Internet Engineering Task Force (IETF)                          A. Begen
Request for Comments: 6364                                         Cisco
Category: Standards Track                                   October 2011
ISSN: 2070-1721


            Session Description Protocol Elements for the
               Forward Error Correction (FEC) Framework

Abstract

  This document specifies the use of the Session Description Protocol
  (SDP) to describe the parameters required to signal the Forward Error
  Correction (FEC) Framework Configuration Information between the
  sender(s) and receiver(s).  This document also provides examples that
  show the semantics for grouping multiple source and repair flows
  together for the applications that simultaneously use multiple
  instances of the FEC Framework.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc6364.

Copyright Notice

  Copyright (c) 2011 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.




Begen                        Standards Track                    [Page 1]

RFC 6364             SDP Elements for FEC Framework         October 2011


  This document may contain material from IETF Documents or IETF
  Contributions published or made publicly available before November
  10, 2008.  The person(s) controlling the copyright in some of this
  material may not have granted the IETF Trust the right to allow
  modifications of such material outside the IETF Standards Process.
  Without obtaining an adequate license from the person(s) controlling
  the copyright in such materials, this document may not be modified
  outside the IETF Standards Process, and derivative works of it may
  not be created outside the IETF Standards Process, except to format
  it for publication as an RFC or to translate it into languages other
  than English.

Table of Contents

  1. Introduction ....................................................3
  2. Requirements Notation ...........................................3
  3. Forward Error Correction (FEC) and FEC Framework ................3
     3.1. Forward Error Correction (FEC) .............................3
     3.2. FEC Framework ..............................................4
     3.3. FEC Framework Configuration Information ....................4
  4. SDP Elements ....................................................5
     4.1. Transport Protocol Identifiers .............................6
     4.2. Media Stream Grouping ......................................6
     4.3. Source IP Addresses ........................................6
     4.4. Source Flows ...............................................6
     4.5. Repair Flows ...............................................7
     4.6. Repair Window ..............................................8
     4.7. Bandwidth Specification ....................................9
  5. Scenarios and Examples .........................................10
     5.1. Declarative Considerations ................................10
     5.2. Offer/Answer Model Considerations .........................10
  6. SDP Examples ...................................................11
     6.1. One Source Flow, One Repair Flow, and One FEC Scheme ......11
     6.2. Two Source Flows, One Repair Flow, and One FEC Scheme .....12
     6.3. Two Source Flows, Two Repair Flows, and Two FEC Schemes ...13
     6.4. One Source Flow, Two Repair Flows, and Two FEC Schemes ....14
  7. Security Considerations ........................................15
  8. IANA Considerations ............................................15
     8.1. Registration of Transport Protocols .......................15
     8.2. Registration of SDP Attributes ............................16
  9. Acknowledgments ................................................16
  10. References ....................................................17
     10.1. Normative References .....................................17
     10.2. Informative References ...................................17







Begen                        Standards Track                    [Page 2]

RFC 6364             SDP Elements for FEC Framework         October 2011


1.  Introduction

  The Forward Error Correction (FEC) Framework, described in [RFC6363],
  outlines a general framework for using FEC-based error recovery in
  packet flows carrying media content.  While a continuous signaling
  between the sender(s) and receiver(s) is not required for a Content
  Delivery Protocol (CDP) that uses the FEC Framework, a set of
  parameters pertaining to the FEC Framework has to be initially
  communicated between the sender(s) and receiver(s).  A signaling
  protocol (such as the one described in [FECFRAME-CFG-SIGNAL]) is
  required to enable such communication, and the parameters need to be
  appropriately encoded so that they can be carried by the signaling
  protocol.

  One format to encode the parameters is the Session Description
  Protocol (SDP) [RFC4566].  SDP provides a simple text-based format
  for announcements and invitations to describe multimedia sessions.
  These SDP announcements and invitations include sufficient
  information for the sender(s) and receiver(s) to participate in the
  multimedia sessions.  SDP also provides a framework for capability
  negotiation, which can be used to negotiate all, or a subset, of the
  parameters pertaining to the individual sessions.

