections:

  1.  Header information that applies to the frame as a whole.

  2.  Per-macroblock information specifying how each macroblock is
      predicted from the already-reconstructed data that is available
      to the decompressor.

  As stated above, the macroblock-level information occurs in raster-
  scan order.

  The rest of the partitions contain, for each block, the DCT/WHT
  coefficients (quantized and logically compressed) of the residue
  signal to be added to the predicted block values.  It typically
  accounts for roughly 70% of the overall datarate.  VP8 supports
  packing the compressed DCT/WHT coefficients' data from macroblock



Bankoski, et al.              Informational                     [Page 8]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  rows into separate partitions.  If there is more than one partition
  for these coefficients, the sizes of the partitions -- except the
  last partition -- in bytes are also present in the bitstream right
  after the above first partition.  Each of the sizes is a 3-byte data
  item written in little endian format.  These sizes provide the
  decoder direct access to all DCT/WHT coefficient partitions, which
  enables parallel processing of the coefficients in a decoder.

  The separate partitioning of the prediction data and coefficient data
  also allows flexibility in the implementation of a decompressor: An
  implementation may decode and store the prediction information for
  the whole frame and then decode, transform, and add the residue
  signal to the entire frame, or it may simultaneously decode both
  partitions, calculating prediction information and adding in the
  residue signal for each block in order.  The length field in the
  frame tag, which allows decoding of the second partition to begin
  before the first partition has been completely decoded, is necessary
  for the second "block-at-a-time" decoder implementation.

  All partitions are decoded using separate instances of the boolean
  entropy decoder described in Section 7.  Although some of the data
  represented within the partitions is conceptually "flat" (a bit is
  just a bit with no probabilistic expectation one way or the other),
  because of the way such coders work, there is never a direct
  correspondence between a "conceptual bit" and an actual physical bit
  in the compressed data partitions.  Only in the 3- or 10-byte
  uncompressed chunk described above is there such a physical
  correspondence.

  A related matter is that seeking within a partition is not supported.
  The data must be decompressed and processed (or at least stored) in
  the order in which it occurs in the partition.

  While this document specifies the ordering of the partition data
  correctly, the details and semantics of this data are discussed in a
  more logical fashion to facilitate comprehension.  For example, the
  frame header contains updates to many probability tables used in
  decoding per-macroblock data.  The per-macroblock data is often
  described before the layouts of the probabilities and their updates,
  even though this is the opposite of their order in the bitstream.

5.  Overview of the Decoding Process

  A VP8 decoder needs to maintain four YUV frame buffers whose
  resolutions are at least equal to that of the encoded image.  These
  buffers hold the current frame being reconstructed, the immediately
  previous reconstructed frame, the most recent golden frame, and the
  most recent altref frame.



Bankoski, et al.              Informational                     [Page 9]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  Most implementations will wish to "pad" these buffers with
  "invisible" pixels that extend a moderate number of pixels beyond all
  four edges of the visible image.  This simplifies interframe
  prediction by allowing all (or most) prediction blocks -- which are
  not guaranteed to lie within the visible area of a prior frame -- to
  address usable image data.

  Regardless of the amount of padding chosen, the invisible rows above
  (or below) the image are filled with copies of the top (or bottom)
  row of the image; the invisible columns to the left (or right) of the
  image are filled with copies of the leftmost (or rightmost) visible
  row; and the four invisible corners are filled with copies of the
  corresponding visible corner pixels.  The use of these prediction
  buffers (and suggested sizes for the halo) will be elaborated on in
  the discussion of motion vectors, interframe prediction, and
  sub-pixel interpolation later in this document.

  As will be seen in the description of the frame header, the image
  dimensions are specified (and can change) with every key frame.
  These buffers (and any other data structures whose size depends on
  the size of the image) should be allocated (or re-allocated)
  immediately after the dimensions are decoded.

  Leaving most of the details for later elaboration, the following is
  an outline of the decoding process.

  First, the frame header (the beginning of the first data partition)
  is decoded.  Altering or augmenting the maintained state of the
  decoder, this provides the context in which the per-macroblock data
  can be interpreted.

  The macroblock data occurs (and must be processed) in raster-scan
  order.  This data comes in two or more parts.  The first (prediction
  or mode) part comes in the remainder of the first data partition.
  The other parts comprise the data partition(s) for the DCT/WHT
  coefficients of the residue signal.  For each macroblock, the
  prediction data must be processed before the residue.

  Each macroblock is predicted using one (and only one) of four
  possible frames.  All macroblocks in a key frame, and all intra-coded
  macroblocks in an interframe, are predicted using the already-decoded
  macroblocks in the current frame.  Macroblocks in an interframe may
  also be predicted using the previous frame, the golden frame, or the
  altref frame.  Such macroblocks are said to be inter-coded.







Bankoski, et al.              Informational                    [Page 10]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  The purpose of prediction is to use already-constructed image data to
  approximate the portion of the original image being reconstructed.
  The effect of any of the prediction modes is then to write a
  macroblock-sized prediction buffer containing this approximation.

  Regardless of the prediction method, the residue DCT signal is
  decoded, dequantized, reverse-transformed, and added to the
  prediction buffer to produce the (almost final) reconstruction value
  of the macroblock, which is stored in the correct position of the
  current frame buffer.

  The residue signal consists of 24 (sixteen Y, four U, and four V) 4x4
  quantized and losslessly compressed DCT transforms approximating the
  difference between the original macroblock in the uncompressed source
  and the prediction buffer.  For most prediction modes, the 0th
  coefficients of the sixteen Y subblocks are expressed via a 25th WHT
  of the second-order virtual Y2 subblock discussed above.

  Intra-prediction exploits the spatial coherence of frames.  The 16x16
  luma (Y) and 8x8 chroma (UV) components are predicted independently
  of each other using one of four simple means of pixel propagation,
  starting from the already-reconstructed (16-pixel-long luma, 8-pixel-
  long chroma) row above, and column to the left of, the current
  macroblock.  The four methods are:

  1.  Copying the row from above throughout the prediction buffer.

  2.  Copying the column from the left throughout the prediction
      buffer.

  3.  Copying the average value of the row and column throughout the
      prediction buffer.

  4.  Extrapolation from the row and column using the (fixed) second
      difference (horizontal and vertical) from the upper left corner.

  Additionally, the sixteen Y subblocks may be predicted independently
  of each other using one of ten different modes, four of which are 4x4
  analogs of those described above, augmented with six "diagonal"
  prediction methods.  There are two types of predictions, one intra
  and one prediction (among all the modes), for which the residue
  signal does not use the Y2 block to encode the DC portion of the
  sixteen 4x4 Y subblock DCTs.  This "independent Y subblock" mode has
  no effect on the 8x8 chroma prediction.







Bankoski, et al.              Informational                    [Page 11]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  Inter-prediction exploits the temporal coherence between nearby
  frames.  Except for the choice of the prediction frame itself, there
  is no difference between inter-prediction based on the previous frame
  and that based on the golden frame or altref frame.

  Inter-prediction is conceptually very simple.  While, for reasons of
  efficiency, there are several methods of encoding the relationship
  between the current macroblock and corresponding sections of the
  prediction frame, ultimately each of the sixteen Y subblocks is
  related to a 4x4 subblock of the prediction frame, whose position in
  that frame differs from the current subblock position by a (usually
  small) displacement.  These two-dimensional displacements are called
  motion vectors.

  The motion vectors used by VP8 have quarter-pixel precision.
  Prediction of a subblock using a motion vector that happens to have
  integer (whole number) components is very easy: The 4x4 block of
  pixels from the displaced block in the previous, golden, or altref
  frame is simply copied into the correct position of the current
  macroblock's prediction buffer.

  Fractional displacements are conceptually and implementationally more
  complex.  They require the inference (or synthesis) of sample values
  that, strictly speaking, do not exist.  This is one of the most basic
  problems in signal processing, and readers conversant with that
  subject will see that the approach taken by VP8 provides a good
  balance of robustness, accuracy, and efficiency.

  Leaving the details for the implementation discussion below, the
  pixel interpolation is calculated by applying a kernel filter (using
  reasonable-precision integer math) three pixels on either side, both
  horizontally and vertically, of the pixel to be synthesized.  The
  resulting 4x4 block of synthetic pixels is then copied into position
  exactly as in the case of integer displacements.

  Each of the eight chroma subblocks is handled similarly.  Their
  motion vectors are never specified explicitly; instead, the motion
  vector for each chroma subblock is calculated by averaging the
  vectors of the four Y subblocks that occupy the same area of the
  frame.  Since chroma pixels have twice the diameter (and four times
  the area) of luma pixels, the calculated chroma motion vectors have
  1/8-pixel resolution, but the procedure for copying or generating
  pixels for each subblock is essentially identical to that done in the
  luma plane.







Bankoski, et al.              Informational                    [Page 12]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  After all the macroblocks have been generated (predicted and
  corrected with the DCT/WHT residue), a filtering step (the loop
  filter) is applied to the entire frame.  The purpose of the loop
  filter is to reduce blocking artifacts at the boundaries between
  macroblocks and between subblocks of the macroblocks.  The term "loop
  filter" is used because this filter is part of the "coding loop";
  that is, it affects the reconstructed frame buffers that are used to
  predict ensuing frames.  This is distinguished from the
  postprocessing filters discussed earlier, which affect only the
  viewed video and do not "feed into" subsequent frames.

  Next, if signaled in the data, the current frame may replace the
  golden frame prediction buffer and/or the altref frame buffer.

  The halos of the frame buffers are next filled as specified above.
  Finally, at least as far as decoding is concerned, the (references
  to) the "current" and "last" frame buffers should be exchanged in
  preparation for the next frame.

  Various processes may be required (or desired) before viewing the
  generated frame.  As discussed in the frame dimension information
  below, truncation and/or upscaling of the frame may be required.
  Some playback systems may require a different frame format (RGB,
  YUY2, etc.).  Finally, as mentioned in the Introduction, further
  postprocessing or filtering of the image prior to viewing may be
  desired.  Since the primary purpose of this document is a decoding
  specification, the postprocessing is not specified in this document.

  While the basic ideas of prediction and correction used by VP8 are
  straightforward, many of the details are quite complex.  The
  management of probabilities is particularly elaborate.  Not only do
  the various modes of intra-prediction and motion vector specification
  have associated probabilities, but they, together with the coding of
  DCT coefficients and motion vectors, often base these probabilities
  on a variety of contextual information (calculated from what has been
  decoded so far), as well as on explicit modification via the frame
  header.

  The "top-level" of decoding and frame reconstruction is implemented
  in the reference decoder file dixie.c (Section 20.4).

  This concludes our summary of decoding and reconstruction; we
  continue by discussing the individual aspects in more depth.

  A reasonable "divide and conquer" approach to implementation of a
  decoder is to begin by decoding streams composed exclusively of key
  frames.  After that works reliably, interframe handling can be added
  more easily than if complete functionality were attempted



Bankoski, et al.              Informational                    [Page 13]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  immediately.  In accordance with this, we first discuss components
  needed to decode key frames (most of which are also used in the
  decoding of interframes) and conclude with topics exclusive to
  interframes.

6.  Description of Algorithms

  As the intent of this document, together with the reference decoder
  source code, is to specify a platform-independent procedure for the
  decoding and reconstruction of a VP8 video stream, many (small)
  algorithms must be described exactly.

  Due to its near-universality, terseness, ability to easily describe
  calculation at specific precisions, and the fact that On2's reference
  VP8 decoder is written in C, these algorithm fragments are written
  using the C programming language, augmented with a few simple
  definitions below.

  The standard (and best) reference for C is [Kernighan].

  Many code fragments will be presented in this document.  Some will be
  nearly identical to corresponding sections of the reference decoder;
  others will differ.  Roughly speaking, there are three reasons for
  such differences:

  1.  For reasons of efficiency, the reference decoder version may be
      less obvious.

  2.  The reference decoder often uses large data structures to
      maintain context that need not be described or used here.

  3.  The authors of this document felt that a different expression of
      the same algorithm might facilitate exposition.

  Regardless of the chosen presentation, the calculation effected by
  any of the algorithms described here is identical to that effected by
  the corresponding portion of the reference decoder.

  All VP8 decoding algorithms use integer math.  To facilitate
  specification of arithmetic precision, we define the following types.

  ---- Begin code block --------------------------------------

  typedef   signed char  int8; /* signed int exactly 8 bits wide */
  typedef unsigned char uint8; /* unsigned "" */

  typedef short int16;         /* signed int exactly 16 bits wide */
  typedef unsigned int16 uint16; /* unsigned "" */



Bankoski, et al.              Informational                    [Page 14]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  /* int32 is a signed integer type at least 32 bits wide */

  typedef long int32; /* guaranteed to work on all systems */
  typedef int  int32; /* will be more efficient on some systems */

  typedef unsigned int32 uint32;

  /* unsigned integer type, at least 16 bits wide, whose exact size
     is most convenient to whatever processor we are using */

  typedef unsigned int uint;

  /* While pixels themselves are 8-bit unsigned integers,
     pixel arithmetic often occurs at 16- or 32-bit precision and
     the results need to be "saturated" or clamped to an 8-bit
     range. */

  typedef uint8 Pixel;

  Pixel clamp255(int32 v) { return v < 0? 0 : (v < 255? v : 255);}

  /*  As is elaborated in the discussion of the bool_decoder below,
      VP8 represents probabilities as unsigned 8-bit numbers. */

  typedef uint8 Prob;

  ---- End code block ----------------------------------------

  We occasionally need to discuss mathematical functions involving
  honest-to-goodness "infinite precision" real numbers.  The DCT is
  first described via the cosine function cos; the ratio of the lengths
  of the circumference and diameter of a circle is denoted pi; at one
  point, we take a (base 1/2) logarithm, denoted log; and pow(x, y)
  denotes x raised to the power y.  If x = 2 and y is a small
  non-negative integer, pow(2, y) may be expressed in C as 1 << y.

  Finally, we sometimes need to divide signed integers by powers of
  two; that is, we occasionally right-shift signed numbers.  The
  behavior of such shifts (i.e., the propagation of the sign bit) is,
  perhaps surprisingly, not defined by the C language itself and is
  left up to individual compilers.  Because of the utility of this
  frequently needed operation, it is at least arguable that it should
  be defined by the language (to naturally propagate the sign bit) and,
  at a minimum, should be correctly implemented by any reasonable
  compiler.  In the interest of strict portability, we attempt to call
  attention to these shifts when they arise.





Bankoski, et al.              Informational                    [Page 15]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


7.  Boolean Entropy Decoder

  As discussed in the overview above, essentially the entire VP8 data
  stream is encoded using a boolean entropy coder.

  An understanding of the bool_decoder is critical to the
  implementation of a VP8 decompressor, so we discuss the bool_decoder
  in detail.  It is easier to comprehend the bool_decoder in
  conjunction with the bool_encoder used by the compressor to write the
  compressed data partitions.

  The bool_encoder encodes (and the bool_decoder decodes) one bool
  (zero-or-one boolean value) at a time.  Its purpose is to losslessly
  compress a sequence of bools for which the probability of their being
  zero or one can be well-estimated (via constant or previously coded
  information) at the time they are written, using identical
  corresponding probabilities at the time they are read.

  As the reader is probably aware, if a bool is much more likely to be
  zero than one (for instance), it can, on average, be faithfully
  encoded using much less than one bit per value.  The bool_encoder
  exploits this.

  In the 1940s, [Shannon] proved that there is a lower bound for the
  average datarate of a faithful encoding of a sequence of bools (whose
  probability distributions are known and are independent of each
  other) and also that there are encoding algorithms that approximate
  this lower bound as closely as one wishes.

  If we encode a sequence of bools whose probability of being zero is p
  (and whose probability of being 1 is 1-p), the lowest possible
  datarate per value is

  plog(p) + (1-p)log(1-p);

  taking the logarithms to the base 1/2 expresses the datarate in bits/
  value.

  We give two simple examples.  At one extreme, if p = 1/2, then log(p)
  = log(1-p) = 1, and the lowest possible datarate per bool is 1/2 +
  1/2 = 1; that is, we cannot do any better than simply literally
  writing out bits.  At another extreme, if p is very small, say p =
  1/1024, then log(p)=10, log(1-p) is roughly .0014, and the lowest
  possible datarate is approximately 10/1024 + .0014, roughly 1/100 of
  a bit per bool.






Bankoski, et al.              Informational                    [Page 16]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  Because most of the bools in the VP8 datastream have zero-
  probabilities nowhere near 1/2, the compression provided by the
  bool_encoder is critical to the performance of VP8.

  The boolean coder used by VP8 is a variant of an arithmetic coder.
  An excellent discussion of arithmetic coding (and other lossless
  compression techniques) can be found in [Bell].

7.1.  Underlying Theory of Coding

  The basic idea used by the boolean coder is to consider the entire
  data stream (either of the partitions in our case) as the binary
  expansion of a single number x with 0 <= x < 1.  The bits (or bytes)
  in x are of course written from high to low order, and if b[j] (B[j])
  is the j^(th) bit (byte) in the partition, the value x is simply the
  sum (starting with j = 1) of pow(2, -j) * b[j] or pow(256, -j) *
  B[j].

  Before the first bool is coded, all values of x are possible.

  The coding of each bool restricts the possible values of x in
  proportion to the probability of what is coded.  If p1 is the
  probability of the first bool being zero and a zero is coded, the
  range of possible values of x is restricted to 0 <= x < p1.  If a one
  is coded, the range becomes p1 <= x < 1.

  The coding continues by repeating the same idea.  At every stage,
  there is an interval a <= x < b of possible values of x.  If p is the
  probability of a zero being coded at this stage and a zero is coded,
  the interval becomes a <= x < a + (p(b-a)).  If a one is coded, the
  possible values of x are restricted to a + (p(b-a)) <= x < b.

  Assuming that only finitely many values are to be coded, after the
  encoder has received the last bool, it can write as its output any
  value x that lies in the final interval.  VP8 simply writes the left
  endpoint of the final interval.  Consequently, the output it would
  make if encoding were to stop at any time either increases or stays
  the same as each bool is encoded.

  Decoding parallels encoding.  The decoder is presented with the
  number x, which has only the initial restriction 0 <= x < 1.  To
  decode the first bool, the decoder is given the first probability p1.
  If x < p1, a zero is decoded; if x >= p1, a one is decoded.  In
  either case, the new restriction on x -- that is, the interval of
  possible values of x -- is remembered.






Bankoski, et al.              Informational                    [Page 17]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  Decoding continues in exactly the same way: If a <= x < b is the
  current interval and we are to decode a bool with zero-probability p,
  we return a zero if a <= x < a + (p(b-a)) and a one if a + (p(b-a))
  <= x < b.  In either case, the new restriction is remembered in
  preparation for decoding the next bool.

  The process outlined above uses real numbers of infinite precision to
  express the probabilities and ranges.  It is true that, if one could
  actualize this process and coded a large number of bools whose
  supplied probabilities matched their value distributions, the
  datarate achieved would approach the theoretical minimum as the
  number of bools encoded increased.

  Unfortunately, computers operate at finite precision, and an
  approximation to the theoretically perfect process described above is
  necessary.  Such approximation increases the datarate but, at quite
  moderate precision and for a wide variety of data sets, this increase
  is negligible.

  The only conceptual limitations are, first, that coder probabilities
  must be expressed at finite precision and, second, that the decoder
  be able to detect each individual modification to the value interval
  via examination of a fixed amount of input.  As a practical matter,
  many of the implementation details stem from the fact that the coder
  can function using only a small "window" to incrementally read or
  write the arbitrarily precise number x.

7.2.  Practical Algorithm Description

  VP8's boolean coder works with 8-bit probabilities p.  The range of
  such p is 0 <= p <= 255; the actual probability represented by p is
  p/256.  Also, the coder is designed so that decoding of a bool
  requires no more than an 8-bit comparison, and so that the state of
  both the encoder and decoder can be easily represented using a small
  number of unsigned 16-bit integers.

  The details are most easily understood if we first describe the
  algorithm using bit-at-a-time input and output.  Aside from the
  ability to maintain a position in this bitstream and write/read bits,
  the encoder also needs the ability to add 1 to the bits already
  output; after writing n bits, adding 1 to the existing output is the
  same thing as adding pow(2, -n) to x.









Bankoski, et al.              Informational                    [Page 18]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  Together with the bit position, the encoder must maintain two
  unsigned 8-bit numbers, which we call "bottom" and "range".  Writing
  w for the n bits already written and S = pow(2, - n - 8) for the
  scale of the current bit position one byte out, we have the following
  constraint on all future values v of w (including the final value
  v = x):

  w + ( S * bottom ) <= v < w + ( S * ( bottom + range ) )

  Thus, appending bottom to the already-written bits w gives the left
  endpoint of the interval of possible values, appending bottom + range
  gives the right endpoint, and range itself (scaled to the current
  output position) is the length of the interval.

  So that our probabilistic encodings are reasonably accurate, we do
  not let range vary by more than a factor of two: It stays within the
  bounds 128 <= range <= 255.

  The process for encoding a boolean value val whose probability of
  being zero is prob / 256 -- and whose probability of being one is
  ( 256 - prob ) / 256 -- with 1 <= prob <= 255 is as follows.

  Using an unsigned 16-bit multiply followed by an unsigned right
  shift, we calculate an unsigned 8-bit split value:

  split = 1 + (((range - 1) * probability)]] >> 8)

  split is approximately ( prob / 256 ) * range and lies within the
  bounds 1 <= split <= range - 1.  These bounds ensure the correctness
  of the decoding procedure described below.

  If the incoming boolean val to be encoded is false, we leave the left
  interval endpoint bottom alone and reduce range, replacing it by
  split.  If the incoming val is true, we move up the left endpoint to
  bottom + split, propagating any carry to the already-written value w
  (this is where we need the ability to add 1 to w), and reduce range
  to range - split.

  Regardless of the value encoded, range has been reduced and now has
  the bounds 1 <= range <= 254.  If range < 128, the encoder doubles it
  and shifts the high-order bit out of bottom to the output as it also
  doubles bottom, repeating this process one bit at a time until 128 <=
  range <= 255.  Once this is completed, the encoder is ready to accept
  another bool, maintaining the constraints described above.

  After encoding the last bool, the partition may be completed by
  appending bottom to the bitstream.




Bankoski, et al.              Informational                    [Page 19]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  The decoder mimics the state of the encoder.  It maintains, together
  with an input bit position, two unsigned 8-bit numbers, a range
  identical to that maintained by the encoder and a value.  Decoding
  one bool at a time, the decoder (in effect) tracks the same left
  interval endpoint as does the encoder and subtracts it from the
  remaining input.  Appending the unread portion of the bitstream to
  the 8-bit value gives the difference between the actual value encoded
  and the known left endpoint.

  The decoder is initialized by setting range = 255 and reading the
  first 16 input bits into value.  The decoder maintains range and
  calculates split in exactly the same way as does the encoder.

  To decode a bool, it compares value to split; if value < split, the
  bool is zero, and range is replaced with split.  If value >= split,
  the bool is one, range is replaced with range - split, and value is
  replaced with value - split.

  Again, range is doubled one bit at a time until it is at least 128.
  The value is doubled in parallel, shifting a new input bit into the
  bottom each time.

  Writing Value for value together with the unread input bits and Range
  for range extended indefinitely on the right by zeros, the condition
  Value < Range is maintained at all times by the decoder.  In
  particular, the bits shifted out of value as it is doubled are always
  zero.

7.3.  Actual Implementation

  The C code below gives complete implementations of the encoder and
  decoder described above.  While they are logically identical to the
  "bit-at-a-time" versions, they internally buffer a couple of extra
  bytes of the bitstream.  This allows I/O to be done (more
  practically) a byte at a time and drastically reduces the number of
  carries the encoder has to propagate into the already-written data.

  Another (logically equivalent) implementation may be found in the
  reference decoder file bool_decoder.h (Section 20.2).












Bankoski, et al.              Informational                    [Page 20]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  ---- Begin code block --------------------------------------

  /* Encoder first */

  typedef struct {
    uint8 *output;  /* ptr to next byte to be written */
    uint32 range;   /* 128 <= range <= 255 */
    uint32 bottom;  /* minimum value of remaining output */
    int bit_count;  /* # of shifts before an output byte
                       is available */
  } bool_encoder;

  /* Must set initial state of encoder before writing any bools. */

  void init_bool_encoder(bool_encoder *e, uint8 *start_partition)
  {
    e->output = start_partition;
    e->range = 255;
    e->bottom = 0;
    e->bit_count = 24;
  }

  /* Encoding very rarely produces a carry that must be propagated
     to the already-written output.  The arithmetic guarantees that
     the propagation will never go beyond the beginning of the
     output.  Put another way, the encoded value x is always less
     than one. */

  void add_one_to_output(uint8 *q)
  {
    while (*--q == 255)
      *q = 0;
    ++*q;
  }

  /* Main function writes a bool_value whose probability of being
     zero is (expected to be) prob/256. */

  void write_bool(bool_encoder *e, Prob prob, int bool_value)
  {
    /* split is approximately (range * prob) / 256 and,
       crucially, is strictly bigger than zero and strictly
       smaller than range */

    uint32 split = 1 + (((e->range - 1) * prob) >> 8);






Bankoski, et al.              Informational                    [Page 21]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


    if (bool_value) {
      e->bottom += split; /* move up bottom of interval */
      e->range -= split;  /* with corresponding decrease in range */
    } else
      e->range = split;   /* decrease range, leaving bottom alone */

    while (e->range < 128)
    {
      e->range <<= 1;

      if (e->bottom & (1 << 31))  /* detect carry */
        add_one_to_output(e->output);

      e->bottom <<= 1;        /* before shifting bottom */

      if (!--e->bit_count) {  /* write out high byte of bottom ... */

        *e->output++ = (uint8) (e->bottom >> 24);

        e->bottom &= (1 << 24) - 1;  /* ... keeping low 3 bytes */

        e->bit_count = 8;            /* 8 shifts until next output */
      }
    }
  }

  /* Call this function (exactly once) after encoding the last
     bool value for the partition being written */

  void flush_bool_encoder(bool_encoder *e)
  {
    int c = e->bit_count;
    uint32 v = e->bottom;

    if (v & (1 << (32 - c)))   /* propagate (unlikely) carry */
      add_one_to_output(e->output);
    v <<= c & 7;               /* before shifting remaining output */
    c >>= 3;                   /* to top of internal buffer */
    while (--c >= 0)
      v <<= 8;
    c = 4;
    while (--c >= 0) {    /* write remaining data, possibly padded */
      *e->output++ = (uint8) (v >> 24);
      v <<= 8;
    }
  }





Bankoski, et al.              Informational                    [Page 22]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  /* Decoder state exactly parallels that of the encoder.
     "value", together with the remaining input, equals the
     complete encoded number x less the left endpoint of the
     current coding interval. */

  typedef struct {
    uint8   *input;     /* pointer to next compressed data byte */
    uint32  range;      /* always identical to encoder's range */
    uint32  value;      /* contains at least 8 significant bits */
    int     bit_count;  /* # of bits shifted out of
                           value, at most 7 */
  } bool_decoder;

  /* Call this function before reading any bools from the
     partition. */

  void init_bool_decoder(bool_decoder *d, uint8 *start_partition)
  {
    {
      int i = 0;
      d->value = 0;           /* value = first 2 input bytes */
      while (++i <= 2)

        d->value = (d->value << 8)  |  *start_partition++;
    }

    d->input = start_partition;  /* ptr to next byte to be read */
    d->range = 255;           /* initial range is full */
    d->bit_count = 0;         /* have not yet shifted out any bits */
  }

  /* Main function reads a bool encoded at probability prob/256,
     which of course must agree with the probability used when the
     bool was written. */

  int read_bool(bool_decoder *d, Prob prob)
  {
    /* range and split are identical to the corresponding values
       used by the encoder when this bool was written */

    uint32  split = 1 + (((d->range - 1) * prob) >> 8);
    uint32  SPLIT = split << 8;
    int     retval;           /* will be 0 or 1 */








Bankoski, et al.              Informational                    [Page 23]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


    if (d->value >= SPLIT) {  /* encoded a one */
      retval = 1;
      d->range -= split;  /* reduce range */
      d->value -= SPLIT;  /* subtract off left endpoint of interval */
    } else {              /* encoded a zero */
      retval = 0;
      d->range = split;  /* reduce range, no change in left endpoint */
    }

    while (d->range < 128) {  /* shift out irrelevant value bits */
      d->value <<= 1;
      d->range <<= 1;
      if (++d->bit_count == 8) {  /* shift in new bits 8 at a time */
        d->bit_count = 0;
        d->value |= *d->input++;
      }
    }
    return retval;
  }

  /* Convenience function reads a "literal", that is, a "num_bits"-
     wide unsigned value whose bits come high- to low-order, with
     each bit encoded at probability 128 (i.e., 1/2). */

  uint32 read_literal(bool_decoder *d, int num_bits)
  {
    uint32 v = 0;

    while (num_bits--)
      v = (v << 1) + read_bool(d, 128);
    return v;
  }

  /* Variant reads a signed number */

  int32 read_signed_literal(bool_decoder *d, int num_bits)
  {
    int32 v = 0;
    if (!num_bits)
      return 0;
    if (read_bool(d, 128))
      v = -1;
    while (--num_bits)
      v = (v << 1) + read_bool(d, 128);
    return v;
  }

  ---- End code block ----------------------------------------



Bankoski, et al.              Informational                    [Page 24]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


8.  Compressed Data Components

  At the lowest level, VP8's compressed data is simply a sequence of
  probabilistically encoded bools.  Most of this data is composed of
  (slightly) larger semantic units fashioned from bools, which we
  describe here.

  We sometimes use these descriptions in C expressions within data
  format specifications.  In this context, they refer to the return
  value of a call to an appropriate bool_decoder d, reading (as always)
  from its current reference point.

  +--------------+-------+--------------------------------------------+
  | Call         | Alt.  | Return                                     |
  +--------------+-------+--------------------------------------------+
  | Bool(p)      | B(p)  | Bool with probability p/256 of being 0.    |
  |              |       | Return value of read_bool(d, p).           |
  |              |       |                                            |
  | Flag         | F     | A one-bit flag (same thing as a B(128) or  |
  |              |       | an L(1)).  Abbreviated F.  Return value of |
  |              |       | read_bool(d, 128).                         |
  |              |       |                                            |
  | Lit(n)       | L(n)  | Unsigned n-bit number encoded as n flags   |
  |              |       | (a "literal").  Abbreviated L(n).  The     |
  |              |       | bits are read from high to low order.      |
  |              |       | Return value of read_literal(d, n).        |
  |              |       |                                            |
  | SignedLit(n) |       | Signed n-bit number encoded similarly to   |
  |              |       | an L(n).  Return value of                  |
  |              |       | read_signed_literal(d, n).  These are      |
  |              |       | rare.                                      |
  |              |       |                                            |
  | P(8)         |       | An 8-bit probability.  No different from   |
  |              |       | an L(8), but we sometimes use this         |
  |              |       | notation to emphasize that a probability   |
  |              |       | is being coded.                            |
  |              |       |                                            |
  | P(7)         |       | A 7-bit specification of an 8-bit          |
  |              |       | probability.  Coded as an L(7) number x;   |
  |              |       | the resulting 8-bit probability is x ? x   |
  |              |       | << 1 : 1.                                  |
  |              |       |                                            |
  | F?  X        |       | A flag that, if true, is followed by a     |
  |              |       | piece of data X.                           |
  |              |       |                                            |






Bankoski, et al.              Informational                    [Page 25]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  | F?  X:Y      |       | A flag that, if true, is followed by X     |
  |              |       | and, if false, is followed by Y.  Also     |
  |              |       | used to express a value where Y is an      |
  |              |       | implicit default (not encoded in the data  |
  |              |       | stream), as in F?  P(8):255, which         |
  |              |       | expresses an optional probability: If the  |
  |              |       | flag is true, the probability is specified |
  |              |       | as an 8-bit literal, while if the flag is  |
  |              |       | false, the probability defaults to 255.    |
  |              |       |                                            |
  | B(p)?  X     | B(p)? | Variants of the above using a boolean      |
  |              | X:Y   | indicator whose probability is not         |
  |              |       | necessarily 128.                           |
  |              |       |                                            |
  | T            |       | Tree-encoded value from small alphabet.    |
  +--------------+-------+--------------------------------------------+

  The last type requires elaboration.  We often wish to encode
  something whose value is restricted to a small number of
  possibilities (the alphabet).

  This is done by representing the alphabet as the leaves of a small
  binary tree.  The (non-leaf) nodes of the tree have associated
  probabilities p and correspond to calls to read_bool(d, p).  We think
  of a zero as choosing the left branch below the node and a one as
  choosing the right branch.

  Thus, every value (leaf) whose tree depth is x is decoded after
  exactly x calls to read_bool.

  A tree representing an encoding of an alphabet of n possible values
  always contains n-1 non-leaf nodes, regardless of its shape (this is
  easily seen by induction on n).

  There are many ways that a given alphabet can be so represented.  The
  choice of tree has little impact on datarate but does affect decoder
  performance.  The trees used by VP8 are chosen to (on average)
  minimize the number of calls to read_bool.  This amounts to shaping
  the tree so that values that are more probable have smaller tree
  depth than do values that are less probable.

  Readers familiar with Huffman coding will notice that, given an
  alphabet together with probabilities for each value, the associated
  Huffman tree minimizes the expected number of calls to read_bool.







Bankoski, et al.              Informational                    [Page 26]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  Such readers will also realize that the coding method described here
  never results in higher datarates than does the Huffman method and,
  indeed, often results in much lower datarates.  Huffman coding is, in
  fact, nothing more than a special case of this method in which each
  node probability is fixed at 128 (i.e., 1/2).

8.1.  Tree Coding Implementation

  We give a suggested implementation of a tree data structure followed
  by a couple of actual examples of its usage by VP8.

  It is most convenient to represent the values using small positive
  integers, typically an enum counting up from zero.  The largest
  alphabet (used to code DCT coefficients, described in Section 13)
  that is tree-coded by VP8 has only 12 values.  The tree for this
  alphabet adds 11 interior nodes and so has a total of 23 positions.
  Thus, an 8-bit number easily accommodates both a tree position and a
  return value.

  A tree may then be compactly represented as an array of (pairs of)
  8-bit integers.  Each (even) array index corresponds to an interior
  node of the tree; the 0th index of course corresponds to the root of
  the tree.  The array entries come in pairs corresponding to the left
  (0) and right (1) branches of the subtree below the interior node.
  We use the convention that a positive (even) branch entry is the
  index of a deeper interior node, while a nonpositive entry v
  corresponds to a leaf whose value is -v.

  The node probabilities associated to a tree-coded value are stored in
  an array whose indices are half the indices of the corresponding tree
  positions.  The length of the probability array is one less than the
  size of the alphabet.

  Here is C code implementing the foregoing.  The advantages of our
  data structure should be noted.  Aside from the smallness of the
  structure itself, the tree-directed reading algorithm is essentially
  a single line of code.














Bankoski, et al.              Informational                    [Page 27]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  ---- Begin code block --------------------------------------

  /* A tree specification is simply an array of 8-bit integers. */

  typedef int8 tree_index;
  typedef const tree_index Tree[];

  /* Read and return a tree-coded value at the current decoder
     position. */

  int treed_read(
    bool_decoder * const d, /* bool_decoder always returns a 0 or 1 */
    Tree t,                 /* tree specification */
    const Prob p[]     /* corresponding interior node probabilities */
  ) {
    register tree_index i = 0;   /* begin at root */

    /* Descend tree until leaf is reached */

    while ((i = t[ i + read_bool(d, p[i>>1])]) > 0) {}

    return -i;     /* return value is negation of nonpositive index */
  }

  ---- End code block ----------------------------------------

  Tree-based decoding is implemented in the reference decoder file
  bool_decoder.h (Section 20.2).

8.2.  Tree Coding Example

  As a multi-part example, without getting too far into the semantics
  of macroblock decoding (which is of course taken up below), we look
  at the "mode" coding for intra-predicted macroblocks.

  It so happens that, because of a difference in statistics, the Y (or
  luma) mode encoding uses two different trees: one for key frames and
  another for interframes.  This is the only instance in VP8 of the
  same dataset being coded by different trees under different
  circumstances.  The UV (or chroma) modes are a proper subset of the Y
  modes and, as such, have their own decoding tree.










Bankoski, et al.              Informational                    [Page 28]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  ---- Begin code block --------------------------------------

  typedef enum
  {
      DC_PRED, /* predict DC using row above and column to the left */
      V_PRED,  /* predict rows using row above */
      H_PRED,  /* predict columns using column to the left */
      TM_PRED, /* propagate second differences a la "True Motion" */

      B_PRED,  /* each Y subblock is independently predicted */

      num_uv_modes = B_PRED,  /* first four modes apply to chroma */
      num_ymodes   /* all modes apply to luma */
  }
  intra_mbmode;

  /* The aforementioned trees together with the implied codings as
     comments.
     Actual (i.e., positive) indices are always even.
     Value (i.e., nonpositive) indices are arbitrary. */

  const tree_index ymode_tree [2 * (num_ymodes - 1)] =
  {
   -DC_PRED, 2,        /* root: DC_PRED = "0", "1" subtree */
    4, 6,              /* "1" subtree has 2 descendant subtrees */
     -V_PRED, -H_PRED, /* "10" subtree: V_PRED = "100",
                          H_PRED = "101" */
     -TM_PRED, -B_PRED /* "11" subtree: TM_PRED = "110",
                          B_PRED = "111" */
  };

  const tree_index kf_ymode_tree [2 * (num_ymodes - 1)] =
  {
   -B_PRED, 2,            /* root: B_PRED = "0", "1" subtree */
    4, 6,                 /* "1" subtree has 2 descendant subtrees */
     -DC_PRED, -V_PRED,   /* "10" subtree: DC_PRED = "100",
                             V_PRED = "101" */
     -H_PRED, -TM_PRED    /* "11" subtree: H_PRED = "110",
                             TM_PRED = "111" */
  };











Bankoski, et al.              Informational                    [Page 29]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  const tree_index uv_mode_tree [2 * (num_uv_modes - 1)] =
  {
   -DC_PRED, 2,          /* root: DC_PRED = "0", "1" subtree */
    -V_PRED, 4,          /* "1" subtree:  V_PRED = "10",
                            "11" subtree */
     -H_PRED, -TM_PRED   /* "11" subtree: H_PRED = "110",
                            TM_PRED = "111" */
  };

  /* Given a bool_decoder d, a Y mode might be decoded as follows. */

  const Prob pretend_its_huffman [num_ymodes - 1] =
    { 128, 128, 128, 128};

  Ymode = (intra_mbmode) treed_read(d, ymode_tree,
    pretend_its_huffman);

  ---- End code block ----------------------------------------

  Since it greatly facilitates re-use of reference code, and since
  there is no real reason to do otherwise, it is strongly suggested
  that any decoder implementation use exactly the same enumeration
  values and probability table layouts as those described in this
  document (and in the reference code) for all tree-coded data in VP8.

9.  Frame Header

  The uncompressed data chunk at the start of each frame and at the
  first part of the first data partition contains information
  pertaining to the frame as a whole.  We list the fields in the order
  of occurrence.  Most of the header decoding occurs in the reference
  decoder file dixie.c (Section 20.4).

9.1.  Uncompressed Data Chunk

  The uncompressed data chunk comprises a common (for key frames and
  interframes) 3-byte frame tag that contains four fields, as follows:

  1.  A 1-bit frame type (0 for key frames, 1 for interframes).

  2.  A 3-bit version number (0 - 3 are defined as four different
      profiles with different decoding complexity; other values may be
      defined for future variants of the VP8 data format).








Bankoski, et al.              Informational                    [Page 30]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  3.  A 1-bit show_frame flag (0 when current frame is not for display,
      1 when current frame is for display).

  4.  A 19-bit field containing the size of the first data partition in
      bytes.

  The version number setting enables or disables certain features in
  the bitstream, as follows:

           +---------+-------------------------+-------------+
           | Version | Reconstruction Filter   | Loop Filter |
           +---------+-------------------------+-------------+
           | 0       | Bicubic                 | Normal      |
           |         |                         |             |
           | 1       | Bilinear                | Simple      |
           |         |                         |             |
           | 2       | Bilinear                | None        |
           |         |                         |             |
           | 3       | None                    | None        |
           |         |                         |             |
           | Other   | Reserved for future use |             |
           +---------+-------------------------+-------------+

  The reference software also adjusts the loop filter based on version
  number, as per the table above.  Version number 1 implies a "simple"
  loop filter, and version numbers 2 and 3 imply no loop filter.
  However, the "simple" filter setting in this context has no effect
  whatsoever on the decoding process, and the "no loop filter" setting
  only forces the reference encoder to set filter level equal to 0.
  Neither affect the decoding process.  In decoding, the only loop
  filter settings that matter are those in the frame header.

  For key frames, the frame tag is followed by a further 7 bytes of
  uncompressed data, as follows:

  ---- Begin code block --------------------------------------

  Start code byte 0     0x9d
  Start code byte 1     0x01
  Start code byte 2     0x2a

  16 bits      :     (2 bits Horizontal Scale << 14) | Width (14 bits)
  16 bits      :     (2 bits Vertical Scale << 14) | Height (14 bits)

  ---- End code block ----------------------------------------






Bankoski, et al.              Informational                    [Page 31]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  The following source code segment illustrates validation of the start
  code and reading the width, height, and scale factors for a key
  frame.

  ---- Begin code block --------------------------------------

  unsigned char *c = pbi->source+3;

  // vet via sync code
  if (c[0]!=0x9d||c[1]!=0x01||c[2]!=0x2a)
      return -1;

  ---- End code block ----------------------------------------

  Where pbi->source points to the beginning of the frame.

  The following code reads the image dimension from the bitstream:

  ---- Begin code block --------------------------------------

  pc->Width      = swap2(*(unsigned short*)(c+3))&0x3fff;
  pc->horiz_scale = swap2(*(unsigned short*)(c+3))>>14;
  pc->Height     = swap2(*(unsigned short*)(c+5))&0x3fff;
  pc->vert_scale  = swap2(*(unsigned short*)(c+5))>>14;

  ---- End code block ----------------------------------------

  Where the swap2 macro takes care of the endian on a different
  platform:

  ---- Begin code block --------------------------------------

  #if defined(__ppc__) || defined(__ppc64__)
  # define swap2(d)  \
    ((d&0x000000ff)<<8) |  \
    ((d&0x0000ff00)>>8)
  #else
    # define swap2(d) d
  #endif

  ---- End code block ----------------------------------------

  While each frame is encoded as a raster scan of 16x16 macroblocks,
  the frame dimensions are not necessarily evenly divisible by 16.  In
  this case, write ew = 16 - (width & 15) and eh = 16 - (height & 15)
  for the excess width and height, respectively.  Although they are





Bankoski, et al.              Informational                    [Page 32]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  encoded, the last ew columns and eh rows are not actually part of the
  image and should be discarded before final output.  However, these
  "excess pixels" should be maintained in the internal reconstruction
  buffer used to predict ensuing frames.

  The scaling specifications for each dimension are encoded as follows.

            +-------+--------------------------------------+
            | Value | Scaling                              |
            +-------+--------------------------------------+
            | 0     | No upscaling (the most common case). |
            |       |                                      |
            | 1     | Upscale by 5/4.                      |
            |       |                                      |
            | 2     | Upscale by 5/3.                      |
            |       |                                      |
            | 3     | Upscale by 2.                        |
            +-------+--------------------------------------+

  Upscaling does not affect the reconstruction buffer, which should be
  maintained at the encoded resolution.  Any reasonable method of
  upsampling (including any that may be supported by video hardware in
  the playback environment) may be used.  Since scaling has no effect
  on decoding, we do not discuss it any further.

  As discussed in Section 5, allocation (or re-allocation) of data
  structures (such as the reconstruction buffer) whose size depends on
  dimension will be triggered here.

9.2.  Color Space and Pixel Type (Key Frames Only)

          +-------+------------------------------------------+
          | Field | Value                                    |
          +-------+------------------------------------------+
          | L(1)  | 1-bit color space type specification     |
          |       |                                          |
          | L(1)  | 1-bit pixel value clamping specification |
          +-------+------------------------------------------+

  The color space type bit is encoded as follows:

  o  0 - YUV color space similar to the YCrCb color space defined in
     [ITU-R_BT.601]

  o  1 - Reserved for future use






Bankoski, et al.              Informational                    [Page 33]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  The pixel value clamping type bit is encoded as follows:

  o  0 - Decoders are required to clamp the reconstructed pixel values
     to between 0 and 255 (inclusive).

  o  1 - Reconstructed pixel values are guaranteed to be between 0 and
     255; no clamping is necessary.

  Information in this subsection does not appear in interframes.

9.3.  Segment-Based Adjustments

  This subsection contains probability and value information for
  implementing segment adaptive adjustments to default decoder
  behavior.  The data in this subsection is used in the decoding of the
  ensuing per-segment information and applies to the entire frame.
  When segment adaptive adjustments are enabled, each macroblock will
  be assigned a segment ID.  Macroblocks with the same segment ID
  belong to the same segment and have the same adaptive adjustments
  over default baseline values for the frame.  The adjustments can be
  quantizer level or loop filter strength.

  The context for decoding this feature at the macroblock level is
  provided by a subsection in the frame header, which contains:

  1.  A segmentation_enabled flag that enables the feature for this
      frame if set to 1, and disables it if set to 0.  The following
      fields occur if the feature is enabled.

  2.  L(1) indicates if the segment map is updated for the current
      frame (update_mb_segmentation_map).

  3.  L(1) indicates if the segment feature data items are updated for
      the current frame (update_segment_feature_data).

  4.  If Item 3 above (update_segment_feature_data) is 1, the following
      fields occur:

      a.  L(1), the mode of segment feature data
          (segment_feature_mode), can be absolute-value mode (0) or
          delta value mode (1).










Bankoski, et al.              Informational                    [Page 34]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      b.  Segment feature data items are decoded segment by segment for
          each segment feature.  For every data item, a one-bit flag
          indicates whether the item is 0, or a non-zero value to be
          decoded.  If the value is non-zero, then the value is decoded
          as a magnitude L(n), followed by a one-bit sign (L(1) -- 0
          for positive and 1 for negative).  The length n can be looked
          up from a pre-defined length table for all feature data.

  5.  If the L(1) flag as noted in Item 2 above is set to 1, the
      probabilities of the decoding tree for the segment map are
      decoded from the bitstream.  Each probability is decoded with a
      one-bit flag indicating whether the probability is the default
      value of 255 (flag is set to 0), or an 8-bit value, L(8), from
      the bitstream.

  The layout and semantics supporting this feature at the macroblock
  level are described in Section 10.

9.4.  Loop Filter Type and Levels

  VP8 supports two types of loop filters having different computational
  complexity.  The following bits occur in the header to support the
  selection of the baseline type, strength, and sharpness behavior of
  the loop filter used for the current frame.

                      +-------+-------------------+
                      | Index | Description       |
                      +-------+-------------------+
                      | L(1)  | filter_type       |
                      |       |                   |
                      | L(6)  | loop_filter_level |
                      |       |                   |
                      | L(3)  | sharpness_level   |
                      +-------+-------------------+

  The meaning of these numbers will be further explained in Section 15.

  VP8 has a feature in the bitstream that enables adjustment of the
  loop filter level based on a macroblock's prediction mode and
  reference frame.  The per-macroblock adjustment is done through delta
  values against the default loop filter level for the current frame.
  This subsection contains flag and value information for implementing
  per-macroblock loop filter level adjustment to default decoder
  behavior.  The data in this section is used in the decoding of the
  ensuing per-macroblock information and applies to the entire frame.






Bankoski, et al.              Informational                    [Page 35]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  L(1) is a one-bit flag indicating if the macroblock loop filter
  adjustment is on for the current frame.  0 means that such a feature
  is not supported in the current frame, and 1 means this feature is
  enabled for the current frame.

  Whether the adjustment is based on a reference frame or encoding
  mode, the adjustment of the loop filter level is done via a delta
  value against a baseline loop filter value.  The delta values are
  updated for the current frame if an L(1) bit,
  mode_ref_lf_delta_update, takes the value 1.  There are two groups of
  delta values: One group of delta values is for reference frame-based
  adjustments, and the other group is for mode-based adjustments.  The
  number of delta values in the two groups is MAX_REF_LF_DELTAS and
  MAX_MODE_LF_DELTAS, respectively.  For every value within the two
  groups, there is a one-bit L(1) to indicate if the particular value
  is updated.  When one is updated (1), it is transmitted as a six-bit-
  magnitude L(6) followed by a one-bit sign flag (L(1) -- 0 for
  positive and 1 for negative).

9.5.  Token Partition and Partition Data Offsets

  VP8 allows DCT coefficients to be packed into multiple partitions,
  besides the first partition with header and per-macroblock prediction
  information, so the decoder can perform parallel decoding in an
  efficient manner.  A two-bit L(2) is used to indicate the number of
  coefficient data partitions within a compressed frame.  The two bits
  are defined in the following table:

                +-------+-------+----------------------+
                | Bit 1 | Bit 0 | Number of Partitions |
                +-------+-------+----------------------+
                | 0     | 0     | 1                    |
                |       |       |                      |
                | 0     | 1     | 2                    |
                |       |       |                      |
                | 1     | 0     | 4                    |
                |       |       |                      |
                | 1     | 1     | 8                    |
                +-------+-------+----------------------+

  Offsets are embedded in the bitstream to provide the decoder direct
  access to token partitions.  If the number of data partitions is
  greater than 1, the size of each partition (except the last) is
  written in 3 bytes (24 bits).  The size of the last partition is the
  remainder of the data not used by any of the previous partitions.






Bankoski, et al.              Informational                    [Page 36]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  The partitioned data are consecutive in the bitstream, so the size
  can also be used to calculate the offset of each partition.  The
  following pseudocode illustrates how the size/offset is defined by
  the three bytes in the bitstream.

  ---- Begin code block --------------------------------------

  Offset/size  =  (uint32)(byte0) + ((uint32)(byte1)<<8)
    + ((uint32)(byte2)<<16);

  ---- End code block ----------------------------------------

9.6.  Dequantization Indices

  All residue signals are specified via a quantized 4x4 DCT applied to
  the Y, U, V, or Y2 subblocks of a macroblock.  As detailed in
  Section 14, before inverting the transform, each decoded coefficient
  is multiplied by one of six dequantization factors, the choice of
  which depends on the plane (Y, chroma = U or V, Y2) and coefficient
  position (DC = coefficient 0, AC = coefficients 1-15).  The six
  values are specified using 7-bit indices into six corresponding fixed
  tables (the tables are given in Section 14).

  The first 7-bit index gives the dequantization table index for
  Y-plane AC coefficients, called yac_qi.  It is always coded and acts
  as a baseline for the other 5 quantization indices, each of which is
  represented by a delta from this baseline index.  Pseudocode for
  reading the indices follows:

  ---- Begin code block --------------------------------------

  yac_qi     = L(7);           /* Y ac index always specified */
  ydc_delta  = F? delta(): 0;  /* Y dc delta specified if
                                  flag is true */

  y2dc_delta = F? delta(): 0;  /* Y2 dc delta specified if
                                  flag is true */
  y2ac_delta = F? delta(): 0;  /* Y2 ac delta specified if
                                  flag is true */

  uvdc_delta = F? delta(): 0;  /* chroma dc delta specified
                                  if flag is true */
  uvac_delta = F? delta(): 0;  /* chroma ac delta specified
                                  if flag is true */

  ---- End code block ----------------------------------------





Bankoski, et al.              Informational                    [Page 37]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  Where delta() is the process to read 5 bits from the bitstream to
  determine a signed delta value:

      +-------+--------------------------------------------------+
      | Index | Description                                      |
      +-------+--------------------------------------------------+
      | L(4)  | Magnitude of delta                               |
      |       |                                                  |
      | L(1)  | Sign of delta, 0 for positive and 1 for negative |
      +-------+--------------------------------------------------+

9.7.  Refresh Golden Frame and Altref Frame

  For key frames, both the golden frame and the altref frame are
  refreshed/ replaced by the current reconstructed frame, by default.
  For non-key frames, VP8 uses two bits to indicate whether the two
  frame buffers are refreshed, using the reconstructed current frame:

  +-------+----------------------------------------------------------+
  | Index | Description                                              |
  +-------+----------------------------------------------------------+
  | L(1)  | Whether golden frame is refreshed (0 for no, 1 for yes). |
  |       |                                                          |
  | L(1)  | Whether altref frame is refreshed (0 for no, 1 for yes). |
  +-------+----------------------------------------------------------+

  When the flag for the golden frame is 0, VP8 uses 2 more bits in the
  bitstream to indicate whether the buffer (and which buffer) is copied
  to the golden frame, or if no buffer is copied:

          +-------+------------------------------------------+
          | Index | Description                              |
          +-------+------------------------------------------+
          | L(2)  | Buffer copy flag for golden frame buffer |
          +-------+------------------------------------------+

  Where:

  o  0 means no buffer is copied to the golden frame

  o  1 means last_frame is copied to the golden frame

  o  2 means alt_ref_frame is copied to the golden frame

  Similarly, when the flag for altref is 0, VP8 uses 2 bits in the
  bitstream to indicate which buffer is copied to alt_ref_frame.





Bankoski, et al.              Informational                    [Page 38]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


          +-------+------------------------------------------+
          | Index | Description                              |
          +-------+------------------------------------------+
          | L(2)  | Buffer copy flag for altref frame buffer |
          +-------+------------------------------------------+

  Where:

  o  0 means no buffer is copied to the altref frame

  o  1 means last_frame is copied to the altref frame

  o  2 means golden_frame is copied to the altref frame

  Two bits are transmitted for ref_frame_sign_bias for golden_frame and
  alt_ref_frame, respectively.

               +-------+---------------------------------+
               | Index | Description                     |
               +-------+---------------------------------+
               | L(1)  | Sign bias flag for golden frame |
               |       |                                 |
               | L(1)  | Sign bias flag for altref frame |
               +-------+---------------------------------+

  These values are used to control the sign of the motion vectors when
  a golden frame or an altref frame is used as the reference frame for
  a macroblock.

9.8.  Refresh Last Frame Buffer

  VP8 uses one bit, L(1), to indicate if the last frame reference
  buffer is refreshed using the constructed current frame.  On a key
  frame, this bit is overridden, and the last frame buffer is always
  refreshed.

9.9.  DCT Coefficient Probability Update

  This field contains updates to the probability tables used to decode
  DCT coefficients.  For each of the probabilities in the tables, there
  is an L(1) flag indicating if the probability is updated for the
  current frame, and if the L(1) flag is set to 1, there follows an
  additional 8-bit value representing the new probability value.  These
  tables are maintained across interframes but are of course replaced
  with their defaults at the beginning of every key frame.

  The layout and semantics of this field will be taken up in
  Section 13.



Bankoski, et al.              Informational                    [Page 39]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


9.10.  Remaining Frame Header Data (Non-Key Frame)

  +-------+-----------------------------------------------------------+
  | Index | Description                                               |
  +-------+-----------------------------------------------------------+
  | L(1)  | mb_no_skip_coeff.  This flag indicates at the frame level |
  |       | if skipping of macroblocks with no non-zero coefficients  |
  |       | is enabled.  If it is set to 0, then prob_skip_false is   |
  |       | not read and mb_skip_coeff is forced to 0 for all         |
  |       | macroblocks (see Sections 11.1 and 12.1).                 |
  |       |                                                           |
  | L(8)  | prob_skip_false = probability used for decoding a         |
  |       | macroblock-level flag, which indicates if a macroblock    |
  |       | has any non-zero coefficients.  Only read if              |
  |       | mb_no_skip_coeff is 1.                                    |
  |       |                                                           |
  | L(8)  | prob_intra = probability that a macroblock is "intra"     |
  |       | predicted (that is, predicted from the already-encoded    |
  |       | portions of the current frame), as opposed to "inter"     |
  |       | predicted (that is, predicted from the contents of a      |
  |       | prior frame).                                             |
  |       |                                                           |
  | L(8)  | prob_last = probability that an inter-predicted           |
  |       | macroblock is predicted from the immediately previous     |
  |       | frame, as opposed to the most recent golden frame or      |
  |       | altref frame.                                             |
  |       |                                                           |
  | L(8)  | prob_gf = probability that an inter-predicted macroblock  |
  |       | is predicted from the most recent golden frame, as        |
  |       | opposed to the altref frame.                              |
  |       |                                                           |
  | F     | If true, followed by four L(8)s updating the              |
  |       | probabilities for the different types of intra-prediction |
  |       | for the Y plane.  These probabilities correspond to the   |
  |       | four interior nodes of the decoding tree for intra-Y      |
  |       | modes in an interframe, that is, the even positions in    |
  |       | the ymode_tree array given above.                         |
  |       |                                                           |
  | F     | If true, followed by three L(8)s updating the             |
  |       | probabilities for the different types of intra-prediction |
  |       | for the chroma planes.  These probabilities correspond to |
  |       | the even positions in the uv_mode_tree array given above. |
  |       |                                                           |
  | X     | Motion vector probability update.  Details are given in   |
  |       | Section 17.2, "Probability Updates".                      |
  +-------+-----------------------------------------------------------+





Bankoski, et al.              Informational                    [Page 40]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  Decoding of this portion of the frame header is handled in the
  reference decoder file dixie.c (Section 20.4).

9.11.  Remaining Frame Header Data (Key Frame)

  +-------+-----------------------------------------------------------+
  | Index | Description                                               |
  +-------+-----------------------------------------------------------+
  | L(1)  | mb_no_skip_coeff.  This flag indicates at the frame level |
  |       | if skipping of macroblocks with no non-zero coefficients  |
  |       | is enabled.  If it is set to 0, then prob_skip_false is   |
  |       | not read and mb_skip_coeff is forced to 0 for all         |
  |       | macroblocks (see Sections 11.1 and 12.1).                 |
  |       |                                                           |
  | L(8)  | prob_skip_false = Probability used for decoding a         |
  |       | macroblock-level flag, which indicates if a macroblock    |
  |       | has any non-zero coefficients.  Only read if              |
  |       | mb_no_skip_coeff is 1.                                    |
  +-------+-----------------------------------------------------------+

  Decoding of this portion of the frame header is handled in the
  reference decoder file modemv.c (Section 20.11).

  This completes the layout of the frame header.  The remainder of the
  first data partition consists of macroblock-level prediction data.

  After the frame header is processed, all probabilities needed to
  decode the prediction and residue data are known and will not change
  until the next frame.

10.  Segment-Based Feature Adjustments

  Every macroblock may optionally override some of the default
  behaviors of the decoder.  Specifically, VP8 uses segment-based
  adjustments to support changing quantizer level and loop filter level
  for a macroblock.  When the segment-based adjustment feature is
  enabled for a frame, each macroblock within the frame is coded with a
  segment_id.  This effectively segments all the macroblocks in the
  current frame into a number of different segments.  Macroblocks
  within the same segment behave exactly the same for quantizer and
  loop filter level adjustments.

  If both the segmentation_enabled and update_mb_segmentation_map flags
  in subsection B of the frame header take a value of 1, the prediction
  data for each (intra- or inter-coded) macroblock begins with a
  specification of segment_id for the current macroblock.  It is
  decoded using this simple tree ...




Bankoski, et al.              Informational                    [Page 41]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  ---- Begin code block --------------------------------------

  const tree_index mb_segment_tree [2 * (4-1)] =
    {
      2,  4,     /* root: "0", "1" subtrees */
      -0, -1,    /* "00" = 0th value, "01" = 1st value */
       -2, -3    /* "10" = 2nd value, "11" = 3rd value */
    }

  ---- End code block ----------------------------------------

  ... combined with a 3-entry probability table,
  mb_segment_tree_probs[3].  The macroblock's segment_id is used later
  in the decoding process to look into the segment_feature_data table
  and determine how the quantizer and loop filter levels are adjusted.

  The decoding of segment_id, together with the parsing of
  intra-prediction modes (which is taken up next), is implemented in
  the reference decoder file modemv.c.

11.  Key Frame Macroblock Prediction Records

  After specifying the features described above, the macroblock
  prediction record next specifies the prediction mode used for the
  macroblock.

11.1.  mb_skip_coeff

  The single bool flag is decoded using prob_skip_false if and only if
  mb_no_skip_coeff is set to 1 (see Sections 9.10 and 9.11).  If
  mb_no_skip_coeff is set to 0, then this value defaults to 0.

11.2.  Luma Modes

  First comes the luma specification of type intra_mbmode, coded using
  the kf_ymode_tree, as described in Section 8 and repeated here for
  convenience:














Bankoski, et al.              Informational                    [Page 42]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  ---- Begin code block --------------------------------------

  typedef enum
  {
      DC_PRED, /* predict DC using row above and column to the left */
      V_PRED,  /* predict rows using row above */
      H_PRED,  /* predict columns using column to the left */
      TM_PRED, /* propagate second differences a la "True Motion" */

      B_PRED,  /* each Y subblock is independently predicted */

      num_uv_modes = B_PRED,  /* first four modes apply to chroma */
      num_ymodes   /* all modes apply to luma */
  }
  intra_mbmode;

  const tree_index kf_ymode_tree [2 * (num_ymodes - 1)] =
  {
   -B_PRED, 2,            /* root: B_PRED = "0", "1" subtree */
    4, 6,                 /* "1" subtree has 2 descendant subtrees */
     -DC_PRED, -V_PRED,   /* "10" subtree: DC_PRED = "100",
                             V_PRED = "101" */
     -H_PRED, -TM_PRED    /* "11" subtree: H_PRED = "110",
                             TM_PRED = "111" */
  };

  ---- End code block ----------------------------------------

  For key frames, the Y mode is decoded using a fixed probability array
  as follows:

  ---- Begin code block --------------------------------------

  const Prob kf_ymode_prob [num_ymodes - 1] = { 145, 156, 163, 128};
  Ymode = (intra_mbmode) treed_read(d, kf_ymode_tree, kf_ymode_prob);

  ---- End code block ----------------------------------------

  d is of course the bool_decoder being used to read the first data
  partition.

  If the Ymode is B_PRED, it is followed by a (tree-coded) mode for
  each of the 16 Y subblocks.  The 10 subblock modes and their coding
  tree are as follows:







Bankoski, et al.              Informational                    [Page 43]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  ---- Begin code block --------------------------------------

  typedef enum
  {
      B_DC_PRED,  /* predict DC using row above and column
                     to the left */
      B_TM_PRED,  /* propagate second differences a la
                     "True Motion" */

      B_VE_PRED,  /* predict rows using row above */
      B_HE_PRED,  /* predict columns using column to the left */

      B_LD_PRED,  /* southwest (left and down) 45 degree diagonal
                     prediction */
      B_RD_PRED,  /* southeast (right and down) "" */

      B_VR_PRED,  /* SSE (vertical right) diagonal prediction */
      B_VL_PRED,  /* SSW (vertical left) "" */
      B_HD_PRED,  /* ESE (horizontal down) "" */
      B_HU_PRED,  /* ENE (horizontal up) "" */

      num_intra_bmodes
  }
  intra_bmode;

  /* Coding tree for the above, with implied codings as comments */

  const tree_index bmode_tree [2 * (num_intra_bmodes - 1)] =
  {
   -B_DC_PRED, 2,                   /* B_DC_PRED = "0" */
    -B_TM_PRED, 4,                  /* B_TM_PRED = "10" */
     -B_VE_PRED, 6,                 /* B_VE_PRED = "110" */
      8, 12,
       -B_HE_PRED, 10,              /* B_HE_PRED = "11100" */
        -B_RD_PRED, -B_VR_PRED,     /* B_RD_PRED = "111010",
                                       B_VR_PRED = "111011" */
       -B_LD_PRED, 14,              /* B_LD_PRED = "111110" */
         -B_VL_PRED, 16,            /* B_VL_PRED = "1111110" */
           -B_HD_PRED, -B_HU_PRED   /* HD = "11111110",
                                       HU = "11111111" */
  };

  ---- End code block ----------------------------------------

  The first four modes are smaller versions of the similarly named
  16x16 modes above, albeit with slightly different numbering.  The
  last six "diagonal" modes are unique to luma subblocks.




Bankoski, et al.              Informational                    [Page 44]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


11.3.  Subblock Mode Contexts

  The coding of subblock modes in key frames uses the modes already
  coded for the subblocks to the left of and above the subblock to
  select a probability array for decoding the current subblock mode.
  This is our first instance of contextual prediction, and there are
  several caveats associated with it:

  1.  The adjacency relationships between subblocks are based on the
      normal default raster placement of the subblocks.

  2.  The adjacent subblocks need not lie in the current macroblock.
      The subblocks to the left of the left-edge subblocks 0, 4, 8, and
      12 are the right-edge subblocks 3, 7, 11, and 15, respectively,
      of the (already coded) macroblock immediately to the left.
      Similarly, the subblocks above the top-edge subblocks 0, 1, 2,
      and 3 are the bottom-edge subblocks 12, 13, 14, and 15 of the
      already-coded macroblock immediately above us.

  3.  For macroblocks on the top row or left edge of the image, some of
      the predictors will be non-existent.  Such predictors are taken
      to have had the value B_DC_PRED, which, perhaps conveniently,
      takes the value 0 in the enumeration above.  A simple management
      scheme for these contexts might maintain a row of above
      predictors and four left predictors.  Before decoding the frame,
      the entire row is initialized to B_DC_PRED; before decoding each
      row of macroblocks, the four left predictors are also set to
      B_DC_PRED.  After decoding a macroblock, the bottom four subblock
      modes are copied into the row predictor (at the current position,
      which then advances to be above the next macroblock), and the
      right four subblock modes are copied into the left predictor.

  4.  Many macroblocks will of course be coded using a 16x16 luma
      prediction mode.  For the purpose of predicting ensuing subblock
      modes (only), such macroblocks derive a subblock mode, constant
      throughout the macroblock, from the 16x16 luma mode as follows:
      DC_PRED uses B_DC_PRED, V_PRED uses B_VE_PRED, H_PRED uses
      B_HE_PRED, and TM_PRED uses B_TM_PRED.

  5.  Although we discuss interframe modes in Section 16, we remark
      here that, while interframes do use all the intra-coding modes
      described here and below, the subblock modes in an interframe are
      coded using a single constant probability array that does not
      depend on any context.

  The dependence of subblock mode probability on the nearby subblock
  mode context is most easily handled using a three-dimensional
  constant array:



Bankoski, et al.              Informational                    [Page 45]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  ---- Begin code block --------------------------------------

  const Prob kf_bmode_prob [num_intra_bmodes] [num_intra_bmodes]
    [num_intra_bmodes-1];

  ---- End code block ----------------------------------------

  The outer two dimensions of this array are indexed by the already-
  coded subblock modes above and to the left of the current block,
  respectively.  The inner dimension is a typical tree probability list
  whose indices correspond to the even indices of the bmode_tree above.
  The mode for the j^(th) luma subblock is then

  ---- Begin code block --------------------------------------

  Bmode = (intra_bmode) treed_read(d, bmode_tree, kf_bmode_prob
    [A] [L]);

  ---- End code block ----------------------------------------

  Where the 4x4 Y subblock index j varies from 0 to 15 in raster order,
  and A and L are the modes used above and to the left of the j^(th)
  subblock.

  The contents of the kf_bmode_prob array are given at the end of this
  section.

11.4.  Chroma Modes

  After the Y mode (and optional subblock mode) specification comes the
  chroma mode.  The chroma modes are a subset of the Y modes and are
  coded using the uv_mode_tree, as described in Section 8 and repeated
  here for convenience:

  ---- Begin code block --------------------------------------

  const tree_index uv_mode_tree [2 * (num_uv_modes - 1)] =
  {
   -DC_PRED, 2,           /* root: DC_PRED = "0", "1" subtree */
    -V_PRED, 4,           /* "1" subtree:  V_PRED = "10",
                             "11" subtree */
     -H_PRED, -TM_PRED    /* "11" subtree: H_PRED = "110",
                             TM_PRED = "111" */
  };

  ---- End code block ----------------------------------------





Bankoski, et al.              Informational                    [Page 46]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  As for the Y modes (in a key frame), the chroma modes are coded using
  a fixed, contextless probability table:

  ---- Begin code block --------------------------------------

  const Prob kf_uv_mode_prob [num_uv_modes - 1] = { 142, 114, 183};
  uv_mode = (intra_mbmode) treed_read(d, uv_mode_tree,
    kf_uv_mode_prob);

  ---- End code block ----------------------------------------

  This completes the description of macroblock prediction coding for
  key frames.  As will be discussed in Section 16, the coding of intra
  modes within interframes is similar, but not identical, to that
  described here (and in the reference code) for prediction modes and,
  indeed, for all tree-coded data in VP8.

11.5.  Subblock Mode Probability Table

  Finally, here is the fixed probability table used to decode subblock
  modes in key frames.

  ---- Begin code block --------------------------------------

  const Prob kf_bmode_prob [num_intra_bmodes] [num_intra_bmodes]
    [num_intra_bmodes-1] =
  {
    {
      { 231, 120,  48,  89, 115, 113, 120, 152, 112},
      { 152, 179,  64, 126, 170, 118,  46,  70,  95},
      { 175,  69, 143,  80,  85,  82,  72, 155, 103},
      {  56,  58,  10, 171, 218, 189,  17,  13, 152},
      { 144,  71,  10,  38, 171, 213, 144,  34,  26},
      { 114,  26,  17, 163,  44, 195,  21,  10, 173},
      { 121,  24,  80, 195,  26,  62,  44,  64,  85},
      { 170,  46,  55,  19, 136, 160,  33, 206,  71},
      {  63,  20,   8, 114, 114, 208,  12,   9, 226},
      {  81,  40,  11,  96, 182,  84,  29,  16,  36}
    },












Bankoski, et al.              Informational                    [Page 47]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


    {
      { 134, 183,  89, 137,  98, 101, 106, 165, 148},
      {  72, 187, 100, 130, 157, 111,  32,  75,  80},
      {  66, 102, 167,  99,  74,  62,  40, 234, 128},
      {  41,  53,   9, 178, 241, 141,  26,   8, 107},
      { 104,  79,  12,  27, 217, 255,  87,  17,   7},
      {  74,  43,  26, 146,  73, 166,  49,  23, 157},
      {  65,  38, 105, 160,  51,  52,  31, 115, 128},
      {  87,  68,  71,  44, 114,  51,  15, 186,  23},
      {  47,  41,  14, 110, 182, 183,  21,  17, 194},
      {  66,  45,  25, 102, 197, 189,  23,  18,  22}
    },
    {
      {  88,  88, 147, 150,  42,  46,  45, 196, 205},
      {  43,  97, 183, 117,  85,  38,  35, 179,  61},
      {  39,  53, 200,  87,  26,  21,  43, 232, 171},
      {  56,  34,  51, 104, 114, 102,  29,  93,  77},
      { 107,  54,  32,  26,  51,   1,  81,  43,  31},
      {  39,  28,  85, 171,  58, 165,  90,  98,  64},
      {  34,  22, 116, 206,  23,  34,  43, 166,  73},
      {  68,  25, 106,  22,  64, 171,  36, 225, 114},
      {  34,  19,  21, 102, 132, 188,  16,  76, 124},
      {  62,  18,  78,  95,  85,  57,  50,  48,  51}
    },
    {
      { 193, 101,  35, 159, 215, 111,  89,  46, 111},
      {  60, 148,  31, 172, 219, 228,  21,  18, 111},
      { 112, 113,  77,  85, 179, 255,  38, 120, 114},
      {  40,  42,   1, 196, 245, 209,  10,  25, 109},
      { 100,  80,   8,  43, 154,   1,  51,  26,  71},
      {  88,  43,  29, 140, 166, 213,  37,  43, 154},
      {  61,  63,  30, 155,  67,  45,  68,   1, 209},
      { 142,  78,  78,  16, 255, 128,  34, 197, 171},
      {  41,  40,   5, 102, 211, 183,   4,   1, 221},
      {  51,  50,  17, 168, 209, 192,  23,  25,  82}
    },
    {
      { 125,  98,  42,  88, 104,  85, 117, 175,  82},
      {  95,  84,  53,  89, 128, 100, 113, 101,  45},
      {  75,  79, 123,  47,  51, 128,  81, 171,   1},
      {  57,  17,   5,  71, 102,  57,  53,  41,  49},
      { 115,  21,   2,  10, 102, 255, 166,  23,   6},
      {  38,  33,  13, 121,  57,  73,  26,   1,  85},
      {  41,  10,  67, 138,  77, 110,  90,  47, 114},
      { 101,  29,  16,  10,  85, 128, 101, 196,  26},
      {  57,  18,  10, 102, 102, 213,  34,  20,  43},
      { 117,  20,  15,  36, 163, 128,  68,   1,  26}
    },



Bankoski, et al.              Informational                    [Page 48]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


    {
      { 138,  31,  36, 171,  27, 166,  38,  44, 229},
      {  67,  87,  58, 169,  82, 115,  26,  59, 179},
      {  63,  59,  90, 180,  59, 166,  93,  73, 154},
      {  40,  40,  21, 116, 143, 209,  34,  39, 175},
      {  57,  46,  22,  24, 128,   1,  54,  17,  37},
      {  47,  15,  16, 183,  34, 223,  49,  45, 183},
      {  46,  17,  33, 183,   6,  98,  15,  32, 183},
      {  65,  32,  73, 115,  28, 128,  23, 128, 205},
      {  40,   3,   9, 115,  51, 192,  18,   6, 223},
      {  87,  37,   9, 115,  59,  77,  64,  21,  47}
    },
    {
      { 104,  55,  44, 218,   9,  54,  53, 130, 226},
      {  64,  90,  70, 205,  40,  41,  23,  26,  57},
      {  54,  57, 112, 184,   5,  41,  38, 166, 213},
      {  30,  34,  26, 133, 152, 116,  10,  32, 134},
      {  75,  32,  12,  51, 192, 255, 160,  43,  51},
      {  39,  19,  53, 221,  26, 114,  32,  73, 255},
      {  31,   9,  65, 234,   2,  15,   1, 118,  73},
      {  88,  31,  35,  67, 102,  85,  55, 186,  85},
      {  56,  21,  23, 111,  59, 205,  45,  37, 192},
      {  55,  38,  70, 124,  73, 102,   1,  34,  98}
    },
    {
      { 102,  61,  71,  37,  34,  53,  31, 243, 192},
      {  69,  60,  71,  38,  73, 119,  28, 222,  37},
      {  68,  45, 128,  34,   1,  47,  11, 245, 171},
      {  62,  17,  19,  70, 146,  85,  55,  62,  70},
      {  75,  15,   9,   9,  64, 255, 184, 119,  16},
      {  37,  43,  37, 154, 100, 163,  85, 160,   1},
      {  63,   9,  92, 136,  28,  64,  32, 201,  85},
      {  86,   6,  28,   5,  64, 255,  25, 248,   1},
      {  56,   8,  17, 132, 137, 255,  55, 116, 128},
      {  58,  15,  20,  82, 135,  57,  26, 121,  40}
    },
    {
      { 164,  50,  31, 137, 154, 133,  25,  35, 218},
      {  51, 103,  44, 131, 131, 123,  31,   6, 158},
      {  86,  40,  64, 135, 148, 224,  45, 183, 128},
      {  22,  26,  17, 131, 240, 154,  14,   1, 209},
      {  83,  12,  13,  54, 192, 255,  68,  47,  28},
      {  45,  16,  21,  91,  64, 222,   7,   1, 197},
      {  56,  21,  39, 155,  60, 138,  23, 102, 213},
      {  85,  26,  85,  85, 128, 128,  32, 146, 171},
      {  18,  11,   7,  63, 144, 171,   4,   4, 246},
      {  35,  27,  10, 146, 174, 171,  12,  26, 128}
    },



Bankoski, et al.              Informational                    [Page 49]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


    {
      { 190,  80,  35,  99, 180,  80, 126,  54,  45},
      {  85, 126,  47,  87, 176,  51,  41,  20,  32},
      { 101,  75, 128, 139, 118, 146, 116, 128,  85},
      {  56,  41,  15, 176, 236,  85,  37,   9,  62},
      { 146,  36,  19,  30, 171, 255,  97,  27,  20},
      {  71,  30,  17, 119, 118, 255,  17,  18, 138},
      { 101,  38,  60, 138,  55,  70,  43,  26, 142},
      { 138,  45,  61,  62, 219,   1,  81, 188,  64},
      {  32,  41,  20, 117, 151, 142,  20,  21, 163},
      { 112,  19,  12,  61, 195, 128,  48,   4,  24}
    }
  };

  ---- End code block ----------------------------------------

12.  Intraframe Prediction

  Intraframe prediction uses already-coded macroblocks within the
  current frame to approximate the contents of the current macroblock.
  It applies to intra-coded macroblocks in an interframe and to all
  macroblocks in a key frame.

  Relative to the current macroblock "M", the already-coded macroblocks
  include all macroblocks above M together with the macroblocks on the
  same row as, and to the left of, M, though at most four of these
  macroblocks are actually used: the block "A" directly above M, the
  blocks immediately to the left and right of A, and the block
  immediately to the left of M.

  Each of the prediction modes (i.e., means of extrapolation from
  already-calculated values) uses fairly simple arithmetic on pixel
  values whose positions, relative to the current position, are defined
  by the mode.

  The chroma (U and V) and luma (Y) predictions are independent of each
  other.

  The relative addressing of pixels applied to macroblocks on the upper
  row or left column of the frame will sometimes cause pixels outside
  the visible frame to be referenced.  Usually such out-of-bounds
  pixels have an assumed value of 129 for pixels to the left of the
  leftmost column of the visible frame and 127 for pixels above the top
  row of the visible frame (including the special case of the pixel
  above and to the left of the top-left pixel in the visible frame).
  Exceptions to this (associated to certain modes) will be noted below.





Bankoski, et al.              Informational                    [Page 50]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  The already-coded macroblocks referenced by intra-prediction have
  been "reconstructed", that is, have been predicted and residue-
  adjusted (as described in Section 14), but have not been loop-
  filtered.  While it does process the edges between individual
  macroblocks and individual subblocks, loop filtering (described in
  Section 15) is applied to the frame as a whole, after all of the
  macroblocks have been reconstructed.

12.1.  mb_skip_coeff

  The single bool flag is decoded using prob_skip_false if and only if
  mb_no_skip_coeff is set to 1 (see Sections 9.10 and 9.11).  If
  mb_no_skip_coeff is set to 0, then this value defaults to 0.

12.2.  Chroma Prediction

  The chroma prediction is a little simpler than the luma prediction,
  so we treat it first.  Each of the chroma modes treats U and V
  identically; that is, the U and V prediction values are calculated in
  parallel, using the same relative addressing and arithmetic in each
  of the two planes.

  The modes extrapolate prediction values using the 8-pixel row "A"
  lying immediately above the block (that is, the bottom chroma row of
  the macroblock immediately above the current macroblock) and the
  8-pixel column "L" immediately to the left of the block (that is, the
  rightmost chroma column of the macroblock immediately to the left of
  the current macroblock).

  Vertical prediction (chroma mode V_PRED) simply fills each 8-pixel
  row of the 8x8 chroma block with a copy of the "above" row (A).  If
  the current macroblock lies on the top row of the frame, all 8 of the
  pixel values in A are assigned the value 127.

  Similarly, horizontal prediction (H_PRED) fills each 8-pixel column
  of the 8x8 chroma block with a copy of the "left" column (L).  If the
  current macroblock is in the left column of the frame, all 8 pixel
  values in L are assigned the value 129.

  DC prediction (DC_PRED) fills the 8x8 chroma block with a single
  value.  In the generic case of a macroblock lying below the top row
  and right of the leftmost column of the frame, this value is the
  average of the 16 (genuinely visible) pixels in the (union of the)
  above row A and left column L.

  Otherwise, if the current macroblock lies on the top row of the
  frame, the average of the 8 pixels in L is used; if it lies in the
  left column of the frame, the average of the 8 pixels in A is used.



Bankoski, et al.              Informational                    [Page 51]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  Note that the averages used in these exceptional cases are not the
  same as those that would be arrived at by using the out-of-bounds A
  and L values defined for V_PRED and H_PRED.  In the case of the
  leftmost macroblock on the top row of the frame, the 8x8 block is
  simply filled with the constant value 128.

  For DC_PRED, apart from the exceptional case of the top-left
  macroblock, we are averaging either 16 or 8 pixel values to get a
  single prediction value that fills the 8x8 block.  The rounding is
  done as follows:

  ---- Begin code block --------------------------------------

  int sum;  /* sum of 8 or 16 pixels at (at least) 16-bit precision */
  int shf;  /* base 2 logarithm of the number of pixels (3 or 4) */

  Pixel DCvalue = (sum + (1 << (shf-1))) >> shf;

  ---- End code block ----------------------------------------

  Because the summands are all valid pixels, no "clamp" is necessary in
  the calculation of DCvalue.

  The remaining "True Motion" (TM_PRED) chroma mode gets its name from
  an older technique of video compression used by On2 Technologies, to
  which it bears some relation.  In addition to the row "A" and column
  "L", TM_PRED uses the pixel "P" above and to the left of the chroma
  block.























Bankoski, et al.              Informational                    [Page 52]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  The following figure gives an example of how TM_PRED works:

  ---- Begin code block --------------------------------------

  |-----|-----|-----|-----|-----|-----|-----|-----|-----|
  | P   | A0  | A1  | A2  | A3  | A4  | A5  | A6  | A7  |
  |-----|-----|-----|-----|-----|-----|-----|-----|-----|
  | L0  | X00 | X01 | X02 | X03 | X04 | X05 | X06 | X07 |
  |-----|-----|-----|-----|-----|-----|-----|-----|-----|
  | L1  | X10 | X11 | X12 | X13 | X14 | X15 | X16 | X17 |
  |-----|-----|-----|-----|-----|-----|-----|-----|-----|
  | L2  | X20 | X21 | X22 | X23 | X24 | X25 | X26 | X27 |
  |-----|-----|-----|-----|-----|-----|-----|-----|-----|
  | L3  | X30 | X31 | X32 | X33 | X34 | X35 | X36 | X37 |
  |-----|-----|-----|-----|-----|-----|-----|-----|-----|
  | L4  | X40 | X41 | X42 | X43 | X44 | X45 | X46 | X47 |
  |-----|-----|-----|-----|-----|-----|-----|-----|-----|
  | L5  | X50 | X51 | X52 | X53 | X54 | X55 | X56 | X57 |
  |-----|-----|-----|-----|-----|-----|-----|-----|-----|
  | L6  | X60 | X61 | X62 | X63 | X64 | X65 | X66 | X67 |
  |-----|-----|-----|-----|-----|-----|-----|-----|-----|
  | L7  | X70 | X71 | X72 | X73 | X74 | X75 | X76 | X77 |
  |-----|-----|-----|-----|-----|-----|-----|-----|-----|

  ---- End code block ----------------------------------------

  Where P, As, and Ls represent reconstructed pixel values from
  previously coded blocks, and X00 through X77 represent predicted
  values for the current block.  TM_PRED uses the following equation to
  calculate X_ij:

  X_ij = L_i + A_j - P (i, j=0, 1, 2, 3)



















Bankoski, et al.              Informational                    [Page 53]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  The exact algorithm is as follows:

  ---- Begin code block --------------------------------------

  void TMpred(
      Pixel b[8][8],      /* chroma (U or V) prediction block */
      const Pixel A[8],   /* row of already-constructed pixels
                             above block */
      const Pixel L[8],   /* column of "" just to the left of
                             block */
      const Pixel P       /* pixel just to the left of A and
                             above L*/
  ) {
      int r = 0;          /* row */
      do {
          int c = 0;      /* column */
          do {
              b[r][c] = clamp255(L[r]+ A[c] - P);
          } while (++c < 8);
      } while (++r < 8);
  }

  ---- End code block ----------------------------------------

  Note that the process could equivalently be described as propagating
  the vertical differences between pixels in L (starting from P), using
  the pixels from A to start each column.

  An implementation of chroma intra-prediction may be found in the
  reference decoder file predict.c (Section 20.14).

  Unlike DC_PRED, for macroblocks on the top row or left edge, TM_PRED
  does use the out-of-bounds values of 127 and 129 (respectively)
  defined for V_PRED and H_PRED.

12.3.  Luma Prediction

  The prediction processes for the first four 16x16 luma modes
  (DC_PRED, V_PRED, H_PRED, and TM_PRED) are essentially identical to
  the corresponding chroma prediction processes described above, the
  only difference being that we are predicting a single 16x16 luma
  block instead of two 8x8 chroma blocks.

  Thus, the row "A" and column "L" here contain 16 pixels, the DC
  prediction is calculated using 16 or 32 pixels (and shf is 4 or 5),
  and we of course fill the entire prediction buffer, that is, 16 rows
  (or columns) containing 16 pixels each.  The reference implementation
  of 16x16 luma prediction is also in predict.c.



Bankoski, et al.              Informational                    [Page 54]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  In the remaining luma mode (B_PRED), each 4x4 Y subblock is
  independently predicted using one of ten modes (listed, along with
  their encodings, in Section 11).

  Also, unlike the full-macroblock modes already described, some of the
  subblock modes use prediction pixels above and to the right of the
  current subblock.  In detail, each 4x4 subblock "B" is predicted
  using (at most) the 4-pixel column "L" immediately to the left of B
  and the 8-pixel row "A" immediately above B, consisting of the 4
  pixels above B followed by the 4 adjacent pixels above and to the
  right of B, together with the single pixel "P" immediately to the
  left of A (and immediately above L).

  For the purpose of subblock intra-prediction, the pixels immediately
  to the left and right of a pixel in a subblock are the same as the
  pixels immediately to the left and right of the corresponding pixel
  in the frame buffer "F".  Vertical offsets behave similarly: The
  above row A lies immediately above B in F, and the adjacent pixels in
  the left column L are separated by a single row in F.

  Because entire macroblocks (as opposed to their constituent
  subblocks) are reconstructed in raster-scan order, for subblocks
  lying along the right edge (and not along the top row) of the current
  macroblock, the four "extra" prediction pixels in A above and to the
  right of B have not yet actually been constructed.

  Subblocks 7, 11, and 15 are affected.  All three of these subblocks
  use the same extra pixels as does subblock 3 (at the upper right
  corner of the macroblock), namely the 4 pixels immediately above and
  to the right of subblock 3.  Writing (R,C) for a frame buffer
  position offset from the upper left corner of the current macroblock
  by R rows and C columns, the extra pixels for all the right-edge
  subblocks (3, 7, 11, and 15) are at positions (-1,16), (-1,17),
  (-1,18), and (-1,19).  For the rightmost macroblock in each
  macroblock row except the top row, the extra pixels shall use the
  same value as the pixel at position (-1,15), which is the rightmost
  visible pixel on the line immediately above the macroblock row.  For
  the top macroblock row, all the extra pixels assume a value of 127.

  The details of the prediction modes are most easily described in
  code.










Bankoski, et al.              Informational                    [Page 55]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  ---- Begin code block --------------------------------------

  /* Result pixels are often averages of two or three predictor
     pixels.  The following subroutines are used to calculate
     these averages.  Because the arguments are valid pixels, no
     clamping is necessary.  An actual implementation would
     probably use inline functions or macros. */

  /* Compute weighted average centered at y w/adjacent x, z */

  Pixel avg3(Pixel x, Pixel y, Pixel z) {
    return (x + y + y + z + 2) >> 2;}

  /* Weighted average of 3 adjacent pixels centered at p */

  Pixel avg3p(const Pixel *p) { return avg3(p[-1], p[0], p[1]);}

  /* Simple average of x and y */

  Pixel avg2(Pixel x, Pixel y) { return (x + y + 1) >> 1;}

  /* Average of p[0] and p[1] may be considered to be a synthetic
     pixel lying between the two, that is, one half-step past p. */

  Pixel avg2p(const Pixel *p) { return avg2(p[0], p[1]);}

  void subblock_intra_predict(
      Pixel B[4][4],     /* Y subblock prediction buffer */
      const Pixel *A,    /* A[0]...A[7] = above row, A[-1] = P */
      const Pixel *L,    /* L[0]...L[3] = left column, L[-1] = P */
      intra_bmode mode   /* enum is in Section 11.2 */
  ) {
      Pixel E[9];        /* 9 already-constructed edge pixels */
      E[0] = L[3];  E[1] = L[2];  E[2] = L[1];  E[3] = L[0];
      E[4] = A[-1];      /* == L[-1] == P */
      E[5] = A[0];  E[6] = A[1];  E[7] = A[2];  E[8] = A[3];

    switch(mode) {
      /* First four modes are similar to corresponding
         full-block modes. */

      case B_DC_PRED:
      {
          int v = 4;      /* DC sum/avg, 4 is rounding adjustment */
          int i = 0;  do { v += A[i] + L[i];}  while (++i < 4);
          v >>= 3;        /* averaging 8 pixels */
          i = 0;  do {    /* fill prediction buffer with constant DC
                             value */



Bankoski, et al.              Informational                    [Page 56]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


              int j = 0;  do { B[i][j] = v;}  while (++j < 4);
          } while (++i < 4);
          break;
      }

      case B_TM_PRED: /* just like 16x16 TM_PRED */
      {
          int r = 0;  do {
              int c = 0;  do {
                  B[r][c] = clamp255(L[r] + A[c] - A[-1]);
              } while (++c < 4);
          } while (++r < 4);
          break;
      }

      case B_VE_PRED: /* like 16x16 V_PRED except using averages */
      {
          int c = 0;  do { /* all 4 rows = smoothed top row */
              B[0][c] = B[1][c] = B[2][c] = B[3][c] = avg3p(A + c);
          } while (++c < 4);
          break;
      }

      case B_HE_PRED: /* like 16x16 H_PRED except using averages */
      {
          /* Bottom row is exceptional because L[4] does not exist */
          int v = avg3(L[2], L[3], L[3]);
          int r = 3;  while (1) {  /* all 4 columns = smoothed left
                                      column */
              B[r][0] = B[r][1] = B[r][2] = B[r][3] = v;
              if (--r < 0)
                  break;
              v = avg3p(L + r);  /* upper 3 rows use average of
                                     3 pixels */
          }
          break;
      }

      /* The remaining six "diagonal" modes subdivide the
         prediction buffer into diagonal lines.  All the pixels
         on each line are assigned the same value; this value is
         (a smoothed or synthetic version of) an
         already-constructed predictor value lying on the same
         line.  For clarity, in the comments, we express the
         positions of these predictor pixels relative to the
         upper left corner of the destination array B.





Bankoski, et al.              Informational                    [Page 57]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


         These modes are unique to subblock prediction and have
         no full-block analogs.  The first two use lines at
         +|- 45 degrees from horizontal (or, equivalently,
         vertical), that is, lines whose slopes are +|- 1. */

      case B_LD_PRED:    /* southwest (left and down) step =
                            (-1, 1) or (1,-1) */
          /* avg3p(A + j) is the "smoothed" pixel at (-1,j) */
          B[0][0] = avg3p(A + 1);
          B[0][1] = B[1][0] = avg3p(A + 2);
          B[0][2] = B[1][1] = B[2][0] = avg3p(A + 3);
          B[0][3] = B[1][2] = B[2][1] = B[3][0] = avg3p(A + 4);
          B[1][3] = B[2][2] = B[3][1] = avg3p(A + 5);
          B[2][3] = B[3][2] = avg3p(A + 6);
          B[3][3] = avg3(A[6], A[7], A[7]); /* A[8] does not exist */
          break;

      case B_RD_PRED: /* southeast (right and down) step =
                         (1,1) or (-1,-1) */
          B[3][0] = avg3p(E + 1);  /* predictor is from (2, -1) */
          B[3][1] = B[2][0] = avg3p(E + 2);  /* (1, -1) */
          B[3][2] = B[2][1] = B[1][0] = avg3p(E + 3);  /* (0, -1) */
          B[3][3] = B[2][2] = B[1][1] = B[0][0] =
            avg3p(E + 4);  /* (-1, -1) */
          B[2][3] = B[1][2] = B[0][1] = avg3p(E + 5);  /* (-1, 0) */
          B[1][3] = B[0][2] = avg3p(E + 6);  /* (-1, 1) */
          B[0][3] = avg3p(E + 7);  /* (-1, 2) */
          break;

      /* The remaining 4 diagonal modes use lines whose slopes are
         +|- 2 and +|- 1/2.  The angles of these lines are roughly
         +|- 27 degrees from horizontal or vertical.

         Unlike the 45 degree diagonals, here we often need to
         "synthesize" predictor pixels midway between two actual
         predictors using avg2p(p), which we think of as returning
         the pixel "at" p[1/2]. */

      case B_VR_PRED:    /* SSE (vertical right) step =
                            (2,1) or (-2,-1) */
          B[3][0] = avg3p(E + 2);  /* predictor is from (1, -1) */
          B[2][0] = avg3p(E + 3);  /* (0, -1) */
          B[3][1] = B[1][0] = avg3p(E + 4);  /* (-1,   -1) */
          B[2][1] = B[0][0] = avg2p(E + 4);  /* (-1, -1/2) */
          B[3][2] = B[1][1] = avg3p(E + 5);  /* (-1,    0) */
          B[2][2] = B[0][1] = avg2p(E + 5);  /* (-1,  1/2) */
          B[3][3] = B[1][2] = avg3p(E + 6);  /* (-1,    1) */
          B[2][3] = B[0][2] = avg2p(E + 6);  /* (-1,  3/2) */



Bankoski, et al.              Informational                    [Page 58]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


          B[1][3] = avg3p(E + 7);  /* (-1, 2) */
          B[0][3] = avg2p(E + 7);  /* (-1, 5/2) */
          break;

      case B_VL_PRED:    /* SSW (vertical left) step =
                            (2,-1) or (-2,1) */
          B[0][0] = avg2p(A);  /* predictor is from (-1, 1/2) */
          B[1][0] = avg3p(A + 1);  /* (-1, 1) */
          B[2][0] = B[0][1] = avg2p(A + 1);  /* (-1, 3/2) */
          B[1][1] = B[3][0] = avg3p(A + 2);  /* (-1,   2) */
          B[2][1] = B[0][2] = avg2p(A + 2);  /* (-1, 5/2) */
          B[3][1] = B[1][2] = avg3p(A + 3);  /* (-1,   3) */
          B[2][2] = B[0][3] = avg2p(A + 3);  /* (-1, 7/2) */
          B[3][2] = B[1][3] = avg3p(A + 4);  /* (-1,   4) */
          /* Last two values do not strictly follow the pattern. */
          B[2][3] = avg3p(A + 5);  /* (-1, 5) [avg2p(A + 4) =
                                       (-1,9/2)] */
          B[3][3] = avg3p(A + 6);  /* (-1, 6) [avg3p(A + 5) =
                                       (-1,5)] */
          break;

      case B_HD_PRED:    /* ESE (horizontal down) step =
                            (1,2) or (-1,-2) */
          B[3][0] = avg2p(E);  /* predictor is from (5/2, -1) */
          B[3][1] = avg3p(E + 1);  /* (2, -1) */
          B[2][0] = B[3][2] = svg2p(E + 1);  /* ( 3/2, -1) */
          B[2][1] = B[3][3] = avg3p(E + 2);  /* (   1, -1) */
          B[2][2] = B[1][0] = avg2p(E + 2);  /* ( 1/2, -1) */
          B[2][3] = B[1][1] = avg3p(E + 3);  /* (   0, -1) */
          B[1][2] = B[0][0] = avg2p(E + 3);  /* (-1/2, -1) */
          B[1][3] = B[0][1] = avg3p(E + 4);  /* (  -1, -1) */
          B[0][2] = avg3p(E + 5);  /* (-1, 0) */
          B[0][3] = avg3p(E + 6);  /* (-1, 1) */
          break;

      case B_HU_PRED:    /* ENE (horizontal up) step = (1,-2)
                            or (-1,2) */
          B[0][0] = avg2p(L);  /* predictor is from (1/2, -1) */
          B[0][1] = avg3p(L + 1);  /* (1, -1) */
          B[0][2] = B[1][0] = avg2p(L + 1);  /* (3/2, -1) */
          B[0][3] = B[1][1] = avg3p(L + 2);  /* (  2, -1) */
          B[1][2] = B[2][0] = avg2p(L + 2);  /* (5/2, -1) */
          B[1][3] = B[2][1] = avg3(L[2], L[3], L[3]);  /* (3, -1) */








Bankoski, et al.              Informational                    [Page 59]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


          /* Not possible to follow pattern for much of the bottom
             row because no (nearby) already-constructed pixels lie
             on the diagonals in question. */
          B[2][2] = B[2][3] = B[3][0] = B[3][1] = B[3][2] = B[3][3]
            = L[3];
    }
  }

  ---- End code block ----------------------------------------

  The reference decoder implementation of subblock intra-prediction may
  be found in predict.c (Section 20.14).

13.  DCT Coefficient Decoding

  The second data partition consists of an encoding of the quantized
  DCT (and WHT) coefficients of the residue signal.  As discussed in
  the format overview (Section 2), for each macroblock, the residue is
  added to the (intra- or inter-generated) prediction buffer to produce
  the final (except for loop filtering) reconstructed macroblock.

  VP8 works exclusively with 4x4 DCTs and WHTs, applied to the 24 (or
  25 with the Y2 subblock) 4x4 subblocks of a macroblock.  The ordering
  of macroblocks within any of the "residue" partitions in general
  follows the same raster scan as used in the first "prediction"
  partition.

  For all intra- and inter-prediction modes apart from B_PRED (intra:
  whose Y subblocks are independently predicted) and SPLITMV (inter),
  each macroblock's residue record begins with the Y2 component of the
  residue, coded using a WHT.  B_PRED and SPLITMV coded macroblocks
  omit this WHT and specify the 0th DCT coefficient in each of the 16 Y
  subblocks.

  After the optional Y2 block, the residue record continues with 16
  DCTs for the Y subblocks, followed by 4 DCTs for the U subblocks,
  ending with 4 DCTs for the V subblocks.  The subblocks occur in the
  usual order.

  The DCTs and WHT are tree-coded using a 12-element alphabet whose
  members we call "tokens".  Except for the end-of-block token (which
  sets the remaining subblock coefficients to zero and is followed by
  the next block), each token (sometimes augmented with data
  immediately following the token) specifies the value of the single
  coefficient at the current (implicit) position and is followed by a
  token applying to the next (implicit) position.





Bankoski, et al.              Informational                    [Page 60]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  For all the Y and chroma subblocks, the ordering of the coefficients
  follows a so-called zig-zag order.  DCTs begin at coefficient 1 if Y2
  is present, and begin at coefficient 0 if Y2 is absent.  The WHT for
  a Y2 subblock always begins at coefficient 0.

13.1.  Macroblock without Non-Zero Coefficient Values

  If the flag within macroblock (MB) MODE_INFO indicates that a
  macroblock does not have any non-zero coefficients, the decoding
  process of DCT coefficients is skipped for the macroblock.

13.2.  Coding of Individual Coefficient Values

  The coding of coefficient tokens is the same for the DCT and WHT, and
  for the remainder of this section "DCT" should be taken to mean
  either DCT or WHT.

  All tokens (except end-of-block) specify either a single unsigned
  value or a range of unsigned values (immediately) followed by a
  simple probabilistic encoding of the offset of the value from the
  base of that range.

  Non-zero values (of either type) are then followed by a flag
  indicating the sign of the coded value (negative if 1, positive
  if 0).

  Below are the tokens and decoding tree.

  ---- Begin code block --------------------------------------

  typedef enum
  {
      DCT_0,      /* value 0 */
      DCT_1,      /* 1 */
      DCT_2,      /* 2 */
      DCT_3,      /* 3 */
      DCT_4,      /* 4 */
      dct_cat1,   /* range 5 - 6  (size 2) */
      dct_cat2,   /* 7 - 10   (4) */
      dct_cat3,   /* 11 - 18  (8) */
      dct_cat4,   /* 19 - 34  (16) */
      dct_cat5,   /* 35 - 66  (32) */
      dct_cat6,   /* 67 - 2048  (1982) */
      dct_eob,    /* end of block */

      num_dct_tokens   /* 12 */
  }
  dct_token;



Bankoski, et al.              Informational                    [Page 61]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  const tree_index coeff_tree [2 * (num_dct_tokens - 1)] =
  {
   -dct_eob, 2,               /* eob = "0"   */
    -DCT_0, 4,                /* 0   = "10"  */
     -DCT_1, 6,               /* 1   = "110" */
      8, 12,
       -DCT_2, 10,            /* 2   = "11100" */
        -DCT_3, -DCT_4,       /* 3   = "111010", 4 = "111011" */
       14, 16,
        -dct_cat1, -dct_cat2, /* cat1 =  "111100",
                                 cat2 = "111101" */
       18, 20,
        -dct_cat3, -dct_cat4, /* cat3 = "1111100",
                                 cat4 = "1111101" */
        -dct_cat5, -dct_cat6  /* cat4 = "1111110",
                                 cat4 = "1111111" */
  };

  ---- End code block ----------------------------------------

  In general, all DCT coefficients are decoded using the same tree.
  However, if the preceding coefficient is a DCT_0, decoding will skip
  the first branch, since it is not possible for dct_eob to follow a
  DCT_0.

  The tokens dct_cat1 ... dct_cat6 specify ranges of unsigned values,
  the value within the range being formed by adding an unsigned offset
  (whose width is 1, 2, 3, 4, 5, or 11 bits, respectively) to the base
  of the range, using the following algorithm and fixed probability
  tables.





















Bankoski, et al.              Informational                    [Page 62]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  ---- Begin code block --------------------------------------

  uint DCTextra(bool_decoder *d, const Prob *p)
  {
      uint v = 0;
      do { v += v + read_bool(d, *p);}  while (*++p);
      return v;
  }

  const Prob Pcat1[] = { 159, 0};
  const Prob Pcat2[] = { 165, 145, 0};
  const Prob Pcat3[] = { 173, 148, 140, 0};
  const Prob Pcat4[] = { 176, 155, 140, 135, 0};
  const Prob Pcat5[] = { 180, 157, 141, 134, 130, 0};
  const Prob Pcat6[] =
      { 254, 254, 243, 230, 196, 177, 153, 140, 133, 130, 129, 0};

  ---- End code block ----------------------------------------

  If v -- the unsigned value decoded using the coefficient tree,
  possibly augmented by the process above -- is non-zero, its sign is
  set by simply reading a flag:

  ---- Begin code block --------------------------------------

  if (read_bool(d, 128))
      v = -v;

  ---- End code block ----------------------------------------

13.3.  Token Probabilities

  The probability specification for the token tree (unlike that for the
  "extra bits" described above) is rather involved.  It uses three
  pieces of context to index a large probability table, the contents of
  which may be incrementally modified in the frame header.  The full
  (non-constant) probability table is laid out as follows.

  ---- Begin code block --------------------------------------

  Prob coeff_probs [4] [8] [3] [num_dct_tokens-1];

  ---- End code block ----------------------------------------








Bankoski, et al.              Informational                    [Page 63]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  Working from the outside in, the outermost dimension is indexed by
  the type of plane being decoded:

  o  0 - Y beginning at coefficient 1 (i.e., Y after Y2)

  o  1 - Y2

  o  2 - U or V

  o  3 - Y beginning at coefficient 0 (i.e., Y in the absence of Y2).

  The next dimension is selected by the position of the coefficient
  being decoded.  That position, c, steps by ones up to 15, starting
  from zero for block types 1, 2, or 3 and starting from one for block
  type 0.  The second array index is then

  ---- Begin code block --------------------------------------

  coeff_bands [c]

  ---- End code block ----------------------------------------

  Where:

  ---- Begin code block --------------------------------------

  const int coeff_bands [16] = {
       0, 1, 2, 3, 6, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7
  };

  ---- End code block ----------------------------------------

  is a fixed mapping of position to "band".

  The third dimension is the trickiest.  Roughly speaking, it measures
  the "local complexity" or extent to which nearby coefficients are
  non-zero.

  For the first coefficient (DC, unless the block type is 0), we
  consider the (already encoded) blocks within the same plane (Y2, Y,
  U, or V) above and to the left of the current block.  The context
  index is then the number (0, 1, or 2) of these blocks that had at
  least one non-zero coefficient in their residue record.  Specifically
  for Y2, because macroblocks above and to the left may or may not have
  a Y2 block, the block above is determined by the most recent
  macroblock in the same column that has a Y2 block, and the block to
  the left is determined by the most recent macroblock in the same row
  that has a Y2 block.



Bankoski, et al.              Informational                    [Page 64]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  Beyond the first coefficient, the context index is determined by the
  absolute value of the most recently decoded coefficient (necessarily
  within the current block) and is 0 if the last coefficient was a
  zero, 1 if it was plus or minus one, and 2 if its absolute value
  exceeded one.

  Note that the intuitive meaning of this measure changes as
  coefficients are decoded.  For example, prior to the first token, a
  zero means that the neighbors are empty, suggesting that the current
  block may also be empty.  After the first token, because an end-of-
  block token must have at least one non-zero value before it, a zero
  means that we just decoded a zero and hence guarantees that a
  non-zero coefficient will appear later in this block.  However, this
  shift in meaning is perfectly okay because the complete context
  depends also on the coefficient band (and since band 0 is occupied
  exclusively by position 0).

  As with other contexts used by VP8, the "neighboring block" context
  described here needs a special definition for subblocks lying along
  the top row or left edge of the frame.  These "non-existent"
  predictors above and to the left of the image are simply taken to be
  empty -- that is, taken to contain no non-zero coefficients.

  The residue decoding of each macroblock then requires, in each of two
  directions (above and to the left), an aggregate coefficient
  predictor consisting of a single Y2 predictor, two predictors for
  each of U and V, and four predictors for Y.  In accordance with the
  scan-ordering of macroblocks, a decoder needs to maintain a single
  "left" aggregate predictor and a row of "above" aggregate predictors.

  Before decoding any residue, these maintained predictors may simply
  be cleared, in compliance with the definition of "non-existent"
  prediction.  After each block is decoded, the two predictors
  referenced by the block are replaced with the (empty or non-empty)
  state of the block, in preparation for the later decoding of the
  blocks below and to the right of the block just decoded.

  The fourth, and final, dimension of the token probability array is of
  course indexed by (half) the position in the token tree structure, as
  are all tree probability arrays.

  The pseudocode below illustrates the decoding process.  Note that
  criteria, functions, etc. delimited with ** are either dependent on
  decoder architecture or are elaborated on elsewhere in this document.







Bankoski, et al.              Informational                    [Page 65]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  ---- Begin code block --------------------------------------

  int block[16] = { 0 }; /* current 4x4 block coeffs */
  int firstCoeff = 0;
  int plane;
  int ctx2;
  int ctx3 = 0; /* the 3rd context referred to in above description */
  Prob *probTable;
  int token;
  int sign;
  int absValue;
  int extraBits;
  bool prevCoeffWasZero = false;
  bool currentBlockHasCoeffs = false;
  /* base coeff abs values per each category, elem #0 is
     DCT_VAL_CATEGORY1, * #1 is DCT_VAL_CATEGORY2, etc. */
  int categoryBase[6] = { 5, 7, 11, 19, 35, 67 };

  /* Determine plane to use */
  if ( **current_block_is_Y2_block** )       plane = 0;
  else if ( **current_block_is_chroma** )   plane = 2;
  else if ( **current_macroblock_has_Y2** ) plane = 1;
  else                                      plane = 3;

  /* For luma blocks of a "Y2 macroblock" we skip coeff index #0 */
  if ( plane == 1 )
      firstCoeff++;

  /* Determine whether neighbor 4x4 blocks have coefficients.
     This is dependent on the plane we are currently decoding;
     i.e., we check only coefficients from the same plane as the
     current block. */
  if ( **left_neighbor_block_has_coefficients(plane)** )
      ctx3++;
  if ( **above_neighbor_block_has_coefficients(plane)** )
      ctx3++;

  for( i = firstCoeff; i < 16; ++i )
  {
      ctx2 = coeff_bands[i];
      probTable = coeff_probs[plane][ctx2][ctx3];

      /* skip first code (dct_eob) if previous token was DCT_0 */
      if ( prevCoeffWasZero )
          token = treed_read ( d, **coeff_tree_without_eob**,
            probTable );
      else
          token = treed_read ( d, coeff_tree, probTable );



Bankoski, et al.              Informational                    [Page 66]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      if ( token == dct_eob )
          break;

      if ( token != DCT_0 )
      {
          currentBlockHasCoeffs = true;
    if ( **token_has_extra_bits(token)** )
    {
        extraBits = DCTextra( token );
        absValue =
            categoryBase[**token_to_cat_index(token)**] +
      extraBits;
    }
    else
    {
        absValue = **token_to_abs_value(token)**;
    }

    sign = read_bool(d, 128);
          block[i] = sign ? -absValue : absValue;
      }
      else
      {
          absValue = 0;
      }

      /* Set contexts and stuff for next coeff */
      if ( absValue == 0 )         ctx3 = 0;
      else if ( absValue == 1 )   ctx3 = 1;
      else                        ctx3 = 2;
      prevCoeffWasZero = true;
  }

  /* Store current block status to decoder internals */
  **block_has_coefficients[currentMb][currentBlock]** =
    currentBlockHasCoeffs;

  ---- End code block ----------------------------------------

  While we have in fact completely described the coefficient decoding
  procedure, the reader will probably find it helpful to consult the
  reference implementation, which can be found in the file tokens.c
  (Section 20.16).








Bankoski, et al.              Informational                    [Page 67]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


13.4.  Token Probability Updates

  As mentioned above, the token-decoding probabilities may change from
  frame to frame.  After detection of a key frame, they are of course
  set to their defaults as shown in Section 13.5; this must occur
  before decoding the remainder of the header, as both key frames and
  interframes may adjust these probabilities.

  The layout and semantics of the coefficient probability update record
  (Section I of the frame header) are straightforward.  For each
  position in the coeff_probs array there occurs a fixed-probability
  bool indicating whether or not the corresponding probability should
  be updated.  If the bool is true, there follows a P(8) replacing that
  probability.  Note that updates are cumulative; that is, a
  probability updated on one frame is in effect for all ensuing frames
  until the next key frame, or until the probability is explicitly
  updated by another frame.

  The algorithm to effect the foregoing is simple:

  ---- Begin code block --------------------------------------

  int i = 0;  do {
   int j = 0;  do {
    int k = 0;  do {
     int t = 0;  do {

          if (read_bool(d, coeff_update_probs [i] [j] [k] [t]))
              coeff_probs [i] [j] [k] [t] = read_literal(d, 8);

     } while (++t < num_dct_tokens - 1);
    } while (++k < 3);
   } while (++j < 8);
  } while (++i < 4);

  ---- End code block ----------------------------------------















Bankoski, et al.              Informational                    [Page 68]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  The (constant) update probabilities are as follows:

  ---- Begin code block --------------------------------------

  const Prob coeff_update_probs [4] [8] [3] [num_dct_tokens-1] =
  {
   {
    {
     { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
     { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
     { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}
    },
    {
     { 176, 246, 255, 255, 255, 255, 255, 255, 255, 255, 255},
     { 223, 241, 252, 255, 255, 255, 255, 255, 255, 255, 255},
     { 249, 253, 253, 255, 255, 255, 255, 255, 255, 255, 255}
    },
    {
     { 255, 244, 252, 255, 255, 255, 255, 255, 255, 255, 255},
     { 234, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},
     { 253, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}
    },
    {
     { 255, 246, 254, 255, 255, 255, 255, 255, 255, 255, 255},
     { 239, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},
     { 254, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255}
    },
    {
     { 255, 248, 254, 255, 255, 255, 255, 255, 255, 255, 255},
     { 251, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255},
     { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}
    },
    {
     { 255, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},
     { 251, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},
     { 254, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255}
    },
    {
     { 255, 254, 253, 255, 254, 255, 255, 255, 255, 255, 255},
     { 250, 255, 254, 255, 254, 255, 255, 255, 255, 255, 255},
     { 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}
    },
    {
     { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
     { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
     { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}
    }
   },



Bankoski, et al.              Informational                    [Page 69]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


   {
    {
     { 217, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
     { 225, 252, 241, 253, 255, 255, 254, 255, 255, 255, 255},
     { 234, 250, 241, 250, 253, 255, 253, 254, 255, 255, 255}
    },
    {
     { 255, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255},
     { 223, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},
     { 238, 253, 254, 254, 255, 255, 255, 255, 255, 255, 255}
    },
    {
     { 255, 248, 254, 255, 255, 255, 255, 255, 255, 255, 255},
     { 249, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255},
     { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}
    },
    {
     { 255, 253, 255, 255, 255, 255, 255, 255, 255, 255, 255},
     { 247, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255},
     { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}
    },
    {
     { 255, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},
     { 252, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
     { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}
    },
    {
     { 255, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},
     { 253, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
     { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}
    },
    {
     { 255, 254, 253, 255, 255, 255, 255, 255, 255, 255, 255},
     { 250, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
     { 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}
    },
    {
     { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
     { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
     { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}
    }
   },
   {
    {
     { 186, 251, 250, 255, 255, 255, 255, 255, 255, 255, 255},
     { 234, 251, 244, 254, 255, 255, 255, 255, 255, 255, 255},
     { 251, 251, 243, 253, 254, 255, 254, 255, 255, 255, 255}
    },



Bankoski, et al.              Informational                    [Page 70]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


    {
     { 255, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},
     { 236, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},
     { 251, 253, 253, 254, 254, 255, 255, 255, 255, 255, 255}
    },
    {
     { 255, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},
     { 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},
     { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}
    },
    {
     { 255, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255},
     { 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255},
     { 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}
    },
    {
     { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
     { 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
     { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}
    },
    {
     { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
     { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
     { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}
    },
    {
     { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
     { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
     { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}
    },
    {
     { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
     { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
     { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}
    }
   },
   {
    {
     { 248, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
     { 250, 254, 252, 254, 255, 255, 255, 255, 255, 255, 255},
     { 248, 254, 249, 253, 255, 255, 255, 255, 255, 255, 255}
    },
    {
     { 255, 253, 253, 255, 255, 255, 255, 255, 255, 255, 255},
     { 246, 253, 253, 255, 255, 255, 255, 255, 255, 255, 255},
     { 252, 254, 251, 254, 254, 255, 255, 255, 255, 255, 255}
    },




Bankoski, et al.              Informational                    [Page 71]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


    {
     { 255, 254, 252, 255, 255, 255, 255, 255, 255, 255, 255},
     { 248, 254, 253, 255, 255, 255, 255, 255, 255, 255, 255},
     { 253, 255, 254, 254, 255, 255, 255, 255, 255, 255, 255}
    },
    {
     { 255, 251, 254, 255, 255, 255, 255, 255, 255, 255, 255},
     { 245, 251, 254, 255, 255, 255, 255, 255, 255, 255, 255},
     { 253, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255}
    },
    {
     { 255, 251, 253, 255, 255, 255, 255, 255, 255, 255, 255},
     { 252, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},
     { 255, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255}
    },
    {
     { 255, 252, 255, 255, 255, 255, 255, 255, 255, 255, 255},
     { 249, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255},
     { 255, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255}
    },
    {
     { 255, 255, 253, 255, 255, 255, 255, 255, 255, 255, 255},
     { 250, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
     { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}
    },
    {
     { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
     { 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
     { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}
    }
   }
  };

  ---- End code block ----------------------------------------

















Bankoski, et al.              Informational                    [Page 72]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


13.5.  Default Token Probability Table

  The default token probabilities are as follows.