  The purpose of this document is to introduce the SDP elements that
  are used by the CDPs using the FEC Framework that choose SDP
  [RFC4566] for their multimedia sessions.

2.  Requirements Notation

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  [RFC2119].

3.  Forward Error Correction (FEC) and FEC Framework

  This section gives a brief overview of FEC and the FEC Framework.

3.1.  Forward Error Correction (FEC)

  Any application that needs reliable transmission over an unreliable
  packet network has to cope with packet losses.  FEC is an effective
  approach that provides reliable transmission, particularly in
  multicast and broadcast applications where the feedback from the
  receiver(s) is either not available or quite limited.






Begen                        Standards Track                    [Page 3]

RFC 6364             SDP Elements for FEC Framework         October 2011


  In a nutshell, FEC groups source packets into blocks and applies
  protection to generate a desired number of repair packets.  These
  repair packets can be sent on demand or independently of any receiver
  feedback.  The choice depends on the FEC scheme or the Content
  Delivery Protocol used by the application, the packet loss
  characteristics of the underlying network, the transport scheme
  (e.g., unicast, multicast, and broadcast), and the application
  itself.  At the receiver side, lost packets can be recovered by
  erasure decoding provided that a sufficient number of source and
  repair packets have been received.

3.2.  FEC Framework

  The FEC Framework [RFC6363] outlines a general framework for using
  FEC codes in multimedia applications that stream audio, video, or
  other types of multimedia content.  It defines the common components
  and aspects of Content Delivery Protocols (CDPs).  The FEC Framework
  also defines the requirements for the FEC schemes that need to be
  used within a CDP.  However, the details of the FEC schemes are not
  specified within the FEC Framework.  For example, the FEC Framework
  defines what configuration information has to be known at the sender
  and receiver(s) at a minimum, but the FEC Framework neither specifies
  how the FEC repair packets are generated and used to recover missing
  source packets, nor dictates how the configuration information is
  communicated between the sender and receiver(s).  These are rather
  specified by the individual FEC schemes or CDPs.

3.3.  FEC Framework Configuration Information

  The FEC Framework [RFC6363] defines a minimum set of information that
  has to be communicated between the sender and receiver(s) for proper
  operation of a FEC scheme.  This information is called the "FEC
  Framework Configuration Information".  This information includes
  unique identifiers for the source and repair flows that carry the
  source and repair packets, respectively.  It also specifies how the
  sender applies protection to the source flow(s) and how the repair
  flow(s) can be used to recover lost data.

  Multiple instances of the FEC Framework can simultaneously exist at
  the sender and the receiver(s) for different source flows, for the
  same source flow, or for various combinations of the source flows.
  Each instance of the FEC Framework provides the following FEC
  Framework Configuration Information:








Begen                        Standards Track                    [Page 4]

RFC 6364             SDP Elements for FEC Framework         October 2011


  1.  Identification of the repair flows.

  2.  For each source flow protected by the repair flow(s):

      A.  Definition of the source flow.

      B.  An integer identifier for this flow definition (i.e., tuple).
          This identifier MUST be unique among all source flows that
          are protected by the same FEC repair flow.  Integer
          identifiers can be allocated starting from zero and
          increasing by one for each flow.  However, any random (but
          still unique) allocation is also possible.  A source flow
          identifier need not be carried in source packets, since
          source packets are directly associated with a flow by virtue
          of their packet headers.

  3.  The FEC Encoding ID, identifying the FEC scheme.

  4.  The length of the Explicit Source FEC Payload ID (in octets).

  5.  Zero or more FEC-Scheme-Specific Information (FSSI) elements,
      each consisting of a name and a value where the valid element
      names and value ranges are defined by the FEC scheme.

  FSSI includes the information that is specific to the FEC scheme used
  by the CDP.  FSSI is used to communicate the information that cannot
  be adequately represented otherwise and is essential for proper FEC
  encoding and decoding operations.  The motivation behind separating
  the FSSI required only by the sender (which is carried in a Sender-
  Side FEC-Scheme-Specific Information (SS-FSSI) container) from the
  rest of the FSSI is to provide the receiver or the third-party
  entities a means of controlling the FEC operations at the sender.
  Any FSSI other than the one solely required by the sender MUST be
  communicated via the FSSI container.