  ---- Begin code block --------------------------------------

  const Prob default_coeff_probs [4] [8] [3] [num_dct_tokens - 1] =
  {
   {
    {
     { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128},
     { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128},
     { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128}
    },
    {
     { 253, 136, 254, 255, 228, 219, 128, 128, 128, 128, 128},
     { 189, 129, 242, 255, 227, 213, 255, 219, 128, 128, 128},
     { 106, 126, 227, 252, 214, 209, 255, 255, 128, 128, 128}
    },
    {
     {   1,  98, 248, 255, 236, 226, 255, 255, 128, 128, 128},
     { 181, 133, 238, 254, 221, 234, 255, 154, 128, 128, 128},
     {  78, 134, 202, 247, 198, 180, 255, 219, 128, 128, 128}
    },
    {
     {   1, 185, 249, 255, 243, 255, 128, 128, 128, 128, 128},
     { 184, 150, 247, 255, 236, 224, 128, 128, 128, 128, 128},
     {  77, 110, 216, 255, 236, 230, 128, 128, 128, 128, 128}
    },
    {
     {   1, 101, 251, 255, 241, 255, 128, 128, 128, 128, 128},
     { 170, 139, 241, 252, 236, 209, 255, 255, 128, 128, 128},
     {  37, 116, 196, 243, 228, 255, 255, 255, 128, 128, 128}
    },
    {
     {   1, 204, 254, 255, 245, 255, 128, 128, 128, 128, 128},
     { 207, 160, 250, 255, 238, 128, 128, 128, 128, 128, 128},
     { 102, 103, 231, 255, 211, 171, 128, 128, 128, 128, 128}
    },
    {
     {   1, 152, 252, 255, 240, 255, 128, 128, 128, 128, 128},
     { 177, 135, 243, 255, 234, 225, 128, 128, 128, 128, 128},
     {  80, 129, 211, 255, 194, 224, 128, 128, 128, 128, 128}
    },







Bankoski, et al.              Informational                    [Page 73]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


    {
     {   1,   1, 255, 128, 128, 128, 128, 128, 128, 128, 128},
     { 246,   1, 255, 128, 128, 128, 128, 128, 128, 128, 128},
     { 255, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128}
    }
   },
   {
    {
     { 198,  35, 237, 223, 193, 187, 162, 160, 145, 155,  62},
     { 131,  45, 198, 221, 172, 176, 220, 157, 252, 221,   1},
     {  68,  47, 146, 208, 149, 167, 221, 162, 255, 223, 128}
    },
    {
     {   1, 149, 241, 255, 221, 224, 255, 255, 128, 128, 128},
     { 184, 141, 234, 253, 222, 220, 255, 199, 128, 128, 128},
     {  81,  99, 181, 242, 176, 190, 249, 202, 255, 255, 128}
    },
    {
     {   1, 129, 232, 253, 214, 197, 242, 196, 255, 255, 128},
     {  99, 121, 210, 250, 201, 198, 255, 202, 128, 128, 128},
     {  23,  91, 163, 242, 170, 187, 247, 210, 255, 255, 128}
    },
    {
     {   1, 200, 246, 255, 234, 255, 128, 128, 128, 128, 128},
     { 109, 178, 241, 255, 231, 245, 255, 255, 128, 128, 128},
     {  44, 130, 201, 253, 205, 192, 255, 255, 128, 128, 128}
    },
    {
     {   1, 132, 239, 251, 219, 209, 255, 165, 128, 128, 128},
     {  94, 136, 225, 251, 218, 190, 255, 255, 128, 128, 128},
     {  22, 100, 174, 245, 186, 161, 255, 199, 128, 128, 128}
    },
    {
     {   1, 182, 249, 255, 232, 235, 128, 128, 128, 128, 128},
     { 124, 143, 241, 255, 227, 234, 128, 128, 128, 128, 128},
     {  35,  77, 181, 251, 193, 211, 255, 205, 128, 128, 128}
    },
    {
     {   1, 157, 247, 255, 236, 231, 255, 255, 128, 128, 128},
     { 121, 141, 235, 255, 225, 227, 255, 255, 128, 128, 128},
     {  45,  99, 188, 251, 195, 217, 255, 224, 128, 128, 128}
    },
    {
     {   1,   1, 251, 255, 213, 255, 128, 128, 128, 128, 128},
     { 203,   1, 248, 255, 255, 128, 128, 128, 128, 128, 128},
     { 137,   1, 177, 255, 224, 255, 128, 128, 128, 128, 128}
    }
   },



Bankoski, et al.              Informational                    [Page 74]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


   {
    {
     { 253,   9, 248, 251, 207, 208, 255, 192, 128, 128, 128},
     { 175,  13, 224, 243, 193, 185, 249, 198, 255, 255, 128},
     {  73,  17, 171, 221, 161, 179, 236, 167, 255, 234, 128}
    },
    {
     {   1,  95, 247, 253, 212, 183, 255, 255, 128, 128, 128},
     { 239,  90, 244, 250, 211, 209, 255, 255, 128, 128, 128},
     { 155,  77, 195, 248, 188, 195, 255, 255, 128, 128, 128}
    },
    {
     {   1,  24, 239, 251, 218, 219, 255, 205, 128, 128, 128},
     { 201,  51, 219, 255, 196, 186, 128, 128, 128, 128, 128},
     {  69,  46, 190, 239, 201, 218, 255, 228, 128, 128, 128}
    },
    {
     {   1, 191, 251, 255, 255, 128, 128, 128, 128, 128, 128},
     { 223, 165, 249, 255, 213, 255, 128, 128, 128, 128, 128},
     { 141, 124, 248, 255, 255, 128, 128, 128, 128, 128, 128}
    },
    {
     {   1,  16, 248, 255, 255, 128, 128, 128, 128, 128, 128},
     { 190,  36, 230, 255, 236, 255, 128, 128, 128, 128, 128},
     { 149,   1, 255, 128, 128, 128, 128, 128, 128, 128, 128}
    },
    {
     {   1, 226, 255, 128, 128, 128, 128, 128, 128, 128, 128},
     { 247, 192, 255, 128, 128, 128, 128, 128, 128, 128, 128},
     { 240, 128, 255, 128, 128, 128, 128, 128, 128, 128, 128}
    },
    {
     {   1, 134, 252, 255, 255, 128, 128, 128, 128, 128, 128},
     { 213,  62, 250, 255, 255, 128, 128, 128, 128, 128, 128},
     {  55,  93, 255, 128, 128, 128, 128, 128, 128, 128, 128}
    },
    {
     { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128},
     { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128},
     { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128}
    }
   },
   {
    {
     { 202,  24, 213, 235, 186, 191, 220, 160, 240, 175, 255},
     { 126,  38, 182, 232, 169, 184, 228, 174, 255, 187, 128},
     {  61,  46, 138, 219, 151, 178, 240, 170, 255, 216, 128}
    },



Bankoski, et al.              Informational                    [Page 75]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


    {
     {   1, 112, 230, 250, 199, 191, 247, 159, 255, 255, 128},
     { 166, 109, 228, 252, 211, 215, 255, 174, 128, 128, 128},
     {  39,  77, 162, 232, 172, 180, 245, 178, 255, 255, 128}
    },
    {
     {   1,  52, 220, 246, 198, 199, 249, 220, 255, 255, 128},
     { 124,  74, 191, 243, 183, 193, 250, 221, 255, 255, 128},
     {  24,  71, 130, 219, 154, 170, 243, 182, 255, 255, 128}
    },
    {
     {   1, 182, 225, 249, 219, 240, 255, 224, 128, 128, 128},
     { 149, 150, 226, 252, 216, 205, 255, 171, 128, 128, 128},
     {  28, 108, 170, 242, 183, 194, 254, 223, 255, 255, 128}
    },
    {
     {   1,  81, 230, 252, 204, 203, 255, 192, 128, 128, 128},
     { 123, 102, 209, 247, 188, 196, 255, 233, 128, 128, 128},
     {  20,  95, 153, 243, 164, 173, 255, 203, 128, 128, 128}
    },
    {
     {   1, 222, 248, 255, 216, 213, 128, 128, 128, 128, 128},
     { 168, 175, 246, 252, 235, 205, 255, 255, 128, 128, 128},
     {  47, 116, 215, 255, 211, 212, 255, 255, 128, 128, 128}
    },
    {
     {   1, 121, 236, 253, 212, 214, 255, 255, 128, 128, 128},
     { 141,  84, 213, 252, 201, 202, 255, 219, 128, 128, 128},
     {  42,  80, 160, 240, 162, 185, 255, 205, 128, 128, 128}
    },
    {
     {   1,   1, 255, 128, 128, 128, 128, 128, 128, 128, 128},
     { 244,   1, 255, 128, 128, 128, 128, 128, 128, 128, 128},
     { 238,   1, 255, 128, 128, 128, 128, 128, 128, 128, 128}
    }
   }
  };

  ---- End code block ----------------------------------------

14.  DCT and WHT Inversion and Macroblock Reconstruction

14.1.  Dequantization

  After decoding the DCTs/WHTs as described above, each (quantized)
  coefficient in each subblock is multiplied by one of six
  dequantization factors, the choice of factor depending on the plane
  (Y2, Y, or chroma) and position (DC = coefficient zero, AC = any



Bankoski, et al.              Informational                    [Page 76]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  other coefficient).  If the current macroblock has overridden the
  quantizer level (as described in Section 10), then the six factors
  are looked up from two dequantization tables with appropriate scaling
  and clamping using the single index supplied by the override.
  Otherwise, the frame-level dequantization factors (as described in
  Section 9.6) are used.  In either case, the multiplies are computed
  and stored using 16-bit signed integers.

  The two dequantization tables, which may also be found in the
  reference decoder file dequant_data.h (Section 20.3), are as follows.

  ---- Begin code block --------------------------------------

  static const int dc_qlookup[QINDEX_RANGE] =
  {
      4,   5,   6,   7,   8,   9,  10,  10,   11,  12,  13,  14,  15,
     16,  17,  17,  18,  19,  20,  20,  21,   21,  22,  22,  23,  23,
     24,  25,  25,  26,  27,  28,  29,  30,   31,  32,  33,  34,  35,
     36,  37,  37,  38,  39,  40,  41,  42,   43,  44,  45,  46,  46,
     47,  48,  49,  50,  51,  52,  53,  54,   55,  56,  57,  58,  59,
     60,  61,  62,  63,  64,  65,  66,  67,   68,  69,  70,  71,  72,
     73,  74,  75,  76,  76,  77,  78,  79,   80,  81,  82,  83,  84,
     85,  86,  87,  88,  89,  91,  93,  95,   96,  98, 100, 101, 102,
     104, 106, 108, 110, 112, 114, 116, 118, 122, 124, 126, 128, 130,
     132, 134, 136, 138, 140, 143, 145, 148, 151, 154, 157,
  };

  static const int ac_qlookup[QINDEX_RANGE] =
  {
      4,   5,   6,   7,   8,   9,  10,  11,  12,  13,  14,  15,  16,
     17,  18,  19,  20,  21,  22,  23,  24,  25,  26,  27,  28,  29,
     30,  31,  32,  33,  34,  35,  36,  37,  38,  39,  40,  41,  42,
     43,  44,  45,  46,  47,  48,  49,  50,  51,  52,  53,  54,  55,
     56,  57,  58,  60,  62,  64,  66,  68,  70,  72,  74,  76,  78,
     80,  82,  84,  86,  88,  90,  92,  94,  96,  98, 100, 102, 104,
    106, 108, 110, 112, 114, 116, 119, 122, 125, 128, 131, 134, 137,
    140, 143, 146, 149, 152, 155, 158, 161, 164, 167, 170, 173, 177,
    181, 185, 189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229,
    234, 239, 245, 249, 254, 259, 264, 269, 274, 279, 284,
  };

  ---- End code block ----------------------------------------

  Lookup values from the above two tables are directly used in the DC
  and AC coefficients in Y1, respectively.  For Y2 and chroma, values
  from the above tables undergo either scaling or clamping before the
  multiplies.  Details regarding these scaling and clamping processes
  can be found in related lookup functions in dixie.c (Section 20.4).



Bankoski, et al.              Informational                    [Page 77]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


14.2.  Inverse Transforms

  If the Y2 residue block exists (i.e., the macroblock luma mode is not
  SPLITMV or B_PRED), it is inverted first (using the inverse WHT) and
  the element of the result at row i, column j is used as the 0th
  coefficient of the Y subblock at position (i, j), that is, the Y
  subblock whose index is (i * 4) + j.  As discussed in Section 13, if
  the luma mode is B_PRED or SPLITMV, the 0th Y coefficients are part
  of the residue signal for the subblocks themselves.

  In either case, the inverse transforms for the sixteen Y subblocks
  and eight chroma subblocks are computed next.  All 24 of these
  inversions are independent of each other; their results may (at least
  conceptually) be stored in 24 separate 4x4 arrays.

  As is done by the reference decoder, an implementation may wish to
  represent the prediction and residue buffers as macroblock-sized
  arrays (that is, a 16x16 Y buffer and two 8x8 chroma buffers).
  Regarding the inverse DCT implementation given below, this requires a
  simple adjustment to the address calculation for the resulting
  residue pixels.

14.3.  Implementation of the WHT Inversion

  As previously discussed (see Sections 2 and 13), for macroblocks
  encoded using prediction modes other than B_PRED and SPLITMV, the DC
  values derived from the DCT transform on the 16 Y blocks are
  collected to construct a 25th block of a macroblock (16 Y, 4 U, 4 V
  constitute the 24 blocks).  This 25th block is transformed using a
  Walsh-Hadamard transform (WHT).

  The inputs to the inverse WHT (that is, the dequantized
  coefficients), the intermediate "horizontally detransformed" signal,
  and the completely detransformed residue signal are all stored as
  arrays of 16-bit signed integers.

  Following the tradition of specifying bitstream format using the
  decoding process, we specify the inverse WHT in the decoding process
  using the following C-style source code:












Bankoski, et al.              Informational                    [Page 78]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  ---- Begin code block --------------------------------------

  void vp8_short_inv_walsh4x4_c(short *input, short *output)
  {
    int i;
    int a1, b1, c1, d1;
    int a2, b2, c2, d2;
    short *ip = input;
    short *op = output;
    int temp1, temp2;

    for(i=0;i<4;i++)
    {
      a1 = ip[0] + ip[12];
      b1 = ip[4] + ip[8];
      c1 = ip[4] - ip[8];
      d1 = ip[0] - ip[12];

      op[0] = a1 + b1;
      op[4] = c1 + d1;
      op[8] = a1 - b1;
      op[12]= d1 - c1;
      ip++;
      op++;
    }
    ip = output;
    op = output;
    for(i=0;i<4;i++)
    {
      a1 = ip[0] + ip[3];
      b1 = ip[1] + ip[2];
      c1 = ip[1] - ip[2];
      d1 = ip[0] - ip[3];

      a2 = a1 + b1;
      b2 = c1 + d1;
      c2 = a1 - b1;
      d2 = d1 - c1;













Bankoski, et al.              Informational                    [Page 79]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      op[0] = (a2+3)>>3;
      op[1] = (b2+3)>>3;
      op[2] = (c2+3)>>3;
      op[3] = (d2+3)>>3;

      ip+=4;
      op+=4;
    }
  }

  ---- End code block ----------------------------------------

  In the case that there is only one non-zero DC value in input, the
  inverse transform can be simplified to the following:

  ---- Begin code block --------------------------------------

  void vp8_short_inv_walsh4x4_1_c(short *input, short *output)
  {
    int i;
    int a1;
    short *op=output;

    a1 = ((input[0] + 3)>>3);

    for(i=0;i<4;i++)
    {
      op[0] = a1;
      op[1] = a1;
      op[2] = a1;
      op[3] = a1;
      op+=4;
    }
  }

  ---- End code block ----------------------------------------

  It should be noted that a conforming decoder should implement the
  inverse transform using exactly the same rounding to achieve bit-wise
  matching output to the output of the process specified by the above
  C source code.

  The reference decoder WHT inversion may be found in the file
  idct_add.c (Section 20.8).







Bankoski, et al.              Informational                    [Page 80]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


14.4.  Implementation of the DCT Inversion

  All of the DCT inversions are computed in exactly the same way.  In
  principle, VP8 uses a classical 2-D inverse discrete cosine
  transform, implemented as two passes of 1-D inverse DCT.  The 1-D
  inverse DCT was calculated using a similar algorithm to what was
  described in [Loeffler].  However, the paper only provided the
  8-point and 16-point version of the algorithms, which was adapted by
  On2 to perform the 4-point 1-D DCT.

  Accurate calculation of 1-D DCT of the above algorithm requires
  infinite precision.  VP8 of course can use only a finite-precision
  approximation.  Also, the inverse DCT used by VP8 takes care of
  normalization of the standard unitary transform; that is, every
  dequantized coefficient has roughly double the size of the
  corresponding unitary coefficient.  However, at all but the highest
  datarates, the discrepancy between transmitted and ideal coefficients
  is due almost entirely to (lossy) compression and not to errors
  induced by finite-precision arithmetic.

  The inputs to the inverse DCT (that is, the dequantized
  coefficients), the intermediate "horizontally detransformed" signal,
  and the completely detransformed residue signal are all stored as
  arrays of 16-bit signed integers.  The details of the computation are
  as follows.

  It should also be noted that this implementation makes use of the
  16-bit fixed-point version of two multiplication constants:

  sqrt(2) * cos (pi/8)

  sqrt(2) * sin (pi/8)

  Because the first constant is bigger than 1, to maintain the same
  16-bit fixed-point precision as the second one, we make use of the
  fact that

  x * a = x + x*(a-1)

  therefore

  x * sqrt(2) * cos (pi/8) = x + x * (sqrt(2) * cos(pi/8)-1)









Bankoski, et al.              Informational                    [Page 81]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  ---- Begin code block --------------------------------------

  /* IDCT implementation */
  static const int cospi8sqrt2minus1=20091;
  static const int sinpi8sqrt2      =35468;
  void short_idct4x4llm_c(short *input, short *output, int pitch)
  {
    int i;
    int a1, b1, c1, d1;

    short *ip=input;
    short *op=output;
    int temp1, temp2;
    int shortpitch = pitch>>1;

    for(i=0;i<4;i++)
    {
      a1 = ip[0]+ip[8];
      b1 = ip[0]-ip[8];

      temp1 = (ip[4] * sinpi8sqrt2)>>16;
      temp2 = ip[12]+((ip[12] * cospi8sqrt2minus1)>>16);
      c1 = temp1 - temp2;

      temp1 = ip[4] + ((ip[4] * cospi8sqrt2minus1)>>16);
      temp2 = (ip[12] * sinpi8sqrt2)>>16;
      d1 = temp1 + temp2;

      op[shortpitch*0] = a1+d1;
      op[shortpitch*3] = a1-d1;
      op[shortpitch*1] = b1+c1;
      op[shortpitch*2] = b1-c1;

      ip++;
      op++;
    }
    ip = output;
    op = output;
    for(i=0;i<4;i++)
    {
      a1 = ip[0]+ip[2];
      b1 = ip[0]-ip[2];

      temp1 = (ip[1] * sinpi8sqrt2)>>16;
      temp2 = ip[3]+((ip[3] * cospi8sqrt2minus1)>>16);
      c1 = temp1 - temp2;

      temp1 = ip[1] + ((ip[1] * cospi8sqrt2minus1)>>16);



Bankoski, et al.              Informational                    [Page 82]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      temp2 = (ip[3] * sinpi8sqrt2)>>16;
      d1 = temp1 + temp2;

      op[0] = (a1+d1+4)>>3;
      op[3] = (a1-d1+4)>>3;
      op[1] = (b1+c1+4)>>3;
      op[2] = (b1-c1+4)>>3;

      ip+=shortpitch;
      op+=shortpitch;
    }
  }

  ---- End code block ----------------------------------------

  The reference decoder DCT inversion may be found in the file
  idct_add.c (Section 20.8).

14.5.  Summation of Predictor and Residue

  Finally, the prediction and residue signals are summed to form the
  reconstructed macroblock, which, except for loop filtering (taken up
  next), completes the decoding process.

  The summing procedure is fairly straightforward, having only a couple
  of details.  The prediction and residue buffers are both arrays of
  16-bit signed integers.  Each individual (Y, U, and V pixel) result
  is calculated first as a 32-bit sum of the prediction and residue,
  and is then saturated to 8-bit unsigned range (using, say, the
  clamp255 function defined above) before being stored as an 8-bit
  unsigned pixel value.

  VP8 also supports a mode where the encoding of a bitstream guarantees
  all reconstructed pixel values between 0 and 255; compliant
  bitstreams of such requirements have the clamp_type bit in the frame
  header set to 1.  In such a case, the clamp255 function is no longer
  required.

  The summation process is the same, regardless of the (intra or inter)
  mode of prediction in effect for the macroblock.  The reference
  decoder implementation of reconstruction may be found in the file
  idct_add.c.









Bankoski, et al.              Informational                    [Page 83]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


15.  Loop Filter

  Loop filtering is the last stage of frame reconstruction and the
  next-to-last stage of the decoding process.  The loop filter is
  applied to the entire frame after the summation of predictor and
  residue signals, as described in Section 14.

  The purpose of the loop filter is to eliminate (or at least reduce)
  visually objectionable artifacts associated with the semi-
  independence of the coding of macroblocks and their constituent
  subblocks.

  As was discussed in Section 5, the loop filter is "integral" to
  decoding, in that the results of loop filtering are used in the
  prediction of subsequent frames.  Consequently, a functional decoder
  implementation must perform loop filtering exactly as described here.
  This is distinct from any postprocessing that may be applied only to
  the image immediately before display; such postprocessing is entirely
  at the option of the implementor (and/or user) and has no effect on
  decoding per se.

  The baseline frame-level parameters controlling the loop filter are
  defined in the frame header (Section 9.4) along with a mechanism for
  adjustment based on a macroblock's prediction mode and/or reference
  frame.  The first is a flag (filter_type) selecting the type of
  filter (normal or simple); the other two are numbers
  (loop_filter_level and sharpness_level) that adjust the strength or
  sensitivity of the filter.  As described in Sections 9.3 and 10,
  loop_filter_level may also be overridden on a per-macroblock basis
  using segmentation.

  Loop filtering is one of the more computationally intensive aspects
  of VP8 decoding.  This is the reason for the existence of the
  optional, less-demanding simple filter type.

  Note carefully that loop filtering must be skipped entirely if
  loop_filter_level at either the frame header level or macroblock
  override level is 0.  In no case should the loop filter be run with a
  value of 0; it should instead be skipped.

  We begin by discussing the aspects of loop filtering that are
  independent of the controlling parameters and type of filter chosen.









Bankoski, et al.              Informational                    [Page 84]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


15.1.  Filter Geometry and Overall Procedure

  The Y, U, and V planes are processed independently and identically.

  The loop filter acts on the edges between adjacent macroblocks and on
  the edges between adjacent subblocks of a macroblock.  All such edges
  are horizontal or vertical.  For each pixel position on an edge, a
  small number (two or three) of pixels adjacent to either side of the
  position are examined and possibly modified.  The displacements of
  these pixels are at a right angle to the edge orientation; that is,
  for a horizontal edge, we treat the pixels immediately above and
  below the edge position, and for a vertical edge, we treat the pixels
  immediately to the left and right of the edge.

  We call this collection of pixels associated to an edge position a
  segment; the length of a segment is 2, 4, 6, or 8.  Excepting that
  the normal filter uses slightly different algorithms for, and either
  filter may apply different control parameters to, the edges between
  macroblocks and those between subblocks, the treatment of edges is
  quite uniform: All segments straddling an edge are treated
  identically; there is no distinction between the treatment of
  horizontal and vertical edges, whether between macroblocks or between
  subblocks.

  As a consequence, adjacent subblock edges within a macroblock may be
  concatenated and processed in their entirety.  There is a single
  8-pixel-long vertical edge horizontally centered in each of the U and
  V blocks (the concatenation of upper and lower 4-pixel edges between
  chroma subblocks), and three 16-pixel-long vertical edges at
  horizontal positions 1/4, 1/2, and 3/4 the width of the luma
  macroblock, each representing the concatenation of four 4-pixel
  sub-edges between pairs of Y subblocks.

  The macroblocks comprising the frame are processed in the usual
  raster-scan order.  Each macroblock is "responsible for" the
  inter-macroblock edges immediately above and to the left of it (but
  not the edges below and to the right of it), as well as the edges
  between its subblocks.

  For each macroblock M, there are four filtering steps, which are,
  (almost) in order:

  1.  If M is not on the leftmost column of macroblocks, filter across
      the left (vertical) inter-macroblock edge of M.

  2.  Filter across the vertical subblock edges within M.





Bankoski, et al.              Informational                    [Page 85]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  3.  If M is not on the topmost row of macroblocks, filter across the
      top (horizontal) inter-macroblock edge of M.

  4.  Filter across the horizontal subblock edges within M.

  We write MY, MU, and MV for the planar constituents of M, that is,
  the 16x16 luma block, 8x8 U block, and 8x8 V block comprising M.

  In step 1, for each of the three blocks MY, MU, and MV, we filter
  each of the (16 luma or 8 chroma) segments straddling the column
  separating the block from the block immediately to the left of it,
  using the inter-macroblock filter and controls associated to the
  loop_filter_level and sharpness_level.

  In step 4, we filter across the (three luma and one each for U and V)
  vertical subblock edges described above, this time using the
  inter-subblock filter and controls.

  Steps 2 and 4 are skipped for macroblocks that satisfy both of the
  following two conditions:

  1.  Macroblock coding mode is neither B_PRED nor SPLITMV; and

  2.  There is no DCT coefficient coded for the whole macroblock.

  For these macroblocks, loop filtering for edges between subblocks
  internal to a macroblock is effectively skipped.  This skip strategy
  significantly reduces VP8 loop-filtering complexity.

  Edges between macroblocks and those between subblocks are treated
  with different control parameters (and, in the case of the normal
  filter, with different algorithms).  Except for pixel addressing,
  there is no distinction between the treatment of vertical and
  horizontal edges.  Luma edges are always 16 pixels long, chroma edges
  are always 8 pixels long, and the segments straddling an edge are
  treated identically; this of course facilitates vector processing.

  Because many pixels belong to segments straddling two or more edges,
  and so will be filtered more than once, the order in which edges are
  processed given above must be respected by any implementation.
  Within a single edge, however, the segments straddling that edge are
  disjoint, and the order in which these segments are processed is
  immaterial.

  Before taking up the filtering algorithms themselves, we should
  emphasize a point already made: Even though the pixel segments
  associated to a macroblock are antecedent to the macroblock (that is,
  lie within the macroblock or in already-constructed macroblocks), a



Bankoski, et al.              Informational                    [Page 86]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  macroblock must not be filtered immediately after its
  "reconstruction" (described in Section 14).  Rather, the loop filter
  applies after all the macroblocks have been "reconstructed" (i.e.,
  had their predictor summed with their residue); correct decoding is
  predicated on the fact that already-constructed portions of the
  current frame referenced via intra-prediction (described in
  Section 12) are not yet filtered.

15.2.  Simple Filter

  Having described the overall procedure of, and pixels affected by,
  the loop filter, we turn our attention to the treatment of individual
  segments straddling edges.  We begin by describing the simple filter,
  which, as the reader might guess, is somewhat simpler than the normal
  filter.

  Note that the simple filter only applies to luma edges.  Chroma edges
  are left unfiltered.

  Roughly speaking, the idea of loop filtering is, within limits, to
  reduce the difference between pixels straddling an edge.  Differences
  in excess of a threshold (associated to the loop_filter_level) are
  assumed to be "natural" and are unmodified; differences below the
  threshold are assumed to be artifacts of quantization and the
  (partially) separate coding of blocks, and are reduced via the
  procedures described below.  While the loop_filter_level is in
  principle arbitrary, the levels chosen by a VP8 compressor tend to be
  correlated to quantizer levels.

  Most of the filtering arithmetic is done using 8-bit signed operands
  (having a range of -128 to +127, inclusive), supplemented by 16-bit
  temporaries holding results of multiplies.

  Sums and other temporaries need to be "clamped" to a valid signed
  8-bit range:

  ---- Begin code block --------------------------------------

  int8 c(int v)
  {
      return (int8) (v < -128 ? -128 : (v < 128 ? v : 127));
  }

  ---- End code block ----------------------------------------







Bankoski, et al.              Informational                    [Page 87]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  Since pixel values themselves are unsigned 8-bit numbers, we need to
  convert between signed and unsigned values:

  ---- Begin code block --------------------------------------

  /* Convert pixel value (0 <= v <= 255) to an 8-bit signed
     number. */
  int8 u2s(Pixel v) { return (int8) (v - 128);}

  /* Clamp, then convert signed number back to pixel value. */
  Pixel s2u(int v) { return (Pixel) (c(v) + 128);}

  ---- End code block ----------------------------------------

  Filtering is often predicated on absolute-value thresholds.  The
  following function is the equivalent of the standard library function
  abs, whose prototype is found in the standard header file stdlib.h.
  For us, the argument v is always the difference between two pixels
  and lies in the range -255 <= v <= +255.

  ---- Begin code block --------------------------------------

  int abs(int v) { return v < 0?  -v : v;}

  ---- End code block ----------------------------------------

  An actual implementation would of course use inline functions or
  macros to accomplish these trivial procedures (which are used by both
  the normal and simple loop filters).  An optimal implementation would
  probably express them in machine language, perhaps using single
  instruction, multiple data (SIMD) vector instructions.  On many SIMD
  processors, the saturation accomplished by the above clamping
  function is often folded into the arithmetic instructions themselves,
  obviating the explicit step taken here.

  To simplify the specification of relative pixel positions, we use the
  word "before" to mean "immediately above" (for a vertical segment
  straddling a horizontal edge) or "immediately to the left of" (for a
  horizontal segment straddling a vertical edge), and the word "after"
  to mean "immediately below" or "immediately to the right of".

  Given an edge, a segment, and a limit value, the simple loop filter
  computes a value based on the four pixels that straddle the edge (two
  either side).  If that value is below a supplied limit, then, very
  roughly speaking, the two pixel values are brought closer to each
  other, "shaving off" something like a quarter of the difference.  The





Bankoski, et al.              Informational                    [Page 88]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  same procedure is used for all segments straddling any type of edge,
  regardless of the nature (inter-macroblock, inter-subblock, luma, or
  chroma) of the edge; only the limit value depends on the edge type.

  The exact procedure (for a single segment) is as follows; the
  subroutine common_adjust is used by both the simple filter presented
  here and the normal filters discussed in Section 15.3.

  ---- Begin code block --------------------------------------

  int8 common_adjust(
      int use_outer_taps,   /* filter is 2 or 4 taps wide */
      const Pixel *P1,    /* pixel before P0 */
      Pixel *P0,          /* pixel before edge */
      Pixel *Q0,          /* pixel after edge */
      const Pixel *Q1     /* pixel after Q0 */
  ) {
      cint8 p1 = u2s(*P1);   /* retrieve and convert all 4 pixels */
      cint8 p0 = u2s(*P0);
      cint8 q0 = u2s(*Q0);
      cint8 q1 = u2s(*Q1);

      /* Disregarding clamping, when "use_outer_taps" is false,
         "a" is 3*(q0-p0).  Since we are about to divide "a" by
         8, in this case we end up multiplying the edge
         difference by 5/8.

         When "use_outer_taps" is true (as for the simple filter),
         "a" is p1 - 3*p0 + 3*q0 - q1, which can be thought of as
         a refinement of 2*(q0 - p0), and the adjustment is
         something like (q0 - p0)/4. */

      int8 a = c((use_outer_taps? c(p1 - q1) : 0) + 3*(q0 - p0));

      /* b is used to balance the rounding of a/8 in the case where
         the "fractional" part "f" of a/8 is exactly 1/2. */

      cint8 b = (c(a + 3)) >> 3;

      /* Divide a by 8, rounding up when f >= 1/2.
         Although not strictly part of the C language,
         the right shift is assumed to propagate the sign bit. */

      a = c(a + 4) >> 3;

      /* Subtract "a" from q0, "bringing it closer" to p0. */

      *Q0 = s2u(q0 - a);



Bankoski, et al.              Informational                    [Page 89]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      /* Add "a" (with adjustment "b") to p0, "bringing it closer"
         to q0.

         The clamp of "a+b", while present in the reference decoder,
         is superfluous; we have -16 <= a <= 15 at this point. */

      *P0 = s2u(p0 + b);

      return a;
  }

  ---- End code block ----------------------------------------

  ---- Begin code block --------------------------------------

  void simple_segment(
      uint8 edge_limit,   /* do nothing if edge difference
                             exceeds limit */
      const Pixel *P1,    /* pixel before P0 */
      Pixel *P0,          /* pixel before edge */
      Pixel *Q0,          /* pixel after edge */
      const Pixel *Q1     /* pixel after Q0 */
  ) {
      if ((abs(*P0 - *Q0)*2 + abs(*P1 - *Q1)/2) <= edge_limit))
          common_adjust(1, P1, P0, Q0, Q1);   /* use outer taps */
  }

  ---- End code block ----------------------------------------

  We make a couple of remarks about the rounding procedure above.  When
  b is zero (that is, when the "fractional part" of a is not 1/2), we
  are (except for clamping) adding the same number to p0 as we are
  subtracting from q0.  This preserves the average value of p0 and q0,
  but the resulting difference between p0 and q0 is always even; in
  particular, the smallest non-zero gradation +-1 is not possible here.

  When b is one, the value we add to p0 (again except for clamping) is
  one less than the value we are subtracting from q0.  In this case,
  the resulting difference is always odd (and the small gradation +-1
  is possible), but the average value is reduced by 1/2, yielding, for
  instance, a very slight darkening in the luma plane.  (In the very
  unlikely event of appreciable darkening after a large number of
  interframes, a compressor would of course eventually compensate for
  this in the selection of predictor and/or residue.)







Bankoski, et al.              Informational                    [Page 90]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  The derivation of the edge_limit value used above, which depends on
  the loop_filter_level and sharpness_level, as well as the type of
  edge being processed, will be taken up after we describe the normal
  loop filtering algorithm below.

15.3.  Normal Filter

  The normal loop filter is a refinement of the simple loop filter; all
  of the general discussion above applies here as well.  In particular,
  the functions c, u2s, s2u, abs, and common_adjust are used by both
  the normal and simple filters.

  As mentioned above, the normal algorithms for inter-macroblock and
  inter-subblock edges differ.  Nonetheless, they have a great deal in
  common: They use similar threshold algorithms to disable the filter
  and to detect high internal edge variance (which influences the
  filtering algorithm).  Both algorithms also use, at least
  conditionally, the simple filter adjustment procedure described
  above.

  The common thresholding algorithms are as follows.

  ---- Begin code block --------------------------------------

  /* All functions take (among other things) a segment (of length
     at most 4 + 4 = 8) symmetrically straddling an edge.

     The pixel values (or pointers) are always given in order,
     from the "beforemost" to the "aftermost".  So, for a
     horizontal edge (written "|"), an 8-pixel segment would be
     ordered p3 p2 p1 p0 | q0 q1 q2 q3. */

  /* Filtering is disabled if the difference between any two
     adjacent "interior" pixels in the 8-pixel segment exceeds
     the relevant threshold (I).  A more complex thresholding
     calculation is done for the group of four pixels that
     straddle the edge, in line with the calculation in
     simple_segment() above. */













Bankoski, et al.              Informational                    [Page 91]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  int filter_yes(
      uint8 I,        /* limit on interior differences */
      uint8 E,        /* limit at the edge */

      cint8 p3, cint8 p2, cint8 p1, cint8 p0, /* pixels before
                                                 edge */
      cint8 q0, cint8 q1, cint8 q2, cint8 q3  /* pixels after
                                                 edge */
  ) {
      return  (abs(p0 - q0)*2 + abs(p1 - q1)/2) <= E
          &&  abs(p3 - p2) <= I  &&  abs(p2 - p1) <= I  &&
            abs(p1 - p0) <= I
          &&  abs(q3 - q2) <= I  &&  abs(q2 - q1) <= I  &&
            abs(q1 - q0) <= I;
  }

  ---- End code block ----------------------------------------

  ---- Begin code block --------------------------------------

  /* Filtering is altered if (at least) one of the differences
     on either side of the edge exceeds a threshold (we have
     "high edge variance"). */

  int hev(
      uint8 threshold,
      cint8 p1, cint8 p0, /* pixels before edge */
      cint8 q0, cint8 q1  /* pixels after edge */
  ) {
      return abs(p1 - p0) > threshold  ||  abs(q1 - q0) > threshold;
  }

  ---- End code block ----------------------------------------

  The subblock filter is a variant of the simple filter.  In fact, if
  we have high edge variance, the adjustment is exactly as for the
  simple filter.  Otherwise, the simple adjustment (without outer taps)
  is applied, and the two pixels one step in from the edge pixels are
  adjusted by roughly half the amount by which the two edge pixels are
  adjusted; since the edge adjustment here is essentially 3/8 the edge
  difference, the inner adjustment is approximately 3/16 the edge
  difference.









Bankoski, et al.              Informational                    [Page 92]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  ---- Begin code block --------------------------------------

  void subblock_filter(
      uint8 hev_threshold,     /* detect high edge variance */
      uint8 interior_limit,    /* possibly disable filter */
      uint8 edge_limit,
      cint8 *P3, cint8 *P2, int8 *P1, int8 *P0,   /* pixels before
                                                     edge */
      int8 *Q0, int8 *Q1, cint8 *Q2, cint8 *Q3    /* pixels after
                                                     edge */
  ) {
      cint8 p3 = u2s(*P3), p2 = u2s(*P2), p1 = u2s(*P1),
        p0 = u2s(*P0);
      cint8 q0 = u2s(*Q0), q1 = u2s(*Q1), q2 = u2s(*Q2),
        q3 = u2s(*Q3);

      if (filter_yes(interior_limit, edge_limit, q3, q2, q1, q0,
        p0, p1, p2, p3))
      {
          const int hv = hev(hev_threshold, p1, p0, q0, q1);

          cint8 a = (common_adjust(hv, P1, P0, Q0, Q1) + 1) >> 1;

          if (!hv) {
              *Q1 = s2u(q1 - a);
              *P1 = s2u(p1 + a);
          }
      }
  }

  ---- End code block ----------------------------------------

  The inter-macroblock filter has potentially wider scope.  If the edge
  variance is high, it performs the simple adjustment (using the outer
  taps, just like the simple filter and the corresponding case of the
  normal subblock filter).  If the edge variance is low, we begin with
  the same basic filter calculation and apply multiples of it to pixel
  pairs symmetric about the edge; the magnitude of adjustment decays as
  we move away from the edge and six of the pixels in the segment are
  affected.











Bankoski, et al.              Informational                    [Page 93]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  ---- Begin code block --------------------------------------

  void MBfilter(
      uint8 hev_threshold,     /* detect high edge variance */
      uint8 interior_limit,    /* possibly disable filter */
      uint8 edge_limit,
      cint8 *P3, int8 *P2, int8 *P1, int8 *P0,  /* pixels before
                                                   edge */
      int8 *Q0, int8 *Q1, int8 *Q2, cint8 *Q3   /* pixels after
                                                   edge */
  ) {
      cint8 p3 = u2s(*P3), p2 = u2s(*P2), p1 = u2s(*P1),
        p0 = u2s(*P0);
      cint8 q0 = u2s(*Q0), q1 = u2s(*Q1), q2 = u2s(*Q2),
        q3 = u2s(*Q3);

      if (filter_yes(interior_limit, edge_limit, q3, q2, q1, q0,
        p0, p1, p2, p3))
      {
          if (!hev(hev_threshold, p1, p0, q0, q1))
          {
              /* Same as the initial calculation in "common_adjust",
                 w is something like twice the edge difference */

              const int8 w = c(c(p1 - q1) + 3*(q0 - p0));

              /* 9/64 is approximately 9/63 = 1/7, and 1<<7 = 128 =
                 2*64.  So this a, used to adjust the pixels adjacent
                 to the edge, is something like 3/7 the edge
                 difference. */

              int8 a = c((27*w + 63) >> 7);

              *Q0 = s2u(q0 - a);  *P0 = s2u(p0 + a);

              /* Next two are adjusted by 2/7 the edge difference */

              a = c((18*w + 63) >> 7);

              *Q1 = s2u(q1 - a);  *P1 = s2u(p1 + a);

              /* Last two are adjusted by 1/7 the edge difference */

              a = c((9*w + 63) >> 7);

              *Q2 = s2u(q2 - a);  *P2 = s2u(p2 + a);





Bankoski, et al.              Informational                    [Page 94]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


          } else                      /* if hev, do simple filter */
              common_adjust(1, P1, P0, Q0, Q1);   /* using outer
                                                      taps */
      }
  }

  ---- End code block ----------------------------------------

15.4.  Calculation of Control Parameters

  We conclude the discussion of loop filtering by showing how the
  thresholds supplied to the procedures above are derived from the two
  control parameters sharpness_level (an unsigned 3-bit number having
  maximum value 7) and loop_filter_level (an unsigned 6-bit number
  having maximum value 63).

  While the sharpness_level is constant over the frame, individual
  macroblocks may override the loop_filter_level with one of four
  possibilities supplied in the frame header (as described in
  Section 10).

  Both the simple and normal filters disable filtering if a value
  derived from the four pixels that straddle the edge (2 either side)
  exceeds a threshold / limit value.

  ---- Begin code block --------------------------------------

  /* Luma and Chroma use the same inter-macroblock edge limit */
  uint8 mbedge_limit = ((loop_filter_level + 2) * 2) +
    interior_limit;

  /* Luma and Chroma use the same inter-subblock edge limit */
  uint8 sub_bedge_limit = (loop_filter_level * 2) + interior_limit;

  ---- End code block ----------------------------------------

  The remaining thresholds are used only by the normal filters.  The
  filter-disabling interior difference limit is the same for all edges
  (luma, chroma, inter-subblock, inter-macroblock) and is given by the
  following.











Bankoski, et al.              Informational                    [Page 95]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  ---- Begin code block --------------------------------------

  uint8 interior_limit = loop_filter_level;

  if (sharpness_level)
  {
      interior_limit  >>=  sharpness_level > 4 ?  2 : 1;
      if (interior_limit > 9 - sharpness_level)
          interior_limit = 9 - sharpness_level;
  }
  if (!interior_limit)
      interior_limit = 1;

  ---- End code block ----------------------------------------

  Finally, we give the derivation of the high edge-variance threshold,
  which is also the same for all edge types.

  ---- Begin code block --------------------------------------

  uint8 hev_threshold = 0;

  if (we_are_decoding_akey_frame)   /* current frame is a key frame */
  {
      if (loop_filter_level >= 40)
          hev_threshold = 2;
      else if (loop_filter_level >= 15)
          hev_threshold = 1;
  }
  else                            /* current frame is an interframe */
  {
      if (loop_filter_level >= 40)
          hev_threshold = 3;
      else if (loop_filter_level >= 20)
          hev_threshold = 2;
      else if (loop_filter_level >= 15)
          hev_threshold = 1;
  }

  ---- End code block ----------------------------------------











Bankoski, et al.              Informational                    [Page 96]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


16.  Interframe Macroblock Prediction Records

  We describe the layout and semantics of the prediction records for
  macroblocks in an interframe.

  After the feature specification (which is described in Section 10 and
  is identical for intraframes and interframes), there comes a
  Bool(prob_intra), which indicates inter-prediction (i.e., prediction
  from prior frames) when true and intra-prediction (i.e., prediction
  from already-coded portions of the current frame) when false.  The
  zero-probability prob_intra is set by field J of the frame header.

16.1.  Intra-Predicted Macroblocks

  For intra-prediction, the layout of the prediction data is
  essentially the same as the layout for key frames, although the
  contexts used by the decoding process are slightly different.

  As discussed in Section 8, the "outer" Y mode here uses a different
  tree from that used in key frames, repeated here for convenience.

  ---- Begin code block --------------------------------------

  const tree_index ymode_tree [2 * (num_ymodes - 1)] =
  {
   -DC_PRED, 2,           /* root: DC_PRED = "0", "1" subtree */
    4, 6,                 /* "1" subtree has 2 descendant subtrees */
     -V_PRED, -H_PRED,    /* "10" subtree:  V_PRED = "100",
                             H_PRED = "101" */
     -TM_PRED, -B_PRED    /* "11" subtree:  TM_PRED = "110",
                             B_PRED = "111" */
  };

  ---- End code block ----------------------------------------

  The probability table used to decode this tree is variable.  As
  described in Section 11, it (along with the similarly treated UV
  table) can be updated by field J of the frame header.  Similar to the
  coefficient-decoding probabilities, such updates are cumulative and
  affect all ensuing frames until the next key frame or explicit
  update.  The default probabilities for the Y and UV tables are:

  ---- Begin code block --------------------------------------

  Prob ymode_prob [num_ymodes - 1] = { 112, 86, 140, 37};
  Prob uv_mode_prob [num_uv_modes - 1] = { 162, 101, 204};

  ---- End code block ----------------------------------------



Bankoski, et al.              Informational                    [Page 97]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  These defaults must be restored after detection of a key frame.

  Just as for key frames, if the Y mode is B_PRED, there next comes an
  encoding of the intra_bpred mode used by each of the sixteen Y
  subblocks.  These encodings use the same tree as does that for key
  frames but, in place of the contexts used in key frames, these
  encodings use the single fixed probability table.

  ---- Begin code block --------------------------------------

  const Prob bmode_prob [num_intra_bmodes - 1] = {
      120, 90, 79, 133, 87, 85, 80, 111, 151
  };

  ---- End code block ----------------------------------------

  Last comes the chroma mode, again coded using the same tree as that
  used for key frames, this time using the dynamic uv_mode_prob table
  described above.

  The calculation of the intra-prediction buffer is identical to that
  described for key frames in Section 12.

16.2.  Inter-Predicted Macroblocks

  Otherwise (when the above bool is true), we are using
  inter-prediction (which of course only happens for interframes), to
  which we now restrict our attention.

  The next datum is then another bool, B(prob_last), selecting the
  reference frame.  If 0, the reference frame is the previous frame
  (the last frame); if 1, another bool (prob_gf) selects the reference
  frame between the golden frame (0) and the altref frame (1).  The
  probabilities prob_last and prob_gf are set in field J of the frame
  header.

  Together with setting the reference frame, the purpose of inter-mode
  decoding is to set a motion vector for each of the sixteen Y
  subblocks of the current macroblock.  These settings then define the
  calculation of the inter-prediction buffer (detailed in Section 18).
  While the net effect of inter-mode decoding is straightforward, the
  implementation is somewhat complex; the (lossless) compression
  achieved by this method justifies the complexity.








Bankoski, et al.              Informational                    [Page 98]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  After the reference frame selector comes the mode (or motion vector
  reference) applied to the macroblock as a whole, coded using the
  following enumeration and tree.  Setting mv_nearest = num_ymodes is a
  convenience that allows a single variable to unambiguously hold an
  inter- or intra-prediction mode.

  ---- Begin code block --------------------------------------

  typedef enum
  {
      mv_nearest = num_ymodes, /* use "nearest" motion vector
                                  for entire MB */
      mv_near,                 /* use "next nearest" "" */
      mv_zero,                 /* use zero "" */
      mv_new,                  /* use explicit offset from
                                  implicit "" */
      mv_split,                /* use multiple motion vectors */

      num_mv_refs = mv_split + 1 - mv_nearest
  }
  mv_ref;

  const tree_index mv_ref_tree [2 * (num_mv_refs - 1)] =
  {
   -mv_zero, 2,                /* zero = "0" */
    -mv_nearest, 4,            /* nearest = "10" */
     -mv_near, 6,              /* near = "110" */
       -mv_new, -mv_split      /* new = "1110", split = "1111" */
  };

  ---- End code block ----------------------------------------

16.3.  Mode and Motion Vector Contexts

  The probability table used to decode the mv_ref, along with three
  reference motion vectors used by the selected mode, is calculated via
  a survey of the already-decoded motion vectors in (up to) 3 nearby
  macroblocks.

  The algorithm generates a sorted list of distinct motion vectors
  adjacent to the search site.  The best_mv is the vector with the
  highest score.  The mv_nearest is the non-zero vector with the
  highest score.  The mv_near is the non-zero vector with the next
  highest score.  The number of motion vectors coded using the SPLITMV
  mode is scored using the same weighting and is returned with the
  scores of the best, nearest, and near vectors.





Bankoski, et al.              Informational                    [Page 99]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  The three adjacent macroblocks above, left, and above-left are
  considered in order.  If the macroblock is intra-coded, no action is
  taken.  Otherwise, the motion vector is compared to other previously
  found motion vectors to determine if it has been seen before, and if
  so contributes its weight to that vector; otherwise, it enters a new
  vector in the list.  The above and left vectors have twice the weight
  of the above-left vector.

  As is the case with many contexts used by VP8, it is possible for
  macroblocks near the top or left edges of the image to reference
  blocks that are outside the visible image.  VP8 provides a border of
  1 macroblock filled with 0x0 motion vectors left of the left edge,
  and a border filled with 0,0 motion vectors of 1 macroblocks above
  the top edge.

  Much of the process is more easily described in C than in English.
  The reference code for this can be found in modemv.c (Section 20.11).
  The calculation of reference vectors, probability table, and,
  finally, the inter-prediction mode itself is implemented as follows.

  ---- Begin code block --------------------------------------

  typedef union
  {
      unsigned int as_int;
      MV           as_mv;
  } int_mv;        /* facilitates rapid equality tests */


  static void mv_bias(MODE_INFO *x,int refframe, int_mv *mvp,
    int * ref_frame_sign_bias)
  {
      MV xmv;
      xmv = x->mbmi.mv.as_mv;
      if ( ref_frame_sign_bias[x->mbmi.ref_frame] !=
        ref_frame_sign_bias[refframe] )
      {
          xmv.row*=-1;
          xmv.col*=-1;
      }
      mvp->as_mv = xmv;
  }

  ---- End code block ----------------------------------------







Bankoski, et al.              Informational                   [Page 100]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  ---- Begin code block --------------------------------------

  void vp8_clamp_mv(MV *mv, const MACROBLOCKD *xd)
  {
      if ( mv->col < (xd->mb_to_left_edge - LEFT_TOP_MARGIN) )
          mv->col = xd->mb_to_left_edge - LEFT_TOP_MARGIN;
      else if ( mv->col > xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN )
          mv->col = xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN;

      if ( mv->row < (xd->mb_to_top_edge - LEFT_TOP_MARGIN) )
          mv->row = xd->mb_to_top_edge - LEFT_TOP_MARGIN;
      else if ( mv->row > xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN )
          mv->row = xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN;
  }

  ---- End code block ----------------------------------------

  In the function vp8_find_near_mvs(), the vectors "nearest" and "near"
  are used by the corresponding modes.

  The vector best_mv is used as a base for explicitly coded motion
  vectors.

  The first three entries in the return value cnt are (in order)
  weighted census values for "zero", "nearest", and "near" vectors.
  The final value indicates the extent to which SPLITMV was used by the
  neighboring macroblocks.  The largest possible "weight" value in each
  case is 5.

  ---- Begin code block --------------------------------------

  void vp8_find_near_mvs
  (
      MACROBLOCKD *xd,
      const MODE_INFO *here,
      MV *nearest,
      MV *near,
      MV *best_mv,
      int cnt[4],
      int refframe,
      int * ref_frame_sign_bias
  )









Bankoski, et al.              Informational                   [Page 101]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  {
      const MODE_INFO *above = here - xd->mode_info_stride;
      const MODE_INFO *left = here - 1;
      const MODE_INFO *aboveleft = above - 1;
      int_mv            near_mvs[4];
      int_mv           *mv = near_mvs;
      int             *cntx = cnt;
      enum {CNT_ZERO, CNT_NEAREST, CNT_NEAR, CNT_SPLITMV};

      /* Zero accumulators */
      mv[0].as_int = mv[1].as_int = mv[2].as_int = 0;
      cnt[0] = cnt[1] = cnt[2] = cnt[3] = 0;

      /* Process above */
      if (above->mbmi.ref_frame != INTRA_FRAME) {
          if (above->mbmi.mv.as_int) {
              (++mv)->as_int = above->mbmi.mv.as_int;
              mv_bias(above, refframe, mv, ref_frame_sign_bias);
              ++cntx;
          }
          *cntx += 2;
      }

      /* Process left */
      if (left->mbmi.ref_frame != INTRA_FRAME) {
          if (left->mbmi.mv.as_int) {
              int_mv this_mv;

              this_mv.as_int = left->mbmi.mv.as_int;
              mv_bias(left, refframe, &this_mv, ref_frame_sign_bias);

              if (this_mv.as_int != mv->as_int) {
                  (++mv)->as_int = this_mv.as_int;
                  ++cntx;
              }
              *cntx += 2;
          } else
              cnt[CNT_ZERO] += 2;
      }

      /* Process above left */
      if (aboveleft->mbmi.ref_frame != INTRA_FRAME) {
          if (aboveleft->mbmi.mv.as_int) {
              int_mv this_mv;

              this_mv.as_int = aboveleft->mbmi.mv.as_int;
              mv_bias(aboveleft, refframe, &this_mv,
                ref_frame_sign_bias);



Bankoski, et al.              Informational                   [Page 102]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


              if (this_mv.as_int != mv->as_int) {
                  (++mv)->as_int = this_mv.as_int;
                  ++cntx;
              }
              *cntx += 1;
          } else
              cnt[CNT_ZERO] += 1;
      }

      /* If we have three distinct MVs ... */
      if (cnt[CNT_SPLITMV]) {
          /* See if above-left MV can be merged with NEAREST */
          if (mv->as_int == near_mvs[CNT_NEAREST].as_int)
              cnt[CNT_NEAREST] += 1;
      }

      cnt[CNT_SPLITMV] = ((above->mbmi.mode == SPLITMV)
                           + (left->mbmi.mode == SPLITMV)) * 2
                          + (aboveleft->mbmi.mode == SPLITMV);

      /* Swap near and nearest if necessary */
      if (cnt[CNT_NEAR] > cnt[CNT_NEAREST]) {
          int tmp;
          tmp = cnt[CNT_NEAREST];
          cnt[CNT_NEAREST] = cnt[CNT_NEAR];
          cnt[CNT_NEAR] = tmp;
          tmp = near_mvs[CNT_NEAREST].as_int;
          near_mvs[CNT_NEAREST].as_int = near_mvs[CNT_NEAR].as_int;
          near_mvs[CNT_NEAR].as_int = tmp;
      }

      /* Use near_mvs[0] to store the "best" MV */
      if (cnt[CNT_NEAREST] >= cnt[CNT_ZERO])
          near_mvs[CNT_ZERO] = near_mvs[CNT_NEAREST];

      /* Set up return values */
      *best_mv = near_mvs[0].as_mv;
      *nearest = near_mvs[CNT_NEAREST].as_mv;
      *near = near_mvs[CNT_NEAR].as_mv;

      vp8_clamp_mv(nearest, xd);
      vp8_clamp_mv(near, xd);
      vp8_clamp_mv(best_mv, xd); //TODO: Move this up before
                                   the copy
  }

  ---- End code block ----------------------------------------




Bankoski, et al.              Informational                   [Page 103]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  The mv_ref probability table (mv_ref_p) is then derived from the
  census as follows.

  ---- Begin code block --------------------------------------

  const int vp8_mode_contexts[6][4] =
  {
    {   7,     1,     1,   143,   },
    {  14,    18,    14,   107,   },
    { 135,    64,    57,    68,   },
    {  60,    56,   128,    65,   },
    { 159,   134,   128,    34,   },
    { 234,   188,   128,    28,   },
  }

  ---- End code block ----------------------------------------

  ---- Begin code block --------------------------------------

  vp8_prob *vp8_mv_ref_probs(vp8_prob mv_ref_p[VP8_MVREFS-1],
    int cnt[4])
  {
      mv_ref_p[0] = vp8_mode_contexts [cnt[0]] [0];
      mv_ref_p[1] = vp8_mode_contexts [cnt[1]] [1];
      mv_ref_p[2] = vp8_mode_contexts [cnt[2]] [2];
      mv_ref_p[3] = vp8_mode_contexts [cnt[3]] [3];
      return p;
  }

  ---- End code block ----------------------------------------

  Once mv_ref_p is established, the mv_ref is decoded as usual.

  ---- Begin code block --------------------------------------

    mvr = (mv_ref) treed_read(d, mv_ref_tree, mv_ref_p);

  ---- End code block ----------------------------------------

  For the first four inter-coding modes, the same motion vector is used
  for all the Y subblocks.  The first three modes use an implicit
  motion vector.









Bankoski, et al.              Informational                   [Page 104]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  +------------+------------------------------------------------------+
  | Mode       | Instruction                                          |
  +------------+------------------------------------------------------+
  | mv_nearest | Use the nearest vector returned by                   |
  |            | vp8_find_near_mvs.                                   |
  |            |                                                      |
  | mv_near    | Use the near vector returned by vp8_find_near_mvs.   |
  |            |                                                      |
  | mv_zero    | Use a zero vector; that is, predict the current      |
  |            | macroblock from the corresponding macroblock in the  |
  |            | prediction frame.                                    |
  |            |                                                      |
  | NEWMV      | This mode is followed by an explicitly coded motion  |
  |            | vector (the format of which is described in the next |
  |            | section) that is added (component-wise) to the       |
  |            | best_mv reference vector returned by find_near_mvs   |
  |            | and applied to all 16 subblocks.                     |
  +------------+------------------------------------------------------+

16.4.  Split Prediction

  The remaining mode (SPLITMV) causes multiple vectors to be applied to
  the Y subblocks.  It is immediately followed by a partition
  specification that determines how many vectors will be specified and
  how they will be assigned to the subblocks.  The possible partitions,
  with indicated subdivisions and coding tree, are as follows.

  ---- Begin code block --------------------------------------

  typedef enum
  {
      mv_top_bottom,   /* two pieces {0...7} and {8...15} */
      mv_left_right,   /* {0,1,4,5,8,9,12,13} and
                          {2,3,6,7,10,11,14,15} */
      mv_quarters,    /* {0,1,4,5}, {2,3,6,7}, {8,9,12,13},
                         {10,11,14,15} */
      MV_16,          /* every subblock gets its own vector
                         {0} ... {15} */

      mv_num_partitions
  }
  MVpartition;









Bankoski, et al.              Informational                   [Page 105]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  const tree_index mvpartition_tree [2 * (mvnum_partition - 1)] =
  {
   -MV_16, 2,                         /* MV_16 = "0" */
    -mv_quarters, 4,                  /* mv_quarters = "10" */
     -mv_top_bottom, -mv_left_right   /* top_bottom = "110",
                                         left_right = "111" */
  };

  ---- End code block ----------------------------------------

  The partition is decoded using a fixed, constant probability table:

  ---- Begin code block --------------------------------------

  const Prob mvpartition_probs [mvnum_partition - 1] =
    { 110, 111, 150};
  part = (MVpartition) treed_read(d, mvpartition_tree,
    mvpartition_probs);

  ---- End code block ----------------------------------------

  After the partition come two (for mv_top_bottom or mv_left_right),
  four (for mv_quarters), or sixteen (for MV_16) subblock
  inter-prediction modes.  These modes occur in the order indicated by
  the partition layouts (given as comments to the MVpartition enum) and
  are coded as follows.  (As was done for the macroblock-level modes,
  we offset the mode enumeration so that a single variable may
  unambiguously hold either an intra- or inter-subblock mode.)

  Prior to decoding each subblock, a decoding tree context is chosen as
  illustrated in the code snippet below.  The context is based on the
  immediate left and above subblock neighbors, and whether they are
  equal, are zero, or a combination of those.

  ---- Begin code block --------------------------------------

  typedef enum
  {
      LEFT4x4 = num_intra_bmodes,   /* use already-coded MV to
                                       my left */
      ABOVE4x4,             /* use already-coded MV above me */
      ZERO4x4,              /* use zero MV */
      NEW4x4,               /* explicit offset from "best" */

      num_sub_mv_ref
  };
  sub_mv_ref;




Bankoski, et al.              Informational                   [Page 106]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  const tree_index sub_mv_ref_tree [2 * (num_sub_mv_ref - 1)] =
  {
   -LEFT4X4, 2,           /* LEFT = "0" */
    -ABOVE4X4, 4,         /* ABOVE = "10" */
     -ZERO4X4, -NEW4X4    /* ZERO = "110", NEW = "111" */
  };

  /* Choose correct decoding tree context
   * Function parameters are left subblock neighbor MV and above
   * subblock neighbor MV */
  int vp8_mvCont(MV *l, MV*a)
  {
      int lez = (l->row == 0 && l->col == 0);   /* left neighbor
                                                   is zero */
      int aez = (a->row == 0 && a->col == 0);   /* above neighbor
                                                   is zero */
      int lea = (l->row == a->row && l->col == a->col);  /* left
                               neighbor equals above neighbor */

      if (lea && lez)
          return SUBMVREF_LEFT_ABOVE_ZED; /* =4 */

      if (lea)
          return SUBMVREF_LEFT_ABOVE_SAME; /* =3 */

      if (aez)
          return SUBMVREF_ABOVE_ZED; /* =2 */

      if (lez)
          return SUBMVREF_LEFT_ZED; /* =1*/

      return SUBMVREF_NORMAL; /* =0 */
  }

  /* Constant probabilities and decoding procedure. */

  const Prob sub_mv_ref_prob [5][num_sub_mv_ref - 1] = {
      { 147,136,18 },
      { 106,145,1  },
      { 179,121,1  },
      { 223,1  ,34 },
      { 208,1  ,1  }
  };

      sub_ref = (sub_mv_ref) treed_read(d, sub_mv_ref_tree,
        sub_mv_ref_prob[context]);

  ---- End code block ----------------------------------------



Bankoski, et al.              Informational                   [Page 107]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  The first two sub-prediction modes simply copy the already-coded
  motion vectors used by the blocks above and to the left of the
  subblock at the upper left corner of the current subset (i.e.,
  collection of subblocks being predicted).  These prediction blocks
  need not lie in the current macroblock and, if the current subset
  lies at the top or left edges of the frame, need not lie in the
  frame.  In this latter case, their motion vectors are taken to be
  zero, as are subblock motion vectors within an intra-predicted
  macroblock.  Also, to ensure the correctness of prediction within
  this macroblock, all subblocks lying in an already-decoded subset of
  the current macroblock must have their motion vectors set.

  ZERO4x4 uses a zero motion vector and predicts the current subset
  using the corresponding subset from the prediction frame.

  NEW4x4 is exactly like NEWMV except that NEW4x4 is applied only to
  the current subset.  It is followed by a two-dimensional motion
  vector offset (described in the next section) that is added to the
  best vector returned by the earlier call to find_near_mvs to form the
  motion vector in effect for the subset.

  Parsing of both inter-prediction modes and motion vectors (described
  next) can be found in the reference decoder file modemv.c
  (Section 20.11).

17.  Motion Vector Decoding

  As discussed above, motion vectors appear in two places in the VP8
  datastream: applied to whole macroblocks in NEWMV mode and applied to
  subsets of macroblocks in NEW4x4 mode.  The format of the vectors is
  identical in both cases.

  Each vector has two pieces: a vertical component (row) followed by a
  horizontal component (column).  The row and column use separate
  coding probabilities but are otherwise represented identically.

17.1.  Coding of Each Component

  Each component is a signed integer V representing a vertical or
  horizontal luma displacement of V quarter-pixels (and a chroma
  displacement of V eighth-pixels).  The absolute value of V, if
  non-zero, is followed by a boolean sign.  V may take any value
  between -1023 and +1023, inclusive.








Bankoski, et al.              Informational                   [Page 108]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  The absolute value A is coded in one of two different ways according
  to its size.  For 0 <= A <= 7, A is tree-coded, and for 8 <= A <=
  1023, the bits in the binary expansion of A are coded using
  independent boolean probabilities.  The coding of A begins with a
  bool specifying which range is in effect.

  Decoding a motion vector component then requires a 19-position
  probability table, whose offsets, along with the procedure used to
  decode components, are as follows:

  ---- Begin code block --------------------------------------

  typedef enum
  {
      mvpis_short,         /* short (<= 7) vs long (>= 8) */
      MVPsign,             /* sign for non-zero */
      MVPshort,            /* 8 short values = 7-position tree */

      MVPbits = MVPshort + 7,      /* 8 long value bits
                                      w/independent probs */

      MVPcount = MVPbits + 10      /* 19 probabilities in total */
  }
  MVPindices;

  typedef Prob MV_CONTEXT [MVPcount];    /* Decoding spec for
                                            a single component */

  /* Tree used for small absolute values (has expected
     correspondence). */

  const tree_index small_mvtree [2 * (8 - 1)] =
  {
   2, 8,          /* "0" subtree, "1" subtree */
    4, 6,         /* "00" subtree, "01" subtree */
     -0, -1,      /* 0 = "000", 1 = "001" */
     -2, -3,      /* 2 = "010", 3 = "011" */
    10, 12,       /* "10" subtree, "11" subtree */
     -4, -5,      /* 4 = "100", 5 = "101" */
     -6, -7       /* 6 = "110", 7 = "111" */
  };

  /* Read MV component at current decoder position, using
     supplied probs. */

  int read_mvcomponent(bool_decoder *d, const MV_CONTEXT *mvc)
  {
      const Prob * const p = (const Prob *) mvc;



Bankoski, et al.              Informational                   [Page 109]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      int A = 0;

      if (read_bool(d, p [mvpis_short]))    /* 8 <= A <= 1023 */
      {
          /* Read bits 0, 1, 2 */

          int i = 0;
          do { A += read_bool(d, p [MVPbits + i]) << i;}
            while (++i < 3);

          /* Read bits 9, 8, 7, 6, 5, 4 */

          i = 9;
          do { A += read_bool(d, p [MVPbits + i]) << i;}
            while (--i > 3);

          /* We know that A >= 8 because it is coded long,
             so if A <= 15, bit 3 is one and is not
             explicitly coded. */

          if (!(A & 0xfff0)  ||  read_bool(d, p [MVPbits + 3]))
              A += 8;
      }
      else    /* 0 <= A <= 7 */
          A = treed_read(d, small_mvtree, p + MVPshort);

      return A && read_bool(r, p [MVPsign]) ?  -A : A;
  }

  ---- End code block ----------------------------------------

17.2.  Probability Updates

  The decoder should maintain an array of two MV_CONTEXTs for decoding
  row and column components, respectively.  These MV_CONTEXTs should be
  set to their defaults every key frame.  Each individual probability
  may be updated every interframe (by field J of the frame header)
  using a constant table of update probabilities.  Each optional update
  is of the form B?  P(7), that is, a bool followed by a 7-bit
  probability specification if true.

  As with other dynamic probabilities used by VP8, the updates remain
  in effect until the next key frame or until replaced via another
  update.







Bankoski, et al.              Informational                   [Page 110]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  In detail, the probabilities should then be managed as follows.

  ---- Begin code block --------------------------------------

  /* Never-changing table of update probabilities for each
     individual probability used in decoding motion vectors. */

  const MV_CONTEXT vp8_mv_update_probs[2] =
  {
    {
      237,
      246,
      253, 253, 254, 254, 254, 254, 254,
      254, 254, 254, 254, 254, 250, 250, 252, 254, 254
    },
    {
      231,
      243,
      245, 253, 254, 254, 254, 254, 254,
      254, 254, 254, 254, 254, 251, 251, 254, 254, 254
    }
  };

  /* Default MV decoding probabilities. */

  const MV_CONTEXT default_mv_context[2] =
  {
    {                       // row
      162,                    // is short
      128,                    // sign
        225, 146, 172, 147, 214,  39, 156,      // short tree
      128, 129, 132,  75, 145, 178, 206, 239, 254, 254 // long bits
    },

    {                       // same for column
      164,                    // is short
      128,
      204, 170, 119, 235, 140, 230, 228,
      128, 130, 130,  74, 148, 180, 203, 236, 254, 254 // long bits

    }
  };

  /* Current MV decoding probabilities, set to above defaults
     every key frame. */

  MV_CONTEXT mvc [2];     /* always row, then column */




Bankoski, et al.              Informational                   [Page 111]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  /* Procedure for decoding a complete motion vector. */

  typedef struct { int16 row, col;}  MV;  /* as in previous section */

  MV read_mv(bool_decoder *d)
  {
      MV v;
      v.row = (int16) read_mvcomponent(d, mvc);
      v.col = (int16) read_mvcomponent(d, mvc + 1);
      return v;
  }

  /* Procedure for updating MV decoding probabilities, called
     every interframe with "d" at the appropriate position in
     the frame header. */

  void update_mvcontexts(bool_decoder *d)
  {
      int i = 0;
      do {                      /* component = row, then column */
          const Prob *up = mv_update_probs[i];    /* update probs
                                                     for component */
          Prob *p = mvc[i];                  /* start decode tbl "" */
          Prob * const pstop = p + MVPcount; /* end decode tbl "" */
          do {
              if (read_bool(d, *up++))     /* update this position */
              {
                  const Prob x = read_literal(d, 7);

                  *p = x? x<<1 : 1;
              }
          } while (++p < pstop);              /* next position */
      } while (++i < 2);                      /* next component */
  }

  ---- End code block ----------------------------------------

  This completes the description of the motion-vector decoding
  procedure and, with it, the procedure for decoding interframe
  macroblock prediction records.











Bankoski, et al.              Informational                   [Page 112]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


18.  Interframe Prediction

  Given an inter-prediction specification for the current macroblock,
  that is, a reference frame together with a motion vector for each of
  the sixteen Y subblocks, we describe the calculation of the
  prediction buffer for the macroblock.  Frame reconstruction is then
  completed via the previously described processes of residue summation
  (Section 14) and loop filtering (Section 15).

  The management of inter-predicted subblocks and sub-pixel
  interpolation may be found in the reference decoder file predict.c
  (Section 20.14).

18.1.  Bounds on, and Adjustment of, Motion Vectors

  Since each motion vector is differentially encoded from a neighboring
  block or macroblock and the only clamp is to ensure that the
  referenced motion vector represents a valid location inside a
  reference frame buffer, it is technically possible within the VP8
  format for a block or macroblock to have arbitrarily large motion
  vectors, up to the size of the input image plus the extended border
  areas.  For practical reasons, VP8 imposes a motion vector size range
  limit of -4096 to 4095 full pixels, regardless of image size (VP8
  defines 14 raw bits for width and height; 16383x16383 is the maximum
  possible image size).  Bitstream-compliant encoders and decoders
  shall enforce this limit.

  Because the motion vectors applied to the chroma subblocks have
  1/8-pixel resolution, the synthetic pixel calculation, outlined in
  Section 5 and detailed below, uses this resolution for the luma
  subblocks as well.  In accordance, the stored luma motion vectors are
  all doubled, each component of each luma vector becoming an even
  integer in the range -2046 to +2046, inclusive.

  The vector applied to each chroma subblock is calculated by averaging
  the vectors for the 4 luma subblocks occupying the same visible area
  as the chroma subblock in the usual correspondence; that is, the
  vector for U and V block 0 is the average of the vectors for the Y
  subblocks { 0, 1, 4, 5}, chroma block 1 corresponds to Y blocks { 2,
  3, 6, 7}, chroma block 2 to Y blocks { 8, 9, 12, 13}, and chroma
  block 3 to Y blocks { 10, 11, 14, 15}.










Bankoski, et al.              Informational                   [Page 113]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  In detail, each of the two components of the vectors for each of the
  chroma subblocks is calculated from the corresponding luma vector
  components as follows:

  ---- Begin code block --------------------------------------

  int avg(int c1, int c2, int c3, int c4)
  {
      int s = c1 + c2 + c3 + c4;

      /* The shift divides by 8 (not 4) because chroma pixels
         have twice the diameter of luma pixels.  The handling
         of negative motion vector components is slightly
         cumbersome because, strictly speaking, right shifts
         of negative numbers are not well-defined in C. */

      return s >= 0 ?  (s + 4) >> 3 : -((-s + 4) >> 3);
  }

  ---- End code block ----------------------------------------

  Furthermore, if the version number in the frame tag specifies only
  full-pel chroma motion vectors, then the fractional parts of both
  components of the vector are truncated to zero, as illustrated in the
  following pseudocode (assuming 3 bits of fraction for both luma and
  chroma vectors):

  ---- Begin code block --------------------------------------

      x = x & (~7);
      y = y & (~7);

  ---- End code block ----------------------------------------

  Earlier in this document we described the vp8_clamp_mv() function to
  limit "nearest" and "near" motion vector predictors inside specified
  margins within the frame boundaries.  Additional clamping is
  performed for NEWMV macroblocks, for which the final motion vector is
  clamped again after combining the "best" predictor and the
  differential vector decoded from the stream.

  However, the secondary clamping is not performed for SPLITMV
  macroblocks, meaning that any subblock's motion vector within the
  SPLITMV macroblock may point outside the clamping zone.  These
  non-clamped vectors are also used when determining the decoding tree
  context for subsequent subblocks' modes in the vp8_mvCont() function.





Bankoski, et al.              Informational                   [Page 114]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


18.2.  Prediction Subblocks

  The prediction calculation for each subblock is then as follows.
  Temporarily disregarding the fractional part of the motion vector
  (that is, rounding "up" or "left" by right-shifting each component
  3 bits with sign propagation) and adding the origin (upper left
  position) of the (16x16 luma or 8x8 chroma) current macroblock gives
  us an origin in the Y, U, or V plane of the predictor frame (either
  the golden frame or previous frame).

  Considering that origin to be the upper left corner of a (luma or
  chroma) macroblock, we need to specify the relative positions of the
  pixels associated to that subblock, that is, any pixels that might be
  involved in the sub-pixel interpolation processes for the subblock.

18.3.  Sub-Pixel Interpolation

  The sub-pixel interpolation is effected via two one-dimensional
  convolutions.  These convolutions may be thought of as operating on a
  two-dimensional array of pixels whose origin is the subblock origin,
  that is the origin of the prediction macroblock described above plus
  the offset to the subblock.  Because motion vectors are arbitrary, so
  are these "prediction subblock origins".

  The integer part of the motion vector is subsumed in the origin of
  the prediction subblock; the 16 (synthetic) pixels we need to
  construct are given by 16 offsets from the origin.  The integer part
  of each of these offsets is the offset of the corresponding pixel
  from the subblock origin (using the vertical stride).  To these
  integer parts is added a constant fractional part, which is simply
  the difference between the actual motion vector and its integer
  truncation used to calculate the origins of the prediction macroblock
  and subblock.  Each component of this fractional part is an integer
  between 0 and 7, representing a forward displacement in eighths of a
  pixel.

  It is these fractional displacements that determine the filtering
  process.  If they both happen to be zero (that is, we had a "whole
  pixel" motion vector), the prediction subblock is simply copied into
  the corresponding piece of the current macroblock's prediction
  buffer.  As discussed in Section 14, the layout of the macroblock's
  prediction buffer can depend on the specifics of the reconstruction
  implementation chosen.  Of course, the vertical displacement between
  lines of the prediction subblock is given by the stride, as are all
  vertical displacements used here.






Bankoski, et al.              Informational                   [Page 115]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  Otherwise, at least one of the fractional displacements is non-zero.
  We then synthesize the missing pixels via a horizontal, followed by a
  vertical, one-dimensional interpolation.

  The two interpolations are essentially identical.  Each uses a (at
  most) six-tap filter (the choice of which of course depends on the
  one-dimensional offset).  Thus, every calculated pixel references at
  most three pixels before (above or to the left of) it and at most
  three pixels after (below or to the right of) it.  The horizontal
  interpolation must calculate two extra rows above and three extra
  rows below the 4x4 block, to provide enough samples for the vertical
  interpolation to proceed.

  Depending on the reconstruction filter type given in the version
  number field in the frame tag, either a bicubic or a bilinear tap set
  is used.

  The exact implementation of subsampling is as follows.

  ---- Begin code block --------------------------------------

  /* Filter taps taken to 7-bit precision.
     Because DC is always passed, taps always sum to 128. */

  const int BilinearFilters[8][6] =
  {
      { 0, 0, 128,   0, 0, 0 },
      { 0, 0, 112,  16, 0, 0 },
      { 0, 0,  96,  32, 0, 0 },
      { 0, 0,  80,  48, 0, 0 },
      { 0, 0,  64,  64, 0, 0 },
      { 0, 0,  48,  80, 0, 0 },
      { 0, 0,  32,  96, 0, 0 },
      { 0, 0,  16, 112, 0, 0 }
  };

  const int filters [8] [6] = {        /* indexed by displacement */
      { 0,  0,  128,    0,   0,  0 },  /* degenerate whole-pixel */
      { 0, -6,  123,   12,  -1,  0 },  /* 1/8 */
      { 2, -11, 108,   36,  -8,  1 },  /* 1/4 */
      { 0, -9,   93,   50,  -6,  0 },  /* 3/8 */
      { 3, -16,  77,   77, -16,  3 },  /* 1/2 is symmetric */
      { 0, -6,   50,   93,  -9,  0 },  /* 5/8 = reverse of 3/8 */
      { 1, -8,   36,  108, -11,  2 },  /* 3/4 = reverse of 1/4 */
      { 0, -1,   12,  123,  -6,  0 }   /* 7/8 = reverse of 1/8 */
  };





Bankoski, et al.              Informational                   [Page 116]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  /* One-dimensional synthesis of a single sample.
     Filter is determined by fractional displacement */

  Pixel interp(
      const int fil[6],   /* filter to apply */
      const Pixel *p,     /* origin (rounded "before") in
                             prediction area */
      const int s         /* size of one forward step "" */
  ) {
      int32 a = 0;
      int i = 0;
      p -= s + s;         /* move back two positions */

      do {
          a += *p * fil[i];
          p += s;
      }  while (++i < 6);

      return clamp255((a + 64) >> 7);    /* round to nearest
                                             8-bit value */
  }


  /* First do horizontal interpolation, producing intermediate
     buffer. */

  void Hinterp(
      Pixel temp[9][4],   /* 9 rows of 4 (intermediate)
                             destination values */
      const Pixel *p,     /* subblock origin in prediction
                             frame */
      int s,              /* vertical stride to be used in
                             prediction frame */
      uint hfrac,         /* 0 <= horizontal displacement <= 7 */
      uint bicubic        /* 1=bicubic filter, 0=bilinear */
  ) {
      const int * const fil = bicubic ? filters [hfrac] :
        BilinearFilters[hfrac];

      int r = 0;  do              /* for each row */
      {
          int c = 0;  do          /* for each destination sample */
          {
              /* Pixel separation = one horizontal step = 1 */

              temp[r][c] = interp(fil, p + c, 1);
          }




Bankoski, et al.              Informational                   [Page 117]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


          while (++c < 4);
      }
      while (p += s, ++r < 9);    /* advance p to next row */
  }

  /* Finish with vertical interpolation, producing final results.
     Input array "temp" is of course that computed above. */

  void Vinterp(
      Pixel final[4][4],  /* 4 rows of 4 (final) destination values */
      const Pixel temp[9][4],
      uint vfrac,         /* 0 <= vertical displacement <= 7 */
      uint bicubic        /* 1=bicubic filter, 0=bilinear */
  ) {
      const int * const fil = bicubic ? filters [vfrac] :
        BilinearFilters[vfrac];

      int r = 0;  do              /* for each row */
      {
          int c = 0;  do          /* for each destination sample */
          {
              /* Pixel separation = one vertical step = width
                 of array = 4 */

              final[r][c] = interp(fil, temp[r] + c, 4);
          }
          while (++c < 4);
      }
      while (++r < 4);
  }

  ---- End code block ----------------------------------------

18.4.  Filter Properties

  We discuss briefly the rationale behind the choice of filters.  Our
  approach is necessarily cursory; a genuinely accurate discussion
  would require a couple of books.  Readers unfamiliar with signal
  processing may or may not wish to skip this.

  All digital signals are of course sampled in some fashion.  The case
  where the inter-sample spacing (say in time for audio samples, or
  space for pixels) is uniform, that is, the same at all positions, is
  particularly common and amenable to analysis.  Many aspects of the
  treatment of such signals are best-understood in the frequency domain
  via Fourier Analysis, particularly those aspects of the signal that
  are not changed by shifts in position, especially when those
  positional shifts are not given by a whole number of samples.



Bankoski, et al.              Informational                   [Page 118]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  Non-integral translates of a sampled signal are a textbook example of
  the foregoing.  In our case of non-integral motion vectors, we wish
  to say what the underlying image "really is" at these pixels;
  although we don't have values for them, we feel that it makes sense
  to talk about them.  The correctness of this feeling is predicated on
  the underlying signal being band-limited, that is, not containing any
  energy in spatial frequencies that cannot be faithfully rendered at
  the pixel resolution at our disposal.  In one dimension, this range
  of "OK" frequencies is called the Nyquist band; in our two-
  dimensional case of integer-grid samples, this range might be termed
  a Nyquist rectangle.  The finer the grid, the more we know about the
  image, and the wider the Nyquist rectangle.

  It turns out that, for such band-limited signals, there is indeed an
  exact mathematical formula to produce the correct sample value at an
  arbitrary point.  Unfortunately, this calculation requires the
  consideration of every single sample in the image, as well as needing
  to operate at infinite precision.  Also, strictly speaking, all band-
  limited signals have infinite spatial (or temporal) extent, so
  everything we are discussing is really some sort of approximation.

  It is true that the theoretically correct subsampling procedure, as
  well as any approximation thereof, is always given by a translation-
  invariant weighted sum (or filter) similar to that used by VP8.  It
  is also true that the reconstruction error made by such a filter can
  be simply represented as a multiplier in the frequency domain; that
  is, such filters simply multiply the Fourier transform of any signal
  to which they are applied by a fixed function associated to the
  filter.  This fixed function is usually called the frequency response
  (or transfer function); the ideal subsampling filter has a frequency
  response equal to one in the Nyquist rectangle and zero everywhere
  else.

  Another basic fact about approximations to "truly correct"
  subsampling is that the wider the subrectangle (within the Nyquist
  rectangle) of spatial frequencies one wishes to "pass" (that is,
  correctly render) or, put more accurately, the closer one wishes to
  approximate the ideal transfer function, the more samples of the
  original signal must be considered by the subsampling, and the wider
  the calculation precision necessitated.

  The filters chosen by VP8 were chosen, within the constraints of 4 or
  6 taps and 7-bit precision, to do the best possible job of handling
  the low spatial frequencies near the 0th DC frequency along with
  introducing no resonances (places where the absolute value of the
  frequency response exceeds one).





Bankoski, et al.              Informational                   [Page 119]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  The justification for the foregoing has two parts.  First, resonances
  can produce extremely objectionable visible artifacts when, as often
  happens in actual compressed video streams, filters are applied
  repeatedly.  Second, the vast majority of energy in real-world images
  lies near DC and not at the high end.

  To get slightly more specific, the filters chosen by VP8 are the best
  resonance-free 4- or 6-tap filters possible, where "best" describes
  the frequency response near the origin: The response at 0 is required
  to be 1, and the graph of the response at 0 is as flat as possible.

  To provide an intuitively more obvious point of reference, the "best"
  2-tap filter is given by simple linear interpolation between the
  surrounding actual pixels.

  Finally, it should be noted that, because of the way motion vectors
  are calculated, the (shorter) 4-tap filters (used for odd fractional
  displacements) are applied in the chroma plane only.  Human color
  perception is notoriously poor, especially where higher spatial
  frequencies are involved.  The shorter filters are easier to
  understand mathematically, and the difference between them and a
  theoretically slightly better 6-tap filter is negligible where chroma
  is concerned.

19.  Annex A: Bitstream Syntax

  This annex presents the bitstream syntax in a tabular form.  All the
  information elements have been introduced and explained in the
  previous sections but are collected here for a quick reference.  Each
  syntax element is briefly described after the tabular representation
  along with a reference to the corresponding paragraph in the main
  document.  The meaning of each syntax element value is not repeated
  here.

  The top-level hierarchy of the bitstream is introduced in Section 4.

  Definition of syntax element coding types can be found in Section 8.
  The types used in the representation in this annex are:

  o  f(n), n-bit value from stream (n successive bits, not boolean
     encoded)

  o  L(n), n-bit number encoded as n booleans (with equal probability
     of being 0 or 1)

  o  B(p), bool with probability p of being 0

  o  T, tree-encoded value



Bankoski, et al.              Informational                   [Page 120]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


19.1.  Uncompressed Data Chunk

  | Frame Tag                                         | Type  |
  | ------------------------------------------------- | ----- |
  | frame_tag                                         | f(24) |
  | if (key_frame) {                                  |       |
  |     start_code                                    | f(24) |
  |     horizontal_size_code                          | f(16) |
  |     vertical_size_code                            | f(16) |
  | }                                                 |       |

  The 3-byte frame tag can be parsed as follows:

  ---- Begin code block --------------------------------------

  unsigned char *c = pbi->source;
  unsigned int tmp;

  tmp = (c[2] << 16) | (c[1] << 8) | c[0];

  key_frame = tmp & 0x1;
  version = (tmp >> 1) & 0x7;
  show_frame = (tmp >> 4) & 0x1;
  first_part_size = (tmp >> 5) & 0x7FFFF;

  ---- End code block ----------------------------------------

  Where:

  o  key_frame indicates whether the current frame is a key frame
     or not.

  o  version determines the bitstream version.

  o  show_frame indicates whether the current frame is meant to be
     displayed or not.

  o  first_part_size determines the size of the first partition
     (control partition), excluding the uncompressed data chunk.












Bankoski, et al.              Informational                   [Page 121]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  The start_code is a constant 3-byte pattern having value 0x9d012a.
  The latter part of the uncompressed chunk (after the start_code) can
  be parsed as follows:

  ---- Begin code block --------------------------------------

  unsigned char *c = pbi->source + 6;
  unsigned int tmp;

  tmp = (c[1] << 8) | c[0];

  width = tmp & 0x3FFF;
  horizontal_scale = tmp >> 14;

  tmp = (c[3] << 8) | c[2];

  height = tmp & 0x3FFF;
  vertical_scale = tmp >> 14;

  ---- End code block ----------------------------------------

19.2.  Frame Header

  | Frame Header                                      | Type  |
  | ------------------------------------------------- | ----- |
  | if (key_frame) {                                  |       |
  |   color_space                                     | L(1)  |
  |   clamping_type                                   | L(1)  |
  | }                                                 |       |
  | segmentation_enabled                              | L(1)  |
  | if (segmentation_enabled)                         |       |
  |   update_segmentation()                           |       |
  | filter_type                                       | L(1)  |
  | loop_filter_level                                 | L(6)  |
  | sharpness_level                                   | L(3)  |
  | mb_lf_adjustments()                               |       |
  | log2_nbr_of_dct_partitions                        | L(2)  |
  | quant_indices()                                   |       |
  | if (key_frame)                                    |       |
  |   refresh_entropy_probs                           | L(1)  |











Bankoski, et al.              Informational                   [Page 122]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  | else {                                            |       |
  |   refresh_golden_frame                            | L(1)  |
  |   refresh_alternate_frame                         | L(1)  |
  |   if (!refresh_golden_frame)                      |       |
  |     copy_buffer_to_golden                         | L(2)  |
  |   if (!refresh_alternate_frame)                   |       |
  |     copy_buffer_to_alternate                      | L(2)  |
  |   sign_bias_golden                                | L(1)  |
  |   sign_bias_alternate                             | L(1)  |
  |   refresh_entropy_probs                           | L(1)  |
  |   refresh_last                                    | L(1)  |
  | }                                                 |       |
  | token_prob_update()                               |       |
  | mb_no_skip_coeff                                  | L(1)  |
  | if (mb_no_skip_coeff)                             |       |
  |   prob_skip_false                                 | L(8)  |
  | if (!key_frame) {                                 |       |
  |   prob_intra                                      | L(8)  |
  |   prob_last                                       | L(8)  |
  |   prob_gf                                         | L(8)  |
  |   intra_16x16_prob_update_flag                    | L(1)  |
  |   if (intra_16x16_prob_update_flag) {             |       |
  |     for (i = 0; i < 4; i++)                       |       |
  |       intra_16x16_prob                            | L(8)  |
  |   }                                               |       |
  |   intra_chroma prob_update_flag                   | L(1)  |
  |   if (intra_chroma_prob_update_flag) {            |       |
  |     for (i = 0; i < 3; i++)                       |       |
  |       intra_chroma_prob                           | L(8)  |
  |   }                                               |       |
  |   mv_prob_update()                                |       |
  | }                                                 |       |

  o  color_space defines the YUV color space of the sequence
     (Section 9.2)

  o  clamping_type specifies if the decoder is required to clamp the
     reconstructed pixel values (Section 9.2)

  o  segmentation_enabled enables the segmentation feature for the
     current frame (Section 9.3)

  o  filter_type determines whether the normal or the simple loop
     filter is used (Sections 9.4, 15)

  o  loop_filter_level controls the deblocking filter
     (Sections 9.4, 15)




Bankoski, et al.              Informational                   [Page 123]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  o  sharpness_level controls the deblocking filter (Sections 9.4, 15)

  o  log2_nbr_of_dct_partitions determines the number of separate
     partitions containing the DCT coefficients of the macroblocks
     (Section 9.5)

  o  refresh_entropy_probs determines whether updated token
     probabilities are used only for this frame or until further update

  o  refresh_golden_frame determines if the current decoded frame
     refreshes the golden frame (Section 9.7)

  o  refresh_alternate_frame determines if the current decoded frame
     refreshes the alternate reference frame (Section 9.7)

  o  copy_buffer_to_golden determines if the golden reference is
     replaced by another reference (Section 9.7)

  o  copy_buffer_to_alternate determines if the alternate reference is
     replaced by another reference (Section 9.7)

  o  sign_bias_golden controls the sign of motion vectors when the
     golden frame is referenced (Section 9.7)

  o  sign_bias_alternate controls the sign of motion vectors when the
     alternate frame is referenced (Section 9.7)

  o  refresh_last determines if the current decoded frame refreshes the
     last frame reference buffer (Section 9.8)

  o  mb_no_skip_coeff enables or disables the skipping of macroblocks
     containing no non-zero coefficients (Section 9.10)

  o  prob_skip_false indicates the probability that the macroblock is
     not skipped (flag indicating skipped macroblock is false)
     (Section 9.10)

  o  prob_intra indicates the probability of an intra macroblock
     (Section 9.10)

  o  prob_last indicates the probability that the last reference frame
     is used for inter-prediction (Section 9.10)

  o  prob_gf indicates the probability that the golden reference frame
     is used for inter-prediction (Section 9.10)






Bankoski, et al.              Informational                   [Page 124]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  o  intra_16x16_prob_update_flag indicates if the branch probabilities
     used in the decoding of the luma intra-prediction mode are updated
     (Section 9.10)

  o  intra_16x16_prob indicates the branch probabilities of the luma
     intra-prediction mode decoding tree

  o  intra_chroma_prob_update_flag indicates if the branch
     probabilities used in the decoding of the chroma intra-prediction
     mode are updated (Section 9.10)

  o  intra_chroma_prob indicates the branch probabilities of the chroma
     intra-prediction mode decoding tree

  | update_segmentation()                             | Type  |
  | ------------------------------------------------- | ----- |
  | update_mb_segmentation_map                        | L(1)  |
  | update_segment_feature_data                       | L(1)  |
  | if (update_segment_feature_data) {                |       |
  |   segment_feature_mode                            | L(1)  |
  |   for (i = 0; i < 4; i++) {                       |       |
  |     quantizer_update                              | L(1)  |
  |     if (quantizer_update) {                       |       |
  |       quantizer_update_value                      | L(7)  |
  |       quantizer_update_sign                       | L(1)  |
  |     }                                             |       |
  |   }                                               |       |
  |   for (i = 0; i < 4; i++) {                       |       |
  |     loop_filter_update                            | L(1)  |
  |     if (loop_filter_update) {                     |       |
  |       lf_update_value                             | L(6)  |
  |       lf_update_sign                              | L(1)  |
  |     }                                             |       |
  |   }                                               |       |
  | }                                                 |       |
  | if (update_mb_segmentation_map) {                 |       |
  |   for (i = 0; i < 3; i++) {                       |       |
  |     segment_prob_update                           | L(1)  |
  |     if (segment_prob_update)                      |       |
  |       segment_prob                                | L(8)  |
  |   }                                               |       |
  | }                                                 |       |

  o  update_mb_segmentation_map determines if the MB segmentation map
     is updated in the current frame (Section 9.3)

  o  update_segment_feature_data indicates if the segment feature data
     is updated in the current frame (Section 9.3)



Bankoski, et al.              Informational                   [Page 125]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  o  segment_feature_mode indicates the feature data update mode, 0 for
     delta and 1 for the absolute value (Section 9.3)

  o  quantizer_update indicates if the quantizer value is updated for
     the i^(th) segment (Section 9.3)

  o  quantizer_update_value indicates the update value for the segment
     quantizer (Section 9.3)

  o  quantizer_update_sign indicates the update sign for the segment
     quantizer (Section 9.3)

  o  loop_filter_update indicates if the loop filter level value is
     updated for the i^(th) segment (Section 9.3)

  o  lf_update_value indicates the update value for the loop filter
     level (Section 9.3)

  o  lf_update_sign indicates the update sign for the loop filter level
     (Section 9.3)

  o  segment_prob_update indicates whether the branch probabilities
     used to decode the segment_id in the MB header are decoded from
     the stream or use the default value of 255 (Section 9.3)

  o  segment_prob indicates the branch probabilities of the segment_id
     decoding tree (Section 9.3)
























Bankoski, et al.              Informational                   [Page 126]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  | mb_lf_adjustments()                               | Type  |
  | ------------------------------------------------- | ----- |
  | loop_filter_adj_enable                            | L(1)  |
  | if (loop_filter_adj_enable) {                     |       |
  |   mode_ref_lf_delta_update                        | L(1)  |
  |   if (mode_ref_lf_delta_update) {                 |       |
  |     for (i = 0; i < 4; i++) {                     |       |
  |       ref_frame_delta_update_flag                 | L(1)  |
  |       if (ref_frame_delta_update_flag) {          |       |
  |         delta_magnitude                           | L(6)  |
  |         delta_sign                                | L(1)  |
  |       }                                           |       |
  |     }                                             |       |
  |     for (i = 0; i < 4; i++) {                     |       |
  |       mb_mode_delta_update_flag                   | L(1)  |
  |       if (mb_mode_delta_update_flag) {            |       |
  |         delta_magnitude                           | L(6)  |
  |         delta_sign                                | L(1)  |
  |       }                                           |       |
  |     }                                             |       |
  |   }                                               |       |
  | }                                                 |       |

  o  loop_filter_adj_enable indicates if the MB-level loop filter
     adjustment (based on the used reference frame and coding mode) is
     on for the current frame (Section 9.4)

  o  mode_ref_lf_delta_update indicates if the delta values used in an
     adjustment are updated in the current frame (Section 9.4)

  o  ref_frame_delta_update_flag indicates if the adjustment delta
     value corresponding to a certain used reference frame is updated
     (Section 9.4)

  o  delta_magnitude is the absolute value of the delta value

  o  delta_sign is the sign of the delta value

  o  mb_mode_delta_update_flag indicates if the adjustment delta value
     corresponding to a certain MB prediction mode is updated
     (Section 9.4)










Bankoski, et al.              Informational                   [Page 127]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  | quant_indices()                                   | Type  |
  | ------------------------------------------------- | ----- |
  | y_ac_qi                                           | L(7)  |
  | y_dc_delta_present                                | L(1)  |
  | if (y_dc_delta_present) {                         |       |
  |   y_dc_delta_magnitude                            | L(4)  |
  |   y_dc_delta_sign                                 | L(1)  |
  | }                                                 |       |
  | y2_dc_delta_present                               | L(1)  |
  | if (y2_dc_delta_present) {                        |       |
  |   y2_dc_delta_magnitude                           | L(4)  |
  |   y2_dc_delta_sign                                | L(1)  |
  | }                                                 |       |
  | y2_ac_delta_present                               | L(1)  |
  | if (y2_ac_delta_present) {                        |       |
  |   y2_ac_delta_magnitude                           | L(4)  |
  |   y2_ac_delta_sign                                | L(1)  |
  | }                                                 |       |
  | uv_dc_delta_present                               | L(1)  |
  | if (uv_dc_delta_present) {                        |       |
  |   uv_dc_delta_magnitude                           | L(4)  |
  |   uv_dc_delta_sign                                | L(1)  |
  | }                                                 |       |
  | uv_ac_delta_present                               | L(1)  |
  | if (uv_ac_delta_present) {                        |       |
  |   uv_ac_delta_magnitude                           | L(4)  |
  |   uv_ac_delta_sign                                | L(1)  |
  | }                                                 |       |

  o  y_ac_qi is the dequantization table index used for the luma AC
     coefficients (and other coefficient groups if no delta value is
     present) (Section 9.6)

  o  y_dc_delta_present indicates if the stream contains a delta value
     that is added to the baseline index to obtain the luma DC
     coefficient dequantization index (Section 9.6)

  o  y_dc_delta_magnitude is the magnitude of the delta value
     (Section 9.6)

  o  y_dc_delta_sign is the sign of the delta value (Section 9.6)

  o  y2_dc_delta_present indicates if the stream contains a delta value
     that is added to the baseline index to obtain the Y2 block DC
     coefficient dequantization index (Section 9.6)






Bankoski, et al.              Informational                   [Page 128]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  o  y2_ac_delta_present indicates if the stream contains a delta value
     that is added to the baseline index to obtain the Y2 block AC
     coefficient dequantization index (Section 9.6)

  o  uv_dc_delta_present indicates if the stream contains a delta value
     that is added to the baseline index to obtain the chroma DC
     coefficient dequantization index (Section 9.6)

  o  uv_ac_delta_present indicates if the stream contains a delta value
     that is added to the baseline index to obtain the chroma AC
     coefficient dequantization index (Section 9.6)

  | token_prob_update()                               | Type  |
  | ------------------------------------------------- | ----- |
  | for (i = 0; i < 4; i++) {                         |       |
  |   for (j = 0; j < 8; j++) {                       |       |
  |     for (k = 0; k < 3; k++) {                     |       |
  |       for (l = 0; l < 11; l++) {                  |       |
  |         coeff_prob_update_flag                    | L(1)  |
  |         if (coeff_prob_update_flag)               |       |
  |           coeff_prob                              | L(8)  |
  |       }                                           |       |
  |     }                                             |       |
  |   }                                               |       |
  | }                                                 |       |

  o  coeff_prob_update_flag indicates if the corresponding branch
     probability is updated in the current frame (Section 13.4)

  o  coeff_prob is the new branch probability (Section 13.4)

  | mv_prob_update()                                  | Type  |
  | ------------------------------------------------- | ----- |
  | for (i = 0; i < 2; i++) {                         |       |
  |   for (j = 0; j < 19; j++) {                      |       |
  |     mv_prob_update_flag                           | L(1)  |
  |     if (mv_prob_update_flag)                      |       |
  |       prob                                        | L(7)  |
  |   }                                               |       |
  | }                                                 |       |

  o  mv_prob_update_flag indicates if the corresponding MV decoding
     probability is updated in the current frame (Section 17.2)

  o  prob is the updated probability (Section 17.2)






Bankoski, et al.              Informational                   [Page 129]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


19.3.  Macroblock Data

  | Macroblock Data                                   | Type  |
  | ------------------------------------------------- | ----- |
  | macroblock_header()                               |       |
  | residual_data()                                   |       |


  | macroblock_header()                               | Type  |
  | ------------------------------------------------- | ----- |
  | if (update_mb_segmentation_map)                   |       |
  |   segment_id                                      | T     |
  | if (mb_no_skip_coeff)                             |       |
  |   mb_skip_coeff                                   | B(p)  |
  | if (!key_frame)                                   |       |
  |   is_inter_mb                                     | B(p)  |
  | if (is_inter_mb) {                                |       |
  |   mb_ref_frame_sel1                               | B(p)  |
  |   if (mb_ref_frame_sel1)                          |       |
  |     mb_ref_frame_sel2                             | B(p)  |
  |   mv_mode                                         | T     |
  |   if (mv_mode == SPLITMV) {                       |       |
  |     mv_split_mode                                 | T     |
  |     for (i = 0; i < numMvs; i++) {                |       |
  |       sub_mv_mode                                 | T     |
  |       if (sub_mv_mode == NEWMV4x4) {              |       |
  |         read_mvcomponent()                        |       |
  |         read_mvcomponent()                        |       |
  |       }                                           |       |
  |     }                                             |       |
  |   } else if (mv_mode == NEWMV) {                  |       |
  |     read_mvcomponent()                            |       |
  |     read_mvcomponent()                            |       |
  |   }                                               |       |
  | } else { /* intra mb */                           |       |
  |   intra_y_mode                                    | T     |
  |   if (intra_y_mode == B_PRED) {                   |       |
  |     for (i = 0; i < 16; i++)                      |       |
  |       intra_b_mode                                | T     |
  |   }                                               |       |
  |   intra_uv_mode                                   | T     |
  | }                                                 |       |

  o  segment_id indicates to which segment the macroblock belongs
     (Section 10)

  o  mb_skip_coeff indicates whether the macroblock contains any coded
     coefficients or not (Section 11.1)



Bankoski, et al.              Informational                   [Page 130]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  o  is_inter_mb indicates whether the macroblock is intra- or inter-
     coded (Section 16)

  o  mb_ref_frame_sel1 selects the reference frame to be used; last
     frame (0), golden/alternate (1) (Section 16.2)

  o  mb_ref_frame_sel2 selects whether the golden (0) or alternate
     reference frame (1) is used (Section 16.2)

  o  mv_mode determines the macroblock motion vector mode
     (Section 16.2)

  o  mv_split_mode gives the macroblock partitioning specification and
     determines the number of motion vectors used (numMvs)
     (Section 16.2)

  o  sub_mv_mode determines the sub-macroblock motion vector mode for
     macroblocks coded using the SPLITMV motion vector mode
     (Section 16.2)

  o  intra_y_mode selects the luminance intra-prediction mode
     (Section 16.1)

  o  intra_b_mode selects the sub-macroblock luminance prediction mode
     for macroblocks coded using B_PRED mode (Section 16.1)

  o  intra_uv_mode selects the chrominance intra-prediction mode
     (Section 16.1)

  | residual_data()                                   | Type  |
  | ------------------------------------------------- | ----- |
  | if (!mb_skip_coeff) {                             |       |
  |   if ( (is_inter_mb && mv_mode != SPLITMV) ||     |       |
  |        (!is_inter_mb && intra_y_mode != B_PRED) ) |       |
  |     residual_block() /* Y2 */                     |       |
  |   for (i = 0; i < 24; i++)                        |       |
  |     residual_block() /* 16 Y, 4 U, 4 V */         |       |
  | }                                                 |       |













Bankoski, et al.              Informational                   [Page 131]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  | residual_block()                                  | Type  |
  | ------------------------------------------------- | ----- |
  | for (i = firstCoeff; i < 16; i++) {               |       |
  |   token                                           | T     |
  |   if (token == EOB) break;                        |       |
  |   if (token_has_extra_bits)                       |       |
  |     extra_bits                                    | L(n)  |
  |   if (coefficient != 0)                           |       |
  |     sign                                          | L(1)  |
  | }                                                 |       |

  o  firstCoeff is 1 for luma blocks of macroblocks containing Y2
     subblock; otherwise 0

  o  token defines the value of the coefficient, the value range of the
     coefficient, or the end of block (Section 13.2)

  o  extra_bits determines the value of the coefficient within the
     value range defined by the token (Section 13.2)

  o  sign indicates the sign of the coefficient (Section 13.2)






























Bankoski, et al.              Informational                   [Page 132]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


20.  Attachment One: Reference Decoder Source Code

20.1.  bit_ops.h

  ---- Begin code block --------------------------------------

  /*
   *  Copyright (c) 2010, 2011, Google Inc.  All rights reserved.
   *
   *  Use of this source code is governed by a BSD-style license
   *  that can be found in the LICENSE file in the root of the source
   *  tree.  An additional intellectual property rights grant can be
   *  found in the file PATENTS.  All contributing project authors may
   *  be found in the AUTHORS file in the root of the source tree.
   */
  #ifndef BIT_OPS_H
  #define BIT_OPS_H

  /* Evaluates to a mask with n bits set */
  #define BITS_MASK(n) ((1<<(n))-1)

  /* Returns len bits, with the LSB at position bit */
  #define BITS_GET(val, bit, len) (((val)>>(bit))&BITS_MASK(len))

  #endif

  ---- End code block ----------------------------------------

20.2.  bool_decoder.h

  ---- Begin code block --------------------------------------

  /*
   *  Copyright (c) 2010, 2011, Google Inc.  All rights reserved.
   *
   *  Use of this source code is governed by a BSD-style license
   *  that can be found in the LICENSE file in the root of the source
   *  tree.  An additional intellectual property rights grant can be
   *  found in the file PATENTS.  All contributing project authors may
   *  be found in the AUTHORS file in the root of the source tree.
   */
  #ifndef BOOL_DECODER_H
  #define BOOL_DECODER_H
  #include <stddef.h>







Bankoski, et al.              Informational                   [Page 133]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  struct bool_decoder
  {
      const unsigned char *input;      /* next compressed data byte */
      size_t               input_len;  /* length of the input buffer */
      unsigned int         range;      /* identical to encoder's
                                        * range */
      unsigned int         value;      /* contains at least 8
                                        * significant bits */
      int                  bit_count;  /* # of bits shifted out of
                                        * value, max 7 */
  };

  static void
  init_bool_decoder(struct bool_decoder *d,
                    const unsigned char *start_partition,
                    size_t               sz)
  {
      if (sz >= 2)
      {
          d->value = (start_partition[0] << 8) /* first 2 input
                                                * bytes */
                     | start_partition[1];
          d->input = start_partition + 2;      /* ptr to next byte */
          d->input_len = sz - 2;
      }
      else
      {
          d->value = 0;
          d->input = NULL;
          d->input_len = 0;
      }

      d->range = 255;    /* initial range is full */
      d->bit_count = 0;  /* have not yet shifted out any bits */
  }

  static int bool_get(struct bool_decoder *d, int probability)
  {
      /* range and split are identical to the corresponding values
         used by the encoder when this bool was written */

      unsigned int  split = 1 + (((d->range - 1) * probability) >> 8);
      unsigned int  SPLIT = split << 8;
      int           retval;           /* will be 0 or 1 */







Bankoski, et al.              Informational                   [Page 134]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      if (d->value >= SPLIT)    /* encoded a one */
      {
          retval = 1;
          d->range -= split;  /* reduce range */
          d->value -= SPLIT;  /* subtract off left endpoint of
                               * interval */
      }
      else                  /* encoded a zero */
      {
          retval = 0;
          d->range = split; /* reduce range, no change in left
                             * endpoint */
      }

      while (d->range < 128)    /* shift out irrelevant value bits */
      {
          d->value <<= 1;
          d->range <<= 1;

          if (++d->bit_count == 8)  /* shift in new bits 8 at a time */
          {
              d->bit_count = 0;

              if (d->input_len)
              {
                  d->value |= *d->input++;
                  d->input_len--;
              }
          }
      }

      return retval;
  }

  static int bool_get_bit(struct bool_decoder *br)
  {
      return bool_get(br, 128);
  }













Bankoski, et al.              Informational                   [Page 135]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  static int bool_get_uint(struct bool_decoder *br, int bits)
  {
      int z = 0;
      int bit;

      for (bit = bits - 1; bit >= 0; bit--)
      {
          z |= (bool_get_bit(br) << bit);
      }

      return z;
  }

  static int bool_get_int(struct bool_decoder *br, int bits)
  {
      int z = 0;
      int bit;

      for (bit = bits - 1; bit >= 0; bit--)
      {
          z |= (bool_get_bit(br) << bit);
      }

      return bool_get_bit(br) ? -z : z;
  }

  static int bool_maybe_get_int(struct bool_decoder *br, int bits)
  {
      return bool_get_bit(br) ? bool_get_int(br, bits) : 0;
  }

  static int
  bool_read_tree(struct bool_decoder *bool,
                 const int           *t,
                 const unsigned char *p)
  {
      int i = 0;

      while ((i = t[ i + bool_get(bool, p[i>>1])]) > 0);

      return -i;
  }
  #endif


  ---- End code block ----------------------------------------





Bankoski, et al.              Informational                   [Page 136]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


20.3.  dequant_data.h

  ---- Begin code block --------------------------------------

  /*
   *  Copyright (c) 2010, 2011, Google Inc.  All rights reserved.
   *
   *  Use of this source code is governed by a BSD-style license
   *  that can be found in the LICENSE file in the root of the source
   *  tree.  An additional intellectual property rights grant can be
   *  found in the file PATENTS.  All contributing project authors may
   *  be found in the AUTHORS file in the root of the source tree.
   */

  static const int dc_q_lookup[128] =
  {
      4,    5,    6,    7,    8,    9,    10,   10,
      11,   12,   13,   14,   15,   16,   17,   17,
      18,   19,   20,   20,   21,   21,   22,   22,
      23,   23,   24,   25,   25,   26,   27,   28,
      29,   30,   31,   32,   33,   34,   35,   36,
      37,   37,   38,   39,   40,   41,   42,   43,
      44,   45,   46,   46,   47,   48,   49,   50,
      51,   52,   53,   54,   55,   56,   57,   58,
      59,   60,   61,   62,   63,   64,   65,   66,
      67,   68,   69,   70,   71,   72,   73,   74,
      75,   76,   76,   77,   78,   79,   80,   81,
      82,   83,   84,   85,   86,   87,   88,   89,
      91,   93,   95,   96,   98,   100,  101,  102,
      104,  106,  108,  110,  112,  114,  116,  118,
      122,  124,  126,  128,  130,  132,  134,  136,
      138,  140,  143,  145,  148,  151,  154,  157
  };

  static const int ac_q_lookup[128] =
  {
      4,    5,    6,    7,    8,    9,    10,   11,
      12,   13,   14,   15,   16,   17,   18,   19,
      20,   21,   22,   23,   24,   25,   26,   27,
      28,   29,   30,   31,   32,   33,   34,   35,
      36,   37,   38,   39,   40,   41,   42,   43,
      44,   45,   46,   47,   48,   49,   50,   51,
      52,   53,   54,   55,   56,   57,   58,   60,
      62,   64,   66,   68,   70,   72,   74,   76,
      78,   80,   82,   84,   86,   88,   90,   92,
      94,   96,   98,   100,  102,  104,  106,  108,
      110,  112,  114,  116,  119,  122,  125,  128,
      131,  134,  137,  140,  143,  146,  149,  152,



Bankoski, et al.              Informational                   [Page 137]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      155,  158,  161,  164,  167,  170,  173,  177,
      181,  185,  189,  193,  197,  201,  205,  209,
      213,  217,  221,  225,  229,  234,  239,  245,
      249,  254,  259,  264,  269,  274,  279,  284
  };

  ---- End code block ----------------------------------------

20.4.  dixie.c

  ---- Begin code block --------------------------------------

  /*
   *  Copyright (c) 2010, 2011, Google Inc.  All rights reserved.
   *
   *  Use of this source code is governed by a BSD-style license
   *  that can be found in the LICENSE file in the root of the source
   *  tree.  An additional intellectual property rights grant can be
   *  found in the file PATENTS.  All contributing project authors may
   *  be found in the AUTHORS file in the root of the source tree.
   */
  #include "vpx_codec_internal.h"
  #include "bit_ops.h"
  #include "dixie.h"
  #include "vp8_prob_data.h"
  #include "dequant_data.h"
  #include "modemv.h"
  #include "tokens.h"
  #include "predict.h"
  #include "dixie_loopfilter.h"
  #include <string.h>
  #include <assert.h>

  enum
  {
      FRAME_HEADER_SZ = 3,
      KEYFRAME_HEADER_SZ = 7
  };


  #define ARRAY_COPY(a,b) {\
      assert(sizeof(a)==sizeof(b));memcpy(a,b,sizeof(a));}
  static void
  decode_entropy_header(struct vp8_decoder_ctx    *ctx,
                        struct bool_decoder       *bool,
                        struct vp8_entropy_hdr    *hdr)





Bankoski, et al.              Informational                   [Page 138]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  {
      int i, j, k, l;

      /* Read coefficient probability updates */
      for (i = 0; i < BLOCK_TYPES; i++)
          for (j = 0; j < COEFF_BANDS; j++)
              for (k = 0; k < PREV_COEFF_CONTEXTS; k++)
                  for (l = 0; l < ENTROPY_NODES; l++)
                      if (bool_get(bool,
                                   k_coeff_entropy_update_probs
                                       [i][j][k][l]))
                          hdr->coeff_probs[i][j][k][l] =
                              bool_get_uint(bool, 8);

      /* Read coefficient skip mode probability */
      hdr->coeff_skip_enabled = bool_get_bit(bool);

      if (hdr->coeff_skip_enabled)
          hdr->coeff_skip_prob = bool_get_uint(bool, 8);

      /* Parse interframe probability updates */
      if (!ctx->frame_hdr.is_keyframe)
      {
          hdr->prob_inter = bool_get_uint(bool, 8);
          hdr->prob_last  = bool_get_uint(bool, 8);
          hdr->prob_gf    = bool_get_uint(bool, 8);

          if (bool_get_bit(bool))
              for (i = 0; i < 4; i++)
                  hdr->y_mode_probs[i] = bool_get_uint(bool, 8);

          if (bool_get_bit(bool))
              for (i = 0; i < 3; i++)
                  hdr->uv_mode_probs[i] = bool_get_uint(bool, 8);

          for (i = 0; i < 2; i++)
              for (j = 0; j < MV_PROB_CNT; j++)
                  if (bool_get(bool, k_mv_entropy_update_probs[i][j]))
                  {
                      int x = bool_get_uint(bool, 7);
                      hdr->mv_probs[i][j] = x ? x << 1 : 1;
                  }
      }
  }







Bankoski, et al.              Informational                   [Page 139]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  static void
  decode_reference_header(struct vp8_decoder_ctx    *ctx,
                          struct bool_decoder       *bool,
                          struct vp8_reference_hdr  *hdr)
  {
      unsigned int key = ctx->frame_hdr.is_keyframe;

      hdr->refresh_gf    = key ? 1 : bool_get_bit(bool);
      hdr->refresh_arf   = key ? 1 : bool_get_bit(bool);
      hdr->copy_gf       = key ? 0 : !hdr->refresh_gf
                           ? bool_get_uint(bool, 2) : 0;
      hdr->copy_arf      = key ? 0 : !hdr->refresh_arf
                           ? bool_get_uint(bool, 2) : 0;
      hdr->sign_bias[GOLDEN_FRAME] = key ? 0 : bool_get_bit(bool);
      hdr->sign_bias[ALTREF_FRAME] = key ? 0 : bool_get_bit(bool);
      hdr->refresh_entropy = bool_get_bit(bool);
      hdr->refresh_last  = key ? 1 : bool_get_bit(bool);
  }


  static void
  decode_quantizer_header(struct vp8_decoder_ctx    *ctx,
                          struct bool_decoder       *bool,
                          struct vp8_quant_hdr      *hdr)
  {
      int update;
      int last_q = hdr->q_index;

      hdr->q_index = bool_get_uint(bool, 7);
      update = last_q != hdr->q_index;
      update |= (hdr->y1_dc_delta_q = bool_maybe_get_int(bool, 4));
      update |= (hdr->y2_dc_delta_q = bool_maybe_get_int(bool, 4));
      update |= (hdr->y2_ac_delta_q = bool_maybe_get_int(bool, 4));
      update |= (hdr->uv_dc_delta_q = bool_maybe_get_int(bool, 4));
      update |= (hdr->uv_ac_delta_q = bool_maybe_get_int(bool, 4));
      hdr->delta_update = update;
  }


  static void
  decode_and_init_token_partitions(struct vp8_decoder_ctx    *ctx,
                                   struct bool_decoder       *bool,
                                   const unsigned char       *data,
                                   unsigned int               sz,
                                   struct vp8_token_hdr      *hdr)






Bankoski, et al.              Informational                   [Page 140]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  {
      int i;

      hdr->partitions = 1 << bool_get_uint(bool, 2);

      if (sz < 3 *(hdr->partitions - 1))
          vpx_internal_error(&ctx->error, VPX_CODEC_CORRUPT_FRAME,
                             "Truncated packet found parsing partition"
                             " lengths.");

      sz -= 3 * (hdr->partitions - 1);

      for (i = 0; i < hdr->partitions; i++)
      {
          if (i < hdr->partitions - 1)
          {
              hdr->partition_sz[i] = (data[2] << 16)
                                     | (data[1] << 8) | data[0];
              data += 3;
          }
          else
              hdr->partition_sz[i] = sz;

          if (sz < hdr->partition_sz[i])
              vpx_internal_error(&ctx->error, VPX_CODEC_CORRUPT_FRAME,
                                 "Truncated partition %d", i);

          sz -= hdr->partition_sz[i];
      }


      for (i = 0; i < ctx->token_hdr.partitions; i++)
      {
          init_bool_decoder(&ctx->tokens[i].bool, data,
                            ctx->token_hdr.partition_sz[i]);
          data += ctx->token_hdr.partition_sz[i];
      }
  }


  static void
  decode_loopfilter_header(struct vp8_decoder_ctx    *ctx,
                           struct bool_decoder       *bool,
                           struct vp8_loopfilter_hdr *hdr)







Bankoski, et al.              Informational                   [Page 141]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  {
      if (ctx->frame_hdr.is_keyframe)
          memset(hdr, 0, sizeof(*hdr));

      hdr->use_simple    = bool_get_bit(bool);
      hdr->level         = bool_get_uint(bool, 6);
      hdr->sharpness     = bool_get_uint(bool, 3);
      hdr->delta_enabled = bool_get_bit(bool);

      if (hdr->delta_enabled && bool_get_bit(bool))
      {
          int i;

          for (i = 0; i < BLOCK_CONTEXTS; i++)
              hdr->ref_delta[i] = bool_maybe_get_int(bool, 6);

          for (i = 0; i < BLOCK_CONTEXTS; i++)
              hdr->mode_delta[i] = bool_maybe_get_int(bool, 6);
      }
  }


  static void
  decode_segmentation_header(struct vp8_decoder_ctx *ctx,
                             struct bool_decoder    *bool,
                             struct vp8_segment_hdr *hdr)
  {
      if (ctx->frame_hdr.is_keyframe)
          memset(hdr, 0, sizeof(*hdr));

      hdr->enabled = bool_get_bit(bool);

      if (hdr->enabled)
      {
          int i;

          hdr->update_map = bool_get_bit(bool);
          hdr->update_data = bool_get_bit(bool);













Bankoski, et al.              Informational                   [Page 142]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


          if (hdr->update_data)
          {
              hdr->abs = bool_get_bit(bool);

              for (i = 0; i < MAX_MB_SEGMENTS; i++)
                  hdr->quant_idx[i] = bool_maybe_get_int(bool, 7);

              for (i = 0; i < MAX_MB_SEGMENTS; i++)
                  hdr->lf_level[i] = bool_maybe_get_int(bool, 6);
          }

          if (hdr->update_map)
          {
              for (i = 0; i < MB_FEATURE_TREE_PROBS; i++)
                  hdr->tree_probs[i] = bool_get_bit(bool)
                                       ? bool_get_uint(bool, 8)
                                       : 255;
          }
      }
      else
      {
          hdr->update_map = 0;
          hdr->update_data = 0;
      }
  }


  static void
  dequant_global_init(struct dequant_factors dqf[MAX_MB_SEGMENTS])
  {
      int i;

      for (i = 0; i < MAX_MB_SEGMENTS; i++)
          dqf[i].quant_idx = -1;
  }


  static int
  clamp_q(int q)
  {
      if (q < 0) return 0;
      else if (q > 127) return 127;

      return q;
  }






Bankoski, et al.              Informational                   [Page 143]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  static int
  dc_q(int q)
  {
      return dc_q_lookup[clamp_q(q)];
  }


  static int
  ac_q(int q)
  {
      return ac_q_lookup[clamp_q(q)];
  }


  static void
  dequant_init(struct dequant_factors        factors[MAX_MB_SEGMENTS],
               const struct vp8_segment_hdr *seg,
               const struct vp8_quant_hdr   *quant_hdr)
  {
      int i, q;
      struct dequant_factors *dqf = factors;

      for (i = 0; i < (seg->enabled ? MAX_MB_SEGMENTS : 1); i++)
      {
          q = quant_hdr->q_index;

          if (seg->enabled)
              q = (!seg->abs) ? q + seg->quant_idx[i]
                              : seg->quant_idx[i];

          if (dqf->quant_idx != q || quant_hdr->delta_update)
          {
              dqf->factor[TOKEN_BLOCK_Y1][0] =
                  dc_q(q + quant_hdr->y1_dc_delta_q);
              dqf->factor[TOKEN_BLOCK_Y1][1] =
                  ac_q(q);
              dqf->factor[TOKEN_BLOCK_UV][0] =
                  dc_q(q + quant_hdr->uv_dc_delta_q);
              dqf->factor[TOKEN_BLOCK_UV][1] =
                  ac_q(q + quant_hdr->uv_ac_delta_q);
              dqf->factor[TOKEN_BLOCK_Y2][0] =
                  dc_q(q + quant_hdr->y2_dc_delta_q) * 2;
              dqf->factor[TOKEN_BLOCK_Y2][1] =
                  ac_q(q + quant_hdr->y2_ac_delta_q) * 155 / 100;

              if (dqf->factor[TOKEN_BLOCK_Y2][1] < 8)
                  dqf->factor[TOKEN_BLOCK_Y2][1] = 8;




Bankoski, et al.              Informational                   [Page 144]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


              if (dqf->factor[TOKEN_BLOCK_UV][0] > 132)
                  dqf->factor[TOKEN_BLOCK_UV][0] = 132;

              dqf->quant_idx = q;
          }

          dqf++;
      }
  }


  static void
  decode_frame(struct vp8_decoder_ctx *ctx,
               const unsigned char    *data,
               unsigned int            sz)
  {
      vpx_codec_err_t  res;
      struct bool_decoder  bool;
      int                  i, row, partition;

      ctx->saved_entropy_valid = 0;

      if ((res = vp8_parse_frame_header(data, sz, &ctx->frame_hdr)))
          vpx_internal_error(&ctx->error, res,
                             "Failed to parse frame header");

      if (ctx->frame_hdr.is_experimental)
          vpx_internal_error(&ctx->error, VPX_CODEC_UNSUP_BITSTREAM,
                             "Experimental bitstreams not supported.");

      data += FRAME_HEADER_SZ;
      sz -= FRAME_HEADER_SZ;

      if (ctx->frame_hdr.is_keyframe)
      {
          data += KEYFRAME_HEADER_SZ;
          sz -= KEYFRAME_HEADER_SZ;
          ctx->mb_cols = (ctx->frame_hdr.kf.w + 15) / 16;
          ctx->mb_rows = (ctx->frame_hdr.kf.h + 15) / 16;
      }

      /* Start the bitreader for the header/entropy partition */
      init_bool_decoder(&bool, data, ctx->frame_hdr.part0_sz);