  The variable-length SS-FSSI and FSSI containers transmit the
  information in textual representation and contain zero or more
  distinct elements, whose descriptions are provided by the fully
  specified FEC schemes.

4.  SDP Elements

  This section defines the SDP elements that MUST be used to describe
  the FEC Framework Configuration Information in multimedia sessions by
  the CDPs that choose SDP [RFC4566] for their multimedia sessions.
  Example SDP descriptions can be found in Section 6.





Begen                        Standards Track                    [Page 5]

RFC 6364             SDP Elements for FEC Framework         October 2011


4.1.  Transport Protocol Identifiers

  This specification defines a new transport protocol identifier for
  the FEC schemes that take a UDP-formatted input stream and append an
  Explicit Source FEC Payload ID, as described in Section 5.3 of
  [RFC6363], to generate a source flow.  This new protocol identifier
  is called 'FEC/UDP'.  To use input streams that are formatted
  according to another <proto> (as listed in the table for the 'proto'
  field in the "Session Description Protocol (SDP) Parameters"
  registry), the corresponding 'FEC/<proto>' transport protocol
  identifier MUST be registered with IANA by following the instructions
  specified in [RFC4566].

  Note that if a FEC scheme does not use the Explicit Source FEC
  Payload ID as described in Section 4.1 of [RFC6363], then the
  original transport protocol identifier MUST be used to support
  backward compatibility with the receivers that do not support FEC
  at all.

  This specification also defines another transport protocol
  identifier, 'UDP/FEC', to indicate the FEC repair packet format
  defined in Section 5.4 of [RFC6363].  For detailed registration
  information, refer to Section 8.1.

4.2.  Media Stream Grouping

  In the FEC Framework, the 'group' attribute and the FEC grouping
  semantics defined in [RFC5888] and [RFC5956], respectively, are used
  to associate source and repair flows.

4.3.  Source IP Addresses

  The 'source-filter' attribute of SDP ("a=source-filter") as defined
  in [RFC4570] is used to express the source addresses or fully
  qualified domain names in the FEC Framework.

4.4.  Source Flows

  The FEC Framework allows that multiple source flows MAY be grouped
  and protected together by single or multiple FEC Framework instances.
  For this reason, as described in Section 3.3, individual source flows
  MUST be identified with unique identifiers.  For this purpose, we
  introduce the attribute 'fec-source-flow'.








Begen                        Standards Track                    [Page 6]

RFC 6364             SDP Elements for FEC Framework         October 2011


  The syntax for the new attribute in ABNF [RFC5234] is as follows:

       fec-source-flow-line = "a=fec-source-flow:" SP source-id
            [";" SP tag-length] CRLF

       source-id = "id=" src-id
       src-id = 1*DIGIT ; Represented as 32-bit non-negative
                        ; integers, and leading zeros are ignored

       tag-length = "tag-len=" tlen
       tlen = %x31-39 *DIGIT

  The REQUIRED parameter 'id' is used to identify the source flow.
  Parameter 'id' MUST be an integer.

  The 'tag-len' parameter is used to specify the length of the Explicit
  Source FEC Payload ID field (in octets).  In the case that an
  Explicit Source FEC Payload ID is used, the 'tag-len' parameter MUST
  exist and indicate its length.  Otherwise, the 'tag-len' parameter
  MUST NOT exist.

4.5.  Repair Flows

  A repair flow MUST contain only repair packets formatted as described
  in [RFC6363] for a single FEC Framework instance; i.e., packets
  belonging to source flows or other repair flows from a different FEC
  Framework instance cannot be sent within this flow.  We introduce the
  attribute 'fec-repair-flow' to describe the repair flows.