Bankoski, et al.              Informational                   [Page 145]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      /* Skip the colorspace and clamping bits */
      if (ctx->frame_hdr.is_keyframe)
          if (bool_get_uint(&bool, 2))
              vpx_internal_error(
                  &ctx->error, VPX_CODEC_UNSUP_BITSTREAM,
                  "Reserved bits not supported.");

      decode_segmentation_header(ctx, &bool, &ctx->segment_hdr);
      decode_loopfilter_header(ctx, &bool, &ctx->loopfilter_hdr);
      decode_and_init_token_partitions(ctx,
                                       &bool,
                                       data + ctx->frame_hdr.part0_sz,
                                       sz - ctx->frame_hdr.part0_sz,
                                       &ctx->token_hdr);
      decode_quantizer_header(ctx, &bool, &ctx->quant_hdr);
      decode_reference_header(ctx, &bool, &ctx->reference_hdr);

      /* Set keyframe entropy defaults.  These get updated on keyframes
       * regardless of the refresh_entropy setting.
       */
      if (ctx->frame_hdr.is_keyframe)
      {
          ARRAY_COPY(ctx->entropy_hdr.coeff_probs,
                     k_default_coeff_probs);
          ARRAY_COPY(ctx->entropy_hdr.mv_probs,
                     k_default_mv_probs);
          ARRAY_COPY(ctx->entropy_hdr.y_mode_probs,
                     k_default_y_mode_probs);
          ARRAY_COPY(ctx->entropy_hdr.uv_mode_probs,
                     k_default_uv_mode_probs);
      }

      if (!ctx->reference_hdr.refresh_entropy)
      {
          ctx->saved_entropy = ctx->entropy_hdr;
          ctx->saved_entropy_valid = 1;
      }

      decode_entropy_header(ctx, &bool, &ctx->entropy_hdr);

      vp8_dixie_modemv_init(ctx);
      vp8_dixie_tokens_init(ctx);
      vp8_dixie_predict_init(ctx);
      dequant_init(ctx->dequant_factors, &ctx->segment_hdr,
                   &ctx->quant_hdr);






Bankoski, et al.              Informational                   [Page 146]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      for (row = 0, partition = 0; row < ctx->mb_rows; row++)
      {
          vp8_dixie_modemv_process_row(
              ctx, &bool, row, 0, ctx->mb_cols);
          vp8_dixie_tokens_process_row(ctx, partition, row, 0,
                                       ctx->mb_cols);
          vp8_dixie_predict_process_row(ctx, row, 0, ctx->mb_cols);

          if (ctx->loopfilter_hdr.level && row)
              vp8_dixie_loopfilter_process_row(ctx, row - 1, 0,
                                               ctx->mb_cols);

          if (++partition == ctx->token_hdr.partitions)
              partition = 0;
      }

      if (ctx->loopfilter_hdr.level)
          vp8_dixie_loopfilter_process_row(
              ctx, row - 1, 0, ctx->mb_cols);

      ctx->frame_cnt++;

      if (!ctx->reference_hdr.refresh_entropy)
      {
          ctx->entropy_hdr = ctx->saved_entropy;
          ctx->saved_entropy_valid = 0;
      }

      /* Handle reference frame updates */
      if (ctx->reference_hdr.copy_arf == 1)
      {
          vp8_dixie_release_ref_frame(ctx->ref_frames[ALTREF_FRAME]);
          ctx->ref_frames[ALTREF_FRAME] =
              vp8_dixie_ref_frame(ctx->ref_frames[LAST_FRAME]);
      }
      else if (ctx->reference_hdr.copy_arf == 2)
      {
          vp8_dixie_release_ref_frame(ctx->ref_frames[ALTREF_FRAME]);
          ctx->ref_frames[ALTREF_FRAME] =
              vp8_dixie_ref_frame(ctx->ref_frames[GOLDEN_FRAME]);
      }

      if (ctx->reference_hdr.copy_gf == 1)
      {
          vp8_dixie_release_ref_frame(ctx->ref_frames[GOLDEN_FRAME]);
          ctx->ref_frames[GOLDEN_FRAME] =
              vp8_dixie_ref_frame(ctx->ref_frames[LAST_FRAME]);
      }



Bankoski, et al.              Informational                   [Page 147]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      else if (ctx->reference_hdr.copy_gf == 2)
      {
          vp8_dixie_release_ref_frame(ctx->ref_frames[GOLDEN_FRAME]);
          ctx->ref_frames[GOLDEN_FRAME] =
              vp8_dixie_ref_frame(ctx->ref_frames[ALTREF_FRAME]);
      }

      if (ctx->reference_hdr.refresh_gf)
      {
          vp8_dixie_release_ref_frame(ctx->ref_frames[GOLDEN_FRAME]);
          ctx->ref_frames[GOLDEN_FRAME] =
              vp8_dixie_ref_frame(ctx->ref_frames[CURRENT_FRAME]);
      }

      if (ctx->reference_hdr.refresh_arf)
      {
          vp8_dixie_release_ref_frame(ctx->ref_frames[ALTREF_FRAME]);
          ctx->ref_frames[ALTREF_FRAME] =
              vp8_dixie_ref_frame(ctx->ref_frames[CURRENT_FRAME]);
      }

      if (ctx->reference_hdr.refresh_last)
      {
          vp8_dixie_release_ref_frame(ctx->ref_frames[LAST_FRAME]);
          ctx->ref_frames[LAST_FRAME] =
              vp8_dixie_ref_frame(ctx->ref_frames[CURRENT_FRAME]);
      }

  }


  void
  vp8_dixie_decode_init(struct vp8_decoder_ctx *ctx)
  {
      dequant_global_init(ctx->dequant_factors);
  }















Bankoski, et al.              Informational                   [Page 148]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  #define CHECK_FOR_UPDATE(lval,rval,update_flag) do {\
          unsigned int old = lval; \
          update_flag |= (old != (lval = rval)); \
      } while (0)

  vpx_codec_err_t
  vp8_parse_frame_header(const unsigned char   *data,
                         unsigned int           sz,
                         struct vp8_frame_hdr  *hdr)
  {
      unsigned long raw;

      if (sz < 10)
          return VPX_CODEC_CORRUPT_FRAME;

      /* The frame header is defined as a three-byte little endian
       * value
       */
      raw = data[0] | (data[1] << 8) | (data[2] << 16);
      hdr->is_keyframe     = !BITS_GET(raw, 0, 1);
      hdr->version         = BITS_GET(raw, 1, 2);
      hdr->is_experimental = BITS_GET(raw, 3, 1);
      hdr->is_shown        = BITS_GET(raw, 4, 1);
      hdr->part0_sz        = BITS_GET(raw, 5, 19);

      if (sz <= hdr->part0_sz + (hdr->is_keyframe ? 10 : 3))
          return VPX_CODEC_CORRUPT_FRAME;

      hdr->frame_size_updated = 0;

      if (hdr->is_keyframe)
      {
          unsigned int update = 0;

          /* Keyframe header consists of a three-byte sync code
           * followed by the width and height and associated scaling
           * factors.
           */
          if (data[3] != 0x9d || data[4] != 0x01 || data[5] != 0x2a)
              return VPX_CODEC_UNSUP_BITSTREAM;











Bankoski, et al.              Informational                   [Page 149]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


          raw = data[6] | (data[7] << 8)
                | (data[8] << 16) | (data[9] << 24);
          CHECK_FOR_UPDATE(hdr->kf.w,       BITS_GET(raw,  0, 14),
                           update);
          CHECK_FOR_UPDATE(hdr->kf.scale_w, BITS_GET(raw, 14,  2),
                           update);
          CHECK_FOR_UPDATE(hdr->kf.h,       BITS_GET(raw, 16, 14),
                           update);
          CHECK_FOR_UPDATE(hdr->kf.scale_h, BITS_GET(raw, 30,  2),
                           update);

          hdr->frame_size_updated = update;

          if (!hdr->kf.w || !hdr->kf.h)
              return VPX_CODEC_UNSUP_BITSTREAM;
      }

      return VPX_CODEC_OK;
  }


  vpx_codec_err_t
  vp8_dixie_decode_frame(struct vp8_decoder_ctx *ctx,
                         const unsigned char    *data,
                         unsigned int            sz)
  {
      volatile struct vp8_decoder_ctx *ctx_ = ctx;

      ctx->error.error_code = VPX_CODEC_OK;
      ctx->error.has_detail = 0;

      if (!setjmp(ctx->error.jmp))
          decode_frame(ctx, data, sz);

      return ctx_->error.error_code;
  }


  void
  vp8_dixie_decode_destroy(struct vp8_decoder_ctx *ctx)
  {
      vp8_dixie_predict_destroy(ctx);
      vp8_dixie_tokens_destroy(ctx);
      vp8_dixie_modemv_destroy(ctx);
  }

  ---- End code block ----------------------------------------




Bankoski, et al.              Informational                   [Page 150]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


20.5.  dixie.h

  ---- Begin code block --------------------------------------

  /*
   *  Copyright (c) 2010, 2011, Google Inc.  All rights reserved.
   *
   *  Use of this source code is governed by a BSD-style license
   *  that can be found in the LICENSE file in the root of the source
   *  tree.  An additional intellectual property rights grant can be
   *  found in the file PATENTS.  All contributing project authors may
   *  be found in the AUTHORS file in the root of the source tree.
   */
  #ifndef DIXIE_H
  #define DIXIE_H
  #include "vpx_codec_internal.h"
  #include "bool_decoder.h"

  struct vp8_frame_hdr
  {
      unsigned int is_keyframe;      /* Frame is a keyframe */
      unsigned int is_experimental;  /* Frame is a keyframe */
      unsigned int version;          /* Bitstream version */
      unsigned int is_shown;         /* Frame is to be displayed. */
      unsigned int part0_sz;         /* Partition 0 length, in bytes */

      struct vp8_kf_hdr
      {
          unsigned int w;        /* Width */
          unsigned int h;        /* Height */
          unsigned int scale_w;  /* Scaling factor, Width */
          unsigned int scale_h;  /* Scaling factor, Height */
      } kf;

      unsigned int frame_size_updated; /* Flag to indicate a resolution
                                        * update.
                                        */
  };


  enum
  {
      MB_FEATURE_TREE_PROBS = 3,
      MAX_MB_SEGMENTS = 4
  };






Bankoski, et al.              Informational                   [Page 151]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  struct vp8_segment_hdr
  {
      unsigned int         enabled;
      unsigned int         update_data;
      unsigned int         update_map;
      unsigned int         abs;    /* 0=deltas, 1=absolute values */
      unsigned int         tree_probs[MB_FEATURE_TREE_PROBS];
      int                  lf_level[MAX_MB_SEGMENTS];
      int                  quant_idx[MAX_MB_SEGMENTS];

  };


  enum
  {
      BLOCK_CONTEXTS = 4
  };


  struct vp8_loopfilter_hdr
  {
      unsigned int         use_simple;
      unsigned int         level;
      unsigned int         sharpness;
      unsigned int         delta_enabled;
      int                  ref_delta[BLOCK_CONTEXTS];
      int                  mode_delta[BLOCK_CONTEXTS];
  };


  enum
  {
      MAX_PARTITIONS = 8
  };

  struct vp8_token_hdr
  {
      unsigned int        partitions;
      unsigned int        partition_sz[MAX_PARTITIONS];
  };











Bankoski, et al.              Informational                   [Page 152]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  struct vp8_quant_hdr
  {
      unsigned int       q_index;
      int                delta_update;
      int                y1_dc_delta_q;
      int                y2_dc_delta_q;
      int                y2_ac_delta_q;
      int                uv_dc_delta_q;
      int                uv_ac_delta_q;
  };


  struct vp8_reference_hdr
  {
      unsigned int refresh_last;
      unsigned int refresh_gf;
      unsigned int refresh_arf;
      unsigned int copy_gf;
      unsigned int copy_arf;
      unsigned int sign_bias[4];
      unsigned int refresh_entropy;
  };


  enum
  {
      BLOCK_TYPES        = 4,
      PREV_COEFF_CONTEXTS = 3,
      COEFF_BANDS         = 8,
      ENTROPY_NODES      = 11,
  };
  typedef unsigned char coeff_probs_table_t[BLOCK_TYPES][COEFF_BANDS]
  [PREV_COEFF_CONTEXTS]
  [ENTROPY_NODES];


  enum
  {
      MV_PROB_CNT = 2 + 8 - 1 + 10 /* from entropymv.h */
  };
  typedef unsigned char mv_component_probs_t[MV_PROB_CNT];










Bankoski, et al.              Informational                   [Page 153]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  struct vp8_entropy_hdr
  {
      coeff_probs_table_t   coeff_probs;
      mv_component_probs_t  mv_probs[2];
      unsigned int          coeff_skip_enabled;
      unsigned char         coeff_skip_prob;
      unsigned char         y_mode_probs[4];
      unsigned char         uv_mode_probs[3];
      unsigned char         prob_inter;
      unsigned char         prob_last;
      unsigned char         prob_gf;
  };


  enum reference_frame
  {
      CURRENT_FRAME,
      LAST_FRAME,
      GOLDEN_FRAME,
      ALTREF_FRAME,
      NUM_REF_FRAMES
  };


  enum prediction_mode
  {
      /* 16x16 intra modes */
      DC_PRED, V_PRED, H_PRED, TM_PRED, B_PRED,

      /* 16x16 inter modes */
      NEARESTMV, NEARMV, ZEROMV, NEWMV, SPLITMV,

      MB_MODE_COUNT,

      /* 4x4 intra modes */
      B_DC_PRED = 0, B_TM_PRED, B_VE_PRED, B_HE_PRED, B_LD_PRED,
      B_RD_PRED, B_VR_PRED, B_VL_PRED, B_HD_PRED, B_HU_PRED,

      /* 4x4 inter modes */
      LEFT4X4, ABOVE4X4, ZERO4X4, NEW4X4,

      B_MODE_COUNT
  };








Bankoski, et al.              Informational                   [Page 154]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  enum splitmv_partitioning
  {
      SPLITMV_16X8,
      SPLITMV_8X16,
      SPLITMV_8X8,
      SPLITMV_4X4
  };


  typedef short filter_t[6];


  typedef union mv
  {
      struct
      {
          int16_t x, y;
      }  d;
      uint32_t               raw;
  } mv_t;


  struct mb_base_info
  {
      unsigned char y_mode     : 4;
      unsigned char uv_mode    : 4;
      unsigned char segment_id : 2;
      unsigned char ref_frame  : 2;
      unsigned char skip_coeff : 1;
      unsigned char need_mc_border : 1;
      enum splitmv_partitioning  partitioning : 2;
      union mv      mv;
      unsigned int  eob_mask;
  };


  struct mb_info
  {
      struct mb_base_info base;
      union
      {
          union mv              mvs[16];
          enum prediction_mode  modes[16];
      } split;
  };






Bankoski, et al.              Informational                   [Page 155]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  /* A "token entropy context" has 4 Y values, 2 U, 2 V, and 1 Y2 */
  typedef int token_entropy_ctx_t[4 + 2 + 2 + 1];

  struct token_decoder
  {
      struct bool_decoder  bool;
      token_entropy_ctx_t  left_token_entropy_ctx;
      short               *coeffs;
  };

  enum token_block_type
  {
      TOKEN_BLOCK_Y1,
      TOKEN_BLOCK_UV,
      TOKEN_BLOCK_Y2,
      TOKEN_BLOCK_TYPES,
  };

  struct dequant_factors
  {
      int   quant_idx;
      short factor[TOKEN_BLOCK_TYPES][2]; /* [ Y1, UV, Y2 ]
                                           * [ DC, AC ] */
  };

  struct ref_cnt_img
  {
      vpx_image_t  img;
      unsigned int ref_cnt;
  };


  struct vp8_decoder_ctx
  {
      struct vpx_internal_error_info  error;
      unsigned int                    frame_cnt;

      struct vp8_frame_hdr            frame_hdr;
      struct vp8_segment_hdr          segment_hdr;
      struct vp8_loopfilter_hdr       loopfilter_hdr;
      struct vp8_token_hdr            token_hdr;
      struct vp8_quant_hdr            quant_hdr;
      struct vp8_reference_hdr        reference_hdr;
      struct vp8_entropy_hdr          entropy_hdr;

      struct vp8_entropy_hdr          saved_entropy;
      unsigned int                    saved_entropy_valid;




Bankoski, et al.              Informational                   [Page 156]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      unsigned int                    mb_rows;
      unsigned int                    mb_cols;
      struct mb_info                 *mb_info_storage;
      struct mb_info                **mb_info_rows_storage;
      struct mb_info                **mb_info_rows;

      token_entropy_ctx_t            *above_token_entropy_ctx;
      struct token_decoder            tokens[MAX_PARTITIONS];
      struct dequant_factors          dequant_factors[MAX_MB_SEGMENTS];

      struct ref_cnt_img              frame_strg[NUM_REF_FRAMES];
      struct ref_cnt_img             *ref_frames[NUM_REF_FRAMES];
      ptrdiff_t                       ref_frame_offsets[4];

      const filter_t                 *subpixel_filters;
  };


  void
  vp8_dixie_decode_init(struct vp8_decoder_ctx *ctx);


  void
  vp8_dixie_decode_destroy(struct vp8_decoder_ctx *ctx);

  vpx_codec_err_t
  vp8_parse_frame_header(const unsigned char   *data,
                         unsigned int           sz,
                         struct vp8_frame_hdr  *hdr);


  vpx_codec_err_t
  vp8_dixie_decode_frame(struct vp8_decoder_ctx *ctx,
                         const unsigned char    *data,
                         unsigned int            sz);


  #define CLAMP_255(x) ((x)<0?0:((x)>255?255:(x)))

  #endif

  ---- End code block ----------------------------------------









Bankoski, et al.              Informational                   [Page 157]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


20.6.  dixie_loopfilter.c

  ---- Begin code block --------------------------------------

  /*
   *  Copyright (c) 2010, 2011, Google Inc.  All rights reserved.
   *
   *  Use of this source code is governed by a BSD-style license
   *  that can be found in the LICENSE file in the root of the source
   *  tree.  An additional intellectual property rights grant can be
   *  found in the file PATENTS.  All contributing project authors may
   *  be found in the AUTHORS file in the root of the source tree.
   */
  #include "dixie.h"
  #include "dixie_loopfilter.h"

  #define ABS(x) ((x) >= 0 ? (x) : -(x))

  #define p3 pixels[-4*stride]
  #define p2 pixels[-3*stride]
  #define p1 pixels[-2*stride]
  #define p0 pixels[-1*stride]
  #define q0 pixels[ 0*stride]
  #define q1 pixels[ 1*stride]
  #define q2 pixels[ 2*stride]
  #define q3 pixels[ 3*stride]

  #define static
  static int

  saturate_int8(int x)
  {
      if (x < -128)
          return -128;

      if (x > 127)
          return 127;

      return x;
  }











Bankoski, et al.              Informational                   [Page 158]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  static int
  saturate_uint8(int x)
  {
      if (x < 0)
          return 0;

      if (x > 255)
          return 255;

      return x;
  }


  static int
  high_edge_variance(unsigned char *pixels,
                     int            stride,
                     int            hev_threshold)
  {
      return ABS(p1 - p0) > hev_threshold ||
             ABS(q1 - q0) > hev_threshold;
  }


  static int
  simple_threshold(unsigned char *pixels,
                   int            stride,
                   int            filter_limit)
  {
      return (ABS(p0 - q0) * 2 + (ABS(p1 - q1) >> 1)) <= filter_limit;
  }


  static int
  normal_threshold(unsigned char *pixels,
                   int            stride,
                   int            edge_limit,
                   int            interior_limit)
  {
      int E = edge_limit;
      int I = interior_limit;

      return simple_threshold(pixels, stride, 2 * E + I)
             && ABS(p3 - p2) <= I && ABS(p2 - p1) <= I
             && ABS(p1 - p0) <= I && ABS(q3 - q2) <= I
             && ABS(q2 - q1) <= I && ABS(q1 - q0) <= I;
  }





Bankoski, et al.              Informational                   [Page 159]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  static void
  filter_common(unsigned char *pixels,
                int            stride,
                int            use_outer_taps)
  {
      int a, f1, f2;

      a = 3 * (q0 - p0);

      if (use_outer_taps)
          a += saturate_int8(p1 - q1);

      a = saturate_int8(a);

      f1 = ((a + 4 > 127) ? 127 : a + 4) >> 3;
      f2 = ((a + 3 > 127) ? 127 : a + 3) >> 3;

      p0 = saturate_uint8(p0 + f2);
      q0 = saturate_uint8(q0 - f1);

      if (!use_outer_taps)
      {
          /* This handles the case of subblock_filter()
           * (from the bitstream guide.
           */
          a = (f1 + 1) >> 1;
          p1 = saturate_uint8(p1 + a);
          q1 = saturate_uint8(q1 - a);
      }
  }





















Bankoski, et al.              Informational                   [Page 160]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  static void
  filter_mb_edge(unsigned char *pixels,
                 int            stride)
  {
      int w, a;

      w = saturate_int8(saturate_int8(p1 - q1) + 3 * (q0 - p0));

      a = (27 * w + 63) >> 7;
      p0 = saturate_uint8(p0 + a);
      q0 = saturate_uint8(q0 - a);

      a = (18 * w + 63) >> 7;
      p1 = saturate_uint8(p1 + a);
      q1 = saturate_uint8(q1 - a);

      a = (9 * w + 63) >> 7;
      p2 = saturate_uint8(p2 + a);
      q2 = saturate_uint8(q2 - a);
  }


  static void
  filter_mb_v_edge(unsigned char *src,
                   int            stride,
                   int            edge_limit,
                   int            interior_limit,
                   int            hev_threshold,
                   int            size)
  {
      int i;

      for (i = 0; i < 8 * size; i++)
      {
          if (normal_threshold(src, 1, edge_limit, interior_limit))
          {
              if (high_edge_variance(src, 1, hev_threshold))
                  filter_common(src, 1, 1);
              else
                  filter_mb_edge(src, 1);
          }

          src += stride;
      }
  }






Bankoski, et al.              Informational                   [Page 161]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  static void
  filter_subblock_v_edge(unsigned char *src,
                         int            stride,
                         int            edge_limit,
                         int            interior_limit,
                         int            hev_threshold,
                         int            size)
  {
      int i;

      for (i = 0; i < 8 * size; i++)
      {
          if (normal_threshold(src, 1, edge_limit, interior_limit))
              filter_common(src, 1,
                            high_edge_variance(src, 1, hev_threshold));

          src += stride;
      }
  }


  static void
  filter_mb_h_edge(unsigned char *src,
                   int            stride,
                   int            edge_limit,
                   int            interior_limit,
                   int            hev_threshold,
                   int            size)
  {
      int i;

      for (i = 0; i < 8 * size; i++)
      {
          if (normal_threshold(src, stride, edge_limit,
                               interior_limit))
          {
              if (high_edge_variance(src, stride, hev_threshold))
                  filter_common(src, stride, 1);
              else
                  filter_mb_edge(src, stride);
          }

          src += 1;
      }
  }






Bankoski, et al.              Informational                   [Page 162]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  static void
  filter_subblock_h_edge(unsigned char *src,
                         int            stride,
                         int            edge_limit,
                         int            interior_limit,
                         int            hev_threshold,
                         int            size)
  {
      int i;

      for (i = 0; i < 8 * size; i++)
      {
          if (normal_threshold(src, stride, edge_limit,
                               interior_limit))
              filter_common(src, stride,
                            high_edge_variance(src, stride,
                                               hev_threshold));

          src += 1;
      }
  }


  static void
  filter_v_edge_simple(unsigned char *src,
                       int            stride,
                       int            filter_limit)
  {
      int i;

      for (i = 0; i < 16; i++)
      {
          if (simple_threshold(src, 1, filter_limit))
              filter_common(src, 1, 1);

          src += stride;
      }
  }













Bankoski, et al.              Informational                   [Page 163]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  static void
  filter_h_edge_simple(unsigned char *src,
                       int            stride,
                       int            filter_limit)
  {
      int i;

      for (i = 0; i < 16; i++)
      {
          if (simple_threshold(src, stride, filter_limit))
              filter_common(src, stride, 1);

          src += 1;
      }
  }


  static void
  calculate_filter_parameters(struct vp8_decoder_ctx *ctx,
                              struct mb_info         *mbi,
                              int                    *edge_limit_,
                              int                    *interior_limit_,
                              int                    *hev_threshold_)
  {
      int filter_level, interior_limit, hev_threshold;

      /* Reference code/spec seems to conflate filter_level and
       * edge_limit
       */

      filter_level = ctx->loopfilter_hdr.level;

      if (ctx->segment_hdr.enabled)
      {
          if (!ctx->segment_hdr.abs)
              filter_level +=
                  ctx->segment_hdr.lf_level[mbi->base.segment_id];
          else
              filter_level =
                  ctx->segment_hdr.lf_level[mbi->base.segment_id];
      }

      if (filter_level > 63)
          filter_level = 63;
      else if (filter_level < 0)
          filter_level = 0;





Bankoski, et al.              Informational                   [Page 164]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      if (ctx->loopfilter_hdr.delta_enabled)
      {
          filter_level +=
              ctx->loopfilter_hdr.ref_delta[mbi->base.ref_frame];

          if (mbi->base.ref_frame == CURRENT_FRAME)
          {
              if (mbi->base.y_mode == B_PRED)
                  filter_level += ctx->loopfilter_hdr.mode_delta[0];
          }
          else if (mbi->base.y_mode == ZEROMV)
              filter_level += ctx->loopfilter_hdr.mode_delta[1];
          else if (mbi->base.y_mode == SPLITMV)
              filter_level += ctx->loopfilter_hdr.mode_delta[3];
          else
              filter_level += ctx->loopfilter_hdr.mode_delta[2];
      }

      if (filter_level > 63)
          filter_level = 63;
      else if (filter_level < 0)
          filter_level = 0;

      interior_limit = filter_level;

      if (ctx->loopfilter_hdr.sharpness)
      {
          interior_limit >>= ctx->loopfilter_hdr.sharpness > 4 ? 2 : 1;

          if (interior_limit > 9 - ctx->loopfilter_hdr.sharpness)
              interior_limit = 9 - ctx->loopfilter_hdr.sharpness;
      }

      if (interior_limit < 1)
          interior_limit = 1;

      hev_threshold = (filter_level >= 15);

      if (filter_level >= 40)
          hev_threshold++;

      if (filter_level >= 20 && !ctx->frame_hdr.is_keyframe)
          hev_threshold++;

      *edge_limit_ = filter_level;
      *interior_limit_ = interior_limit;
      *hev_threshold_ = hev_threshold;
  }



Bankoski, et al.              Informational                   [Page 165]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  static void
  filter_row_normal(struct vp8_decoder_ctx *ctx,
                    unsigned int            row,
                    unsigned int            start_col,
                    unsigned int            num_cols)
  {
      unsigned char  *y, *u, *v;
      int             stride, uv_stride;
      struct mb_info *mbi;
      unsigned int    col;

      /* Adjust pointers based on row, start_col */

      stride    = ctx->ref_frames[CURRENT_FRAME]->img.stride[PLANE_Y];
      uv_stride = ctx->ref_frames[CURRENT_FRAME]->img.stride[PLANE_U];
      y = ctx->ref_frames[CURRENT_FRAME]->img.planes[PLANE_Y];
      u = ctx->ref_frames[CURRENT_FRAME]->img.planes[PLANE_U];
      v = ctx->ref_frames[CURRENT_FRAME]->img.planes[PLANE_V];
      y += (stride * row + start_col) * 16;
      u += (uv_stride * row + start_col) * 8;
      v += (uv_stride * row + start_col) * 8;
      mbi = ctx->mb_info_rows[row] + start_col;

      for (col = start_col; col < start_col + num_cols; col++)
      {
          int edge_limit, interior_limit, hev_threshold;

          /* TODO: Only need to recalculate every MB if segmentation is
           * enabled.
           */
          calculate_filter_parameters(ctx, mbi, &edge_limit,
                                      &interior_limit, &hev_threshold);

          if (edge_limit)
          {
              if (col)
              {
                  filter_mb_v_edge(y, stride, edge_limit + 2,
                                   interior_limit, hev_threshold, 2);
                  filter_mb_v_edge(u, uv_stride, edge_limit + 2,
                                   interior_limit, hev_threshold, 1);
                  filter_mb_v_edge(v, uv_stride, edge_limit + 2,
                                   interior_limit, hev_threshold, 1);
              }







Bankoski, et al.              Informational                   [Page 166]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


              /* NOTE: This conditional is actually dependent on the
               * number of coefficients decoded, not the skip flag as
               * coded in the bitstream.  The tokens task is expected
               * to set 31 if there is *any* non-zero data.
               */
              if (mbi->base.eob_mask
                  || mbi->base.y_mode == SPLITMV
                  || mbi->base.y_mode == B_PRED)
              {
                  filter_subblock_v_edge(y + 4, stride, edge_limit,
                                         interior_limit, hev_threshold,
                                         2);
                  filter_subblock_v_edge(y + 8, stride, edge_limit,
                                         interior_limit, hev_threshold,
                                         2);
                  filter_subblock_v_edge(y + 12, stride, edge_limit,
                                         interior_limit, hev_threshold,
                                         2);
                  filter_subblock_v_edge(u + 4, uv_stride, edge_limit,
                                         interior_limit, hev_threshold,
                                         1);
                  filter_subblock_v_edge(v + 4, uv_stride, edge_limit,
                                         interior_limit, hev_threshold,
                                         1);
              }

              if (row)
              {
                  filter_mb_h_edge(y, stride, edge_limit + 2,
                                   interior_limit, hev_threshold, 2);
                  filter_mb_h_edge(u, uv_stride, edge_limit + 2,
                                   interior_limit, hev_threshold, 1);
                  filter_mb_h_edge(v, uv_stride, edge_limit + 2,
                                   interior_limit, hev_threshold, 1);
              }
















Bankoski, et al.              Informational                   [Page 167]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


              if (mbi->base.eob_mask
                  || mbi->base.y_mode == SPLITMV
                  || mbi->base.y_mode == B_PRED)
              {
                  filter_subblock_h_edge(y + 4 * stride, stride,
                                         edge_limit, interior_limit,
                                         hev_threshold, 2);
                  filter_subblock_h_edge(y + 8 * stride, stride,
                                         edge_limit, interior_limit,
                                         hev_threshold, 2);
                  filter_subblock_h_edge(y + 12 * stride, stride,
                                         edge_limit, interior_limit,
                                         hev_threshold, 2);
                  filter_subblock_h_edge(u + 4 * uv_stride, uv_stride,
                                         edge_limit, interior_limit,
                                         hev_threshold, 1);
                  filter_subblock_h_edge(v + 4 * uv_stride, uv_stride,
                                         edge_limit, interior_limit,
                                         hev_threshold, 1);
              }
          }

          y += 16;
          u += 8;
          v += 8;
          mbi++;
      }
  }

  static void
  filter_row_simple(struct vp8_decoder_ctx *ctx,
                    unsigned int            row,
                    unsigned int            start_col,
                    unsigned int            num_cols)
  {
      unsigned char  *y;
      int             stride;
      struct mb_info *mbi;
      unsigned int    col;

      /* Adjust pointers based on row, start_col */
      stride    = ctx->ref_frames[CURRENT_FRAME]->img.stride[PLANE_Y];
      y = ctx->ref_frames[CURRENT_FRAME]->img.planes[PLANE_Y];
      y += (stride * row + start_col) * 16;
      mbi = ctx->mb_info_rows[row] + start_col;






Bankoski, et al.              Informational                   [Page 168]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      for (col = start_col; col < start_col + num_cols; col++)
      {
          int edge_limit, interior_limit, hev_threshold;

          /* TODO: Only need to recalculate every MB if segmentation is
           * enabled.
           */
          calculate_filter_parameters(ctx, mbi, &edge_limit,
                                      &interior_limit, &hev_threshold);

          if (edge_limit)
          {

              /* NOTE: This conditional is actually dependent on the
               * number of coefficients decoded, not the skip flag as
               * coded in the bitstream.  The tokens task is expected
               * to set 31 if there is *any* non-zero data.
               */
              int filter_subblocks = (mbi->base.eob_mask
                                      || mbi->base.y_mode == SPLITMV
                                      || mbi->base.y_mode == B_PRED);
              int mb_limit = (edge_limit + 2) * 2 + interior_limit;
              int b_limit = edge_limit * 2 + interior_limit;

              if (col)
                  filter_v_edge_simple(y, stride, mb_limit);

              if (filter_subblocks)
              {
                  filter_v_edge_simple(y + 4, stride, b_limit);
                  filter_v_edge_simple(y + 8, stride, b_limit);
                  filter_v_edge_simple(y + 12, stride, b_limit);
              }

              if (row)
                  filter_h_edge_simple(y, stride, mb_limit);

              if (filter_subblocks)
              {
                  filter_h_edge_simple(y + 4 * stride, stride,
                                       b_limit);
                  filter_h_edge_simple(y + 8 * stride, stride,
                                       b_limit);
                  filter_h_edge_simple(y + 12 * stride, stride,
                                       b_limit);
              }
          }




Bankoski, et al.              Informational                   [Page 169]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


          y += 16;
          mbi++;
      }
  }


  void
  vp8_dixie_loopfilter_process_row(struct vp8_decoder_ctx *ctx,
                                   unsigned int            row,
                                   unsigned int            start_col,
                                   unsigned int            num_cols)
  {
      if (ctx->loopfilter_hdr.use_simple)
          filter_row_simple(ctx, row, start_col, num_cols);
      else
          filter_row_normal(ctx, row, start_col, num_cols);
  }

  ---- End code block ----------------------------------------

20.7.  dixie_loopfilter.h

  ---- Begin code block --------------------------------------

  /*
   *  Copyright (c) 2010, 2011, Google Inc.  All rights reserved.
   *
   *  Use of this source code is governed by a BSD-style license
   *  that can be found in the LICENSE file in the root of the source
   *  tree.  An additional intellectual property rights grant can be
   *  found in the file PATENTS.  All contributing project authors may
   *  be found in the AUTHORS file in the root of the source tree.
   */
  #ifndef DIXIE_LOOPFILTER_H
  #define DIXIE_LOOPFILTER_H

  void
  vp8_dixie_loopfilter_process_row(struct vp8_decoder_ctx *ctx,
                                   unsigned int            row,
                                   unsigned int            start_col,
                                   unsigned int            num_cols);

  #endif

  ---- End code block ----------------------------------------






Bankoski, et al.              Informational                   [Page 170]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


20.8.  idct_add.c

  ---- Begin code block --------------------------------------

  /*
   *  Copyright (c) 2010, 2011, Google Inc.  All rights reserved.
   *
   *  Use of this source code is governed by a BSD-style license
   *  that can be found in the LICENSE file in the root of the source
   *  tree.  An additional intellectual property rights grant can be
   *  found in the file PATENTS.  All contributing project authors may
   *  be found in the AUTHORS file in the root of the source tree.
   */
  #include "dixie.h"
  #include "idct_add.h"
  #include <assert.h>

  void
  vp8_dixie_walsh(const short *input, short *output)
  {
      int i;
      int a1, b1, c1, d1;
      int a2, b2, c2, d2;
      const short *ip = input;
      short *op = output;

      for (i = 0; i < 4; i++)
      {
          a1 = ip[0] + ip[12];
          b1 = ip[4] + ip[8];
          c1 = ip[4] - ip[8];
          d1 = ip[0] - ip[12];

          op[0] = a1 + b1;
          op[4] = c1 + d1;
          op[8] = a1 - b1;
          op[12] = d1 - c1;
          ip++;
          op++;
      }

      ip = output;
      op = output;








Bankoski, et al.              Informational                   [Page 171]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      for (i = 0; i < 4; i++)
      {
          a1 = ip[0] + ip[3];
          b1 = ip[1] + ip[2];
          c1 = ip[1] - ip[2];
          d1 = ip[0] - ip[3];

          a2 = a1 + b1;
          b2 = c1 + d1;
          c2 = a1 - b1;
          d2 = d1 - c1;

          op[0] = (a2 + 3) >> 3;
          op[1] = (b2 + 3) >> 3;
          op[2] = (c2 + 3) >> 3;
          op[3] = (d2 + 3) >> 3;

          ip += 4;
          op += 4;
      }
  }


  #define cospi8sqrt2minus1 20091
  #define sinpi8sqrt2       35468
  #define rounding          0
  static void
  idct_columns(const short *input, short *output)
  {
      int i;
      int a1, b1, c1, d1;

      const short *ip = input;
      short *op = output;
      int temp1, temp2;
      int shortpitch = 4;

      for (i = 0; i < 4; i++)
      {
          a1 = ip[0] + ip[8];
          b1 = ip[0] - ip[8];

          temp1 = (ip[4] * sinpi8sqrt2 + rounding) >> 16;
          temp2 = ip[12] +
              ((ip[12] * cospi8sqrt2minus1 + rounding) >> 16);
          c1 = temp1 - temp2;





Bankoski, et al.              Informational                   [Page 172]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


          temp1 = ip[4] +
              ((ip[4] * cospi8sqrt2minus1 + rounding) >> 16);
          temp2 = (ip[12] * sinpi8sqrt2 + rounding) >> 16;
          d1 = temp1 + temp2;

          op[shortpitch*0] = a1 + d1;
          op[shortpitch*3] = a1 - d1;

          op[shortpitch*1] = b1 + c1;
          op[shortpitch*2] = b1 - c1;

          ip++;
          op++;
      }
  }


  void
  vp8_dixie_idct_add(unsigned char        *recon,
                     const unsigned char  *predict,
                     int                   stride,
                     const short          *coeffs)
  {
      int i;
      int a1, b1, c1, d1, temp1, temp2;
      short tmp[16];
      idct_columns(coeffs, tmp);
      coeffs = tmp;

      for (i = 0; i < 4; i++)
      {
          a1 = coeffs[0] + coeffs[2];
          b1 = coeffs[0] - coeffs[2];

          temp1 = (coeffs[1] * sinpi8sqrt2 + rounding) >> 16;
          temp2 = coeffs[3] +
              ((coeffs[3] * cospi8sqrt2minus1 + rounding) >> 16);
          c1 = temp1 - temp2;

          temp1 = coeffs[1] +
              ((coeffs[1] * cospi8sqrt2minus1 + rounding) >> 16);
          temp2 = (coeffs[3] * sinpi8sqrt2 + rounding) >> 16;
          d1 = temp1 + temp2;

          recon[0] = CLAMP_255(predict[0] + ((a1 + d1 + 4) >> 3));
          recon[3] = CLAMP_255(predict[3] + ((a1 - d1 + 4) >> 3));
          recon[1] = CLAMP_255(predict[1] + ((b1 + c1 + 4) >> 3));
          recon[2] = CLAMP_255(predict[2] + ((b1 - c1 + 4) >> 3));



Bankoski, et al.              Informational                   [Page 173]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


          coeffs += 4;
          recon += stride;
          predict += stride;
      }
  }

  ---- End code block ----------------------------------------

20.9.  idct_add.h

  ---- Begin code block --------------------------------------

  /*
   *  Copyright (c) 2010, 2011, Google Inc.  All rights reserved.
   *
   *  Use of this source code is governed by a BSD-style license
   *  that can be found in the LICENSE file in the root of the source
   *  tree.  An additional intellectual property rights grant can be
   *  found in the file PATENTS.  All contributing project authors may
   *  be found in the AUTHORS file in the root of the source tree.
   */
  #ifndef IDCT_ADD_H
  #define IDCT_ADD_H

  void
  vp8_dixie_idct_add_init(struct vp8_decoder_ctx *ctx);


  void
  vp8_dixie_idct_add(unsigned char        *recon,
                     const unsigned char  *predict,
                     int                   stride,
                     const short          *coeffs);


  void
  vp8_dixie_walsh(const short *in, short *out);


  void
  vp8_dixie_idct_add_process_row(struct vp8_decoder_ctx *ctx,
                                 short                  *coeffs,
                                 unsigned int            row,
                                 unsigned int            start_col,
                                 unsigned int            num_cols);
  #endif

  ---- End code block ----------------------------------------



Bankoski, et al.              Informational                   [Page 174]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


20.10.  mem.h

  ---- Begin code block --------------------------------------

  /*
   *  Copyright (c) 2010, 2011, Google Inc.  All rights reserved.
   *
   *  Use of this source code is governed by a BSD-style license
   *  that can be found in the LICENSE file in the root of the source
   *  tree.  An additional intellectual property rights grant can be
   *  found in the file PATENTS.  All contributing project authors may
   *  be found in the AUTHORS file in the root of the source tree.
   */
  #ifndef VPX_PORTS_MEM_H
  #define VPX_PORTS_MEM_H
  #include "vpx_config.h"
  #include "vpx_integer.h"

  #if defined(__GNUC__) && __GNUC__
  #define DECLARE_ALIGNED(n,typ,val)  typ val __attribute__ \
      ((aligned (n)))
  #elif defined(_MSC_VER)
  #define DECLARE_ALIGNED(n,typ,val)  __declspec(align(n)) typ val
  #else
  #warning No alignment directives known for this compiler.
  #define DECLARE_ALIGNED(n,typ,val)  typ val
  #endif
  #endif


  /* Declare an aligned array on the stack, for situations where the
   * stack pointer may not have the alignment we expect.  Creates an
   * array with a modified name, then defines val to be a pointer, and
   * aligns that pointer within the array.
   */
  #define DECLARE_ALIGNED_ARRAY(a,typ,val,n)\
  typ val##_[(n)+(a)/sizeof(typ)+1];\
  typ *val = (typ*)((((intptr_t)val##_)+(a)-1)&((intptr_t)-(a)))













Bankoski, et al.              Informational                   [Page 175]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  /* Indicates that the usage of the specified variable has been
   * audited to assure that it's safe to use uninitialized.  Silences
   * 'may be used uninitialized' warnings on gcc.
   */
  #if defined(__GNUC__) && __GNUC__
  #define UNINITIALIZED_IS_SAFE(x) x=x
  #else
  #define UNINITIALIZED_IS_SAFE(x) x
  #endif

  ---- End code block ----------------------------------------

20.11.  modemv.c

  ---- Begin code block --------------------------------------

  /*
   *  Copyright (c) 2010, 2011, Google Inc.  All rights reserved.
   *
   *  Use of this source code is governed by a BSD-style license
   *  that can be found in the LICENSE file in the root of the source
   *  tree.  An additional intellectual property rights grant can be
   *  found in the file PATENTS.  All contributing project authors may
   *  be found in the AUTHORS file in the root of the source tree.
   */
  #include "dixie.h"
  #include "modemv_data.h"
  #include <stdlib.h>
  #include <assert.h>


  struct mv_clamp_rect
  {
      int to_left, to_right, to_top, to_bottom;
  };
















Bankoski, et al.              Informational                   [Page 176]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  static union mv
          clamp_mv(union mv raw, const struct mv_clamp_rect *bounds)
  {
      union mv newmv;

      newmv.d.x = (raw.d.x < bounds->to_left)
                  ? bounds->to_left : raw.d.x;
      newmv.d.x = (raw.d.x > bounds->to_right)
                  ? bounds->to_right : newmv.d.x;
      newmv.d.y = (raw.d.y < bounds->to_top)
                  ? bounds->to_top : raw.d.y;
      newmv.d.y = (raw.d.y > bounds->to_bottom)
                  ? bounds->to_bottom : newmv.d.y;
      return newmv;
  }


  static int
  read_segment_id(struct bool_decoder *bool,
                  struct vp8_segment_hdr *seg)
  {
      return bool_get(bool, seg->tree_probs[0])
             ? 2 + bool_get(bool, seg->tree_probs[2])
             : bool_get(bool, seg->tree_probs[1]);
  }


  static enum prediction_mode
  above_block_mode(const struct mb_info *this,
                   const struct mb_info *above,
                   unsigned int b)
  {
      if (b < 4)
      {
          switch (above->base.y_mode)
          {
          case DC_PRED:
              return B_DC_PRED;
          case V_PRED:
              return B_VE_PRED;
          case H_PRED:
              return B_HE_PRED;









Bankoski, et al.              Informational                   [Page 177]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


          case TM_PRED:
              return B_TM_PRED;
          case B_PRED:
              return above->split.modes[b+12];
          default:
              assert(0);
          }
      }

      return this->split.modes[b-4];
  }


  static enum prediction_mode
  left_block_mode(const struct mb_info *this,
                  const struct mb_info *left,
                  unsigned int b)
  {
      if (!(b & 3))
      {
          switch (left->base.y_mode)
          {
          case DC_PRED:
              return B_DC_PRED;
          case V_PRED:
              return B_VE_PRED;
          case H_PRED:
              return B_HE_PRED;
          case TM_PRED:
              return B_TM_PRED;
          case B_PRED:
              return left->split.modes[b+3];
          default:
              assert(0);
          }
      }

      return this->split.modes[b-1];
  }












Bankoski, et al.              Informational                   [Page 178]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  static void
  decode_kf_mb_mode(struct mb_info      *this,
                    struct mb_info      *left,
                    struct mb_info      *above,
                    struct bool_decoder *bool)
  {
      int y_mode, uv_mode;

      y_mode = bool_read_tree(bool, kf_y_mode_tree, kf_y_mode_probs);

      if (y_mode == B_PRED)
      {
          unsigned int i;

          for (i = 0; i < 16; i++)
          {
              enum prediction_mode a = above_block_mode(this, above,
                                                        i);
              enum prediction_mode l = left_block_mode(this, left, i);
              enum prediction_mode b;

              b = bool_read_tree(bool, b_mode_tree,
                                 kf_b_mode_probs[a][l]);
              this->split.modes[i] = b;
          }
      }

      uv_mode = bool_read_tree(bool, uv_mode_tree, kf_uv_mode_probs);

      this->base.y_mode = y_mode;
      this->base.uv_mode = uv_mode;
      this->base.mv.raw = 0;
      this->base.ref_frame = 0;
  }

  static void
  decode_intra_mb_mode(struct mb_info         *this,
                       struct vp8_entropy_hdr *hdr,
                       struct bool_decoder    *bool)
  {
      /* Like decode_kf_mb_mode, but with probabilities transmitted in
       * the bitstream and no context on the above/left block mode.
       */
      int y_mode, uv_mode;

      y_mode = bool_read_tree(bool, y_mode_tree, hdr->y_mode_probs);





Bankoski, et al.              Informational                   [Page 179]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      if (y_mode == B_PRED)
      {
          unsigned int i;

          for (i = 0; i < 16; i++)
          {
              enum prediction_mode b;

              b = bool_read_tree(bool, b_mode_tree,
                                 default_b_mode_probs);
              this->split.modes[i] = b;
          }
      }

      uv_mode = bool_read_tree(bool, uv_mode_tree, hdr->uv_mode_probs);

      this->base.y_mode = y_mode;
      this->base.uv_mode = uv_mode;
      this->base.mv.raw = 0;
      this->base.ref_frame = CURRENT_FRAME;
  }


  static int
  read_mv_component(struct bool_decoder *bool,
                    const unsigned char  mvc[MV_PROB_CNT])
  {
      enum {IS_SHORT, SIGN, SHORT, BITS = SHORT + 8 - 1,
            LONG_WIDTH = 10};
      int x = 0;

      if (bool_get(bool, mvc[IS_SHORT])) /* Large */
      {
          int i = 0;

          for (i = 0; i < 3; i++)
              x += bool_get(bool, mvc[BITS + i]) << i;

          /* Skip bit 3, which is sometimes implicit */
          for (i = LONG_WIDTH - 1; i > 3; i--)
              x += bool_get(bool, mvc[BITS + i]) << i;

          if (!(x & 0xFFF0)  ||  bool_get(bool, mvc[BITS + 3]))
              x += 8;
      }
      else   /* small */
          x = bool_read_tree(bool, small_mv_tree, mvc + SHORT);




Bankoski, et al.              Informational                   [Page 180]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      if (x && bool_get(bool, mvc[SIGN]))
          x = -x;

      return x << 1;
  }


  static mv_t
  above_block_mv(const struct mb_info *this,
                 const struct mb_info *above,
                 unsigned int          b)
  {
      if (b < 4)
      {
          if (above->base.y_mode == SPLITMV)
              return above->split.mvs[b+12];

          return above->base.mv;
      }

      return this->split.mvs[b-4];
  }


  static mv_t
  left_block_mv(const struct mb_info *this,
                const struct mb_info *left,
                unsigned int          b)
  {
      if (!(b & 3))
      {
          if (left->base.y_mode == SPLITMV)
              return left->split.mvs[b+3];

          return left->base.mv;
      }

      return this->split.mvs[b-1];
  }












Bankoski, et al.              Informational                   [Page 181]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  static enum prediction_mode
  submv_ref(struct bool_decoder *bool, union mv l, union mv a)
  {
      enum subblock_mv_ref
      {
          SUBMVREF_NORMAL,
          SUBMVREF_LEFT_ZED,
          SUBMVREF_ABOVE_ZED,
          SUBMVREF_LEFT_ABOVE_SAME,
          SUBMVREF_LEFT_ABOVE_ZED
      };

      int lez = !(l.raw);
      int aez = !(a.raw);
      int lea = l.raw == a.raw;
      enum subblock_mv_ref ctx = SUBMVREF_NORMAL;

      if (lea && lez)
          ctx = SUBMVREF_LEFT_ABOVE_ZED;
      else if (lea)
          ctx = SUBMVREF_LEFT_ABOVE_SAME;
      else if (aez)
          ctx = SUBMVREF_ABOVE_ZED;
      else if (lez)
          ctx = SUBMVREF_LEFT_ZED;

      return bool_read_tree(bool, submv_ref_tree,
                            submv_ref_probs2[ctx]);
  }


  static void
  read_mv(struct bool_decoder  *bool,
          union mv             *mv,
          mv_component_probs_t  mvc[2])
  {
      mv->d.y = read_mv_component(bool, mvc[0]);
      mv->d.x = read_mv_component(bool, mvc[1]);
  }












Bankoski, et al.              Informational                   [Page 182]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  static void
  mv_bias(const struct mb_info *mb,
          const unsigned int   sign_bias[3],
          enum reference_frame ref_frame,
          union mv             *mv)
  {
      if (sign_bias[mb->base.ref_frame] ^ sign_bias[ref_frame])
      {
          mv->d.x *= -1;
          mv->d.y *= -1;
      }
  }


  enum near_mv_v
  {
      CNT_BEST = 0,
      CNT_ZEROZERO = 0,
      CNT_NEAREST,
      CNT_NEAR,
      CNT_SPLITMV
  };


  static void
  find_near_mvs(const struct mb_info   *this,
                const struct mb_info   *left,
                const struct mb_info   *above,
                const unsigned int      sign_bias[3],
                union  mv               near_mvs[4],
                int                     cnt[4])
  {
      const struct mb_info *aboveleft = above - 1;
      union  mv             *mv = near_mvs;
      int                   *cntx = cnt;

      /* Zero accumulators */
      mv[0].raw = mv[1].raw = mv[2].raw = 0;
      cnt[0] = cnt[1] = cnt[2] = cnt[3] = 0;












Bankoski, et al.              Informational                   [Page 183]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      /* Process above */
      if (above->base.ref_frame != CURRENT_FRAME)
      {
          if (above->base.mv.raw)
          {
              (++mv)->raw = above->base.mv.raw;
              mv_bias(above, sign_bias, this->base.ref_frame, mv);
              ++cntx;
          }

          *cntx += 2;
      }

      /* Process left */
      if (left->base.ref_frame != CURRENT_FRAME)
      {
          if (left->base.mv.raw)
          {
              union mv this_mv;

              this_mv.raw = left->base.mv.raw;
              mv_bias(left, sign_bias, this->base.ref_frame, &this_mv);

              if (this_mv.raw != mv->raw)
              {
                  (++mv)->raw = this_mv.raw;
                  ++cntx;
              }

              *cntx += 2;
          }
          else
              cnt[CNT_ZEROZERO] += 2;
      }

      /* Process above left */
      if (aboveleft->base.ref_frame != CURRENT_FRAME)
      {
          if (aboveleft->base.mv.raw)
          {
              union mv this_mv;

              this_mv.raw = aboveleft->base.mv.raw;
              mv_bias(aboveleft, sign_bias, this->base.ref_frame,
                      &this_mv);






Bankoski, et al.              Informational                   [Page 184]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


              if (this_mv.raw != mv->raw)
              {
                  (++mv)->raw = this_mv.raw;
                  ++cntx;
              }

              *cntx += 1;
          }
          else
              cnt[CNT_ZEROZERO] += 1;
      }

      /* If we have three distinct MVs ... */

      if (cnt[CNT_SPLITMV])
      {
          /* See if above-left MV can be merged with NEAREST */
          if (mv->raw == near_mvs[CNT_NEAREST].raw)
              cnt[CNT_NEAREST] += 1;
      }

      cnt[CNT_SPLITMV] = ((above->base.y_mode == SPLITMV)
                          + (left->base.y_mode == SPLITMV)) * 2
                         + (aboveleft->base.y_mode == SPLITMV);

      /* Swap near and nearest if necessary */
      if (cnt[CNT_NEAR] > cnt[CNT_NEAREST])
      {
          int tmp;
          tmp = cnt[CNT_NEAREST];
          cnt[CNT_NEAREST] = cnt[CNT_NEAR];
          cnt[CNT_NEAR] = tmp;
          tmp = near_mvs[CNT_NEAREST].raw;
          near_mvs[CNT_NEAREST].raw = near_mvs[CNT_NEAR].raw;
          near_mvs[CNT_NEAR].raw = tmp;
      }

      /* Use near_mvs[CNT_BEST] to store the "best" MV.  Note that this
       * storage shares the same address as near_mvs[CNT_ZEROZERO].
       */
      if (cnt[CNT_NEAREST] >= cnt[CNT_BEST])
          near_mvs[CNT_BEST] = near_mvs[CNT_NEAREST];
  }








Bankoski, et al.              Informational                   [Page 185]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  static void
  decode_split_mv(struct mb_info         *this,
                  const struct mb_info   *left,
                  const struct mb_info   *above,
                  struct vp8_entropy_hdr *hdr,
                  union  mv              *best_mv,
                  struct bool_decoder    *bool)
  {
      const int *partition;
      int        j, k, mask, partition_id;

      partition_id = bool_read_tree(bool, split_mv_tree,
                                    split_mv_probs);
      partition = mv_partitions[partition_id];
      this->base.partitioning = partition_id;

      for (j = 0, mask = 0; mask < 65535; j++)
      {
          union mv mv, left_mv, above_mv;
          enum prediction_mode subblock_mode;

          /* Find the first subblock in this partition. */
          for (k = 0; j != partition[k]; k++);

          /* Decode the next MV */
          left_mv = left_block_mv(this, left, k);
          above_mv = above_block_mv(this, above, k);
          subblock_mode = submv_ref(bool, left_mv,  above_mv);

          switch (subblock_mode)
          {
          case LEFT4X4:
              mv = left_mv;
              break;
          case ABOVE4X4:
              mv = above_mv;
              break;
          case ZERO4X4:
              mv.raw = 0;
              break;
          case NEW4X4:
              read_mv(bool, &mv, hdr->mv_probs);
              mv.d.x += best_mv->d.x;
              mv.d.y += best_mv->d.y;
              break;
          default:
              assert(0);
          }



Bankoski, et al.              Informational                   [Page 186]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


          /* Fill the MVs for this partition */
          for (; k < 16; k++)
              if (j == partition[k])
              {
                  this->split.mvs[k] = mv;
                  mask |= 1 << k;
              }
      }
  }


  static int
  need_mc_border(union mv mv, int l, int t, int b_w, int w, int h)
  {
      int b, r;

      /* Get distance to edge for top-left pixel */
      l += (mv.d.x >> 3);
      t += (mv.d.y >> 3);

      /* Get distance to edge for bottom-right pixel */
      r = w - (l + b_w);
      b = h - (t + b_w);

      return (l >> 1 < 2 || r >> 1 < 3 || t >> 1 < 2 || b >> 1 < 3);
  }

  static void
  decode_mvs(struct vp8_decoder_ctx       *ctx,
             struct mb_info               *this,
             const struct mb_info         *left,
             const struct mb_info         *above,
             const struct mv_clamp_rect   *bounds,
             struct bool_decoder          *bool)
  {
      struct vp8_entropy_hdr *hdr = &ctx->entropy_hdr;
      union mv          near_mvs[4];
      union mv          clamped_best_mv;
      int               mv_cnts[4];
      unsigned char     probs[4];
      enum {BEST, NEAREST, NEAR};
      int x, y, w, h, b;

      this->base.ref_frame = bool_get(bool, hdr->prob_last)
                             ? 2 + bool_get(bool, hdr->prob_gf)
                             : 1;





Bankoski, et al.              Informational                   [Page 187]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      find_near_mvs(this, this - 1, above,
                    ctx->reference_hdr.sign_bias, near_mvs, mv_cnts);
      probs[0] = mv_counts_to_probs[mv_cnts[0]][0];
      probs[1] = mv_counts_to_probs[mv_cnts[1]][1];
      probs[2] = mv_counts_to_probs[mv_cnts[2]][2];
      probs[3] = mv_counts_to_probs[mv_cnts[3]][3];

      this->base.y_mode = bool_read_tree(bool, mv_ref_tree, probs);
      this->base.uv_mode = this->base.y_mode;

      this->base.need_mc_border = 0;
      x = (-bounds->to_left - 128) >> 3;
      y = (-bounds->to_top - 128) >> 3;
      w = ctx->mb_cols * 16;
      h = ctx->mb_rows * 16;

      switch (this->base.y_mode)
      {
      case NEARESTMV:
          this->base.mv = clamp_mv(near_mvs[NEAREST], bounds);
          break;
      case NEARMV:
          this->base.mv = clamp_mv(near_mvs[NEAR], bounds);
          break;
      case ZEROMV:
          this->base.mv.raw = 0;
          return; //skip need_mc_border check
      case NEWMV:
          clamped_best_mv = clamp_mv(near_mvs[BEST], bounds);
          read_mv(bool, &this->base.mv, hdr->mv_probs);
          this->base.mv.d.x += clamped_best_mv.d.x;
          this->base.mv.d.y += clamped_best_mv.d.y;
          break;
      case SPLITMV:
      {
          union mv          chroma_mv[4] = {{{0}}};

          clamped_best_mv = clamp_mv(near_mvs[BEST], bounds);
          decode_split_mv(this, left, above, hdr, &clamped_best_mv,
                          bool);
          this->base.mv = this->split.mvs[15];










Bankoski, et al.              Informational                   [Page 188]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


          for (b = 0; b < 16; b++)
          {
              chroma_mv[(b>>1&1) + (b>>2&2)].d.x +=
                  this->split.mvs[b].d.x;
              chroma_mv[(b>>1&1) + (b>>2&2)].d.y +=
                  this->split.mvs[b].d.y;

              if (need_mc_border(this->split.mvs[b],
              x + (b & 3) * 4, y + (b & ~3), 4, w, h))
              {
                  this->base.need_mc_border = 1;
                  break;
              }
          }

          for (b = 0; b < 4; b++)
          {
              chroma_mv[b].d.x += 4 + 8 * (chroma_mv[b].d.x >> 31);
              chroma_mv[b].d.y += 4 + 8 * (chroma_mv[b].d.y >> 31);
              chroma_mv[b].d.x /= 4;
              chroma_mv[b].d.y /= 4;

              //note we're passing in non-subsampled coordinates

              if (need_mc_border(chroma_mv[b],
              x + (b & 1) * 8, y + (b >> 1) * 8, 16, w, h))
              {
                  this->base.need_mc_border = 1;
                  break;
              }
          }

          return; //skip need_mc_border check
      }
      default:
          assert(0);
      }

      if (need_mc_border(this->base.mv, x, y, 16, w, h))
          this->base.need_mc_border = 1;
  }










Bankoski, et al.              Informational                   [Page 189]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  void
  vp8_dixie_modemv_process_row(struct vp8_decoder_ctx *ctx,
  struct bool_decoder    *bool,
  int                     row,
  int                     start_col,
  int                     num_cols)
  {
      struct mb_info       *above, *this;
      unsigned int          col;
      struct mv_clamp_rect  bounds;

      this = ctx->mb_info_rows[row] + start_col;
      above = ctx->mb_info_rows[row - 1] + start_col;

      /* Calculate the eighth-pel MV bounds using a 1 MB border. */
      bounds.to_left   = -((start_col + 1) << 7);
      bounds.to_right  = (ctx->mb_cols - start_col) << 7;
      bounds.to_top    = -((row + 1) << 7);
      bounds.to_bottom = (ctx->mb_rows - row) << 7;

      for (col = start_col; col < start_col + num_cols; col++)
      {
          if (ctx->segment_hdr.update_map)
              this->base.segment_id = read_segment_id(bool,
              &ctx->segment_hdr);

          if (ctx->entropy_hdr.coeff_skip_enabled)
              this->base.skip_coeff = bool_get(bool,
              ctx->entropy_hdr.coeff_skip_prob);

          if (ctx->frame_hdr.is_keyframe)
          {
              if (!ctx->segment_hdr.update_map)
                  this->base.segment_id = 0;

              decode_kf_mb_mode(this, this - 1, above, bool);
          }
          else
          {
              if (bool_get(bool, ctx->entropy_hdr.prob_inter))
                  decode_mvs(ctx, this, this - 1, above, &bounds,
                             bool);
              else
                  decode_intra_mb_mode(this, &ctx->entropy_hdr, bool);

              bounds.to_left -= 16 << 3;
              bounds.to_right -= 16 << 3;
          }



Bankoski, et al.              Informational                   [Page 190]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


          /* Advance to next mb */
          this++;
          above++;
      }
  }


  void
  vp8_dixie_modemv_init(struct vp8_decoder_ctx *ctx)
  {
      unsigned int    mbi_w, mbi_h, i;
      struct mb_info *mbi;

      mbi_w = ctx->mb_cols + 1; /* For left border col */
      mbi_h = ctx->mb_rows + 1; /* For above border row */

      if (ctx->frame_hdr.frame_size_updated)
      {
          free(ctx->mb_info_storage);
          ctx->mb_info_storage = NULL;
          free(ctx->mb_info_rows_storage);
          ctx->mb_info_rows_storage = NULL;
      }

      if (!ctx->mb_info_storage)
          ctx->mb_info_storage = calloc(mbi_w * mbi_h,
          sizeof(*ctx->mb_info_storage));

      if (!ctx->mb_info_rows_storage)

          ctx->mb_info_rows_storage = calloc(mbi_h,
          sizeof(*ctx->mb_info_rows_storage));

      /* Set up row pointers */
      mbi = ctx->mb_info_storage + 1;

      for (i = 0; i < mbi_h; i++)
      {
          ctx->mb_info_rows_storage[i] = mbi;
          mbi += mbi_w;
      }

      ctx->mb_info_rows = ctx->mb_info_rows_storage + 1;
  }







Bankoski, et al.              Informational                   [Page 191]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  void
  vp8_dixie_modemv_destroy(struct vp8_decoder_ctx *ctx)
  {
      free(ctx->mb_info_storage);
      ctx->mb_info_storage = NULL;
      free(ctx->mb_info_rows_storage);
      ctx->mb_info_rows_storage = NULL;
  }

  ---- End code block ----------------------------------------

20.12.  modemv.h

  ---- Begin code block --------------------------------------

  /*
   *  Copyright (c) 2010, 2011, Google Inc.  All rights reserved.
   *
   *  Use of this source code is governed by a BSD-style license
   *  that can be found in the LICENSE file in the root of the source
   *  tree.  An additional intellectual property rights grant can be
   *  found in the file PATENTS.  All contributing project authors may
   *  be found in the AUTHORS file in the root of the source tree.
   */
  #ifndef MODEMV_H
  #define MODEMV_H

  void
  vp8_dixie_modemv_init(struct vp8_decoder_ctx *ctx);


  void
  vp8_dixie_modemv_destroy(struct vp8_decoder_ctx *ctx);


  void
  vp8_dixie_modemv_process_row(struct vp8_decoder_ctx *ctx,
                               struct bool_decoder    *bool,
                               int                     row,
                               int                     start_col,
                               int                     num_cols);

  #endif

  ---- End code block ----------------------------------------






Bankoski, et al.              Informational                   [Page 192]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


20.13.  modemv_data.h

  ---- Begin code block --------------------------------------

  /*
   *  Copyright (c) 2010, 2011, Google Inc.  All rights reserved.
   *
   *  Use of this source code is governed by a BSD-style license
   *  that can be found in the LICENSE file in the root of the source
   *  tree.  An additional intellectual property rights grant can be
   *  found in the file PATENTS.  All contributing project authors may
   *  be found in the AUTHORS file in the root of the source tree.
   */

  static const unsigned char kf_y_mode_probs[] = { 145, 156, 163, 128};
  static const unsigned char kf_uv_mode_probs[] = { 142, 114, 183};
  static const unsigned char kf_b_mode_probs[10][10][9] =
  {
    { /* above mode 0 */
      { /* left mode 0 */ 231, 120,  48,  89, 115, 113, 120, 152, 112},
      { /* left mode 1 */ 152, 179,  64, 126, 170, 118,  46,  70,  95},
      { /* left mode 2 */ 175,  69, 143,  80,  85,  82,  72, 155, 103},
      { /* left mode 3 */  56,  58,  10, 171, 218, 189,  17,  13, 152},
      { /* left mode 4 */ 144,  71,  10,  38, 171, 213, 144,  34,  26},
      { /* left mode 5 */ 114,  26,  17, 163,  44, 195,  21,  10, 173},
      { /* left mode 6 */ 121,  24,  80, 195,  26,  62,  44,  64,  85},
      { /* left mode 7 */ 170,  46,  55,  19, 136, 160,  33, 206,  71},
      { /* left mode 8 */  63,  20,   8, 114, 114, 208,  12,   9, 226},
      { /* left mode 9 */  81,  40,  11,  96, 182,  84,  29,  16,  36}
    },
    { /* above mode 1 */
      { /* left mode 0 */ 134, 183,  89, 137,  98, 101, 106, 165, 148},
      { /* left mode 1 */  72, 187, 100, 130, 157, 111,  32,  75,  80},
      { /* left mode 2 */  66, 102, 167,  99,  74,  62,  40, 234, 128},
      { /* left mode 3 */  41,  53,   9, 178, 241, 141,  26,   8, 107},
      { /* left mode 4 */ 104,  79,  12,  27, 217, 255,  87,  17,   7},
      { /* left mode 5 */  74,  43,  26, 146,  73, 166,  49,  23, 157},
      { /* left mode 6 */  65,  38, 105, 160,  51,  52,  31, 115, 128},
      { /* left mode 7 */  87,  68,  71,  44, 114,  51,  15, 186,  23},
      { /* left mode 8 */  47,  41,  14, 110, 182, 183,  21,  17, 194},
      { /* left mode 9 */  66,  45,  25, 102, 197, 189,  23,  18,  22}
    },
    { /* above mode 2 */
      { /* left mode 0 */  88,  88, 147, 150,  42,  46,  45, 196, 205},
      { /* left mode 1 */  43,  97, 183, 117,  85,  38,  35, 179,  61},
      { /* left mode 2 */  39,  53, 200,  87,  26,  21,  43, 232, 171},
      { /* left mode 3 */  56,  34,  51, 104, 114, 102,  29,  93,  77},
      { /* left mode 4 */ 107,  54,  32,  26,  51,   1,  81,  43,  31},



Bankoski, et al.              Informational                   [Page 193]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      { /* left mode 5 */  39,  28,  85, 171,  58, 165,  90,  98,  64},
      { /* left mode 6 */  34,  22, 116, 206,  23,  34,  43, 166,  73},
      { /* left mode 7 */  68,  25, 106,  22,  64, 171,  36, 225, 114},
      { /* left mode 8 */  34,  19,  21, 102, 132, 188,  16,  76, 124},
      { /* left mode 9 */  62,  18,  78,  95,  85,  57,  50,  48,  51}
    },
    { /* above mode 3 */
      { /* left mode 0 */ 193, 101,  35, 159, 215, 111,  89,  46, 111},
      { /* left mode 1 */  60, 148,  31, 172, 219, 228,  21,  18, 111},
      { /* left mode 2 */ 112, 113,  77,  85, 179, 255,  38, 120, 114},
      { /* left mode 3 */  40,  42,   1, 196, 245, 209,  10,  25, 109},
      { /* left mode 4 */ 100,  80,   8,  43, 154,   1,  51,  26,  71},
      { /* left mode 5 */  88,  43,  29, 140, 166, 213,  37,  43, 154},
      { /* left mode 6 */  61,  63,  30, 155,  67,  45,  68,   1, 209},
      { /* left mode 7 */ 142,  78,  78,  16, 255, 128,  34, 197, 171},
      { /* left mode 8 */  41,  40,   5, 102, 211, 183,   4,   1, 221},
      { /* left mode 9 */  51,  50,  17, 168, 209, 192,  23,  25,  82}
    },
    { /* above mode 4 */
      { /* left mode 0 */ 125,  98,  42,  88, 104,  85, 117, 175,  82},
      { /* left mode 1 */  95,  84,  53,  89, 128, 100, 113, 101,  45},
      { /* left mode 2 */  75,  79, 123,  47,  51, 128,  81, 171,   1},
      { /* left mode 3 */  57,  17,   5,  71, 102,  57,  53,  41,  49},
      { /* left mode 4 */ 115,  21,   2,  10, 102, 255, 166,  23,   6},
      { /* left mode 5 */  38,  33,  13, 121,  57,  73,  26,   1,  85},
      { /* left mode 6 */  41,  10,  67, 138,  77, 110,  90,  47, 114},
      { /* left mode 7 */ 101,  29,  16,  10,  85, 128, 101, 196,  26},
      { /* left mode 8 */  57,  18,  10, 102, 102, 213,  34,  20,  43},
      { /* left mode 9 */ 117,  20,  15,  36, 163, 128,  68,   1,  26}
    },
    { /* above mode 5 */
      { /* left mode 0 */ 138,  31,  36, 171,  27, 166,  38,  44, 229},
      { /* left mode 1 */  67,  87,  58, 169,  82, 115,  26,  59, 179},
      { /* left mode 2 */  63,  59,  90, 180,  59, 166,  93,  73, 154},
      { /* left mode 3 */  40,  40,  21, 116, 143, 209,  34,  39, 175},
      { /* left mode 4 */  57,  46,  22,  24, 128,   1,  54,  17,  37},
      { /* left mode 5 */  47,  15,  16, 183,  34, 223,  49,  45, 183},
      { /* left mode 6 */  46,  17,  33, 183,   6,  98,  15,  32, 183},
      { /* left mode 7 */  65,  32,  73, 115,  28, 128,  23, 128, 205},
      { /* left mode 8 */  40,   3,   9, 115,  51, 192,  18,   6, 223},
      { /* left mode 9 */  87,  37,   9, 115,  59,  77,  64,  21,  47}
    },
    { /* above mode 6 */
      { /* left mode 0 */ 104,  55,  44, 218,   9,  54,  53, 130, 226},
      { /* left mode 1 */  64,  90,  70, 205,  40,  41,  23,  26,  57},
      { /* left mode 2 */  54,  57, 112, 184,   5,  41,  38, 166, 213},
      { /* left mode 3 */  30,  34,  26, 133, 152, 116,  10,  32, 134},
      { /* left mode 4 */  75,  32,  12,  51, 192, 255, 160,  43,  51},



Bankoski, et al.              Informational                   [Page 194]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      { /* left mode 5 */  39,  19,  53, 221,  26, 114,  32,  73, 255},
      { /* left mode 6 */  31,   9,  65, 234,   2,  15,   1, 118,  73},
      { /* left mode 7 */  88,  31,  35,  67, 102,  85,  55, 186,  85},
      { /* left mode 8 */  56,  21,  23, 111,  59, 205,  45,  37, 192},
      { /* left mode 9 */  55,  38,  70, 124,  73, 102,   1,  34,  98}
    },
    { /* above mode 7 */
      { /* left mode 0 */ 102,  61,  71,  37,  34,  53,  31, 243, 192},
      { /* left mode 1 */  69,  60,  71,  38,  73, 119,  28, 222,  37},
      { /* left mode 2 */  68,  45, 128,  34,   1,  47,  11, 245, 171},
      { /* left mode 3 */  62,  17,  19,  70, 146,  85,  55,  62,  70},
      { /* left mode 4 */  75,  15,   9,   9,  64, 255, 184, 119,  16},
      { /* left mode 5 */  37,  43,  37, 154, 100, 163,  85, 160,   1},
      { /* left mode 6 */  63,   9,  92, 136,  28,  64,  32, 201,  85},
      { /* left mode 7 */  86,   6,  28,   5,  64, 255,  25, 248,   1},
      { /* left mode 8 */  56,   8,  17, 132, 137, 255,  55, 116, 128},
      { /* left mode 9 */  58,  15,  20,  82, 135,  57,  26, 121,  40}
    },
    { /* above mode 8 */
      { /* left mode 0 */ 164,  50,  31, 137, 154, 133,  25,  35, 218},
      { /* left mode 1 */  51, 103,  44, 131, 131, 123,  31,   6, 158},
      { /* left mode 2 */  86,  40,  64, 135, 148, 224,  45, 183, 128},
      { /* left mode 3 */  22,  26,  17, 131, 240, 154,  14,   1, 209},
      { /* left mode 4 */  83,  12,  13,  54, 192, 255,  68,  47,  28},
      { /* left mode 5 */  45,  16,  21,  91,  64, 222,   7,   1, 197},
      { /* left mode 6 */  56,  21,  39, 155,  60, 138,  23, 102, 213},
      { /* left mode 7 */  85,  26,  85,  85, 128, 128,  32, 146, 171},
      { /* left mode 8 */  18,  11,   7,  63, 144, 171,   4,   4, 246},
      { /* left mode 9 */  35,  27,  10, 146, 174, 171,  12,  26, 128}
    },
    { /* above mode 9 */
      { /* left mode 0 */ 190,  80,  35,  99, 180,  80, 126,  54,  45},
      { /* left mode 1 */  85, 126,  47,  87, 176,  51,  41,  20,  32},
      { /* left mode 2 */ 101,  75, 128, 139, 118, 146, 116, 128,  85},
      { /* left mode 3 */  56,  41,  15, 176, 236,  85,  37,   9,  62},
      { /* left mode 4 */ 146,  36,  19,  30, 171, 255,  97,  27,  20},
      { /* left mode 5 */  71,  30,  17, 119, 118, 255,  17,  18, 138},
      { /* left mode 6 */ 101,  38,  60, 138,  55,  70,  43,  26, 142},
      { /* left mode 7 */ 138,  45,  61,  62, 219,   1,  81, 188,  64},
      { /* left mode 8 */  32,  41,  20, 117, 151, 142,  20,  21, 163},
      { /* left mode 9 */ 112,  19,  12,  61, 195, 128,  48,   4,  24}
    }
  };








Bankoski, et al.              Informational                   [Page 195]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  static const int kf_y_mode_tree[] =
  {
    -B_PRED, 2,
    4, 6,
    -DC_PRED, -V_PRED,
    -H_PRED, -TM_PRED
  };
  static const int y_mode_tree[] =
  {
    -DC_PRED, 2,
    4, 6,
    -V_PRED, -H_PRED,
    -TM_PRED, -B_PRED
  };
  static const int uv_mode_tree[6] =
  {
    -DC_PRED, 2,
    -V_PRED, 4,
    -H_PRED, -TM_PRED
  };
  static const int b_mode_tree[18] =
  {
    -B_DC_PRED, 2,               /* 0 = DC_NODE */
    -B_TM_PRED, 4,               /* 1 = TM_NODE */
    -B_VE_PRED, 6,               /* 2 = VE_NODE */
    8, 12,                       /* 3 = COM_NODE */
    -B_HE_PRED, 10,              /* 4 = HE_NODE */
    -B_RD_PRED, -B_VR_PRED,      /* 5 = RD_NODE */
    -B_LD_PRED, 14,              /* 6 = LD_NODE */
    -B_VL_PRED, 16,              /* 7 = VL_NODE */
    -B_HD_PRED, -B_HU_PRED       /* 8 = HD_NODE */
  };
  static const int small_mv_tree[14] =
  {
    2, 8,
    4, 6,
    -0, -1,
    -2, -3,
    10, 12,
    -4, -5,
    -6, -7
  };









Bankoski, et al.              Informational                   [Page 196]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  static const int mv_ref_tree[8] =
  {
    -ZEROMV, 2,
    -NEARESTMV, 4,
    -NEARMV, 6,
    -NEWMV, -SPLITMV
  };
  static const int submv_ref_tree[6] =
  {
    -LEFT4X4, 2,
    -ABOVE4X4, 4,
    -ZERO4X4, -NEW4X4
  };
  static const int split_mv_tree[6] =
  {
    -3, 2,
    -2, 4,
    -0, -1
  };
  static const unsigned char default_b_mode_probs[] =
  { 120,  90,  79, 133,  87,  85,  80, 111, 151};
  static const unsigned char mv_counts_to_probs[6][4] =
  {
    {   7,   1,   1, 143 },
    {  14,  18,  14, 107 },
    { 135,  64,  57,  68 },
    {  60,  56, 128,  65 },
    { 159, 134, 128,  34 },
    { 234, 188, 128,  28 }

  };
  static const unsigned char split_mv_probs[3] =
  { 110, 111, 150};

  static const unsigned char submv_ref_probs2[5][3] =
  {
    { 147, 136, 18 },
    { 106, 145,  1 },
    { 179, 121,  1 },
    { 223,   1, 34 },
    { 208,   1,  1 }
  };









Bankoski, et al.              Informational                   [Page 197]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  const static int mv_partitions[4][16] =
  {
    {0, 0, 0, 0, 0, 0, 0, 0, 1, 1,  1,  1,  1,  1,  1,  1 },
    {0, 0, 1, 1, 0, 0, 1, 1, 0, 0,  1,  1,  0,  0,  1,  1 },
    {0, 0, 1, 1, 0, 0, 1, 1, 2, 2,  3,  3,  2,  2,  3,  3 },
    {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }
  };

  ---- End code block ----------------------------------------

20.14.  predict.c

  ---- Begin code block --------------------------------------

  /*
   *  Copyright (c) 2010, 2011, Google Inc.  All rights reserved.
   *
   *  Use of this source code is governed by a BSD-style license
   *  that can be found in the LICENSE file in the root of the source
   *  tree.  An additional intellectual property rights grant can be
   *  found in the file PATENTS.  All contributing project authors may
   *  be found in the AUTHORS file in the root of the source tree.
   */
  #include "dixie.h"
  #include "predict.h"
  #include "idct_add.h"
  #include "mem.h"
  #include <assert.h>
  #include <string.h>

  enum
  {
      BORDER_PIXELS     = 16,
  };


  static const filter_t sixtap_filters[8] =
  {
      { 0,   0, 128,    0,   0,  0 },
      { 0,  -6, 123,   12,  -1,  0 },
      { 2, -11, 108,   36,  -8,  1 },
      { 0,  -9,  93,   50,  -6,  0 },
      { 3, -16,  77,   77, -16,  3 },
      { 0,  -6,  50,   93,  -9,  0 },
      { 1,  -8,  36,  108, -11,  2 },
      { 0,  -1,  12,  123,  -6,  0 }
  };




Bankoski, et al.              Informational                   [Page 198]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  static const filter_t bilinear_filters[8] =
  {
      { 0,  0,  128,    0,   0,  0 },
      { 0,  0,  112,   16,   0,  0 },
      { 0,  0,   96,   32,   0,  0 },
      { 0,  0,   80,   48,   0,  0 },
      { 0,  0,   64,   64,   0,  0 },
      { 0,  0,   48,   80,   0,  0 },
      { 0,  0,   32,   96,   0,  0 },
      { 0,  0,   16,  112,   0,  0 }
  };


  static void
  predict_h_nxn(unsigned char *predict,
                int            stride,
                int            n)
  {
      unsigned char *left = predict - 1;
      int            i, j;

      for (i = 0; i < n; i++)
          for (j = 0; j < n; j++)
              predict[i *stride + j] = left[i * stride];
  }


  static void
  predict_v_nxn(unsigned char *predict,
                int            stride,
                int            n)
  {
      unsigned char *above = predict - stride;
      int            i, j;

      for (i = 0; i < n; i++)
          for (j = 0; j < n; j++)
              predict[i *stride + j] = above[j];
  }












Bankoski, et al.              Informational                   [Page 199]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  static void
  predict_tm_nxn(unsigned char *predict,
                 int            stride,
                 int            n)
  {
      /* Transposes the left column to the top row for later
       * consumption by the idct/recon stage
       */
      unsigned char *left = predict - 1;
      unsigned char *above = predict - stride;
      unsigned char  p = above[-1];
      int            i, j;

      for (j = 0; j < n; j++)
      {
          for (i = 0; i < n; i++)
              predict[i] = CLAMP_255(*left + above[i] - p);

          predict += stride;
          left += stride;
      }
  }

  static void
  predict_dc_nxn(unsigned char *predict,
                 int            stride,
                 int            n)
  {
      unsigned char *left = predict - 1;
      unsigned char *above = predict - stride;
      int            i, j, dc = 0;

      for (i = 0; i < n; i++)
      {
          dc += *left + above[i];
          left += stride;
      }














Bankoski, et al.              Informational                   [Page 200]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      switch (n)
      {
      case 16:
          dc = (dc + 16) >> 5;
          break;
      case  8:
          dc = (dc + 8) >> 4;
          break;
      case  4:
          dc = (dc + 4) >> 3;
          break;
      }

      for (i = 0; i < n; i++)
          for (j = 0; j < n; j++)
              predict[i *stride + j] = dc;
  }


  static void
  predict_ve_4x4(unsigned char *predict,
                 int            stride)
  {
      unsigned char *above = predict - stride;
      int            i, j;

      predict[0] = (above[-1] + 2 * above[0] + above[1] + 2) >> 2;
      predict[1] = (above[ 0] + 2 * above[1] + above[2] + 2) >> 2;
      predict[2] = (above[ 1] + 2 * above[2] + above[3] + 2) >> 2;
      predict[3] = (above[ 2] + 2 * above[3] + above[4] + 2) >> 2;

      for (i = 1; i < 4; i++)
          for (j = 0; j < 4; j++)
              predict[i *stride + j] = predict[j];
  }
















Bankoski, et al.              Informational                   [Page 201]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  static void
  predict_he_4x4(unsigned char *predict,
                 int            stride)
  {
      unsigned char *left = predict - 1;

      predict[0] =
      predict[1] =
      predict[2] =
      predict[3] = (left[-stride] + 2 * left[0] +
                    left[stride] + 2) >> 2;
      predict += stride;
      left += stride;

      predict[0] =
      predict[1] =
      predict[2] =
      predict[3] = (left[-stride] + 2 * left[0] +
                    left[stride] + 2) >> 2;
      predict += stride;
      left += stride;

      predict[0] =
      predict[1] =
      predict[2] =
      predict[3] = (left[-stride] + 2 * left[0] +
                    left[stride] + 2) >> 2;
      predict += stride;
      left += stride;

      predict[0] =
      predict[1] =
      predict[2] =
      predict[3] = (left[-stride] + 2 * left[0] + left[0] + 2) >> 2;
  }
















Bankoski, et al.              Informational                   [Page 202]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  static void
  predict_ld_4x4(unsigned char *predict,
                 int            stride)
  {
      unsigned char *above = predict - stride;
      int            pred0, pred1, pred2, pred3, pred4, pred5, pred6;

      predict[0] = pred0 = (above[0] + 2 * above[1] +
                            above[2] + 2) >> 2;
      predict[1] = pred1 = (above[1] + 2 * above[2] +
                            above[3] + 2) >> 2;
      predict[2] = pred2 = (above[2] + 2 * above[3] +
                            above[4] + 2) >> 2;
      predict[3] = pred3 = (above[3] + 2 * above[4] +
                            above[5] + 2) >> 2;
      predict += stride;

      predict[0] = pred1;
      predict[1] = pred2;
      predict[2] = pred3;
      predict[3] = pred4 = (above[4] + 2 * above[5] +
                            above[6] + 2) >> 2;
      predict += stride;

      predict[0] = pred2;
      predict[1] = pred3;
      predict[2] = pred4;
      predict[3] = pred5 = (above[5] + 2 * above[6] +
                            above[7] + 2) >> 2;
      predict += stride;

      predict[0] = pred3;
      predict[1] = pred4;
      predict[2] = pred5;
      predict[3] = pred6 = (above[6] + 2 * above[7] +
                            above[7] + 2) >> 2;
  }














Bankoski, et al.              Informational                   [Page 203]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  static void
  predict_rd_4x4(unsigned char *predict,
                 int            stride)
  {
      unsigned char *left = predict - 1;
      unsigned char *above = predict - stride;
      int            pred0, pred1, pred2, pred3, pred4, pred5, pred6;

      predict[0] = pred0 =
          (left[ 0] + 2 * above[-1] + above[0] + 2) >> 2;
      predict[1] = pred1 =
          (above[-1] + 2 * above[ 0] + above[1] + 2) >> 2;
      predict[2] = pred2 =
          (above[ 0] + 2 * above[ 1] + above[2] + 2) >> 2;
      predict[3] = pred3 =
          (above[ 1] + 2 * above[ 2] + above[3] + 2) >> 2;
      predict += stride;

      predict[0] = pred4 =
          (left[stride] + 2 * left[0] + above[-1] + 2) >> 2;
      predict[1] = pred0;
      predict[2] = pred1;
      predict[3] = pred2;
      predict += stride;

      predict[0] = pred5 =
          (left[stride*2] + 2 * left[stride] + left[0] + 2) >> 2;
      predict[1] = pred4;
      predict[2] = pred0;
      predict[3] = pred1;
      predict += stride;

      predict[0] = pred6 = (left[stride*3] + 2 * left[stride*2] +
                            left[stride] + 2) >> 2;
      predict[1] = pred5;
      predict[2] = pred4;
      predict[3] = pred0;
  }













Bankoski, et al.              Informational                   [Page 204]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  static void
  predict_vr_4x4(unsigned char *predict,
                 int            stride)
  {
      unsigned char *left = predict - 1;
      unsigned char *above = predict - stride;
      int            pred0, pred1, pred2, pred3, pred4, pred5, pred6,
                     pred7, pred8, pred9;

      predict[0] = pred0 = (above[-1] + above[0] + 1) >> 1;
      predict[1] = pred1 = (above[ 0] + above[1] + 1) >> 1;
      predict[2] = pred2 = (above[ 1] + above[2] + 1) >> 1;
      predict[3] = pred3 = (above[ 2] + above[3] + 1) >> 1;
      predict += stride;

      predict[0] = pred4 = (left[ 0] + 2 * above[-1] +
                            above[0] + 2) >> 2;
      predict[1] = pred5 = (above[-1] + 2 * above[ 0] +
                            above[1] + 2) >> 2;
      predict[2] = pred6 = (above[ 0] + 2 * above[ 1] +
                            above[2] + 2) >> 2;
      predict[3] = pred7 = (above[ 1] + 2 * above[ 2] +
                            above[3] + 2) >> 2;
      predict += stride;

      predict[0] = pred8 =
          (left[stride] + 2 * left[0] + above[-1] + 2) >> 2;
      predict[1] = pred0;
      predict[2] = pred1;
      predict[3] = pred2;
      predict += stride;

      predict[0] = pred9 =
          (left[stride*2] + 2 * left[stride] + left[0] + 2) >> 2;
      predict[1] = pred4;
      predict[2] = pred5;
      predict[3] = pred6;
  }













Bankoski, et al.              Informational                   [Page 205]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  static void
  predict_vl_4x4(unsigned char *predict,
                 int            stride)
  {
      unsigned char *above = predict - stride;
      int            pred0, pred1, pred2, pred3, pred4, pred5, pred6,
                     pred7, pred8, pred9;

      predict[0] = pred0 = (above[0] + above[1] + 1) >> 1;
      predict[1] = pred1 = (above[1] + above[2] + 1) >> 1;
      predict[2] = pred2 = (above[2] + above[3] + 1) >> 1;
      predict[3] = pred3 = (above[3] + above[4] + 1) >> 1;
      predict += stride;

      predict[0] = pred4 = (above[0] + 2 * above[1] +
                            above[2] + 2) >> 2;
      predict[1] = pred5 = (above[1] + 2 * above[2] +
                            above[3] + 2) >> 2;
      predict[2] = pred6 = (above[2] + 2 * above[3] +
                            above[4] + 2) >> 2;
      predict[3] = pred7 = (above[3] + 2 * above[4] +
                            above[5] + 2) >> 2;
      predict += stride;

      predict[0] = pred1;
      predict[1] = pred2;
      predict[2] = pred3;
      predict[3] = pred8 = (above[4] + 2 * above[5] +
                            above[6] + 2) >> 2;
      predict += stride;

      predict[0] = pred5;
      predict[1] = pred6;
      predict[2] = pred7;
      predict[3] = pred9 = (above[5] + 2 * above[6] +
                            above[7] + 2) >> 2;
  }














Bankoski, et al.              Informational                   [Page 206]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  static void
  predict_hd_4x4(unsigned char *predict,
                 int            stride)
  {
      unsigned char *left = predict - 1;
      unsigned char *above = predict - stride;
      int            pred0, pred1, pred2, pred3, pred4, pred5, pred6,
                     pred7, pred8, pred9;

      predict[0] = pred0 = (left[ 0] + above[-1] + 1) >> 1;
      predict[1] = pred1 = (left[ 0] + 2 * above[-1] +
                            above[0] + 2) >> 2;
      predict[2] = pred2 = (above[-1] + 2 * above[ 0] +
                            above[1] + 2) >> 2;
      predict[3] = pred3 = (above[ 0] + 2 * above[ 1] +
                            above[2] + 2) >> 2;
      predict += stride;

      predict[0] = pred4 = (left[stride] + left[0] + 1) >> 1;
      predict[1] = pred5 = (left[stride] + 2 * left[0] +
                            above[-1] + 2) >> 2;
      predict[2] = pred0;
      predict[3] = pred1;
      predict += stride;

      predict[0] = pred6 = (left[stride*2] + left[stride] + 1) >> 1;
      predict[1] = pred7 = (left[stride*2] + 2 * left[stride] +
                            left[0] + 2) >> 2;
      predict[2] = pred4;
      predict[3] = pred5;
      predict += stride;

      predict[0] = pred8 = (left[stride*3] + left[stride*2] + 1) >> 1;
      predict[1] = pred9 = (left[stride*3] + 2 * left[stride*2] +
                            left[stride] + 2) >> 2;
      predict[2] = pred6;
      predict[3] = pred7;
  }













Bankoski, et al.              Informational                   [Page 207]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  static void
  predict_hu_4x4(unsigned char *predict,
                 int            stride)
  {
      unsigned char *left = predict - 1;
      int            pred0, pred1, pred2, pred3, pred4, pred5, pred6;

      predict[0] = pred0 = (left[stride*0] +
                            left[stride*1] + 1) >> 1;
      predict[1] = pred1 = (left[stride*0] + 2 * left[stride*1] +
                            left[stride*2] + 2) >> 2;
      predict[2] = pred2 = (left[stride*1] + left[stride*2] + 1) >> 1;
      predict[3] = pred3 = (left[stride*1] + 2 * left[stride*2] +
                            left[stride*3] + 2) >> 2;
      predict += stride;

      predict[0] = pred2;
      predict[1] = pred3;
      predict[2] = pred4 = (left[stride*2] + left[stride*3] + 1) >> 1;
      predict[3] = pred5 = (left[stride*2] + 2 * left[stride*3] +
                            left[stride*3] + 2) >> 2;
      predict += stride;

      predict[0] = pred4;
      predict[1] = pred5;
      predict[2] = pred6 = left[stride*3];
      predict[3] = pred6;
      predict += stride;

      predict[0] = pred6;
      predict[1] = pred6;
      predict[2] = pred6;
      predict[3] = pred6;
  }


  static void
  predict_h_16x16(unsigned char *predict, int stride)
  {
      predict_h_nxn(predict, stride, 16);
  }


  static void
  predict_v_16x16(unsigned char *predict, int stride)
  {
      predict_v_nxn(predict, stride, 16);
  }



Bankoski, et al.              Informational                   [Page 208]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  static void
  predict_tm_16x16(unsigned char *predict, int stride)
  {
      predict_tm_nxn(predict, stride, 16);
  }


  static void
  predict_h_8x8(unsigned char *predict, int stride)
  {
      predict_h_nxn(predict, stride, 8);
  }


  static void
  predict_v_8x8(unsigned char *predict, int stride)
  {
      predict_v_nxn(predict, stride, 8);
  }

  static void
  predict_tm_8x8(unsigned char *predict, int stride)
  {
      predict_tm_nxn(predict, stride, 8);
  }


  static void
  predict_tm_4x4(unsigned char *predict, int stride)
  {
      predict_tm_nxn(predict, stride, 4);
  }


  static void
  copy_down(unsigned char           *recon,
            int                      stride)
  {
      /* Copy the four pixels above-right of subblock 3 to
       * above-right of subblocks 7, 11, and 15
       */
      uint32_t tmp, *copy = (void *)(recon + 16 - stride);









Bankoski, et al.              Informational                   [Page 209]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      stride = stride / sizeof(unsigned int);
      tmp = *copy;
      copy += stride * 4;
      *copy = tmp;
      copy += stride * 4;
      *copy = tmp;
      copy += stride * 4;
      *copy = tmp;
  }


  static void
  b_pred(unsigned char  *predict,
         int             stride,
         struct mb_info *mbi,
         short          *coeffs)
  {
      int i;

      copy_down(predict, stride);

      for (i = 0; i < 16; i++)
      {
          unsigned char *b_predict = predict + (i & 3) * 4;

          switch (mbi->split.modes[i])
          {
          case B_DC_PRED:
              predict_dc_nxn(b_predict, stride, 4);
              break;
          case B_TM_PRED:
              predict_tm_4x4(b_predict, stride);
              break;
          case B_VE_PRED:
              predict_ve_4x4(b_predict, stride);
              break;
          case B_HE_PRED:
              predict_he_4x4(b_predict, stride);
              break;
          case B_LD_PRED:
              predict_ld_4x4(b_predict, stride);
              break;
          case B_RD_PRED:
              predict_rd_4x4(b_predict, stride);
              break;
          case B_VR_PRED:
              predict_vr_4x4(b_predict, stride);
              break;



Bankoski, et al.              Informational                   [Page 210]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


          case B_VL_PRED:
              predict_vl_4x4(b_predict, stride);
              break;
          case B_HD_PRED:
              predict_hd_4x4(b_predict, stride);
              break;
          case B_HU_PRED:
              predict_hu_4x4(b_predict, stride);
              break;
          default:
              assert(0);
          }

          vp8_dixie_idct_add(b_predict, b_predict, stride, coeffs);
          coeffs += 16;

          if ((i & 3) == 3)
          {
              predict += stride * 4;
          }
      }
  }


  static void

  fixup_dc_coeffs(struct mb_info *mbi,
                  short          *coeffs)
  {
      short y2[16];
      int   i;

      vp8_dixie_walsh(coeffs + 24 * 16, y2);

      for (i = 0; i < 16; i++)
          coeffs[i*16] = y2[i];
  }


  static void
  predict_intra_luma(unsigned char   *predict,
                     int              stride,
                     struct mb_info  *mbi,
                     short           *coeffs)
  {
      if (mbi->base.y_mode == B_PRED)
          b_pred(predict, stride, mbi, coeffs);
      else



Bankoski, et al.              Informational                   [Page 211]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      {
          int i;

          switch (mbi->base.y_mode)
          {
          case DC_PRED:
              predict_dc_nxn(predict, stride, 16);
              break;
          case V_PRED:
              predict_v_16x16(predict, stride);
              break;
          case H_PRED:
              predict_h_16x16(predict, stride);
              break;
          case TM_PRED:
              predict_tm_16x16(predict, stride);
              break;
          default:
              assert(0);
          }

          fixup_dc_coeffs(mbi, coeffs);

          for (i = 0; i < 16; i++)
          {
              vp8_dixie_idct_add(predict, predict, stride, coeffs);
              coeffs += 16;
              predict += 4;

              if ((i & 3) == 3)
                  predict += stride * 4 - 16;
          }
      }
  }


  static void
  predict_intra_chroma(unsigned char   *predict_u,
                       unsigned char   *predict_v,
                       int              stride,
                       struct mb_info  *mbi,
                       short           *coeffs)
  {
      int i;







Bankoski, et al.              Informational                   [Page 212]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      switch (mbi->base.uv_mode)
      {
      case DC_PRED:
          predict_dc_nxn(predict_u, stride, 8);
          predict_dc_nxn(predict_v, stride, 8);
          break;
      case V_PRED:
          predict_v_8x8(predict_u, stride);
          predict_v_8x8(predict_v, stride);
          break;
      case H_PRED:
          predict_h_8x8(predict_u, stride);
          predict_h_8x8(predict_v, stride);
          break;
      case TM_PRED:
          predict_tm_8x8(predict_u, stride);
          predict_tm_8x8(predict_v, stride);
          break;
      default:
          assert(0);
      }

      coeffs += 16 * 16;

      for (i = 16; i < 20; i++)
      {
          vp8_dixie_idct_add(predict_u, predict_u, stride, coeffs);
          coeffs += 16;
          predict_u += 4;

          if (i & 1)
              predict_u += stride * 4 - 8;
      }

      for (i = 20; i < 24; i++)
      {
          vp8_dixie_idct_add(predict_v, predict_v, stride, coeffs);
          coeffs += 16;
          predict_v += 4;

          if (i & 1)
              predict_v += stride * 4 - 8;
      }
  }







Bankoski, et al.              Informational                   [Page 213]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  static void
  sixtap_horiz(unsigned char       *output,
               int                  output_stride,
               const unsigned char *reference,
               int                  reference_stride,
               int                  cols,
               int                  rows,
               const filter_t       filter
              )
  {
      int r, c, temp;

      for (r = 0; r < rows; r++)
      {
          for (c = 0; c < cols; c++)
          {
              temp = (reference[-2] * filter[0]) +
                     (reference[-1] * filter[1]) +
                     (reference[ 0] * filter[2]) +
                     (reference[ 1] * filter[3]) +
                     (reference[ 2] * filter[4]) +
                     (reference[ 3] * filter[5]) +
                     64;
              temp >>= 7;
              output[c] = CLAMP_255(temp);
              reference++;
          }

          reference += reference_stride - cols;
          output += output_stride;
      }
  }


  static void
  sixtap_vert(unsigned char       *output,
              int                  output_stride,
              const unsigned char *reference,
              int                  reference_stride,
              int                  cols,
              int                  rows,
              const filter_t       filter
             )
  {
      int r, c, temp;

      for (r = 0; r < rows; r++)
      {



Bankoski, et al.              Informational                   [Page 214]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


          for (c = 0; c < cols; c++)
          {
              temp = (reference[-2*reference_stride] * filter[0]) +
                     (reference[-1*reference_stride] * filter[1]) +
                     (reference[ 0*reference_stride] * filter[2]) +
                     (reference[ 1*reference_stride] * filter[3]) +
                     (reference[ 2*reference_stride] * filter[4]) +
                     (reference[ 3*reference_stride] * filter[5]) +
                     64;
              temp >>= 7;
              output[c] = CLAMP_255(temp);
              reference++;
          }

          reference += reference_stride - cols;
          output += output_stride;
      }
  }


  static void
  sixtap_2d(unsigned char       *output,
            int                  output_stride,
            const unsigned char *reference,
            int                  reference_stride,
            int                  cols,
            int                  rows,
            int                  mx,
            int                  my,
            const filter_t       filters[8]
           )
  {
      DECLARE_ALIGNED(16, unsigned char, temp[16*(16+5)]);

      sixtap_horiz(temp, 16,
                   reference - 2 * reference_stride, reference_stride,
                   cols, rows + 5, filters[mx]);
      sixtap_vert(output, output_stride,
                  temp + 2 * 16, 16,
                  cols, rows, filters[my]);
  }


  struct img_index
  {
      unsigned char *y, *u, *v;
      int            stride, uv_stride;
  };



Bankoski, et al.              Informational                   [Page 215]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  static const unsigned char *
  filter_block(unsigned char        *output,
               const unsigned char  *reference,
               int                   stride,
               const union mv       *mv,
               const filter_t        filters[8])
  {
      int mx, my;

      /* Handle 0,0 as a special case.  TODO: Does this make it any
       * faster?
       */
      if (!mv->raw)
          return reference;

      mx = mv->d.x & 7;
      my = mv->d.y & 7;
      reference += ((mv->d.y >> 3) * stride) + (mv->d.x >> 3);

      if (mx | my)
      {
          sixtap_2d(output, stride, reference, stride, 4, 4, mx, my,
                    filters);
          reference = output;
      }

      return reference;
  }


  static void
  recon_1_block(unsigned char        *output,
                const unsigned char  *reference,
                int                   stride,
                const union mv       *mv,
                const filter_t        filters[8],
                short                *coeffs,
                struct mb_info       *mbi,
                int                   b
               )
  {
      const unsigned char *predict;

      predict = filter_block(output, reference, stride, mv, filters);
      vp8_dixie_idct_add(output, predict, stride, coeffs + 16 * b);
  }





Bankoski, et al.              Informational                   [Page 216]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  static mv_t
  calculate_chroma_splitmv(struct mb_info *mbi,
                           int             b,
                           int             full_pixel)
  {
      int temp;
      union mv mv;

      temp = mbi->split.mvs[b].d.x +
             mbi->split.mvs[b+1].d.x +
             mbi->split.mvs[b+4].d.x +
             mbi->split.mvs[b+5].d.x;

      if (temp < 0)
          temp -= 4;
      else
          temp += 4;

      mv.d.x = temp / 8;

      temp = mbi->split.mvs[b].d.y +
             mbi->split.mvs[b+1].d.y +
             mbi->split.mvs[b+4].d.y +
             mbi->split.mvs[b+5].d.y;

      if (temp < 0)
          temp -= 4;
      else
          temp += 4;

      mv.d.y = temp / 8;

      if (full_pixel)
      {
          mv.d.x &= ~7;
          mv.d.y &= ~7;
      }

      return mv;
  }











Bankoski, et al.              Informational                   [Page 217]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  /* Note: We rely on the reconstructed border having the same stride
   * as the reference buffer because the filter_block can't adjust the
   * stride with its return value, only the reference pointer.
   */
  static void
  build_mc_border(unsigned char       *dst,
                  const unsigned char *src,
                  int                  stride,
                  int                  x,
                  int                  y,
                  int                  b_w,
                  int                  b_h,
                  int                  w,
                  int                  h
                 )
  {
      const unsigned char *ref_row;


      /* Get a pointer to the start of the real data for this row */
      ref_row = src - x - y * stride;

      if (y >= h)
          ref_row += (h - 1) * stride;
      else if (y > 0)
          ref_row += y * stride;

      do
      {
          int left, right = 0, copy;

          left = x < 0 ? -x : 0;

          if (left > b_w)
              left = b_w;

          if (x + b_w > w)
              right = x + b_w - w;

          if (right > b_w)
              right = b_w;










Bankoski, et al.              Informational                   [Page 218]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


          copy = b_w - left - right;

          if (left)
              memset(dst, ref_row[0], left);

          if (copy)
              memcpy(dst + left, ref_row + x + left, copy);

          if (right)
              memset(dst + left + copy, ref_row[w-1], right);

          dst += stride;
          y++;

          if (y < h && y > 0)
              ref_row += stride;
      }
      while (--b_h);
  }


  static void
  recon_1_edge_block(unsigned char        *output,
                     unsigned char        *emul_block,
                     const unsigned char  *reference,
                     int                   stride,
                     const union mv       *mv,
                     const filter_t        filters[8],
                     short                *coeffs,
                     struct mb_info       *mbi,
                     int                   x,
                     int                   y,
                     int                   w,
                     int                   h,
                     int                   start_b
                    )
  {
      const unsigned char *predict;
      int                  b = start_b;
      const int            b_w = 4;
      const int            b_h = 4;

      x += mv->d.x >> 3;
      y += mv->d.y >> 3;







Bankoski, et al.              Informational                   [Page 219]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      /* Need two pixels left/above, 3 right/below for 6-tap */
      if (x < 2 || x + b_w - 1 + 3 >= w || y < 2 ||
          y + b_h - 1 + 3 >= h)
      {
          reference += (mv->d.x >> 3) + (mv->d.y >> 3) * stride;
          build_mc_border(emul_block,
                          reference - 2 - 2 * stride, stride,
                          x - 2, y - 2, b_w + 5, b_h + 5, w, h);
          reference = emul_block + 2 * stride + 2;
          reference -= (mv->d.x >> 3) + (mv->d.y >> 3) * stride;
      }

      predict = filter_block(output, reference, stride, mv, filters);
      vp8_dixie_idct_add(output, predict, stride, coeffs + 16 * b);
  }


  static void
  predict_inter_emulated_edge(struct vp8_decoder_ctx  *ctx,
                              struct img_index        *img,
                              short                   *coeffs,
                              struct mb_info          *mbi,
                              int                      mb_col,
                              int                      mb_row)
  {
      /* TODO: Move this into its own buffer.  This only works because
       * we still have a border allocated.
       */
      unsigned char *emul_block = ctx->frame_strg[0].img.img_data;
      unsigned char *reference;
      unsigned char *output;
      ptrdiff_t      reference_offset;
      int            w, h, x, y, b;
      union mv       chroma_mv[4];
      unsigned char *u = img->u, *v = img->v;
      int            full_pixel = ctx->frame_hdr.version == 3;


      x = mb_col * 16;
      y = mb_row * 16;
      w = ctx->mb_cols * 16;
      h = ctx->mb_rows * 16;

      output = img->y;
      reference_offset = ctx->ref_frame_offsets[mbi->base.ref_frame];
      reference = output + reference_offset;





Bankoski, et al.              Informational                   [Page 220]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      if (mbi->base.y_mode != SPLITMV)
      {
          union mv uvmv;

          uvmv = mbi->base.mv;
          uvmv.d.x = (uvmv.d.x + 1 + (uvmv.d.x >> 31) * 2) / 2;
          uvmv.d.y = (uvmv.d.y + 1 + (uvmv.d.y >> 31) * 2) / 2;

          if (full_pixel)
          {
              uvmv.d.x &= ~7;
              uvmv.d.y &= ~7;
          }

          chroma_mv[0] = uvmv;
          chroma_mv[1] = uvmv;
          chroma_mv[2] = uvmv;
          chroma_mv[3] = uvmv;
      }
      else
      {
          chroma_mv[0] = calculate_chroma_splitmv(mbi,  0, full_pixel);
          chroma_mv[1] = calculate_chroma_splitmv(mbi,  2, full_pixel);
          chroma_mv[2] = calculate_chroma_splitmv(mbi,  8, full_pixel);
          chroma_mv[3] = calculate_chroma_splitmv(mbi, 10, full_pixel);
      }


      /* Luma */
      for (b = 0; b < 16; b++)
      {
          union mv *ymv;

          if (mbi->base.y_mode != SPLITMV)
              ymv = &mbi->base.mv;
          else
              ymv = mbi->split.mvs + b;

          recon_1_edge_block(output, emul_block, reference,
              img->stride, ymv, ctx->subpixel_filters, coeffs,
              mbi, x, y, w, h, b);

          x += 4;
          output += 4;
          reference += 4;






Bankoski, et al.              Informational                   [Page 221]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


          if ((b & 3) == 3)
          {
              x -= 16;
              y += 4;
              output += 4 * img->stride - 16;
              reference += 4 * img->stride - 16;
          }
      }

      x = mb_col * 16;
      y = mb_row * 16;

      /* Chroma */
      x >>= 1;
      y >>= 1;
      w >>= 1;
      h >>= 1;

      for (b = 0; b < 4; b++)
      {
          recon_1_edge_block(u, emul_block, u + reference_offset,
                             img->uv_stride,
                             &chroma_mv[b], ctx->subpixel_filters,
                             coeffs, mbi, x, y, w, h, b + 16);
          recon_1_edge_block(v, emul_block, v + reference_offset,
                             img->uv_stride,
                             &chroma_mv[b], ctx->subpixel_filters,
                             coeffs, mbi, x, y, w, h, b + 20);
          u += 4;
          v += 4;
          x += 4;

          if (b & 1)
          {
              x -= 8;
              y += 4;
              u += 4 * img->uv_stride - 8;
              v += 4 * img->uv_stride - 8;
          }
      }

  }

  static void
  predict_inter(struct vp8_decoder_ctx  *ctx,
                struct img_index        *img,
                short                   *coeffs,
                struct mb_info          *mbi)



Bankoski, et al.              Informational                   [Page 222]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  {
      unsigned char *y = img->y;
      unsigned char *u = img->u;
      unsigned char *v = img->v;
      ptrdiff_t      reference_offset;
      union mv       chroma_mv[4];
      int            full_pixel = ctx->frame_hdr.version == 3;
      int b;

      if (mbi->base.y_mode != SPLITMV)
      {
          union mv             uvmv;

          uvmv = mbi->base.mv;
          uvmv.d.x = (uvmv.d.x + 1 + (uvmv.d.x >> 31) * 2) / 2;
          uvmv.d.y = (uvmv.d.y + 1 + (uvmv.d.y >> 31) * 2) / 2;

          if (full_pixel)
          {
              uvmv.d.x &= ~7;
              uvmv.d.y &= ~7;
          }

          chroma_mv[0] =
              chroma_mv[1] =
                  chroma_mv[2] =
                      chroma_mv[3] = uvmv;
      }
      else
      {
          chroma_mv[0] = calculate_chroma_splitmv(mbi,  0, full_pixel);
          chroma_mv[1] = calculate_chroma_splitmv(mbi,  2, full_pixel);
          chroma_mv[2] = calculate_chroma_splitmv(mbi,  8, full_pixel);
          chroma_mv[3] = calculate_chroma_splitmv(mbi, 10, full_pixel);
      }

      reference_offset = ctx->ref_frame_offsets[mbi->base.ref_frame];

      for (b = 0; b < 16; b++)
      {
          union mv *ymv;

          if (mbi->base.y_mode != SPLITMV)
              ymv = &mbi->base.mv;
          else
              ymv = mbi->split.mvs + b;
          recon_1_block(y, y + reference_offset, img->stride,
                        ymv, ctx->subpixel_filters, coeffs, mbi, b);



Bankoski, et al.              Informational                   [Page 223]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


          y += 4;

          if ((b & 3) == 3)
              y += 4 * img->stride - 16;
      }

      for (b = 0; b < 4; b++)
      {
          recon_1_block(u, u + reference_offset,
                        img->uv_stride, &chroma_mv[b],
                        ctx->subpixel_filters, coeffs, mbi, b + 16);
          recon_1_block(v, v + reference_offset,
                        img->uv_stride, &chroma_mv[b],
                        ctx->subpixel_filters, coeffs, mbi, b + 20);
          u += 4;
          v += 4;

          if (b & 1)
          {
              u += 4 * img->uv_stride - 8;
              v += 4 * img->uv_stride - 8;
          }
      }
  }


  void
  vp8_dixie_release_ref_frame(struct ref_cnt_img *rcimg)
  {
      if (rcimg)
      {
          assert(rcimg->ref_cnt);
          rcimg->ref_cnt--;
      }
  }


  struct ref_cnt_img *
  vp8_dixie_ref_frame(struct ref_cnt_img *rcimg)
  {
      rcimg->ref_cnt++;
      return rcimg;
  }








Bankoski, et al.              Informational                   [Page 224]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  struct ref_cnt_img *
  vp8_dixie_find_free_ref_frame(struct ref_cnt_img *frames)
  {
      int i;

      for (i = 0; i < NUM_REF_FRAMES; i++)
          if (frames[i].ref_cnt == 0)
          {
              frames[i].ref_cnt = 1;
              return &frames[i];
          }

      assert(0);
      return NULL;
  }


  static void
  fixup_left(unsigned char        *predict,
             int                   width,
             int                   stride,
             unsigned int          row,
             enum prediction_mode  mode)
  {
      /* The left column of out-of-frame pixels is taken to be 129,
       * unless we're doing DC_PRED, in which case we duplicate the
       * above row, unless this is also row 0, in which case we use
       * 129.
       */
      unsigned char *left = predict - 1;
      int i;

      if (mode == DC_PRED && row)
      {
          unsigned char *above = predict - stride;

          for (i = 0; i < width; i++)
          {
              *left = above[i];
              left += stride;
          }
      }
      else
      {
          /* Need to re-set the above row, in case the above MB was
           * DC_PRED.
           */
          left -= stride;



Bankoski, et al.              Informational                   [Page 225]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


          for (i = -1; i < width; i++)
          {
              *left = 129;
              left += stride;
          }
      }
  }


  static void
  fixup_above(unsigned char        *predict,
              int                   width,
              int                   stride,
              unsigned int          col,
              enum prediction_mode  mode)
  {
      /* The above row of out-of-frame pixels is taken to be 127,
       * unless we're doing DC_PRED, in which case we duplicate the
       * left col, unless this is also col 0, in which case we use
       * 127.
       */
      unsigned char *above = predict - stride;
      int i;

      if (mode == DC_PRED && col)
      {
          unsigned char *left = predict - 1;

          for (i = 0; i < width; i++)
          {
              above[i] = *left;
              left += stride;
          }
      }
      else
          /* Need to re-set the left col, in case the last MB was
           * DC_PRED.
           */
          memset(above - 1, 127, width + 1);

      memset(above + width, 127, 4); // for above-right subblock modes
  }









Bankoski, et al.              Informational                   [Page 226]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  void
  vp8_dixie_predict_init(struct vp8_decoder_ctx *ctx)
  {

      int i;
      unsigned char *this_frame_base;

      if (ctx->frame_hdr.frame_size_updated)
      {
          for (i = 0; i < NUM_REF_FRAMES; i++)
          {
              unsigned int w = ctx->mb_cols * 16 + BORDER_PIXELS * 2;
              unsigned int h = ctx->mb_rows * 16 + BORDER_PIXELS * 2;

              vpx_img_free(&ctx->frame_strg[i].img);
              ctx->frame_strg[i].ref_cnt = 0;
              ctx->ref_frames[i] = NULL;

              if (!vpx_img_alloc(&ctx->frame_strg[i].img,
                                 IMG_FMT_I420, w, h, 16))
                  vpx_internal_error(&ctx->error, VPX_CODEC_MEM_ERROR,
                                     "Failed to allocate %dx%d"
                                     " framebuffer",
                                     w, h);

              vpx_img_set_rect(&ctx->frame_strg[i].img, BORDER_PIXELS,
                  BORDER_PIXELS, ctx->frame_hdr.kf.w,
                  ctx->frame_hdr.kf.h);

          }

          if (ctx->frame_hdr.version)
              ctx->subpixel_filters = bilinear_filters;
          else
              ctx->subpixel_filters = sixtap_filters;
      }

      /* Find a free framebuffer to predict into */
      if (ctx->ref_frames[CURRENT_FRAME])
          vp8_dixie_release_ref_frame(ctx->ref_frames[CURRENT_FRAME]);

      ctx->ref_frames[CURRENT_FRAME] =
          vp8_dixie_find_free_ref_frame(ctx->frame_strg);
      this_frame_base = ctx->ref_frames[CURRENT_FRAME]->img.img_data;







Bankoski, et al.              Informational                   [Page 227]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      /* Calculate offsets to the other reference frames */
      for (i = 0; i < NUM_REF_FRAMES; i++)
      {
          struct ref_cnt_img  *ref = ctx->ref_frames[i];

          ctx->ref_frame_offsets[i] =
              ref ? ref->img.img_data - this_frame_base : 0;
      }

      /* TODO: No need to do this on every frame... */
  }


  void
  vp8_dixie_predict_destroy(struct vp8_decoder_ctx *ctx)
  {
      int i;

      for (i = 0; i < NUM_REF_FRAMES; i++)
      {
          vpx_img_free(&ctx->frame_strg[i].img);
          ctx->frame_strg[i].ref_cnt = 0;
          ctx->ref_frames[i] = NULL;
      }
  }


  void
  vp8_dixie_predict_process_row(struct vp8_decoder_ctx *ctx,
                                unsigned int            row,
                                unsigned int            start_col,
                                unsigned int            num_cols)
  {
      struct img_index img;
      struct mb_info *mbi;
      unsigned int    col;
      short          *coeffs;














Bankoski, et al.              Informational                   [Page 228]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      /* Adjust pointers based on row, start_col */
      img.stride =
          ctx->ref_frames[CURRENT_FRAME]->img.stride[PLANE_Y];
      img.uv_stride =
          ctx->ref_frames[CURRENT_FRAME]->img.stride[PLANE_U];
      img.y = ctx->ref_frames[CURRENT_FRAME]->img.planes[PLANE_Y];
      img.u = ctx->ref_frames[CURRENT_FRAME]->img.planes[PLANE_U];
      img.v = ctx->ref_frames[CURRENT_FRAME]->img.planes[PLANE_V];
      img.y += (img.stride * row + start_col) * 16;
      img.u += (img.uv_stride * row + start_col) * 8;
      img.v += (img.uv_stride * row + start_col) * 8;
      mbi = ctx->mb_info_rows[row] + start_col;
      coeffs = ctx->tokens[row &
          (ctx->token_hdr.partitions - 1)].coeffs +
          25 * 16 * start_col;

      /* Fix up the out-of-frame pixels */

      if (start_col == 0)
      {
          fixup_left(img.y, 16, img.stride, row, mbi->base.y_mode);
          fixup_left(img.u, 8, img.uv_stride, row, mbi->base.uv_mode);
          fixup_left(img.v, 8, img.uv_stride, row, mbi->base.uv_mode);

          if (row == 0)
              *(img.y - img.stride - 1) = 127;
      }

      for (col = start_col; col < start_col + num_cols; col++)
      {
          if (row == 0)
          {
              fixup_above(img.y, 16, img.stride, col,
                          mbi->base.y_mode);
              fixup_above(img.u, 8, img.uv_stride, col,
                          mbi->base.uv_mode);
              fixup_above(img.v, 8, img.uv_stride, col,
                          mbi->base.uv_mode);
          }

          if (mbi->base.y_mode <= B_PRED)
          {
              predict_intra_luma(img.y, img.stride, mbi, coeffs);
              predict_intra_chroma(img.u, img.v, img.uv_stride, mbi,
                                   coeffs);
          }





Bankoski, et al.              Informational                   [Page 229]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


          else
          {
              if (mbi->base.y_mode != SPLITMV) // && != BPRED
                  fixup_dc_coeffs(mbi, coeffs);

              if (mbi->base.need_mc_border)
                  predict_inter_emulated_edge(ctx, &img, coeffs, mbi,
                                              col, row);
              else
                  predict_inter(ctx, &img, coeffs, mbi);
          }

          /* Advance to the next macroblock */
          mbi++;
          img.y += 16;
          img.u += 8;
          img.v += 8;
          coeffs += 25 * 16;
      }

      if (col == ctx->mb_cols)
      {
          /* Extend the last row by four pixels for intra-prediction.
           * This will be propagated later by copy_down.
           */
          uint32_t *extend = (uint32_t *)(img.y + 15 * img.stride);
          uint32_t  val = 0x01010101 * img.y[-1 + 15 * img.stride];
          *extend = val;
      }
  }

  ---- End code block ----------------------------------------



















Bankoski, et al.              Informational                   [Page 230]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