  The syntax for the new attribute in ABNF is as follows (CHAR and CTL
  are defined in [RFC5234]):

     fec-repair-flow-line = "a=fec-repair-flow:" SP fec-encoding-id
          [";" SP flow-preference]
          [";" SP sender-side-scheme-specific]
          [";" SP scheme-specific] CRLF

     fec-encoding-id = "encoding-id=" enc-id
     enc-id = 1*DIGIT ; FEC Encoding ID

     flow-preference = "preference-lvl=" preference-level-of-the-flow
     preference-level-of-the-flow = 1*DIGIT









Begen                        Standards Track                    [Page 7]

RFC 6364             SDP Elements for FEC Framework         October 2011


     sender-side-scheme-specific = "ss-fssi=" sender-info
     sender-info = element *( "," element )
     element     = name ":" value
     name        = token
     token       = 1*<any CHAR except CTLs or separators>
     value       = *<any CHAR except CTLs or separators>
     separator   = "(" / ")" / "<" / ">" / "@"
                    / "," / ";" / ":" / "\" / DQUOTE
                    / "/" / "[" / "]" / "?" / "="
                    / "{" / "}" / SP / HTAB

     scheme-specific = "fssi=" scheme-info
     scheme-info = element *( "," element )

  The REQUIRED parameter 'encoding-id' is used to identify the FEC
  scheme used to generate this repair flow.  These identifiers (in the
  range of [0 - 255]) are registered by the FEC schemes that use the
  FEC Framework and are maintained by IANA.

  The OPTIONAL parameter 'preference-lvl' is used to indicate the
  preferred order for using the repair flows.  The exact usage of the
  parameter 'preference-lvl' and the pertaining rules MAY be defined by
  the FEC scheme or the CDP.  If the parameter 'preference-lvl' does
  not exist, it means that the receiver(s) MAY receive and use the
  repair flows in any order.  However, if a preference level is
  assigned to the repair flow(s), the receivers are encouraged to
  follow the specified order in receiving and using the repair flow(s).

  The OPTIONAL parameters 'ss-fssi' and 'fssi' are containers to convey
  the FEC-Scheme-Specific Information (FSSI) that includes the
  information that is specific to the FEC scheme used by the CDP and is
  necessary for proper FEC encoding and decoding operations.  The FSSI
  required only by the sender (the Sender-Side FSSI) MUST be
  communicated in the container specified by the parameter 'ss-fssi'.
  Any other FSSI MUST be communicated in the container specified by the
  parameter 'fssi'.  In both containers, FSSI is transmitted in the
  form of textual representation and MAY contain multiple distinct
  elements.  If the FEC scheme does not require any specific
  information, the 'ss-fssi' and 'fssi' parameters MUST NOT exist.

4.6.  Repair Window

  The repair window is the time that spans a FEC block, which consists
  of the source block and the corresponding repair packets.

  At the sender side, the FEC encoder processes a block of source
  packets and generates a number of repair packets.  Then, both the
  source and repair packets are transmitted within a certain duration



Begen                        Standards Track                    [Page 8]

RFC 6364             SDP Elements for FEC Framework         October 2011


  not larger than the value of the repair window.  The value of the
  repair window impacts the maximum number of source packets that can
  be included in a FEC block.

  At the receiver side, the FEC decoder should wait at least for the
  duration of the repair window after getting the first packet in a FEC
  block, to allow all the repair packets to arrive.  (The waiting time
  can be adjusted if there are missing packets at the beginning of the
  FEC block.)  The FEC decoder can start decoding the already received
  packets sooner; however, it SHOULD NOT register a FEC decoding
  failure until it waits at least for the duration of the repair
  window.

  This document specifies a new attribute to describe the size of the
  repair window in milliseconds and microseconds.

  The syntax for the attribute in ABNF is as follows:

       repair-window-line = "a=repair-window:" window-size unit CRLF

       window-size = %x31-39 *DIGIT ; Represented as
                                    ; 32-bit non-negative integers

       unit = "ms" / "us"

  <unit> is the unit of time specified for the repair window size.  Two
  units are defined here: 'ms', which stands for milliseconds; and
  'us', which stands for microseconds.