20.15.  predict.h

  ---- Begin code block --------------------------------------

  /*
   *  Copyright (c) 2010, 2011, Google Inc.  All rights reserved.
   *
   *  Use of this source code is governed by a BSD-style license
   *  that can be found in the LICENSE file in the root of the source
   *  tree.  An additional intellectual property rights grant can be
   *  found in the file PATENTS.  All contributing project authors may
   *  be found in the AUTHORS file in the root of the source tree.
   */
  #ifndef PREDICT_H
  #define PREDICT_H

  void
  vp8_dixie_predict_init(struct vp8_decoder_ctx *ctx);


  void
  vp8_dixie_predict_destroy(struct vp8_decoder_ctx *ctx);


  void
  vp8_dixie_predict_process_row(struct vp8_decoder_ctx *ctx,
                                unsigned int            row,
                                unsigned int            start_col,
                                unsigned int            num_cols);

  void
  vp8_dixie_release_ref_frame(struct ref_cnt_img *rcimg);

  struct ref_cnt_img *
  vp8_dixie_ref_frame(struct ref_cnt_img *rcimg);

  struct ref_cnt_img *
  vp8_dixie_find_free_ref_frame(struct ref_cnt_img *frames);

  #endif

  ---- End code block ----------------------------------------









Bankoski, et al.              Informational                   [Page 231]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


20.16.  tokens.c

  ---- Begin code block --------------------------------------

  /*
   *  Copyright (c) 2010, 2011, Google Inc.  All rights reserved.
   *
   *  Use of this source code is governed by a BSD-style license
   *  that can be found in the LICENSE file in the root of the source
   *  tree.  An additional intellectual property rights grant can be
   *  found in the file PATENTS.  All contributing project authors may
   *  be found in the AUTHORS file in the root of the source tree.
   */
  #include "vpx_codec_internal.h"
  #include "dixie.h"
  #include "tokens.h"
  #include <stdlib.h>
  #include <string.h>
  #include <malloc.h>


  enum
  {
      EOB_CONTEXT_NODE,
      ZERO_CONTEXT_NODE,
      ONE_CONTEXT_NODE,
      LOW_VAL_CONTEXT_NODE,
      TWO_CONTEXT_NODE,
      THREE_CONTEXT_NODE,
      HIGH_LOW_CONTEXT_NODE,
      CAT_ONE_CONTEXT_NODE,
      CAT_THREEFOUR_CONTEXT_NODE,
      CAT_THREE_CONTEXT_NODE,
      CAT_FIVE_CONTEXT_NODE
  };
  enum
  {
      ZERO_TOKEN,
      ONE_TOKEN,
      TWO_TOKEN,
      THREE_TOKEN,
      FOUR_TOKEN,
      DCT_VAL_CATEGORY1,
      DCT_VAL_CATEGORY2,
      DCT_VAL_CATEGORY3,






Bankoski, et al.              Informational                   [Page 232]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      DCT_VAL_CATEGORY4,
      DCT_VAL_CATEGORY5,
      DCT_VAL_CATEGORY6,
      DCT_EOB_TOKEN,
      MAX_ENTROPY_TOKENS
  };
  struct extrabits
  {
      short         min_val;
      short         length;
      unsigned char probs[12];
  };
  static const unsigned int left_context_index[25] =
  {
      0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3,
      4, 4, 5, 5, 6, 6, 7, 7, 8
  };
  static const unsigned int above_context_index[25] =
  {
      0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3,
      4, 5, 4, 5, 6, 7, 6, 7, 8
  };
  #define X(n) ((n) * PREV_COEFF_CONTEXTS * ENTROPY_NODES)
  static const unsigned int bands_x[16] =
  {
      X(0), X(1), X(2), X(3), X(6), X(4), X(5), X(6),
      X(6), X(6), X(6), X(6), X(6), X(6), X(6), X(7)
  };
  #undef X
  static const struct extrabits extrabits[MAX_ENTROPY_TOKENS] =
  {
      { 0, -1, {  0,   0,   0,   0,   0,   0,
                  0,   0,   0,   0,   0,   0 } }, //ZERO_TOKEN
      { 1, 0,  {  0,   0,   0,   0,   0,   0,
                  0,   0,   0,   0,   0,   0 } }, //ONE_TOKEN
      { 2, 0,  {  0,   0,   0,   0,   0,   0,
                  0,   0,   0,   0,   0,   0 } }, //TWO_TOKEN
      { 3, 0,  {  0,   0,   0,   0,   0,   0,
                  0,   0,   0,   0,   0,   0 } }, //THREE_TOKEN
      { 4, 0,  {  0,   0,   0,   0,   0,   0,
                  0,   0,   0,   0,   0,   0 } }, //FOUR_TOKEN
      { 5, 0,  {159,   0,   0,   0,   0,   0,
                  0,   0,   0,   0,   0,   0 } }, //DCT_VAL_CATEGORY1
      { 7, 1,  {145, 165,   0,   0,   0,   0,
                  0,   0,   0,   0,   0,   0 } }, //DCT_VAL_CATEGORY2
      {11, 2,  {140, 148, 173,   0,   0,   0,
                  0,   0,   0,   0,   0,   0 } }, //DCT_VAL_CATEGORY3




Bankoski, et al.              Informational                   [Page 233]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      {19, 3,  {135, 140, 155, 176,   0,   0,
                  0,   0,   0,   0,   0,   0 } }, //DCT_VAL_CATEGORY4
      {35, 4,  {130, 134, 141, 157, 180,   0,
                  0,   0,   0,   0,   0,   0 } }, //DCT_VAL_CATEGORY5
      {67, 10, {129, 130, 133, 140, 153, 177,
                196, 230, 243, 254, 254,   0 } }, //DCT_VAL_CATEGORY6
      { 0, -1, {  0,   0,   0,   0,   0,   0,
                  0,   0,   0,   0,   0,   0 } }, // EOB TOKEN
  };

  static const unsigned int zigzag[16] =
  {
      0,  1,  4,  8,  5,  2,  3,  6,  9, 12, 13, 10,  7, 11, 14, 15
  };

  #define DECODE_AND_APPLYSIGN(value_to_sign) \
      v = (bool_get_bit(bool) ? -value_to_sign \
                              : value_to_sign) * dqf[!!c];

  #define DECODE_AND_BRANCH_IF_ZERO(probability,branch) \
      if (!bool_get(bool, probability)) goto branch;

  #define DECODE_AND_LOOP_IF_ZERO(probability,branch) \
      if (!bool_get(bool, probability)) \
      { \
          prob = type_probs; \
          if (c<15) {\
              ++c; \
              prob += bands_x[c]; \
              goto branch; \
          }\
          else \
              goto BLOCK_FINISHED; /* for malformed input */\
      }

  #define DECODE_SIGN_WRITE_COEFF_AND_CHECK_EXIT(val) \
      DECODE_AND_APPLYSIGN(val) \
      prob = type_probs + (ENTROPY_NODES*2); \
      if (c < 15){\
          b_tokens[zigzag[c]] = v; \
          ++c; \
          goto DO_WHILE; }\
      b_tokens[zigzag[15]] = v; \
      goto BLOCK_FINISHED;







Bankoski, et al.              Informational                   [Page 234]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  #define DECODE_EXTRABIT_AND_ADJUST_VAL(t,bits_count)\
      val += bool_get(bool, extrabits[t].probs[bits_count]) << \
      bits_count;


  static int
  decode_mb_tokens(struct bool_decoder  *bool,
                   token_entropy_ctx_t   left,
                   token_entropy_ctx_t   above,
                   short                *tokens,
                   enum prediction_mode  mode,
                   coeff_probs_table_t   probs,
                   short                 factor[TOKEN_BLOCK_TYPES][2])
  {
      int            i, stop, type;
      int            c, t, v;
      int            val, bits_count;
      int            eob_mask;
      short         *b_tokens;   // tokens for this block
      unsigned char *type_probs; // probabilities for this block type
      unsigned char *prob;
      short         *dqf;

      eob_mask = 0;

      if (mode != B_PRED && mode != SPLITMV)
      {
          i = 24;
          stop = 24;
          type = 1;
          b_tokens = tokens + 24 * 16;
          dqf = factor[TOKEN_BLOCK_Y2];
      }
      else
      {
          i = 0;
          stop = 16;
          type = 3;
          b_tokens = tokens;
          dqf = factor[TOKEN_BLOCK_Y1];
      }

      /* Save a pointer to the coefficient probs for the current type.
       * Need to repeat this whenever type changes.
       */
      type_probs = probs[type][0][0];





Bankoski, et al.              Informational                   [Page 235]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  BLOCK_LOOP:
      t = left[left_context_index[i]] + above[above_context_index[i]];
      c = !type; /* all blocks start at 0 except type 0, which starts
                  * at 1. */

      prob = type_probs;
      prob += t * ENTROPY_NODES;

  DO_WHILE:
      prob += bands_x[c];
      DECODE_AND_BRANCH_IF_ZERO(prob[EOB_CONTEXT_NODE],
        BLOCK_FINISHED);

  CHECK_0_:
      DECODE_AND_LOOP_IF_ZERO(prob[ZERO_CONTEXT_NODE], CHECK_0_);
      DECODE_AND_BRANCH_IF_ZERO(prob[ONE_CONTEXT_NODE],
                                ONE_CONTEXT_NODE_0_);
      DECODE_AND_BRANCH_IF_ZERO(prob[LOW_VAL_CONTEXT_NODE],
                                LOW_VAL_CONTEXT_NODE_0_);
      DECODE_AND_BRANCH_IF_ZERO(prob[HIGH_LOW_CONTEXT_NODE],
                                HIGH_LOW_CONTEXT_NODE_0_);
      DECODE_AND_BRANCH_IF_ZERO(prob[CAT_THREEFOUR_CONTEXT_NODE],
                                CAT_THREEFOUR_CONTEXT_NODE_0_);
      DECODE_AND_BRANCH_IF_ZERO(prob[CAT_FIVE_CONTEXT_NODE],
                                CAT_FIVE_CONTEXT_NODE_0_);
      val = extrabits[DCT_VAL_CATEGORY6].min_val;
      bits_count = extrabits[DCT_VAL_CATEGORY6].length;

      do
      {
          DECODE_EXTRABIT_AND_ADJUST_VAL(DCT_VAL_CATEGORY6,
            bits_count);
          bits_count --;
      }
      while (bits_count >= 0);

      DECODE_SIGN_WRITE_COEFF_AND_CHECK_EXIT(val);

  CAT_FIVE_CONTEXT_NODE_0_:
      val = extrabits[DCT_VAL_CATEGORY5].min_val;
      DECODE_EXTRABIT_AND_ADJUST_VAL(DCT_VAL_CATEGORY5, 4);
      DECODE_EXTRABIT_AND_ADJUST_VAL(DCT_VAL_CATEGORY5, 3);
      DECODE_EXTRABIT_AND_ADJUST_VAL(DCT_VAL_CATEGORY5, 2);
      DECODE_EXTRABIT_AND_ADJUST_VAL(DCT_VAL_CATEGORY5, 1);
      DECODE_EXTRABIT_AND_ADJUST_VAL(DCT_VAL_CATEGORY5, 0);
      DECODE_SIGN_WRITE_COEFF_AND_CHECK_EXIT(val);





Bankoski, et al.              Informational                   [Page 236]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  CAT_THREEFOUR_CONTEXT_NODE_0_:
      DECODE_AND_BRANCH_IF_ZERO(prob[CAT_THREE_CONTEXT_NODE],
                                CAT_THREE_CONTEXT_NODE_0_);
      val = extrabits[DCT_VAL_CATEGORY4].min_val;
      DECODE_EXTRABIT_AND_ADJUST_VAL(DCT_VAL_CATEGORY4, 3);
      DECODE_EXTRABIT_AND_ADJUST_VAL(DCT_VAL_CATEGORY4, 2);
      DECODE_EXTRABIT_AND_ADJUST_VAL(DCT_VAL_CATEGORY4, 1);
      DECODE_EXTRABIT_AND_ADJUST_VAL(DCT_VAL_CATEGORY4, 0);
      DECODE_SIGN_WRITE_COEFF_AND_CHECK_EXIT(val);

  CAT_THREE_CONTEXT_NODE_0_:
      val = extrabits[DCT_VAL_CATEGORY3].min_val;
      DECODE_EXTRABIT_AND_ADJUST_VAL(DCT_VAL_CATEGORY3, 2);
      DECODE_EXTRABIT_AND_ADJUST_VAL(DCT_VAL_CATEGORY3, 1);
      DECODE_EXTRABIT_AND_ADJUST_VAL(DCT_VAL_CATEGORY3, 0);
      DECODE_SIGN_WRITE_COEFF_AND_CHECK_EXIT(val);

  HIGH_LOW_CONTEXT_NODE_0_:
      DECODE_AND_BRANCH_IF_ZERO(prob[CAT_ONE_CONTEXT_NODE],
                                CAT_ONE_CONTEXT_NODE_0_);

      val = extrabits[DCT_VAL_CATEGORY2].min_val;
      DECODE_EXTRABIT_AND_ADJUST_VAL(DCT_VAL_CATEGORY2, 1);
      DECODE_EXTRABIT_AND_ADJUST_VAL(DCT_VAL_CATEGORY2, 0);
      DECODE_SIGN_WRITE_COEFF_AND_CHECK_EXIT(val);

  CAT_ONE_CONTEXT_NODE_0_:
      val = extrabits[DCT_VAL_CATEGORY1].min_val;
      DECODE_EXTRABIT_AND_ADJUST_VAL(DCT_VAL_CATEGORY1, 0);
      DECODE_SIGN_WRITE_COEFF_AND_CHECK_EXIT(val);

  LOW_VAL_CONTEXT_NODE_0_:
      DECODE_AND_BRANCH_IF_ZERO(prob[TWO_CONTEXT_NODE],
                                TWO_CONTEXT_NODE_0_);
      DECODE_AND_BRANCH_IF_ZERO(prob[THREE_CONTEXT_NODE],
                                THREE_CONTEXT_NODE_0_);
      DECODE_SIGN_WRITE_COEFF_AND_CHECK_EXIT(4);

  THREE_CONTEXT_NODE_0_:
      DECODE_SIGN_WRITE_COEFF_AND_CHECK_EXIT(3);

  TWO_CONTEXT_NODE_0_:
      DECODE_SIGN_WRITE_COEFF_AND_CHECK_EXIT(2);

  ONE_CONTEXT_NODE_0_:
      DECODE_AND_APPLYSIGN(1);
      prob = type_probs + ENTROPY_NODES;




Bankoski, et al.              Informational                   [Page 237]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      if (c < 15)
      {
          b_tokens[zigzag[c]] = v;
          ++c;
          goto DO_WHILE;
      }

      b_tokens[zigzag[15]] = v;
  BLOCK_FINISHED:
      eob_mask |= (c > 1) << i;
      t = (c != !type);   // any non-zero data?
      eob_mask |= t << 31;

      left[left_context_index[i]] = above[above_context_index[i]] = t;
      b_tokens += 16;

      i++;

      if (i < stop)
          goto BLOCK_LOOP;

      if (i == 25)
      {
          type = 0;
          i = 0;
          stop = 16;
          type_probs = probs[type][0][0];
          b_tokens = tokens;
          dqf = factor[TOKEN_BLOCK_Y1];
          goto BLOCK_LOOP;
      }

      if (i == 16)
      {
          type = 2;
          type_probs = probs[type][0][0];
          stop = 24;
          dqf = factor[TOKEN_BLOCK_UV];
          goto BLOCK_LOOP;
      }

      return eob_mask;
  }








Bankoski, et al.              Informational                   [Page 238]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  static void
  reset_row_context(token_entropy_ctx_t *left)
  {
      memset(left, 0, sizeof(*left));
  }


  static void
  reset_above_context(token_entropy_ctx_t *above, unsigned int cols)
  {
      memset(above, 0, cols * sizeof(*above));
  }


  static void
  reset_mb_context(token_entropy_ctx_t  *left,
                   token_entropy_ctx_t  *above,
                   enum prediction_mode  mode)
  {
      /* Reset the macroblock context on the left and right.  We have
       * to preserve the context of the second order block if this mode
       * would not have updated it.
       */
      memset(left, 0, sizeof((*left)[0]) * 8);
      memset(above, 0, sizeof((*above)[0]) * 8);

      if (mode != B_PRED && mode != SPLITMV)
      {
          (*left)[8] = 0;
          (*above)[8] = 0;
      }
  }


  void
  vp8_dixie_tokens_process_row(struct vp8_decoder_ctx *ctx,
                               unsigned int            partition,
                               unsigned int            row,
                               unsigned int            start_col,
                               unsigned int            num_cols)
  {
      struct token_decoder *tokens = &ctx->tokens[partition];
      short              coeffs = tokens->coeffs + 25 * 16 * start_col;
      unsigned int       col;
      token_entropy_ctx_t  *above = ctx->above_token_entropy_ctx
                                    + start_col;
      token_entropy_ctx_t  *left = &tokens->left_token_entropy_ctx;
      struct mb_info       *mbi = ctx->mb_info_rows[row] + start_col;



Bankoski, et al.              Informational                   [Page 239]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      if (row == 0)
          reset_above_context(above, num_cols);

      if (start_col == 0)
          reset_row_context(left);

      for (col = start_col; col < start_col + num_cols; col++)
      {
          memset(coeffs, 0, 25 * 16 * sizeof(short));

          if (mbi->base.skip_coeff)
          {
              reset_mb_context(left, above, mbi->base.y_mode);
              mbi->base.eob_mask = 0;
          }
          else
          {
              struct dequant_factors *dqf;

              dqf = ctx->dequant_factors  + mbi->base.segment_id;
              mbi->base.eob_mask =
                  decode_mb_tokens(&tokens->bool,
                                   *left, *above,
                                   coeffs,
                                   mbi->base.y_mode,
                                   ctx->entropy_hdr.coeff_probs,
                                   dqf->factor);
          }

          above++;
          mbi++;
          coeffs += 25 * 16;
      }
  }


  void
  vp8_dixie_tokens_init(struct vp8_decoder_ctx *ctx)
  {
      unsigned int  partitions = ctx->token_hdr.partitions;

      if (ctx->frame_hdr.frame_size_updated)
      {
          unsigned int i;
          unsigned int coeff_row_sz =
              ctx->mb_cols * 25 * 16 * sizeof(short);





Bankoski, et al.              Informational                   [Page 240]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


          for (i = 0; i < partitions; i++)
          {
              free(ctx->tokens[i].coeffs);
              ctx->tokens[i].coeffs = memalign(16, coeff_row_sz);

              if (!ctx->tokens[i].coeffs)
                  vpx_internal_error(&ctx->error, VPX_CODEC_MEM_ERROR,
                                     NULL);
          }

          free(ctx->above_token_entropy_ctx);
          ctx->above_token_entropy_ctx =
              calloc(ctx->mb_cols,
              sizeof(*ctx->above_token_entropy_ctx));

          if (!ctx->above_token_entropy_ctx)
              vpx_internal_error(&ctx->error,
              VPX_CODEC_MEM_ERROR, NULL);
      }
  }


  void
  vp8_dixie_tokens_destroy(struct vp8_decoder_ctx *ctx)
  {
      int i;

      for (i = 0; i < MAX_PARTITIONS; i++)
          free(ctx->tokens[i].coeffs);

      free(ctx->above_token_entropy_ctx);
  }

  ---- End code block ----------------------------------------

















Bankoski, et al.              Informational                   [Page 241]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


20.17.  tokens.h

  ---- Begin code block --------------------------------------

  /*
   *  Copyright (c) 2010, 2011, Google Inc.  All rights reserved.
   *
   *  Use of this source code is governed by a BSD-style license
   *  that can be found in the LICENSE file in the root of the source
   *  tree.  An additional intellectual property rights grant can be
   *  found in the file PATENTS.  All contributing project authors may
   *  be found in the AUTHORS file in the root of the source tree.
   */
  #ifndef TOKENS_H
  #define TOKENS_H

  void
  vp8_dixie_tokens_init(struct vp8_decoder_ctx *ctx);


  void
  vp8_dixie_tokens_destroy(struct vp8_decoder_ctx *ctx);


  void
  vp8_dixie_tokens_process_row(struct vp8_decoder_ctx *ctx,
                               unsigned int            partition,
                               unsigned int            row,
                               unsigned int            start_col,
                               unsigned int            num_cols);

  #endif

  ---- End code block ----------------------------------------

















Bankoski, et al.              Informational                   [Page 242]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


20.18.  vp8_prob_data.h

  ---- Begin code block --------------------------------------

  /*
   *  Copyright (c) 2010, 2011, Google Inc.  All rights reserved.
   *
   *  Use of this source code is governed by a BSD-style license
   *  that can be found in the LICENSE file in the root of the source
   *  tree.  An additional intellectual property rights grant can be
   *  found in the file PATENTS.  All contributing project authors may
   *  be found in the AUTHORS file in the root of the source tree.
   */

  static const
  unsigned char k_coeff_entropy_update_probs[BLOCK_TYPES][COEFF_BANDS]
  [PREV_COEFF_CONTEXTS]
  [ENTROPY_NODES] =
  {
      {
          {
              {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
              {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
              {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
          },
          {
              {176, 246, 255, 255, 255, 255, 255, 255, 255, 255, 255},
              {223, 241, 252, 255, 255, 255, 255, 255, 255, 255, 255},
              {249, 253, 253, 255, 255, 255, 255, 255, 255, 255, 255},
          },
          {
              {255, 244, 252, 255, 255, 255, 255, 255, 255, 255, 255},
              {234, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},
              {253, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
          },
          {
              {255, 246, 254, 255, 255, 255, 255, 255, 255, 255, 255},
              {239, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},
              {254, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255},
          },
          {
              {255, 248, 254, 255, 255, 255, 255, 255, 255, 255, 255},
              {251, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255},
              {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
          },






Bankoski, et al.              Informational                   [Page 243]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


          {
              {255, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},
              {251, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},
              {254, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255},
          },
          {
              {255, 254, 253, 255, 254, 255, 255, 255, 255, 255, 255},
              {250, 255, 254, 255, 254, 255, 255, 255, 255, 255, 255},
              {254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
          },
          {
              {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
              {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
              {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
          },
      },
      {
          {
              {217, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
              {225, 252, 241, 253, 255, 255, 254, 255, 255, 255, 255},
              {234, 250, 241, 250, 253, 255, 253, 254, 255, 255, 255},
          },
          {
              {255, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255},
              {223, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},
              {238, 253, 254, 254, 255, 255, 255, 255, 255, 255, 255},
          },
          {
              {255, 248, 254, 255, 255, 255, 255, 255, 255, 255, 255},
              {249, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255},
              {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
          },
          {
              {255, 253, 255, 255, 255, 255, 255, 255, 255, 255, 255},
              {247, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255},
              {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
          },
          {
              {255, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},
              {252, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
              {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
          },
          {
              {255, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},
              {253, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
              {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
          },




Bankoski, et al.              Informational                   [Page 244]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


          {
              {255, 254, 253, 255, 255, 255, 255, 255, 255, 255, 255},
              {250, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
              {254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
          },
          {
              {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
              {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
              {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
          },
      },
      {
          {
              {186, 251, 250, 255, 255, 255, 255, 255, 255, 255, 255},
              {234, 251, 244, 254, 255, 255, 255, 255, 255, 255, 255},
              {251, 251, 243, 253, 254, 255, 254, 255, 255, 255, 255},
          },
          {
              {255, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},
              {236, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},
              {251, 253, 253, 254, 254, 255, 255, 255, 255, 255, 255},
          },
          {
              {255, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},
              {254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},
              {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
          },
          {
              {255, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255},
              {254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255},
              {254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
          },
          {
              {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
              {254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
              {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
          },
          {
              {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
              {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
              {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
          },
          {
              {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
              {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
              {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
          },




Bankoski, et al.              Informational                   [Page 245]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


          {
              {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
              {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
              {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
          },
      },
      {
          {
              {248, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
              {250, 254, 252, 254, 255, 255, 255, 255, 255, 255, 255},
              {248, 254, 249, 253, 255, 255, 255, 255, 255, 255, 255},
          },
          {
              {255, 253, 253, 255, 255, 255, 255, 255, 255, 255, 255},
              {246, 253, 253, 255, 255, 255, 255, 255, 255, 255, 255},
              {252, 254, 251, 254, 254, 255, 255, 255, 255, 255, 255},
          },
          {
              {255, 254, 252, 255, 255, 255, 255, 255, 255, 255, 255},
              {248, 254, 253, 255, 255, 255, 255, 255, 255, 255, 255},
              {253, 255, 254, 254, 255, 255, 255, 255, 255, 255, 255},
          },
          {
              {255, 251, 254, 255, 255, 255, 255, 255, 255, 255, 255},
              {245, 251, 254, 255, 255, 255, 255, 255, 255, 255, 255},
              {253, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},
          },
          {
              {255, 251, 253, 255, 255, 255, 255, 255, 255, 255, 255},
              {252, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},
              {255, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255},
          },
          {
              {255, 252, 255, 255, 255, 255, 255, 255, 255, 255, 255},
              {249, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255},
              {255, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255},
          },
          {
              {255, 255, 253, 255, 255, 255, 255, 255, 255, 255, 255},
              {250, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
              {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
          },









Bankoski, et al.              Informational                   [Page 246]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


          {
              {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
              {254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
              {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
          },
      },
  };


  static const
  unsigned char k_default_y_mode_probs        [] =
  { 112,  86, 140,  37};


  static const
  unsigned char k_default_uv_mode_probs       [] =
  { 162, 101, 204};


  static const
  unsigned char k_default_coeff_probs [BLOCK_TYPES][COEFF_BANDS]
  [PREV_COEFF_CONTEXTS][ENTROPY_NODES] =
  {
      { /* block type 0 */
          { /* coeff band 0 */
              { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128},
              { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128},
              { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128}
          },
          { /* coeff band 1 */
              { 253, 136, 254, 255, 228, 219, 128, 128, 128, 128, 128},
              { 189, 129, 242, 255, 227, 213, 255, 219, 128, 128, 128},
              { 106, 126, 227, 252, 214, 209, 255, 255, 128, 128, 128}
          },
          { /* coeff band 2 */
              {   1,  98, 248, 255, 236, 226, 255, 255, 128, 128, 128},
              { 181, 133, 238, 254, 221, 234, 255, 154, 128, 128, 128},
              {  78, 134, 202, 247, 198, 180, 255, 219, 128, 128, 128}
          },
          { /* coeff band 3 */
              {   1, 185, 249, 255, 243, 255, 128, 128, 128, 128, 128},
              { 184, 150, 247, 255, 236, 224, 128, 128, 128, 128, 128},
              {  77, 110, 216, 255, 236, 230, 128, 128, 128, 128, 128}
          },







Bankoski, et al.              Informational                   [Page 247]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


          { /* coeff band 4 */
              {   1, 101, 251, 255, 241, 255, 128, 128, 128, 128, 128},
              { 170, 139, 241, 252, 236, 209, 255, 255, 128, 128, 128},
              {  37, 116, 196, 243, 228, 255, 255, 255, 128, 128, 128}
          },
          { /* coeff band 5 */
              {   1, 204, 254, 255, 245, 255, 128, 128, 128, 128, 128},
              { 207, 160, 250, 255, 238, 128, 128, 128, 128, 128, 128},
              { 102, 103, 231, 255, 211, 171, 128, 128, 128, 128, 128}
          },
          { /* coeff band 6 */
              {   1, 152, 252, 255, 240, 255, 128, 128, 128, 128, 128},
              { 177, 135, 243, 255, 234, 225, 128, 128, 128, 128, 128},
              {  80, 129, 211, 255, 194, 224, 128, 128, 128, 128, 128}
          },
          { /* coeff band 7 */
              {   1,   1, 255, 128, 128, 128, 128, 128, 128, 128, 128},
              { 246,   1, 255, 128, 128, 128, 128, 128, 128, 128, 128},
              { 255, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128}
          }
      },
      { /* block type 1 */
          { /* coeff band 0 */
              { 198,  35, 237, 223, 193, 187, 162, 160, 145, 155,  62},
              { 131,  45, 198, 221, 172, 176, 220, 157, 252, 221,   1},
              {  68,  47, 146, 208, 149, 167, 221, 162, 255, 223, 128}
          },
          { /* coeff band 1 */
              {   1, 149, 241, 255, 221, 224, 255, 255, 128, 128, 128},
              { 184, 141, 234, 253, 222, 220, 255, 199, 128, 128, 128},
              {  81,  99, 181, 242, 176, 190, 249, 202, 255, 255, 128}
          },
          { /* coeff band 2 */
              {   1, 129, 232, 253, 214, 197, 242, 196, 255, 255, 128},
              {  99, 121, 210, 250, 201, 198, 255, 202, 128, 128, 128},
              {  23,  91, 163, 242, 170, 187, 247, 210, 255, 255, 128}
          },
          { /* coeff band 3 */
              {   1, 200, 246, 255, 234, 255, 128, 128, 128, 128, 128},
              { 109, 178, 241, 255, 231, 245, 255, 255, 128, 128, 128},
              {  44, 130, 201, 253, 205, 192, 255, 255, 128, 128, 128}
          },
          { /* coeff band 4 */
              {   1, 132, 239, 251, 219, 209, 255, 165, 128, 128, 128},
              {  94, 136, 225, 251, 218, 190, 255, 255, 128, 128, 128},
              {  22, 100, 174, 245, 186, 161, 255, 199, 128, 128, 128}
          },




Bankoski, et al.              Informational                   [Page 248]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


          { /* coeff band 5 */
              {   1, 182, 249, 255, 232, 235, 128, 128, 128, 128, 128},
              { 124, 143, 241, 255, 227, 234, 128, 128, 128, 128, 128},
              {  35,  77, 181, 251, 193, 211, 255, 205, 128, 128, 128}
          },
          { /* coeff band 6 */
              {   1, 157, 247, 255, 236, 231, 255, 255, 128, 128, 128},
              { 121, 141, 235, 255, 225, 227, 255, 255, 128, 128, 128},
              {  45,  99, 188, 251, 195, 217, 255, 224, 128, 128, 128}
          },
          { /* coeff band 7 */
              {   1,   1, 251, 255, 213, 255, 128, 128, 128, 128, 128},
              { 203,   1, 248, 255, 255, 128, 128, 128, 128, 128, 128},
              { 137,   1, 177, 255, 224, 255, 128, 128, 128, 128, 128}
          }
      },
      { /* block type 2 */
          { /* coeff band 0 */
              { 253,   9, 248, 251, 207, 208, 255, 192, 128, 128, 128},
              { 175,  13, 224, 243, 193, 185, 249, 198, 255, 255, 128},
              {  73,  17, 171, 221, 161, 179, 236, 167, 255, 234, 128}
          },
          { /* coeff band 1 */
              {   1,  95, 247, 253, 212, 183, 255, 255, 128, 128, 128},
              { 239,  90, 244, 250, 211, 209, 255, 255, 128, 128, 128},
              { 155,  77, 195, 248, 188, 195, 255, 255, 128, 128, 128}
          },
          { /* coeff band 2 */
              {   1,  24, 239, 251, 218, 219, 255, 205, 128, 128, 128},
              { 201,  51, 219, 255, 196, 186, 128, 128, 128, 128, 128},
              {  69,  46, 190, 239, 201, 218, 255, 228, 128, 128, 128}
          },
          { /* coeff band 3 */
              {   1, 191, 251, 255, 255, 128, 128, 128, 128, 128, 128},
              { 223, 165, 249, 255, 213, 255, 128, 128, 128, 128, 128},
              { 141, 124, 248, 255, 255, 128, 128, 128, 128, 128, 128}
          },
          { /* coeff band 4 */
              {   1,  16, 248, 255, 255, 128, 128, 128, 128, 128, 128},
              { 190,  36, 230, 255, 236, 255, 128, 128, 128, 128, 128},
              { 149,   1, 255, 128, 128, 128, 128, 128, 128, 128, 128}
          },
          { /* coeff band 5 */
              {   1, 226, 255, 128, 128, 128, 128, 128, 128, 128, 128},
              { 247, 192, 255, 128, 128, 128, 128, 128, 128, 128, 128},
              { 240, 128, 255, 128, 128, 128, 128, 128, 128, 128, 128}
          },




Bankoski, et al.              Informational                   [Page 249]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


          { /* coeff band 6 */
              {   1, 134, 252, 255, 255, 128, 128, 128, 128, 128, 128},
              { 213,  62, 250, 255, 255, 128, 128, 128, 128, 128, 128},
              {  55,  93, 255, 128, 128, 128, 128, 128, 128, 128, 128}
          },
          { /* coeff band 7 */
              { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128},
              { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128},
              { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128}
          }
      },
      { /* block type 3 */
          { /* coeff band 0 */
              { 202,  24, 213, 235, 186, 191, 220, 160, 240, 175, 255},
              { 126,  38, 182, 232, 169, 184, 228, 174, 255, 187, 128},
              {  61,  46, 138, 219, 151, 178, 240, 170, 255, 216, 128}
          },
          { /* coeff band 1 */
              {   1, 112, 230, 250, 199, 191, 247, 159, 255, 255, 128},
              { 166, 109, 228, 252, 211, 215, 255, 174, 128, 128, 128},
              {  39,  77, 162, 232, 172, 180, 245, 178, 255, 255, 128}
          },
          { /* coeff band 2 */
              {   1,  52, 220, 246, 198, 199, 249, 220, 255, 255, 128},
              { 124,  74, 191, 243, 183, 193, 250, 221, 255, 255, 128},
              {  24,  71, 130, 219, 154, 170, 243, 182, 255, 255, 128}
          },
          { /* coeff band 3 */
              {   1, 182, 225, 249, 219, 240, 255, 224, 128, 128, 128},
              { 149, 150, 226, 252, 216, 205, 255, 171, 128, 128, 128},
              {  28, 108, 170, 242, 183, 194, 254, 223, 255, 255, 128}
          },
          { /* coeff band 4 */
              {   1,  81, 230, 252, 204, 203, 255, 192, 128, 128, 128},
              { 123, 102, 209, 247, 188, 196, 255, 233, 128, 128, 128},
              {  20,  95, 153, 243, 164, 173, 255, 203, 128, 128, 128}
          },
          { /* coeff band 5 */
              {   1, 222, 248, 255, 216, 213, 128, 128, 128, 128, 128},
              { 168, 175, 246, 252, 235, 205, 255, 255, 128, 128, 128},
              {  47, 116, 215, 255, 211, 212, 255, 255, 128, 128, 128}
          },
          { /* coeff band 6 */
              {   1, 121, 236, 253, 212, 214, 255, 255, 128, 128, 128},
              { 141,  84, 213, 252, 201, 202, 255, 219, 128, 128, 128},
              {  42,  80, 160, 240, 162, 185, 255, 205, 128, 128, 128}
          },




Bankoski, et al.              Informational                   [Page 250]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


          { /* coeff band 7 */
              {   1,   1, 255, 128, 128, 128, 128, 128, 128, 128, 128},
              { 244,   1, 255, 128, 128, 128, 128, 128, 128, 128, 128},
              { 238,   1, 255, 128, 128, 128, 128, 128, 128, 128, 128}
          }
      }
  };


  static const
  unsigned char k_mv_entropy_update_probs[2][MV_PROB_CNT] =
  {
      {
          237,
          246,
          253, 253, 254, 254, 254, 254, 254,
          254, 254, 254, 254, 254, 250, 250, 252, 254, 254
      },
      {
          231,
          243,
          245, 253, 254, 254, 254, 254, 254,
          254, 254, 254, 254, 254, 251, 251, 254, 254, 254
      }
  };


  static const
  unsigned char k_default_mv_probs[2][MV_PROB_CNT] =
  {
      {                                                  // row
          162,                                           // is short
          128,                                           // sign
          225, 146, 172, 147, 214,  39, 156,             // short tree
          128, 129, 132,  75, 145, 178, 206, 239, 254, 254 // long bits
      },
      {
          164,
          128,
          204, 170, 119, 235, 140, 230, 228,
          128, 130, 130,  74, 148, 180, 203, 236, 254, 254

      }
  };

  ---- End code block ----------------------------------------





Bankoski, et al.              Informational                   [Page 251]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


20.19.  vpx_codec_internal.h

  ---- Begin code block --------------------------------------

  /*
   *  Copyright (c) 2010, 2011, Google Inc.  All rights reserved.
   *
   *  Use of this source code is governed by a BSD-style license
   *  that can be found in the LICENSE file in the root of the source
   *  tree.  An additional intellectual property rights grant can be
   *  found in the file PATENTS.  All contributing project authors may
   *  be found in the AUTHORS file in the root of the source tree.
   */


  /*!\file vpx_codec_internal.h
   * \brief Describes the decoder algorithm interface for algorithm
   *        implementations.
   *
   * This file defines the private structures and data types that are
   * only relevant to implementing an algorithm, as opposed to using
   * it.
   *
   * To create a decoder algorithm class, an interface structure is put
   * into the global namespace:
   *     <pre>
   *     my_codec.c:
   *       vpx_codec_iface_t my_codec = {
   *           "My Codec v1.0",
   *           VPX_CODEC_ALG_ABI_VERSION,
   *           ...
   *       };
   *     </pre>
   *
   * An application instantiates a specific decoder instance by using
   * vpx_codec_init() and a pointer to the algorithm's interface
   * structure:
   *     <pre>
   *     my_app.c:
   *       extern vpx_codec_iface_t my_codec;
   *       {
   *           vpx_codec_ctx_t algo;
   *           res = vpx_codec_init(&algo, &my_codec);
   *       }
   *     </pre>
   *





Bankoski, et al.              Informational                   [Page 252]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


   * Once initialized, the instance is managed using other functions
   * from the vpx_codec_* family.
   */
  #ifndef VPX_CODEC_INTERNAL_H
  #define VPX_CODEC_INTERNAL_H
  #include "vpx_decoder.h"
  #include <stdarg.h>


  /*!\brief Current ABI version number
   *
   * \internal
   * If this file is altered in any way that changes the Application
   * Binary Interface (ABI), this value must be bumped.  Examples
   * include, but are not limited to, changing types, removing or
   * reassigning enums, adding/removing/rearranging fields to
   * structures.
   */
  #define VPX_CODEC_INTERNAL_ABI_VERSION (3)

  typedef struct vpx_codec_alg_priv  vpx_codec_alg_priv_t;

  /*!\brief init function pointer prototype
   *
   * Performs algorithm-specific initialization of the decoder context.
   * This function is called by the generic vpx_codec_init() wrapper
   * function, so plugins implementing this interface may trust the
   * input parameters to be properly initialized.
   *
   * \param[in] ctx   Pointer to this instance's context
   * \retval #VPX_CODEC_OK
   *     The input stream was recognized and decoder initialized.
   * \retval #VPX_CODEC_MEM_ERROR
   *     Memory operation failed.
   */
  typedef vpx_codec_err_t (*vpx_codec_init_fn_t)(vpx_codec_ctx_t *ctx);















Bankoski, et al.              Informational                   [Page 253]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  /*!\brief destroy function pointer prototype
   *
   * Performs algorithm-specific destruction of the decoder context.
   * This function is called by the generic vpx_codec_destroy() wrapper
   * function, so plugins implementing this interface may trust the
   * input parameters to be properly initialized.
   *
   * \param[in] ctx   Pointer to this instance's context
   * \retval #VPX_CODEC_OK
   *     The input stream was recognized and decoder initialized.
   * \retval #VPX_CODEC_MEM_ERROR
   *     Memory operation failed.
   */
  typedef vpx_codec_err_t (*vpx_codec_destroy_fn_t)(
      vpx_codec_alg_priv_t *ctx);

  /*!\brief parse stream info function pointer prototype
   *
   * Performs high level parsing of the bitstream.  This function is
   * called by the generic vpx_codec_parse_stream() wrapper function,
   * so plugins implementing this interface may trust the input
   * parameters to be properly initialized.
   *
   * \param[in]      data    Pointer to a block of data to parse
   * \param[in]      data_sz Size of the data buffer
   * \param[in,out]  si      Pointer to stream info to update.  The
   *                         size member \ref MUST be properly
   *                         initialized, but \ref MAY be clobbered by
   *                         the algorithm.  This parameter \ref MAY
   *                         be NULL.
   *
   * \retval #VPX_CODEC_OK
   *     Bitstream is parsable and stream information updated
   */
  typedef vpx_codec_err_t (*vpx_codec_peek_si_fn_t)(
      const uint8_t         *data,
      unsigned int           data_sz,
      vpx_codec_stream_info_t *si);













Bankoski, et al.              Informational                   [Page 254]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  /*!\brief Return information about the current stream.
   *
   * Returns information about the stream that has been parsed during
   * decoding.
   *
   * \param[in]      ctx     Pointer to this instance's context
   * \param[in,out]  si      Pointer to stream info to update.  The
   *                         size member \ref MUST be properly
   *                         initialized, but \ref MAY be clobbered by
   *                         the algorithm.  This parameter \ref MAY
   *                         be NULL.
   *
   * \retval #VPX_CODEC_OK
   *     Bitstream is parsable and stream information updated
   */
  typedef vpx_codec_err_t (*vpx_codec_get_si_fn_t)(
      vpx_codec_alg_priv_t    *ctx,
      vpx_codec_stream_info_t *si);

  /*!\brief control function pointer prototype
   *
   * This function is used to exchange algorithm-specific data with the
   * decoder instance.  This can be used to implement features specific
   * to a particular algorithm.
   *
   * This function is called by the generic vpx_codec_control() wrapper
   * function, so plugins implementing this interface may trust the
   * input parameters to be properly initialized.  However, this
   * interface does not provide type safety for the exchanged data or
   * assign meanings to the control codes.  Those details should be
   * specified in the algorithm's header file.  In particular, the
   * ctrl_id parameter is guaranteed to exist in the algorithm's
   * control mapping table, and the data parameter may be NULL.
   *
   *
   * \param[in]     ctx       Pointer to this instance's context
   * \param[in]     ctrl_id   Algorithm-specific control identifier
   * \param[in,out] data      Data to exchange with algorithm instance.
   *
   * \retval #VPX_CODEC_OK
   *     The internal state data was deserialized.
   */
  typedef vpx_codec_err_t (*vpx_codec_control_fn_t)(
      vpx_codec_alg_priv_t  *ctx,
      int                   ctrl_id,
      va_list               ap);





Bankoski, et al.              Informational                   [Page 255]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  /*!\brief control function pointer mapping
   *
   * This structure stores the mapping between control identifiers and
   * implementing functions.  Each algorithm provides a list of these
   * mappings.  This list is searched by the vpx_codec_control()
   * wrapper function to determine which function to invoke.  The
   * special value {0, NULL} is used to indicate end-of-list, and must
   * be present.  The special value {0, <non-null>} can be used as a
   * catch-all mapping.  This implies that ctrl_id values chosen by the
   * algorithm \ref MUST be non-zero.
   */
  typedef const struct
  {
      int                    ctrl_id;
      vpx_codec_control_fn_t   fn;
  } vpx_codec_ctrl_fn_map_t;

  /*!\brief decode data function pointer prototype
   *
   * Processes a buffer of coded data.  If the processing results in a
   * new decoded frame becoming available, #VPX_CODEC_CB_PUT_SLICE and
   * #VPX_CODEC_CB_PUT_FRAME events are generated as appropriate.
   * This function is called by the generic vpx_codec_decode() wrapper
   * function, so plugins implementing this interface may trust the
   * input parameters to be properly initialized.
   *
   * \param[in] ctx         Pointer to this instance's context
   * \param[in] data        Pointer to this block of new coded data.
   *                        If NULL, a #VPX_CODEC_CB_PUT_FRAME event is
   *                        posted for the previously decoded frame.
   * \param[in] data_sz     Size of the coded data, in bytes.
   *
   * \return Returns #VPX_CODEC_OK if the coded data was processed
   *         completely and future pictures can be decoded without
   *         error.  Otherwise, see the descriptions of the other error
   *         codes in ::vpx_codec_err_t for recoverability
   *         capabilities.
   */
  typedef vpx_codec_err_t (*vpx_codec_decode_fn_t)(
      vpx_codec_alg_priv_t  *ctx,
      const uint8_t         *data,
      unsigned int     data_sz,
      void        *user_priv,
      long         deadline);







Bankoski, et al.              Informational                   [Page 256]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  /*!\brief Decoded frames iterator
   *
   * Iterates over a list of the frames available for display.  The
   * iterator storage should be initialized to NULL to start the
   * iteration.  Iteration is complete when this function returns NULL.
   *
   * The list of available frames becomes valid upon completion of the
   * vpx_codec_decode call, and remains valid until the next call to
   * vpx_codec_decode.
   *
   * \param[in]     ctx      Pointer to this instance's context
   * \param[in out] iter     Iterator storage, initialized to NULL
   *
   * \return Returns a pointer to an image, if one is ready for
   *         display.  Frames produced will always be in PTS
   *         (presentation time stamp) order.
   */
  typedef vpx_image_t*(*vpx_codec_get_frame_fn_t)(
      vpx_codec_alg_priv_t *ctx,
      vpx_codec_iter_t     *iter);

  /*\brief External Memory Allocation memory map get iterator
   *
   * Iterates over a list of the memory maps requested by the decoder.
   * The iterator storage should be initialized to NULL to start the
   * iteration.  Iteration is complete when this function returns NULL.
   *
   * \param[in out] iter     Iterator storage, initialized to NULL
   *
   * \return Returns a pointer to a memory segment descriptor, or NULL
   *         to indicate end-of-list.
   */
  typedef vpx_codec_err_t (*vpx_codec_get_mmap_fn_t)(
      const vpx_codec_ctx_t      *ctx,
      vpx_codec_mmap_t           *mmap,
      vpx_codec_iter_t           *iter);















Bankoski, et al.              Informational                   [Page 257]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  /*\brief External Memory Allocation memory map set iterator
   *
   * Sets a memory descriptor inside the decoder instance.
   *
   * \param[in] ctx      Pointer to this instance's context
   * \param[in] mmap     Memory map to store.
   *
   * \retval #VPX_CODEC_OK
   *     The memory map was accepted and stored.
   * \retval #VPX_CODEC_MEM_ERROR
   *     The memory map was rejected.
   */
  typedef vpx_codec_err_t (*vpx_codec_set_mmap_fn_t)(
      vpx_codec_ctx_t         *ctx,
      const vpx_codec_mmap_t  *mmap);


  typedef vpx_codec_err_t (*vpx_codec_encode_fn_t)(
      vpx_codec_alg_priv_t  *ctx,
      const vpx_image_t     *img,
      vpx_codec_pts_t        pts,
      unsigned long          duration,
      vpx_enc_frame_flags_t  flags,
      unsigned long          deadline);
  typedef const vpx_codec_cx_pkt_t*(*vpx_codec_get_cx_data_fn_t)(
      vpx_codec_alg_priv_t *ctx,
      vpx_codec_iter_t     *iter);

  typedef vpx_codec_err_t
  (*vpx_codec_enc_config_set_fn_t)(
      vpx_codec_alg_priv_t       *ctx,
      const vpx_codec_enc_cfg_t  *cfg);
  typedef vpx_fixed_buf_t *
  (*vpx_codec_get_global_headers_fn_t)(vpx_codec_alg_priv_t   *ctx);

  typedef vpx_image_t *
  (*vpx_codec_get_preview_frame_fn_t)(vpx_codec_alg_priv_t   *ctx);

  /*!\brief usage configuration mapping
   *
   * This structure stores the mapping between usage identifiers and
   * configuration structures.  Each algorithm provides a list of these
   * mappings.  This list is searched by the
   * vpx_codec_enc_config_default() wrapper function to determine which







Bankoski, et al.              Informational                   [Page 258]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


   * config to return.  The special value {-1, {0}} is used to indicate
   * end-of-list, and must be present.  At least one mapping must be
   * present, in addition to the end-of-list.
   *
   */
  typedef const struct
  {
      int                 usage;
      vpx_codec_enc_cfg_t cfg;
  } vpx_codec_enc_cfg_map_t;

  #define NOT_IMPLEMENTED 0

  /*!\brief Decoder algorithm interface
   *
   * All decoders \ref MUST expose a variable of this type.
   */
  struct vpx_codec_iface
  {
      const char               *name;
      int                       abi_version;
      vpx_codec_caps_t          caps;
      vpx_codec_init_fn_t       init;
      vpx_codec_destroy_fn_t    destroy;
      vpx_codec_ctrl_fn_map_t  *ctrl_maps;
      vpx_codec_get_mmap_fn_t   get_mmap;
      vpx_codec_set_mmap_fn_t   set_mmap;
      struct
      {
          vpx_codec_peek_si_fn_t    peek_si;
          vpx_codec_get_si_fn_t     get_si;
          vpx_codec_decode_fn_t     decode;
          vpx_codec_get_frame_fn_t  get_frame;
      } dec;
      struct
      {
          vpx_codec_enc_cfg_map_t           *cfg_maps;
          vpx_codec_encode_fn_t              encode;
          vpx_codec_get_cx_data_fn_t         get_cx_data;
          vpx_codec_enc_config_set_fn_t      cfg_set;
          vpx_codec_get_global_headers_fn_t  get_glob_hdrs;
          vpx_codec_get_preview_frame_fn_t   get_preview;
      } enc;
  };







Bankoski, et al.              Informational                   [Page 259]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  /*!\brief Callback function pointer / user data pair storage */
  typedef struct vpx_codec_priv_cb_pair
  {
      union
      {
          vpx_codec_put_frame_cb_fn_t    put_frame;
          vpx_codec_put_slice_cb_fn_t    put_slice;
      };
      void                            *user_priv;
  } vpx_codec_priv_cb_pair_t;


  /*!\brief Instance private storage
   *
   * This structure is allocated by the algorithm's init function.  It
   * can be extended in one of two ways.  First, a second, algorithm
   * specific structure can be allocated and the priv member pointed to
   * it.  Alternatively, this structure can be made the first member of
   * the algorithm-specific structure, and the pointer casted to the
   * proper type.
   */
  struct vpx_codec_priv
  {
      unsigned int                    sz;
      vpx_codec_iface_t              *iface;
      struct vpx_codec_alg_priv      *alg_priv;
      const char                     *err_detail;
      vpx_codec_flags_t               init_flags;
      struct
      {
          vpx_codec_priv_cb_pair_t    put_frame_cb;
          vpx_codec_priv_cb_pair_t    put_slice_cb;
      } dec;
      struct
      {
          struct vpx_fixed_buf        cx_data_dst_buf;
          unsigned int                cx_data_pad_before;
          unsigned int                cx_data_pad_after;
          vpx_codec_cx_pkt_t          cx_data_pkt;
      } enc;
  };

  #undef VPX_CTRL_USE_TYPE
  #define VPX_CTRL_USE_TYPE(id, typ) \
      static typ id##__value(va_list args) \
      {return va_arg(args, typ);} \
      static typ id##__convert(void *x)\
      {\



Bankoski, et al.              Informational                   [Page 260]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


          union\
          {\
              void *x;\
              typ   d;\
          } u;\
          u.x = x;\
          return u.d;\
      }


  #undef VPX_CTRL_USE_TYPE_DEPRECATED
  #define VPX_CTRL_USE_TYPE_DEPRECATED(id, typ) \
      static typ id##__value(va_list args) \
      {return va_arg(args, typ);} \
      static typ id##__convert(void *x)\
      {\
          union\
          {\
              void *x;\
              typ   d;\
          } u;\
          u.x = x;\
          return u.d;\
      }

  #define CAST(id, arg) id##__value(arg)
  #define RECAST(id, x) id##__convert(x)


  /* Internal Utility Functions
   *
   * The following functions are intended to be used inside algorithms
   * as utilities for manipulating vpx_codec_* data structures.
   */
  struct vpx_codec_pkt_list
  {
      unsigned int            cnt;
      unsigned int            max;
      struct vpx_codec_cx_pkt pkts[1];
  };

  #define vpx_codec_pkt_list_decl(n)\
      union {struct vpx_codec_pkt_list head;\
          struct {struct vpx_codec_pkt_list head;\
              struct vpx_codec_cx_pkt    pkts[n];} alloc;}






Bankoski, et al.              Informational                   [Page 261]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  #define vpx_codec_pkt_list_init(m)\
      (m)->alloc.head.cnt = 0,\
      (m)->alloc.head.max = \
      sizeof((m)->alloc.pkts) / sizeof((m)->alloc.pkts[0])

  int
  vpx_codec_pkt_list_add(struct vpx_codec_pkt_list *,
                         const struct vpx_codec_cx_pkt *);

  const vpx_codec_cx_pkt_t*
  vpx_codec_pkt_list_get(struct vpx_codec_pkt_list *list,
                         vpx_codec_iter_t           *iter);


  #include <stdio.h>
  #include <setjmp.h>
  struct vpx_internal_error_info
  {
      vpx_codec_err_t  error_code;
      int              has_detail;
      char             detail[80];
      int              setjmp;
      jmp_buf          jmp;
  };

  static void vpx_internal_error(struct vpx_internal_error_info *info,
                                 vpx_codec_err_t                 error,
                                 const char                     *fmt,
                                 ...)
  {
      va_list ap;

      info->error_code = error;
      info->has_detail = 0;

      if (fmt)
      {
          size_t  sz = sizeof(info->detail);

          info->has_detail = 1;
          va_start(ap, fmt);
          vsnprintf(info->detail, sz - 1, fmt, ap);
          va_end(ap);
          info->detail[sz-1] = '\0';
      }






Bankoski, et al.              Informational                   [Page 262]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      if (info->setjmp)
          longjmp(info->jmp, info->error_code);
  }
  #endif

  ---- End code block ----------------------------------------

20.20.  vpx_decoder.h

  ---- Begin code block --------------------------------------

  /*
   *  Copyright (c) 2010, 2011, Google Inc.  All rights reserved.
   *
   *  Use of this source code is governed by a BSD-style license
   *  that can be found in the LICENSE file in the root of the source
   *  tree.  An additional intellectual property rights grant can be
   *  found in the file PATENTS.  All contributing project authors may
   *  be found in the AUTHORS file in the root of the source tree.
   */


  /*!\defgroup decoder Decoder Algorithm Interface
   * \ingroup codec
   * This abstraction allows applications using this decoder to easily
   * support multiple video formats with minimal code duplication.
   * This section describes the interface common to all decoders.
   * @{
   */

  /*!\file vpx_decoder.h
   * \brief Describes the decoder algorithm interface to applications.
   *
   * This file describes the interface between an application and a
   * video decoder algorithm.
   *
   */
  #ifdef __cplusplus
  extern "C" {
  #endif
  #ifndef VPX_DECODER_H
  #define VPX_DECODER_H
  #include "vpx_codec.h"








Bankoski, et al.              Informational                   [Page 263]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      /*!\brief Current ABI version number
       *
       * \internal
       * If this file is altered in any way that changes the ABI, this
       * value must be bumped.  Examples include, but are not limited
       * to, changing types, removing or reassigning enums,
       * adding/removing/rearranging fields to structures
       */
  #define VPX_DECODER_ABI_VERSION (2 + VPX_CODEC_ABI_VERSION)

      /*! \brief Decoder capabilities bitfield
       *
       *  Each decoder advertises the capabilities it supports as part
       *  of its ::vpx_codec_iface_t interface structure.  Capabilities
       *  are extra interfaces or functionality, and are not required
       *  to be supported by a decoder.
       *
       *  The available flags are specified by VPX_CODEC_CAP_* defines.
       */
  #define VPX_CODEC_CAP_PUT_SLICE  0x10000 /**< Will issue put_slice
      callbacks */
  #define VPX_CODEC_CAP_PUT_FRAME  0x20000 /**< Will issue put_frame
      callbacks */
  #define VPX_CODEC_CAP_POSTPROC   0x40000 /**< Can postprocess decoded
      frame */

      /*! \brief Initialization-time Feature Enabling
       *
       *  Certain codec features must be known at initialization time,
       *  to allow for proper memory allocation.
       *
       *  The available flags are specified by VPX_CODEC_USE_* defines.
       */
  #define VPX_CODEC_USE_POSTPROC   0x10000 /**< Postprocess decoded
      frame */

      /*!\brief Stream properties
       *
       * This structure is used to query or set properties of the
       * decoded stream.  Algorithms may extend this structure with
       * data specific to their bitstream by setting the sz member
       * appropriately.
       */








Bankoski, et al.              Informational                   [Page 264]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      typedef struct vpx_codec_stream_info
      {
          unsigned int sz;    /**< Size of this structure */
          unsigned int w;     /**< Width (or 0 for unknown/default) */
          unsigned int h;     /**< Height (or 0 for unknown/default) */
          unsigned int is_kf; /**< Current frame is a keyframe */
      } vpx_codec_stream_info_t;

      /* REQUIRED FUNCTIONS
       *
       * The following functions are required to be implemented for all
       * decoders.  They represent the base case functionality expected
       * of all decoders.
       */


      /*!\brief Initialization Configurations
       *
       * This structure is used to pass init time configuration options
       * to the decoder.
       */
      typedef struct vpx_codec_dec_cfg
      {
          unsigned int threads; /**< Maximum number of threads to use,
              default 1 */
          unsigned int w;      /**< Width */
          unsigned int h;      /**< Height */
      } vpx_codec_dec_cfg_t; /**< alias for struct vpx_codec_dec_cfg */


      /*!\brief Initialize a decoder instance
       *
       * Initializes a decoder context using the given interface.
       * Applications should call the vpx_codec_dec_init convenience
       * macro instead of this function directly, to ensure that the
       * ABI version number parameter is properly initialized.
       *
       * In XMA mode (activated by setting VPX_CODEC_USE_XMA in the
       * flags parameter), the storage pointed to by the cfg parameter
       * must be kept readable and stable until all memory maps have
       * been set.
       *
       * \param[in]    ctx     Pointer to this instance's context.
       * \param[in]    iface   Pointer to the algorithm interface to
       *                       use.
       * \param[in]    cfg     Configuration to use, if known.  May be
       *                       NULL.




Bankoski, et al.              Informational                   [Page 265]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


       * \param[in]    flags   Bitfield of VPX_CODEC_USE_* flags
       * \param[in]    ver     ABI version number.  Must be set to
       *                       VPX_DECODER_ABI_VERSION
       * \retval #VPX_CODEC_OK
       *     The decoder algorithm initialized.
       * \retval #VPX_CODEC_MEM_ERROR
       *     Memory allocation failed.
       */
      vpx_codec_err_t vpx_codec_dec_init_ver(
          vpx_codec_ctx_t      *ctx,
          vpx_codec_iface_t    *iface,
          vpx_codec_dec_cfg_t  *cfg,
          vpx_codec_flags_t     flags,
          int                   ver);

      /*!\brief Convenience macro for vpx_codec_dec_init_ver()
       *
       * Ensures the ABI version parameter is properly set.
       */
  #define vpx_codec_dec_init(ctx, iface, cfg, flags) \
      vpx_codec_dec_init_ver(ctx, iface, cfg, flags, \
      VPX_DECODER_ABI_VERSION)


      /*!\brief Parse stream info from a buffer
       *
       * Performs high level parsing of the bitstream.  Construction of
       * a decoder context is not necessary.  Can be used to determine
       * if the bitstream is of the proper format, and to extract
       * information from the stream.
       *
       * \param[in]      iface   Pointer to the algorithm interface
       * \param[in]      data    Pointer to a block of data to parse
       * \param[in]      data_sz Size of the data buffer
       * \param[in,out]  si      Pointer to stream info to update.  The
       *                         size member
       *                         \ref MUST be properly initialized, but
       *                         \ref MAY be clobbered by the
       *                         algorithm.  This parameter \ref MAY be
       *                         NULL.
       *
       * \retval #VPX_CODEC_OK
       *     Bitstream is parsable and stream information updated
       */







Bankoski, et al.              Informational                   [Page 266]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      vpx_codec_err_t vpx_codec_peek_stream_info(
          vpx_codec_iface_t       *iface,
          const uint8_t           *data,
          unsigned int             data_sz,
          vpx_codec_stream_info_t *si);

      /*!\brief Return information about the current stream.
       *
       * Returns information about the stream that has been parsed
       * during decoding.
       *
       * \param[in]      ctx     Pointer to this instance's context
       * \param[in,out]  si      Pointer to stream info to update.  The
       *                         size member \ref MUST be properly
       *                         initialized, but \ref MAY be clobbered
       *                         by the algorithm.  This parameter \ref
       *                         MAY be NULL.
       *
       * \retval #VPX_CODEC_OK
       *     Bitstream is parsable and stream information updated
       */
      vpx_codec_err_t vpx_codec_get_stream_info(
          vpx_codec_ctx_t         *ctx,
          vpx_codec_stream_info_t *si);


      /*!\brief Decode data
       *
       * Processes a buffer of coded data.  If the processing results
       * in a new decoded frame becoming available, PUT_SLICE and
       * PUT_FRAME events may be generated, as appropriate.  Encoded
       * data \ref MUST be passed in DTS (decode time stamp) order.
       * Frames produced will always be in PTS (presentation time
       * stamp) order.
       *
       * \param[in] ctx          Pointer to this instance's context
       * \param[in] data         Pointer to this block of new coded
       *                         data.  If NULL, a
       *                         VPX_CODEC_CB_PUT_FRAME event is posted
       *                         for the previously decoded frame.
       * \param[in] data_sz      Size of the coded data, in bytes.
       * \param[in] user_priv    Application-specific data to associate
       *                         with this frame.
       * \param[in] deadline     Soft deadline the decoder should
       *                         attempt to meet, in us.  Set to zero
       *                         for unlimited.
       *




Bankoski, et al.              Informational                   [Page 267]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


       * \return Returns #VPX_CODEC_OK if the coded data was processed
       *         completely and future pictures can be decoded without
       *         error.  Otherwise, see the descriptions of the other
       *         error codes in ::vpx_codec_err_t for recoverability
       *         capabilities.
       */
      vpx_codec_err_t vpx_codec_decode(vpx_codec_ctx_t    *ctx,
                                       const uint8_t        *data,
                                       unsigned int            data_sz,
                                       void               *user_priv,
                                       long                deadline);


      /*!\brief Decoded frames iterator
       *
       * Iterates over a list of the frames available for display.  The
       * iterator storage should be initialized to NULL to start the
       * iteration.  Iteration is complete when this function returns
       * NULL.
       *
       * The list of available frames becomes valid upon completion of
       * the vpx_codec_decode call, and remains valid until the next
       * call to vpx_codec_decode.
       *
       * \param[in]     ctx      Pointer to this instance's context
       * \param[in,out] iter     Iterator storage, initialized to NULL
       *
       * \return Returns a pointer to an image, if one is ready for
       *         display.  Frames produced will always be in PTS
       *         (presentation time stamp) order.
       */
      vpx_image_t *vpx_codec_get_frame(vpx_codec_ctx_t  *ctx,
                                       vpx_codec_iter_t *iter);


      /*!\defgroup cap_put_frame Frame-Based Decoding Functions
       *
       * The following functions are required to be implemented for all
       * decoders that advertise the VPX_CODEC_CAP_PUT_FRAME
       * capability.  Calling these functions for codecs that don't
       * advertise this capability will result in an error code being
       * returned, usually VPX_CODEC_ERROR
       * @{
       */







Bankoski, et al.              Informational                   [Page 268]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      /*!\brief put frame callback prototype
       *
       * This callback is invoked by the decoder to notify the
       * application of the availability of decoded image data.
       */
      typedef void (*vpx_codec_put_frame_cb_fn_t)(
          void        *user_priv,
          const vpx_image_t *img);

      /*!\brief Register for notification of frame completion.
       *
       * Registers a given function to be called when a decoded frame
       * is available.
       *
       * \param[in] ctx          Pointer to this instance's context
       * \param[in] cb           Pointer to the callback function
       * \param[in] user_priv    User's private data
       *
       * \retval #VPX_CODEC_OK
       *     Callback successfully registered.
       * \retval #VPX_CODEC_ERROR
       *     Decoder context not initialized, or algorithm not capable
       *     of posting slice completion.
       */
      vpx_codec_err_t vpx_codec_register_put_frame_cb(
          vpx_codec_ctx_t             *ctx,
          vpx_codec_put_frame_cb_fn_t  cb,
          void                        *user_priv);


      /*!@} - end defgroup cap_put_frame */

      /*!\defgroup cap_put_slice Slice-Based Decoding Functions
       *
       * The following functions are required to be implemented for all
       * decoders that advertise the VPX_CODEC_CAP_PUT_SLICE
       * capability.  Calling these functions for codecs that don't
       * advertise this capability will result in an error code being
       * returned, usually VPX_CODEC_ERROR
       * @{
       */

      /*!\brief put slice callback prototype
       *
       * This callback is invoked by the decoder to notify the
       * application of the availability of partially decoded image
       * data.
       */



Bankoski, et al.              Informational                   [Page 269]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      typedef void (*vpx_codec_put_slice_cb_fn_t)(
          void         *user_priv,
          const vpx_image_t      *img,
          const vpx_image_rect_t *valid,
          const vpx_image_rect_t *update);


      /*!\brief Register for notification of slice completion.
       *
       * Registers a given function to be called when a decoded slice
       * is available.
       *
       * \param[in] ctx          Pointer to this instance's context
       * \param[in] cb           Pointer to the callback function
       * \param[in] user_priv    User's private data
       *
       * \retval #VPX_CODEC_OK
       *     Callback successfully registered.
       * \retval #VPX_CODEC_ERROR
       *     Decoder context not initialized, or algorithm not capable
       *     of posting slice completion.
       */
      vpx_codec_err_t vpx_codec_register_put_slice_cb(
          vpx_codec_ctx_t             *ctx,
          vpx_codec_put_slice_cb_fn_t  cb,
          void                        *user_priv);


      /*!@} - end defgroup cap_put_slice*/

      /*!@} - end defgroup decoder*/

  #endif

  #ifdef __cplusplus
  }
  #endif

  #if !defined(VPX_CODEC_DISABLE_COMPAT) || !VPX_CODEC_DISABLE_COMPAT
  #include "vpx_decoder_compat.h"
  #endif

  ---- End code block ----------------------------------------








Bankoski, et al.              Informational                   [Page 270]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


20.21.  vpx_decoder_compat.h

  ---- Begin code block --------------------------------------

  /*
   * Copyright (c) 2010, 2011, Google Inc.  All rights reserved.
   *
   * Use of this source code is governed by a BSD-style license
   * that can be found in the LICENSE file in the root of the source
   * tree.  An additional intellectual property rights grant can be
   * found in the file PATENTS.  All contributing project authors may
   * be found in the AUTHORS file in the root of the source tree.
   */

  /*!\defgroup decoder Common Decoder Algorithm Interface
   * This abstraction allows applications using this decoder to easily
   * support multiple video formats with minimal code duplication.
   * This section describes the interface common to all codecs.
   * @{
   */

  /*!\file
   * \brief Provides a compatibility layer between version 1 and 2 of
   * this API.
   *
   * This interface has been deprecated.  Only existing code should
   * make use of this interface, and therefore, it is only thinly
   * documented.  Existing code should be ported to the vpx_codec_*
   * API.
   */
  #ifdef __cplusplus
  extern "C" {
  #endif

  #ifndef VPX_DECODER_COMPAT_H
  #define VPX_DECODER_COMPAT_H















Bankoski, et al.              Informational                   [Page 271]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      /*!\brief Decoder algorithm return codes */
      typedef enum {
          /*!\brief Operation completed without error */
          VPX_DEC_OK = VPX_CODEC_OK,

          /*!\brief Unspecified error */
          VPX_DEC_ERROR = VPX_CODEC_ERROR,

          /*!\brief Memory operation failed */
          VPX_DEC_MEM_ERROR = VPX_CODEC_MEM_ERROR,

          /*!\brief ABI version mismatch */
          VPX_DEC_ABI_MISMATCH = VPX_CODEC_ABI_MISMATCH,

          /*!\brief The given bitstream is not supported.
           *
           * The bitstream was unable to be parsed at the highest
           * level.  The decoder is unable to proceed.  This error \ref
           * SHOULD be treated as fatal to the stream.
           */
          VPX_DEC_UNSUP_BITSTREAM = VPX_CODEC_UNSUP_BITSTREAM,

          /*!\brief Encoded bitstream uses an unsupported feature
           *
           * The decoder does not implement a feature required by the
           * encoder.  This return code should only be used for
           * features that prevent future pictures from being properly
           * decoded.  This error \ref MAY be treated as fatal to the
           * stream or \ref MAY be treated as fatal to the current
           * Group of Pictures (GOP).
           */
          VPX_DEC_UNSUP_FEATURE = VPX_CODEC_UNSUP_FEATURE,

          /*!\brief The coded data for this stream is corrupt or
           * incomplete
           *
           * There was a problem decoding the current frame.  This
           * return code should only be used for failures that prevent
           * future pictures from being properly decoded.  This error
           * \ref MAY be treated as fatal to the stream or \ref MAY be
           * treated as fatal to the current GOP.  If decoding is
           * continued for the current GOP, artifacts may be present.
           */
          VPX_DEC_CORRUPT_FRAME = VPX_CODEC_CORRUPT_FRAME,







Bankoski, et al.              Informational                   [Page 272]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


          /*!\brief An application-supplied parameter is not valid.
           *
           */
          VPX_DEC_INVALID_PARAM = VPX_CODEC_INVALID_PARAM,

          /*!\brief An iterator reached the end of list.
           *
           */
          VPX_DEC_LIST_END = VPX_CODEC_LIST_END

      }
      vpx_dec_err_t;

      /*! \brief Decoder capabilities bitfield
       *
       *  Each decoder advertises the capabilities it supports as part
       *  of its ::vpx_dec_iface_t interface structure.  Capabilities
       *  are extra interfaces or functionality, and are not required
       *  to be supported by a decoder.
       *
       *  The available flags are specified by VPX_DEC_CAP_* defines.
       */
      typedef int vpx_dec_caps_t;
  #define VPX_DEC_CAP_PUT_SLICE  0x0001 /**< Will issue put_slice
                                           callbacks */
  #define VPX_DEC_CAP_PUT_FRAME  0x0002 /**< Will issue put_frame
                                           callbacks */

  #define VPX_DEC_CAP_XMA        0x0004 /**< Supports External Memory
                                           Allocation */

      /*!\brief Stream properties
       *
       * This structure is used to query or set properties of the
       * decoded stream.  Algorithms may extend this structure with
       * data specific to their bitstream by setting the sz member
       * appropriately.
       */
  #if 1
      typedef vpx_codec_stream_info_t vpx_dec_stream_info_t;
  #else
      typedef struct
      {
          unsigned int sz;    /**< Size of this structure */
          unsigned int w;     /**< Width (or 0 for unknown/default) */
          unsigned int h;     /**< Height (or 0 for unknown/default) */
          unsigned int is_kf; /**< Current frame is a keyframe */
      } vpx_dec_stream_info_t;



Bankoski, et al.              Informational                   [Page 273]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  #endif


      /*!\brief Decoder interface structure.
       *
       * Contains function pointers and other data private to the
       * decoder implementation.  This structure is opaque to the
       * application.
       */
      typedef const struct vpx_codec_iface vpx_dec_iface_t;
      typedef       struct vpx_codec_priv  vpx_dec_priv_t;

      /*!\brief Iterator
       *
       * Opaque storage used for iterating over lists.
       */
      typedef vpx_codec_iter_t vpx_dec_iter_t;

      /*!\brief Decoder context structure
       *
       * All decoders \ref MUST support this context structure fully.
       * In general, this data should be considered private to the
       * decoder algorithm, and not be manipulated or examined by the
       * calling application.  Applications may reference the 'name'
       * member to get a printable description of the algorithm.
       */
  #if 1
      typedef vpx_codec_ctx_t vpx_dec_ctx_t;
  #else
      typedef struct
      {
          const char          *name;  /**< Printable interface name */
          vpx_dec_iface_t     *iface; /**< Interface pointers */
          vpx_dec_err_t        err;   /**< Last returned error */
          vpx_dec_priv_t      *priv;  /**< Algorithm private storage */
      } vpx_dec_ctx_t;
  #endif


      /*!\brief Return the build configuration
       *
       * Returns a printable string containing an encoded version of
       * the build configuration.  This may be useful to vpx support.
       *
       */
      const char *vpx_dec_build_config(void) DEPRECATED;





Bankoski, et al.              Informational                   [Page 274]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      /*!\brief Return the name for a given interface
       *
       * Returns a human readable string for name of the given decoder
       * interface.
       *
       * \param[in]    iface     Interface pointer
       *
       */
      const char *vpx_dec_iface_name(
          vpx_dec_iface_t *iface) DEPRECATED;


      /*!\brief Convert error number to printable string
       *
       * Returns a human readable string for the last error returned
       * by the algorithm.  The returned error will be one line and
       * will not contain any newline characters.
       *
       *
       * \param[in]    err     Error number.
       *
       */
      const char *vpx_dec_err_to_string(vpx_dec_err_t  err) DEPRECATED;


      /*!\brief Retrieve error synopsis for decoder context
       *
       * Returns a human readable string for the last error returned by
       * the algorithm.  The returned error will be one line and will
       * not contain any newline characters.
       *
       *
       * \param[in]    ctx     Pointer to this instance's context.
       *
       */
      const char *vpx_dec_error(vpx_dec_ctx_t  *ctx) DEPRECATED;


      /*!\brief Retrieve detailed error information for decoder context
       *
       * Returns a human readable string providing detailed information
       * about the last error.
       *
       * \param[in]    ctx     Pointer to this instance's context.
       *






Bankoski, et al.              Informational                   [Page 275]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


       * \retval NULL
       *     No detailed information is available.
       */
      const char *vpx_dec_error_detail(vpx_dec_ctx_t  *ctx) DEPRECATED;


      /* REQUIRED FUNCTIONS
       *
       * The following functions are required to be implemented for all
       * decoders.  They represent the base case functionality expected
       * of all decoders.
       */


      /*!\brief Initialize a decoder instance
       *
       * Initializes a decoder context using the given interface.
       * Applications should call the vpx_dec_init convenience macro
       * instead of this function directly, to ensure that the ABI
       * version number parameter is properly initialized.
       *
       * \param[in]   ctx    Pointer to this instance's context.
       * \param[in]   iface  Pointer to the algorithm interface to use.
       * \param[in]   ver    ABI version number.  Must be set to
       *                       VPX_DECODER_ABI_VERSION
       * \retval #VPX_DEC_OK
       *     The decoder algorithm initialized.
       * \retval #VPX_DEC_MEM_ERROR
       *     Memory allocation failed.
       */
      vpx_dec_err_t vpx_dec_init_ver(
          vpx_dec_ctx_t    *ctx,
          vpx_dec_iface_t  *iface,
          int               ver) DEPRECATED;

  #define vpx_dec_init(ctx, iface) \
      vpx_dec_init_ver(ctx, iface, VPX_DECODER_ABI_VERSION)


      /*!\brief Destroy a decoder instance
       *
       * Destroys a decoder context, freeing any associated memory
       * buffers.
       *
       * \param[in] ctx   Pointer to this instance's context
       *
       * \retval #VPX_DEC_OK
       *     The decoder algorithm initialized.



Bankoski, et al.              Informational                   [Page 276]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


       * \retval #VPX_DEC_MEM_ERROR
       *     Memory allocation failed.
       */
      vpx_dec_err_t vpx_dec_destroy(vpx_dec_ctx_t *ctx) DEPRECATED;


      /*!\brief Get the capabilities of an algorithm.
       *
       * Retrieves the capabilities bitfield from the algorithm's
       * interface.
       *
       * \param[in] iface   Pointer to the algorithm interface
       *
       */
      vpx_dec_caps_t vpx_dec_get_caps(
          vpx_dec_iface_t *iface) DEPRECATED;


      /*!\brief Parse stream info from a buffer
       *
       * Performs high level parsing of the bitstream.  Construction of
       * a decoder context is not necessary.  Can be used to determine
       * if the bitstream is of the proper format, and to extract
       * information from the stream.
       *
       * \param[in]      iface   Pointer to the algorithm interface
       * \param[in]      data    Pointer to a block of data to parse
       * \param[in]      data_sz Size of the data buffer
       * \param[in,out]  si      Pointer to stream info to update.  The
       *                         size member \ref MUST be properly
       *                         initialized, but \ref MAY be
       *                         clobbered by the algorithm.  This
       *                         parameter \ref MAY be NULL.
       *
       * \retval #VPX_DEC_OK
       *     Bitstream is parsable and stream information updated
       */
      vpx_dec_err_t vpx_dec_peek_stream_info(
                               vpx_dec_iface_t       *iface,
                               const uint8_t         *data,
                               unsigned int           data_sz,
                               vpx_dec_stream_info_t *si) DEPRECATED;









Bankoski, et al.              Informational                   [Page 277]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      /*!\brief Return information about the current stream.
       *
       * Returns information about the stream that has been parsed
       * during decoding.
       *
       * \param[in]      ctx     Pointer to this instance's context
       * \param[in,out]  si      Pointer to stream info to update.
       *                         The size member \ref MUST be properly
       *                         initialized, but \ref MAY be clobbered
       *                         by the algorithm.  This parameter \ref
       *                         MAY be NULL.
       *
       * \retval #VPX_DEC_OK
       *     Bitstream is parsable and stream information updated
       */
      vpx_dec_err_t vpx_dec_get_stream_info(
          vpx_dec_ctx_t         *ctx,
          vpx_dec_stream_info_t *si) DEPRECATED;


      /*!\brief Control algorithm
       *
       * This function is used to exchange algorithm-specific data with
       * the decoder instance.  This can be used to implement features
       * specific to a particular algorithm.
       *
       * This wrapper function dispatches the request to the helper
       * function associated with the given ctrl_id.  It tries to call
       * this function transparently, but will return #VPX_DEC_ERROR if
       * the request could not be dispatched.
       *
       * \param[in]     ctx          Pointer to this instance's context
       * \param[in]     ctrl_id      Algorithm-specific control
       *                             identifier
       * \param[in,out] data         Data to exchange with algorithm
       *                             instance.
       *
       * \retval #VPX_DEC_OK
       *     The control request was processed.
       * \retval #VPX_DEC_ERROR
       *     The control request was not processed.
       * \retval #VPX_DEC_INVALID_PARAM
       *     The data was not valid.
       */
      vpx_dec_err_t vpx_dec_control(vpx_dec_ctx_t  *ctx,
                                    int             ctrl_id,
                                    void           *data) DEPRECATED;




Bankoski, et al.              Informational                   [Page 278]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      /*!\brief Decode data
       *
       * Processes a buffer of coded data.  If the processing results
       * in a new decoded frame becoming available,
       * #VPX_DEC_CB_PUT_SLICE and #VPX_DEC_CB_PUT_FRAME events may be
       * generated, as appropriate.  Encoded data \ref MUST be passed
       * in DTS (decode time stamp) order.  Frames produced will always
       * be in PTS (presentation time stamp) order.
       *
       * \param[in] ctx          Pointer to this instance's context
       * \param[in] data         Pointer to this block of new coded
       *                         data.  If NULL, a VPX_DEC_CB_PUT_FRAME
       *                         event is posted for the previously
       *                         decoded frame.
       * \param[in] data_sz      Size of the coded data, in bytes.
       * \param[in] user_priv    Application-specific data to associate
       *                         with this frame.
       * \param[in] rel_pts      PTS relative to the previous frame, in
       *                         us.  If unknown or unavailable, set to
       *                         zero.
       *
       * \return Returns #VPX_DEC_OK if the coded data was processed
       *         completely and future pictures can be decoded without
       *         error.  Otherwise, see the descriptions of the other
       *         error codes in ::vpx_dec_err_t for recoverability
       *         capabilities.
       */
      vpx_dec_err_t vpx_dec_decode(
          vpx_dec_ctx_t  *ctx,
          uint8_t        *data,
          unsigned int    data_sz,
          void           *user_priv,
          int             rel_pts) DEPRECATED;


      /*!\brief Decoded frames iterator
       *
       * Iterates over a list of the frames available for display.  The
       * iterator storage should be initialized to NULL to start the
       * iteration.  Iteration is complete when this function returns
       * NULL.
       *
       * The list of available frames becomes valid upon completion of
       * the vpx_dec_decode call, and remains valid until the next call
       * to vpx_dec_decode.
       *
       * \param[in]     ctx      Pointer to this instance's context
       * \param[in out] iter     Iterator storage, initialized to NULL



Bankoski, et al.              Informational                   [Page 279]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


       *
       * \return Returns a pointer to an image, if one is ready for
       *         display.  Frames produced will always be in PTS
       *         (presentation time stamp) order.
       */
      vpx_image_t *vpx_dec_get_frame(vpx_dec_ctx_t  *ctx,
                                     vpx_dec_iter_t *iter) DEPRECATED;


      /*!\defgroup cap_put_frame Frame-Based Decoding Functions
       *
       * The following functions are required to be implemented for all
       * decoders that advertise the VPX_DEC_CAP_PUT_FRAME capability.
       * Calling these functions for codecs that don't advertise this
       * capability will result in an error code being returned,
       * usually VPX_DEC_ERROR @{
       */

      /*!\brief put frame callback prototype
       *
       * This callback is invoked by the decoder to notify the
       * application of the availability of decoded image data.
       */
      typedef void (*vpx_dec_put_frame_cb_fn_t)(
              void          *user_priv,
              const vpx_image_t *img);


      /*!\brief Register for notification of frame completion.
       *
       * Registers a given function to be called when a decoded frame
       * is available.
       *
       * \param[in] ctx          Pointer to this instance's context
       * \param[in] cb           Pointer to the callback function
       * \param[in] user_priv    User's private data
       *
       * \retval #VPX_DEC_OK
       *     Callback successfully registered.
       * \retval #VPX_DEC_ERROR
       *     Decoder context not initialized, or algorithm not capable
       *     of posting slice completion.
       */
      vpx_dec_err_t vpx_dec_register_put_frame_cb(
              vpx_dec_ctx_t             *ctx,
              vpx_dec_put_frame_cb_fn_t  cb,
              void                      *user_priv) DEPRECATED;




Bankoski, et al.              Informational                   [Page 280]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      /*!@} - end defgroup cap_put_frame */

      /*!\defgroup cap_put_slice Slice-Based Decoding Functions
       *
       * The following functions are required to be implemented for all
       * decoders that advertise the VPX_DEC_CAP_PUT_SLICE capability.
       * Calling these functions for codecs that don't advertise this
       * capability will result in an error code being returned,
       * usually VPX_DEC_ERROR
       * @{
       */

      /*!\brief put slice callback prototype
       *
       * This callback is invoked by the decoder to notify the
       * application of the availability of partially decoded image
       * data.
       */
      typedef void (*vpx_dec_put_slice_cb_fn_t)(void        *user_priv,
              const vpx_image_t      *img,
              const vpx_image_rect_t *valid,
              const vpx_image_rect_t *update);


      /*!\brief Register for notification of slice completion.
       *
       * Registers a given function to be called when a decoded slice
       * is available.
       *
       * \param[in] ctx          Pointer to this instance's context
       * \param[in] cb           Pointer to the callback function
       * \param[in] user_priv    User's private data
       *
       * \retval #VPX_DEC_OK
       *     Callback successfully registered.
       * \retval #VPX_DEC_ERROR
       *     Decoder context not initialized, or algorithm not capable
       *     of posting slice completion.
       */
      vpx_dec_err_t vpx_dec_register_put_slice_cb(vpx_dec_ctx_t   *ctx,
              vpx_dec_put_slice_cb_fn_t  cb,
              void                      *user_priv) DEPRECATED;


      /*!@} - end defgroup cap_put_slice*/






Bankoski, et al.              Informational                   [Page 281]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      /*!\defgroup cap_xma External Memory Allocation Functions
       *
       * The following functions are required to be implemented for all
       * decoders that advertise the VPX_DEC_CAP_XMA capability.
       * Calling these functions for codecs that don't advertise this
       * capability will result in an error code being returned,
       * usually VPX_DEC_ERROR
       * @{
       */

      /*!\brief Memory Map Entry
       *
       * This structure is used to contain the properties of a memory
       * segment.  It is populated by the decoder in the request phase,
       * and by the calling application once the requested allocation
       * has been performed.
       */
  #if 1
  #define VPX_DEC_MEM_ZERO     0x1  /**< Segment must be zeroed by
                                         allocation */
  #define VPX_DEC_MEM_WRONLY   0x2  /**< Segment need not be
                                         readable */
  #define VPX_DEC_MEM_FAST     0x4  /**< Place in fast memory, if
                                         available */
      typedef struct vpx_codec_mmap vpx_dec_mmap_t;
  #else
      typedef struct vpx_dec_mmap
      {
          /*
           * The following members are set by the codec when requesting
           * a segment
           */
          unsigned int   id;     /**< identifier for the segment's
                                      contents */
          unsigned long  sz;     /**< size of the segment, in bytes */
          unsigned int   align;  /**< required alignment of the
                                      segment, in bytes */
          unsigned int   flags;  /**< bitfield containing segment
                                      properties */
  #define VPX_DEC_MEM_ZERO     0x1  /**< Segment must be zeroed by
                                         allocation */
  #define VPX_DEC_MEM_WRONLY   0x2  /**< Segment need not be
                                         readable */
  #define VPX_DEC_MEM_FAST     0x4  /**< Place in fast memory, if
                                         available */






Bankoski, et al.              Informational                   [Page 282]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


          /* The following members are to be filled in by the
           * allocation function */
          void          *base;   /**< pointer to the allocated
                                      segment */
          void (*dtor)(struct vpx_dec_mmap *map);  /**< destructor to
                                                        call */
          void          *priv;   /**< allocator private storage */
      } vpx_dec_mmap_t;
  #endif

      /*!\brief Initialize a decoder instance in external allocation
       * mode
       *
       * Initializes a decoder context using the given interface.
       * Applications should call the vpx_dec_xma_init convenience
       * macro instead of this function directly, to ensure that the
       * ABI version number parameter is properly initialized.
       *
       * \param[in]    ctx     Pointer to this instance's context.
       * \param[in]    iface   Pointer to the algorithm interface to
       *                       use.
       * \param[in]    ver     ABI version number.  Must be set to
       *                       VPX_DECODER_ABI_VERSION
       * \retval #VPX_DEC_OK
       *     The decoder algorithm initialized.
       * \retval #VPX_DEC_ERROR
       *     Decoder does not support XMA mode.
       */
      vpx_dec_err_t vpx_dec_xma_init_ver(vpx_dec_ctx_t    *ctx,
                                         vpx_dec_iface_t  *iface,
                                         int           ver) DEPRECATED;
  #define vpx_dec_xma_init(ctx, iface) \
      vpx_dec_xma_init_ver(ctx, iface, VPX_DECODER_ABI_VERSION)


      /*!\brief Iterate over the list of segments to allocate.
       *
       * Iterates over a list of the segments to allocate.  The
       * iterator storage should be initialized to NULL to start the
       * iteration.  Iteration is complete when this function returns
       * VPX_DEC_LIST_END.  The amount of memory needed to allocate is
       * dependent upon the size of the encoded stream.  This means
       * that the stream info structure must be known at allocation
       * time.  It can be populated with the vpx_dec_peek_stream_info()
       * function.  In cases where the stream to be decoded is not
       * available at allocation time, a fixed size must be requested.
       * The decoder will not be able to decode streams larger than the
       * size used at allocation time.



Bankoski, et al.              Informational                   [Page 283]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


       *
       * \param[in]      ctx     Pointer to this instance's context.
       * \param[out]     mmap    Pointer to the memory map entry to
       *                         populate.
       * \param[in]      si      Pointer to the stream info.
       * \param[in out]  iter    Iterator storage, initialized to NULL
       *
       * \retval #VPX_DEC_OK
       *     The memory map entry was populated.
       * \retval #VPX_DEC_ERROR
       *     Decoder does not support XMA mode.
       * \retval #VPX_DEC_MEM_ERROR
       *     Unable to determine segment size from stream info.
       */
      vpx_dec_err_t vpx_dec_get_mem_map(
          vpx_dec_ctx_t                *ctx,
          vpx_dec_mmap_t               *mmap,
          const vpx_dec_stream_info_t  *si,
          vpx_dec_iter_t               *iter) DEPRECATED;


      /*!\brief Identify allocated segments to decoder instance
       *
       * Stores a list of allocated segments in the decoder.  Segments
       * \ref MUST be passed in the order they are read from
       * vpx_dec_get_mem_map(), but may be passed in groups of any
       * size.  Segments \ref MUST be set only once.  The allocation
       * function \ref MUST ensure that the vpx_dec_mmap_t::base member
       * is non-NULL.  If the segment requires cleanup handling (e.g.,
       * calling free() or close()) then the vpx_dec_mmap_t::dtor
       * member \ref MUST be populated.
       *
       * \param[in]      ctx       Pointer to this instance's context.
       * \param[in]      mmaps     Pointer to the first memory map
       *                           entry in the list.
       * \param[in]      num_maps  Number of entries being set at this
       *                           time
       *
       * \retval #VPX_DEC_OK
       *     The segment was stored in the decoder context.
       * \retval #VPX_DEC_ERROR
       *     Decoder does not support XMA mode.
       * \retval #VPX_DEC_MEM_ERROR
       *     Segment base address was not set, or segment was already
       * stored.

       */




Bankoski, et al.              Informational                   [Page 284]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      vpx_dec_err_t  vpx_dec_set_mem_map(
          vpx_dec_ctx_t   *ctx,
          vpx_dec_mmap_t  *mmaps,
          unsigned int     num_maps) DEPRECATED;

      /*!@} - end defgroup cap_xma*/
      /*!@} - end defgroup decoder*/


  #endif
  #ifdef __cplusplus
  }
  #endif

  ---- End code block ----------------------------------------

20.22.  vpx_image.c

  ---- Begin code block --------------------------------------

  /*
   * Copyright (c) 2010, 2011, Google Inc.  All rights reserved.
   *
   * Use of this source code is governed by a BSD-style license
   * that can be found in the LICENSE file in the root of the source
   * tree.  An additional intellectual property rights grant can be
   * found in the file PATENTS.  All contributing project authors may
   * be found in the AUTHORS file in the root of the source tree.
   */


  #include <stdlib.h>
  #include <string.h>
  #include "vpx/vpx_image.h"

  static vpx_image_t *img_alloc_helper(vpx_image_t  *img,
                                       vpx_img_fmt_t fmt,
                                       unsigned int  d_w,
                                       unsigned int  d_h,
                                       unsigned int  stride_align,
                                       unsigned char      *img_data)
  {









Bankoski, et al.              Informational                   [Page 285]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      unsigned int  h, w, s, xcs, ycs, bps;
      int           align;

      /* Treat align==0 like align==1 */
      if (!stride_align)
          stride_align = 1;

      /* Validate alignment (must be power of 2) */
      if (stride_align & (stride_align - 1))
          goto fail;

      /* Get sample size for this format */
      switch (fmt)
      {
      case VPX_IMG_FMT_RGB32:
      case VPX_IMG_FMT_RGB32_LE:
      case VPX_IMG_FMT_ARGB:
      case VPX_IMG_FMT_ARGB_LE:
          bps = 32;
          break;
      case VPX_IMG_FMT_RGB24:
      case VPX_IMG_FMT_BGR24:
          bps = 24;
          break;
      case VPX_IMG_FMT_RGB565:
      case VPX_IMG_FMT_RGB565_LE:
      case VPX_IMG_FMT_RGB555:
      case VPX_IMG_FMT_RGB555_LE:
      case VPX_IMG_FMT_UYVY:
      case VPX_IMG_FMT_YUY2:
      case VPX_IMG_FMT_YVYU:
          bps = 16;
          break;
      case VPX_IMG_FMT_I420:
      case VPX_IMG_FMT_YV12:
      case VPX_IMG_FMT_VPXI420:
      case VPX_IMG_FMT_VPXYV12:
          bps = 12;
          break;
      default:
          bps = 16;
          break;
      }








Bankoski, et al.              Informational                   [Page 286]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      /* Get chroma shift values for this format */
      switch (fmt)
      {
      case VPX_IMG_FMT_I420:
      case VPX_IMG_FMT_YV12:
      case VPX_IMG_FMT_VPXI420:
      case VPX_IMG_FMT_VPXYV12:
          xcs = 1;
          break;
      default:
          xcs = 0;
          break;
      }

      switch (fmt)
      {
      case VPX_IMG_FMT_I420:
      case VPX_IMG_FMT_YV12:
      case VPX_IMG_FMT_VPXI420:
      case VPX_IMG_FMT_VPXYV12:
          ycs = 1;
          break;
      default:
          ycs = 0;
          break;
      }

      /* Calculate storage sizes given the chroma subsampling */
      align = (1 << xcs) - 1;
      w = (d_w + align) & ~align;
      align = (1 << ycs) - 1;
      h = (d_h + align) & ~align;
      s = (fmt & VPX_IMG_FMT_PLANAR) ? w : bps * w / 8;
      s = (s + stride_align - 1) & ~(stride_align - 1);

      /* Allocate the new image */
      if (!img)
      {
          img = (vpx_image_t *)calloc(1, sizeof(vpx_image_t));

          if (!img)
              goto fail;

          img->self_allocd = 1;
      }






Bankoski, et al.              Informational                   [Page 287]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      else
      {
          memset(img, 0, sizeof(vpx_image_t));
      }

      img->img_data = img_data;

      if (!img_data)
      {
          img->img_data = malloc((fmt & VPX_IMG_FMT_PLANAR) ?
            h * w * bps / 8 : h * s);
          img->img_data_owner = 1;
      }

      if (!img->img_data)
          goto fail;

      img->fmt = fmt;
      img->w = w;
      img->h = h;
      img->x_chroma_shift = xcs;
      img->y_chroma_shift = ycs;
      img->bps = bps;

      /* Calculate strides */
      img->stride[VPX_PLANE_Y] = img->stride[VPX_PLANE_ALPHA] = s;
      img->stride[VPX_PLANE_U] = img->stride[VPX_PLANE_V] = s >> xcs;

      /* Default viewport to entire image */
      if (!vpx_img_set_rect(img, 0, 0, d_w, d_h))
          return img;

  fail:
      vpx_img_free(img);
      return NULL;
  }

  vpx_image_t *vpx_img_alloc(vpx_image_t  *img,
                             vpx_img_fmt_t fmt,
                             unsigned int  d_w,
                             unsigned int  d_h,
                             unsigned int  stride_align)
  {
      return img_alloc_helper(img, fmt, d_w, d_h, stride_align, NULL);
  }






Bankoski, et al.              Informational                   [Page 288]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  vpx_image_t *vpx_img_wrap(vpx_image_t  *img,
                            vpx_img_fmt_t fmt,
                            unsigned int  d_w,
                            unsigned int  d_h,
                            unsigned int  stride_align,
                            unsigned char       *img_data)
  {
      return img_alloc_helper(img, fmt, d_w, d_h, stride_align,
        img_data);
  }

  int vpx_img_set_rect(vpx_image_t  *img,
                       unsigned int  x,
                       unsigned int  y,
                       unsigned int  w,
                       unsigned int  h)
  {
      unsigned char      *data;

      if (x + w <= img->w && y + h <= img->h)
      {
          img->d_w = w;
          img->d_h = h;

          /* Calculate plane pointers */
          if (!(img->fmt & VPX_IMG_FMT_PLANAR))
          {
              img->planes[VPX_PLANE_PACKED] =
                  img->img_data + x * img->bps / 8 + y *
                    img->stride[VPX_PLANE_PACKED];
          }
          else
          {
              data = img->img_data;

              if (img->fmt & VPX_IMG_FMT_HAS_ALPHA)
              {
                  img->planes[VPX_PLANE_ALPHA] =
                      data + x + y * img->stride[VPX_PLANE_ALPHA];
                  data += img->h * img->stride[VPX_PLANE_ALPHA];
              }

              img->planes[VPX_PLANE_Y] =
                data + x + y * img->stride[VPX_PLANE_Y];
              data += img->h * img->stride[VPX_PLANE_Y];






Bankoski, et al.              Informational                   [Page 289]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


              if (!(img->fmt & VPX_IMG_FMT_UV_FLIP))
              {
                  img->planes[VPX_PLANE_U] = data
                                         + (x >> img->x_chroma_shift)
                                         + (y >> img->y_chroma_shift) *
                                           img->stride[VPX_PLANE_U];
                  data += (img->h >> img->y_chroma_shift) *
                                           img->stride[VPX_PLANE_U];
                  img->planes[VPX_PLANE_V] = data
                                         + (x >> img->x_chroma_shift)
                                         + (y >> img->y_chroma_shift) *
                                           img->stride[VPX_PLANE_V];
              }
              else
              {
                  img->planes[VPX_PLANE_V] = data
                                         + (x >> img->x_chroma_shift)
                                         + (y >> img->y_chroma_shift) *
                                           img->stride[VPX_PLANE_V];
                  data += (img->h >> img->y_chroma_shift) *
                                           img->stride[VPX_PLANE_V];
                  img->planes[VPX_PLANE_U] = data
                                         + (x >> img->x_chroma_shift)
                                         + (y >> img->y_chroma_shift) *
                                           img->stride[VPX_PLANE_U];
              }
          }

          return 0;
      }

      return -1;
  }

  void vpx_img_flip(vpx_image_t *img)
  {
      /* Note: In the calculation pointer adjustment calculation, we
       * want the rhs to be promoted to a signed type.  Section 6.3.1.8
       * of the ISO C99 standard [ISO-C99] indicates that if the
       * adjustment parameter is unsigned, the stride parameter will be
       * promoted to unsigned, causing errors when the lhs is a larger
       * type than the rhs.
       */
      img->planes[VPX_PLANE_Y] += (signed)
        (img->d_h - 1) * img->stride[VPX_PLANE_Y];
      img->stride[VPX_PLANE_Y] = -img->stride[VPX_PLANE_Y];





Bankoski, et al.              Informational                   [Page 290]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      img->planes[VPX_PLANE_U] += (signed)
        ((img->d_h >> img->y_chroma_shift) - 1)
                              * img->stride[VPX_PLANE_U];
      img->stride[VPX_PLANE_U] = -img->stride[VPX_PLANE_U];

      img->planes[VPX_PLANE_V] += (signed)
                              ((img->d_h >> img->y_chroma_shift) - 1) *
                              img->stride[VPX_PLANE_V];
      img->stride[VPX_PLANE_V] = -img->stride[VPX_PLANE_V];

      img->planes[VPX_PLANE_ALPHA] += (signed)
        (img->d_h - 1) * img->stride[VPX_PLANE_ALPHA];
      img->stride[VPX_PLANE_ALPHA] = -img->stride[VPX_PLANE_ALPHA];
  }

  void vpx_img_free(vpx_image_t *img)
  {
      if (img)
      {
          if (img->img_data && img->img_data_owner)
              free(img->img_data);

          if (img->self_allocd)
              free(img);
      }
  }

  ---- End code block ----------------------------------------

20.23.  vpx_image.h

  ---- Begin code block --------------------------------------

  /*
   * Copyright (c) 2010, 2011, Google Inc.  All rights reserved.
   *
   * Use of this source code is governed by a BSD-style license
   * that can be found in the LICENSE file in the root of the source
   * tree.  An additional intellectual property rights grant can be
   * found in the file PATENTS.  All contributing project authors may
   * be found in the AUTHORS file in the root of the source tree.
   */

  /*!\file
   * \brief Describes the vpx image descriptor and associated
   * operations
   *
   */



Bankoski, et al.              Informational                   [Page 291]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  #ifdef __cplusplus
  extern "C" {
  #endif

  #ifndef VPX_IMAGE_H
  #define VPX_IMAGE_H

      /*!\brief Current ABI version number
       *
       * \internal
       * If this file is altered in any way that changes the ABI, this
       * value must be bumped.  Examples include, but are not limited
       * to, changing types, removing or reassigning enums,
       * adding/removing/rearranging fields to structures
       */
  #define VPX_IMAGE_ABI_VERSION (1) /**<\hideinitializer*/


  #define VPX_IMG_FMT_PLANAR     0x100  /**< Image is a planar
                                             format */
  #define VPX_IMG_FMT_UV_FLIP    0x200  /**< V plane precedes U plane
                                             in memory */
  #define VPX_IMG_FMT_HAS_ALPHA  0x400  /**< Image has an alpha channel
                                             component */


      /*!\brief List of supported image formats */
      typedef enum vpx_img_fmt {
          VPX_IMG_FMT_NONE,
          VPX_IMG_FMT_RGB24,      /**< 24 bit per pixel packed RGB */
          VPX_IMG_FMT_RGB32,      /**< 32 bit per pixel packed 0RGB */
          VPX_IMG_FMT_RGB565,     /**< 16 bit per pixel, 565 */
          VPX_IMGFMT_RGB555,      /**< 16 bit per pixel, 555 */
          VPX_IMG_FMT_UYVY,       /**< UYVY packed YUV */
          VPX_IMG_FMT_YUY2,       /**< YUYV packed YUV */
          VPX_IMG_FMT_YVYU,       /**< YVYU packed YUV */
          VPX_IMG_FMT_BGR24,      /**< 24 bit per pixel packed BGR */
          VPX_IMG_FMT_RGB32_LE,   /**< 32 bit packed BGR0 */
          VPX_IMG_FMT_ARGB,       /**< 32 bit packed ARGB, alpha=255 */
          VPX_IMG_FMT_ARGB_LE,    /**< 32 bit packed BGRA, alpha=255 */
          VPX_IMG_FMT_RGB565_LE,  /**< 16 bit per pixel,
                                       gggbbbbb rrrrrggg */
          VPX_IMG_FMT_RGB555_LE,  /**< 16 bit per pixel,
                                       gggbbbbb 0rrrrrgg */
          VPX_IMG_FMT_YV12    = VPX_IMG_FMT_PLANAR |
            VPX_IMG_FMT_UV_FLIP | 1, /**< planar YVU */
          VPX_IMG_FMT_I420    = VPX_IMG_FMT_PLANAR | 2,




Bankoski, et al.              Informational                   [Page 292]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


          VPX_IMG_FMT_VPXYV12 = VPX_IMG_FMT_PLANAR |
            VPX_IMG_FMT_UV_FLIP | 3, /** < planar 4:2:0 format with
                                           vpx color space */
          VPX_IMG_FMT_VPXI420 = VPX_IMG_FMT_PLANAR | 4   /** < planar
            4:2:0 format with vpx color space */
      }
      vpx_img_fmt_t; /**< alias for enum vpx_img_fmt */

  #if !defined(VPX_CODEC_DISABLE_COMPAT) || !VPX_CODEC_DISABLE_COMPAT
  /** \deprecated Use #VPX_IMG_FMT_PLANAR */
  #define IMG_FMT_PLANAR         VPX_IMG_FMT_PLANAR
  /** \deprecated Use #VPX_IMG_FMT_UV_FLIP */
  #define IMG_FMT_UV_FLIP        VPX_IMG_FMT_UV_FLIP
  /** \deprecated Use #VPX_IMG_FMT_HAS_ALPHA */
  #define IMG_FMT_HAS_ALPHA      VPX_IMG_FMT_HAS_ALPHA

      /*!\brief Deprecated list of supported image formats
       * \deprecated New code should use #vpx_img_fmt
       */
  #define img_fmt   vpx_img_fmt
      /*!\brief alias for enum img_fmt.
       * \deprecated New code should use #vpx_img_fmt_t
       */
  #define img_fmt_t vpx_img_fmt_t

  /** \deprecated Use #VPX_IMG_FMT_NONE */
  #define IMG_FMT_NONE       VPX_IMG_FMT_NONE
  /** \deprecated Use #VPX_IMG_FMT_RGB24 */
  #define IMG_FMT_RGB24      VPX_IMG_FMT_RGB24
  /** \deprecated Use #VPX_IMG_FMT_RGB32 */
  #define IMG_FMT_RGB32      VPX_IMG_FMT_RGB32
  /** \deprecated Use #VPX_IMG_FMT_RGB565 */
  #define IMG_FMT_RGB565     VPX_IMG_FMT_RGB565
  /** \deprecated Use #VPX_IMG_FMT_RGB555 */
  #define IMG_FMT_RGB555     VPX_IMG_FMT_RGB555
  /** \deprecated Use #VPX_IMG_FMT_UYVY */
  #define IMG_FMT_UYVY       VPX_IMG_FMT_UYVY
  /** \deprecated Use #VPX_IMG_FMT_YUY2 */
  #define IMG_FMT_YUY2       VPX_IMG_FMT_YUY2
  /** \deprecated Use #VPX_IMG_FMT_YVYU */
  #define IMG_FMT_YVYU       VPX_IMG_FMT_YVYU
  /** \deprecated Use #VPX_IMG_FMT_BGR24 */
  #define IMG_FMT_BGR24      VPX_IMG_FMT_BGR24
  /**< \deprecated Use #VPX_IMG_FMT_RGB32_LE */
  #define IMG_FMT_RGB32_LE   VPX_IMG_FMT_RGB32_LE
  /** \deprecated Use #VPX_IMG_FMT_ARGB */
  #define IMG_FMT_ARGB       VPX_IMG_FMT_ARGB




Bankoski, et al.              Informational                   [Page 293]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  /** \deprecated Use #VPX_IMG_FMT_ARGB_LE */
  #define IMG_FMT_ARGB_LE    VPX_IMG_FMT_ARGB_LE
  /** \deprecated Use #VPX_IMG_FMT_RGB565_LE */
  #define IMG_FMT_RGB565_LE  VPX_IMG_FMT_RGB565_LE
  /** \deprecated Use #VPX_IMG_FMT_RGB555_LE */
  #define IMG_FMT_RGB555_LE  VPX_IMG_FMT_RGB555_LE
  /** \deprecated Use #VPX_IMG_FMT_YV12 */
  #define IMG_FMT_YV12       VPX_IMG_FMT_YV12
  /** \deprecated Use #VPX_IMG_FMT_I420 */
  #define IMG_FMT_I420       VPX_IMG_FMT_I420
  /** \deprecated Use #VPX_IMG_FMT_VPXYV12 */
  #define IMG_FMT_VPXYV12    VPX_IMG_FMT_VPXYV12
  /** \deprecated Use #VPX_IMG_FMT_VPXI420 */
  #define IMG_FMT_VPXI420    VPX_IMG_FMT_VPXI420
  #endif /* VPX_CODEC_DISABLE_COMPAT */

      /**\brief Image Descriptor */
      typedef struct vpx_image
      {
          vpx_img_fmt_t fmt; /**< Image Format */

          /* Image storage dimensions */
          unsigned int  w;   /**< Stored image width */
          unsigned int  h;   /**< Stored image height */

          /* Image display dimensions */
          unsigned int  d_w;   /**< Displayed image width */
          unsigned int  d_h;   /**< Displayed image height */

          /* Chroma subsampling info */
          unsigned int  x_chroma_shift;   /**< subsampling order, X */
          unsigned int  y_chroma_shift;   /**< subsampling order, Y */

          /* Image data pointers. */
  #define VPX_PLANE_PACKED 0  /**< To be used for all packed formats */
  #define VPX_PLANE_Y      0  /**< Y (Luminance) plane */
  #define VPX_PLANE_U      1  /**< U (Chroma) plane */
  #define VPX_PLANE_V      2  /**< V (Chroma) plane */
  #define VPX_PLANE_ALPHA  3  /**< A (Transparency) plane */
  #if !defined(VPX_CODEC_DISABLE_COMPAT) || !VPX_CODEC_DISABLE_COMPAT
  #define PLANE_PACKED     VPX_PLANE_PACKED
  #define PLANE_Y          VPX_PLANE_Y
  #define PLANE_U          VPX_PLANE_U
  #define PLANE_V          VPX_PLANE_V
  #define PLANE_ALPHA      VPX_PLANE_ALPHA
  #endif





Bankoski, et al.              Informational                   [Page 294]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


          unsigned char *planes[4];  /**< pointer to the top-left pixel
          q                               for each plane */
          int    stride[4];  /**< stride between rows for each plane */

          int    bps; /**< bits per sample (for packed formats) */

          /* The following member may be set by the application to
           * associate data with this image.
           */
          void   *user_priv; /**< may be set by the application to
                                   associate data with this image. */

          /* The following members should be treated as private. */
          unsigned char *img_data;       /**< private */
          int      img_data_owner; /**< private */
          int      self_allocd;    /**< private */
      } vpx_image_t; /**< alias for struct vpx_image */

      /**\brief Representation of a rectangle on a surface */
      typedef struct vpx_image_rect
      {
          unsigned int x; /**< leftmost column */
          unsigned int y; /**< topmost row */
          unsigned int w; /**< width */
          unsigned int h; /**< height */
      } vpx_image_rect_t; /**< alias for struct vpx_image_rect */

      /*!\brief Open a descriptor, allocating storage for the
       * underlying image
       *
       * Returns a descriptor for storing an image of the given format.
       * The storage for the descriptor is allocated on the heap.
       *
       * \param[in]    img       Pointer to storage for descriptor.
       *                         If this parameter is NULL, the storage
       *                         for the descriptor will be allocated
       *                         on the heap.
       * \param[in]    fmt       Format for the image
       * \param[in]    d_w       Width of the image
       * \param[in]    d_h       Height of the image
       * \param[in]    align     Alignment, in bytes, of each row in
       *                         the image.
       *
       * \return Returns a pointer to the initialized image descriptor.
       *         If the img parameter is non-null, the value of the img
       *         parameter will be returned.
       */




Bankoski, et al.              Informational                   [Page 295]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


      vpx_image_t *vpx_img_alloc(vpx_image_t  *img,
                                 vpx_img_fmt_t fmt,
                                 unsigned int d_w,
                                 unsigned int d_h,
                                 unsigned int align);

      /*!\brief Open a descriptor, using existing storage for the
       * underlying image
       *
       * Returns a descriptor for storing an image of the given format.
       * The storage for descriptor has been allocated elsewhere, and a
       * descriptor is desired to "wrap" that storage.
       *
       * \param[in]    img       Pointer to storage for descriptor.
       *                         If this parameter is NULL, the storage
       *                         for the descriptor will be
       *                         allocated on the heap.
       * \param[in]    fmt       Format for the image
       * \param[in]    d_w       Width of the image
       * \param[in]    d_h       Height of the image
       * \param[in]    align     Alignment, in bytes, of each row in
       *                         the image.
       * \param[in]    img_data  Storage to use for the image
       *
       * \return Returns a pointer to the initialized image descriptor.
       *         If the img parameter is non-null, the value of the img
       *         parameter will be returned.
       */
      vpx_image_t *vpx_img_wrap(vpx_image_t  *img,
                                vpx_img_fmt_t fmt,
                                unsigned int d_w,
                                unsigned int d_h,
                                unsigned int align,
                                unsigned char      *img_data);


      /*!\brief Set the rectangle identifying the displayed portion of
       * the image
       *
       * Updates the displayed rectangle (aka viewport) on the image
       * surface to match the specified coordinates and size.
       *
       * \param[in]    img       Image descriptor
       * \param[in]    x         leftmost column
       * \param[in]    y         topmost row
       * \param[in]    w         width
       * \param[in]    h         height
       *



Bankoski, et al.              Informational                   [Page 296]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


       * \return 0 if the requested rectangle is valid, non-zero
       * otherwise.
       */
      int vpx_img_set_rect(vpx_image_t  *img,
                           unsigned int  x,
                           unsigned int  y,
                           unsigned int  w,
                           unsigned int  h);


      /*!\brief Flip the image vertically (top for bottom)
       *
       * Adjusts the image descriptor's pointers and strides to make
       * the image be referenced upside-down.
       *
       * \param[in]    img       Image descriptor
       */
      void vpx_img_flip(vpx_image_t *img);

      /*!\brief Close an image descriptor
       *
       * Frees all allocated storage associated with an image
       * descriptor.
       *
       * \param[in]    img       Image descriptor
       */
      void vpx_img_free(vpx_image_t *img);

  #endif
  #ifdef __cplusplus
  }
  #endif

  ---- End code block ----------------------------------------

















Bankoski, et al.              Informational                   [Page 297]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


20.24.  vpx_integer.h

  ---- Begin code block --------------------------------------

  /*
   *  Copyright (c) 2010, 2011, Google Inc.  All rights reserved.
   *
   *  Use of this source code is governed by a BSD-style license
   *  that can be found in the LICENSE file in the root of the source
   *  tree.  An additional intellectual property rights grant can be
   *  found in the file PATENTS.  All contributing project authors may
   *  be found in the AUTHORS file in the root of the source tree.
   */

  #ifndef VPX_INTEGER_H
  #define VPX_INTEGER_H

  /* get ptrdiff_t, size_t, wchar_t, NULL */
  #include <stddef.h>

  #if defined(_MSC_VER) || defined(VPX_EMULATE_INTTYPES)
  typedef signed char  int8_t;
  typedef signed short int16_t;
  typedef signed int   int32_t;
  typedef unsigned char  uint8_t;
  typedef unsigned short uint16_t;
  typedef unsigned int   uint32_t;

  #if defined(_MSC_VER)
  typedef signed __int64   int64_t;
  typedef unsigned __int64 uint64_t;
  #define PRId64 "I64d"
  #endif

  #ifdef HAVE_ARMV6
  typedef unsigned int int_fast16_t;
  #else
  typedef signed short int_fast16_t;
  #endif
  typedef signed char int_fast8_t;
  typedef unsigned char uint_fast8_t;

  #ifndef _UINTPTR_T_DEFINED
  typedef unsigned int   uintptr_t;
  #endif






Bankoski, et al.              Informational                   [Page 298]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  #else

  /* Most platforms have the C99 standard integer types. */

  #if defined(__cplusplus) && !defined(__STDC_FORMAT_MACROS)
  #define __STDC_FORMAT_MACROS
  #endif
  #include <stdint.h>
  #include <inttypes.h>

  #endif

  #endif

  ---- End code block ----------------------------------------

20.25.  AUTHORS File

  Aaron Watry <[email protected]>

  Adrian Grange <[email protected]>

  Alex Converse <[email protected]>

  Andoni Morales Alastruey <[email protected]>

  Andres Mejia <[email protected]>

  Attila Nagy <[email protected]>

  Fabio Pedretti <[email protected]>

  Frank Galligan <[email protected]>

  Fredrik Soederquist <[email protected]>

  Fritz Koenig <[email protected]>

  Gaute Strokkenes <[email protected]>

  Giuseppe Scrivano <[email protected]>

  Guillermo Ballester Valor <[email protected]>

  Henrik Lundin <[email protected]>

  James Berry <[email protected]>




Bankoski, et al.              Informational                   [Page 299]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  James Zern <[email protected]>

  Jan Kratochvil <[email protected]>

  Jeff Muizelaar <[email protected]>

  Jim Bankoski <[email protected]>

  Johann Koenig <[email protected]>

  John Koleszar <[email protected]>

  Justin Clift <[email protected]>

  Justin Lebar <[email protected]>

  Luca Barbato <[email protected]>

  Makoto Kato <[email protected]>

  Martin Ettl <[email protected]>

  Michael Kohler <[email protected]>

  Mikhal Shemer <[email protected]>

  Pascal Massimino <[email protected]>

  Patrik Westin <[email protected]>

  Paul Wilkins <[email protected]>

  Pavol Rusnak <[email protected]>

  Philip Jaegenstedt <[email protected]>

  Scott LaVarnway <[email protected]>

  Tero Rintaluoma <[email protected]>

  Timothy B. Terriberry <[email protected]>

  Tom Finegan <[email protected]>

  Yaowu Xu <[email protected]>

  Yunqing Wang <[email protected]>




Bankoski, et al.              Informational                   [Page 300]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


  Google Inc.

  The Mozilla Foundation

  The Xiph.Org Foundation

20.26.  LICENSE

  Copyright (c) 2010, 2011, Google Inc.  All rights reserved.

  Redistribution and use in source and binary forms, with or without
  modification, are permitted provided that the following conditions
  are met:

  o  Redistributions of source code must retain the above copyright
     notice, this list of conditions and the following disclaimer.

  o  Redistributions in binary form must reproduce the above copyright
     notice, this list of conditions and the following disclaimer in
     the documentation and/or other materials provided with the
     distribution.

  o  Neither the name of Google nor the names of its contributors may
     be used to endorse or promote products derived from this software
     without specific prior written permission.

  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
  HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
  AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
  WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  POSSIBILITY OF SUCH DAMAGE.













Bankoski, et al.              Informational                   [Page 301]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


20.27.  PATENTS

  Additional IP Rights Grant (Patents)

  "This implementation" means the copyrightable works distributed by
  Google as part of the WebM Project.

  Google hereby grants to you a perpetual, worldwide, non-exclusive,
  no-charge, royalty-free, irrevocable (except as stated in this
  section) patent license to make, have made, use, offer to sell, sell,
  import, transfer, and otherwise run, modify and propagate the
  contents of this implementation of VP8, where such license applies
  only to those patent claims, both currently owned by Google and
  acquired in the future, licensable by Google that are necessarily
  infringed by this implementation of VP8.  This grant does not include
  claims that would be infringed only as a consequence of further
  modification of this implementation.  If you or your agent or
  exclusive licensee institute or order or agree to the institution of
  patent litigation against any entity (including a cross-claim or
  counterclaim in a lawsuit) alleging that this implementation of VP8
  or any code incorporated within this implementation of VP8
  constitutes direct or contributory patent infringement, or inducement
  of patent infringement, then any patent rights granted to you under
  this License for this implementation of VP8 shall terminate as of the
  date such litigation is filed.

21.  Security Considerations

  A VP8 decoder should take appropriate security considerations into
  account, as outlined in [RFC4732] and [RFC3552].  It is extremely
  important that a decoder be robust against malicious payloads.
  Malicious payloads must not cause the decoder to overrun its
  allocated memory or to consume inordinate resources.  Although
  encoder issues are typically rarer, the same applies to an encoder.
  Malicious stream data must not cause the encoder to misbehave, as
  this might allow an attacker access to transcoding gateways.















Bankoski, et al.              Informational                   [Page 302]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


22.  References

22.1.  Normative Reference

  [RFC2119]   Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

22.2.  Informative References

  [Bell]      Bell, T., Cleary, J., and I. Witten, "Text Compression",
              1990.

  [ISO-C99]   International Organization for Standardization,
              "Information technology --  Programming languages -- C",
              ISO/IEC 9899:1999, 1999.

  [ITU-R_BT.601]
              International Telecommunication Union, "ITU BT.601-7:
              Studio encoding parameters of digital television for
              standard 4:3 and wide screen 16:9 aspect ratios",
              March 2011.

  [Kernighan] Kernighan, B. and D. Ritchie, "The C Programming Language
              (2nd edition)", April 1988.

  [Loeffler]  Loeffler, C., Ligtenberg , A., and G. Moschytz,
              "Practical Fast 1-D DCT Algorithms with 11
              Multiplications", May 1989.

  [RFC3552]   Rescorla, E. and B. Korver, "Guidelines for Writing RFC
              Text on Security Considerations", BCP 72, RFC 3552,
              July 2003.

  [RFC4732]   Handley, M., Ed., Rescorla, E., Ed., and IAB, "Internet
              Denial-of-Service Considerations", RFC 4732,
              December 2006.

  [Shannon]   Shannon, C., "A Mathematical Theory of Communication",
              Bell System Technical Journal Vol. 27, pp. 379-423 and
              623-656, July and October 1948.











Bankoski, et al.              Informational                   [Page 303]

RFC 6386           VP8 Data Format and Decoding Guide      November 2011


Authors' Addresses

  James Bankoski
  Google Inc.

  EMail: [email protected]


  John Koleszar
  Google Inc.

  EMail: [email protected]


  Lou Quillio
  Google Inc.

  EMail: [email protected]


  Janne Salonen
  Google Inc.

  EMail: [email protected]


  Paul Wilkins
  Google Inc.

  EMail: [email protected]


  Yaowu Xu
  Google Inc.

  EMail: [email protected]















Bankoski, et al.              Informational                   [Page 304]