  The 'a=repair-window' attribute is a media-level attribute, since
  each repair flow MAY have a different repair window size.

  Specifying the repair window size in an absolute time value does not
  necessarily correspond to an integer number of packets or exactly
  match with the clock rate used in RTP (in the case of RTP transport),
  causing mismatches among subsequent repair windows.  However, in
  practice, this mismatch does not break anything in the FEC decoding
  process.

4.7.  Bandwidth Specification

  The bandwidth specification as defined in [RFC4566] denotes the
  proposed bandwidth to be used by the session or media.  The
  specification of bandwidth is OPTIONAL.







Begen                        Standards Track                    [Page 9]

RFC 6364             SDP Elements for FEC Framework         October 2011


  In the context of the FEC Framework, the bandwidth specification can
  be used to express the bandwidth of the repair flows or the bandwidth
  of the session.  If included in the SDP, it SHALL adhere to the
  following rules.

  The session-level bandwidth for a FEC Framework instance or the
  media-level bandwidth for the individual repair flows MAY be
  specified.  In this case, it is RECOMMENDED that the Transport
  Independent Application Specific (TIAS) bandwidth modifier [RFC3890]
  and the 'a=maxprate' attribute be used, unless the Application-
  Specific (AS) bandwidth modifier [RFC4566] is used.  The use of the
  AS bandwidth modifier is NOT RECOMMENDED, since TIAS allows the
  calculation of the bitrate according to the IP version and transport
  protocol whereas AS does not.  Thus, in TIAS-based bitrate
  calculations, the packet size SHALL include all headers and payload,
  excluding the IP and UDP headers.  In AS-based bitrate calculations,
  the packet size SHALL include all headers and payload, plus the IP
  and UDP headers.

  For the ABNF syntax information of the TIAS and AS, refer to
  [RFC3890] and [RFC4566], respectively.

5.  Scenarios and Examples

  This section discusses the considerations for Session Announcement
  and Offer/Answer Models.

5.1.  Declarative Considerations

  In multicast-based applications, the FEC Framework Configuration
  Information pertaining to all FEC protection options available at the
  sender MAY be advertised to the receivers as a part of a session
  announcement.  This way, the sender can let the receivers know all
  available options for FEC protection.  Based on their needs, the
  receivers can choose protection provided by one or more FEC Framework
  instances and subscribe to the respective multicast session(s) to
  receive the repair flow(s).  Unless explicitly required by the CDP,
  the receivers SHOULD NOT send an answer back to the sender specifying
  their choices, since this can easily overwhelm the sender,
  particularly in large-scale multicast applications.

5.2.  Offer/Answer Model Considerations

  In unicast-based applications, a sender and receiver MAY adopt the
  Offer/Answer Model [RFC3264] to set the FEC Framework Configuration
  Information.  In this case, the sender offers the options available
  to this particular receiver, and the receiver answers back to the
  sender with its choice(s).



Begen                        Standards Track                   [Page 10]

RFC 6364             SDP Elements for FEC Framework         October 2011


  Receivers supporting the SDP Capability Negotiation Framework
  [RFC5939] MAY also use this framework to negotiate all, or a subset,
  of the FEC Framework parameters.

  The backward compatibility in the Offer/Answer Model is handled as
  specified in [RFC5956].

6.  SDP Examples

  This section provides SDP examples that can be used by the FEC
  Framework.

  [RFC5888] defines the media stream identification attribute ('mid')
  as a token in ABNF.  In contrast, the identifiers for the source
  flows are integers and can be allocated starting from zero and
  increasing by one for each flow.  To avoid any ambiguity, using the
  same values for identifying the media streams and source flows is NOT
  RECOMMENDED, even when 'mid' values are integers.

  In the examples below, random FEC Encoding IDs will be used for
  illustrative purposes.  Artificial content for the SS-FSSI and FSSI
  will also be provided.

6.1.  One Source Flow, One Repair Flow, and One FEC Scheme

                SOURCE FLOWS             | INSTANCE #1
                S1: Source Flow |--------| R1: Repair Flow
                                         |

                          Figure 1: Scenario #1

  In this example, we have one source video flow (mid:S1) and one FEC
  repair flow (mid:R1).  We form one FEC group with the
  "a=group:FEC-FR S1 R1" line.  The source and repair flows are sent to
  the same port on different multicast groups.  The repair window is
  set to 150 ms.















Begen                        Standards Track                   [Page 11]

RFC 6364             SDP Elements for FEC Framework         October 2011


       v=0
       o=ali 1122334455 1122334466 IN IP4 fec.example.com
       s=FEC Framework Examples
       t=0 0
       a=group:FEC-FR S1 R1
       m=video 30000 RTP/AVP 100
       c=IN IP4 233.252.0.1/127
       a=rtpmap:100 MP2T/90000
       a=fec-source-flow: id=0
       a=mid:S1
       m=application 30000 UDP/FEC
       c=IN IP4 233.252.0.2/127
       a=fec-repair-flow: encoding-id=0; ss-fssi=n:7,k:5
       a=repair-window:150ms
       a=mid:R1

6.2.  Two Source Flows, One Repair Flow, and One FEC Scheme

               SOURCE FLOWS
               S2: Source Flow |         | INSTANCE #1
                               |---------| R2: Repair Flow
               S3: Source Flow |

                          Figure 2: Scenario #2

  In this example, we have two source video flows (mid:S2 and mid:S3)
  and one FEC repair flow (mid:R2) protecting both source flows.  We
  form one FEC group with the "a=group:FEC-FR S2 S3 R2" line.  The
  source and repair flows are sent to the same port on different
  multicast groups.  The repair window is set to 150500 us.





















Begen                        Standards Track                   [Page 12]

RFC 6364             SDP Elements for FEC Framework         October 2011


       v=0
       o=ali 1122334455 1122334466 IN IP4 fec.example.com
       s=FEC Framework Examples
       t=0 0
       a=group:FEC-FR S2 S3 R2
       m=video 30000 RTP/AVP 100
       c=IN IP4 233.252.0.1/127
       a=rtpmap:100 MP2T/90000
       a=fec-source-flow: id=0
       a=mid:S2
       m=video 30000 RTP/AVP 101
       c=IN IP4 233.252.0.2/127
       a=rtpmap:101 MP2T/90000
       a=fec-source-flow: id=1
       a=mid:S3
       m=application 30000 UDP/FEC
       c=IN IP4 233.252.0.3/127
       a=fec-repair-flow: encoding-id=0; ss-fssi=n:7,k:5
       a=repair-window:150500us
       a=mid:R2

6.3.  Two Source Flows, Two Repair Flows, and Two FEC Schemes

                SOURCE FLOWS             | INSTANCE #1
                S4: Source Flow |--------| R3: Repair Flow

                S5: Source Flow |--------| INSTANCE #2
                                         | R4: Repair Flow

                          Figure 3: Scenario #3

  In this example, we have two source video flows (mid:S4 and mid:S5)
  and two FEC repair flows (mid:R3 and mid:R4).  The source flows
  mid:S4 and mid:S5 are protected by the repair flows mid:R3 and
  mid:R4, respectively.  We form two FEC groups with the
  "a=group:FEC-FR S4 R3" and "a=group:FEC-FR S5 R4" lines.  The source
  and repair flows are sent to the same port on different multicast
  groups.  The repair window is set to 200 ms and 400 ms for the first
  and second FEC group, respectively.












Begen                        Standards Track                   [Page 13]

RFC 6364             SDP Elements for FEC Framework         October 2011


       v=0
       o=ali 1122334455 1122334466 IN IP4 fec.example.com
       s=FEC Framework Examples
       t=0 0
       a=group:FEC-FR S4 R3
       a=group:FEC-FR S5 R4
       m=video 30000 RTP/AVP 100
       c=IN IP4 233.252.0.1/127
       a=rtpmap:100 MP2T/90000
       a=fec-source-flow: id=0
       a=mid:S4
       m=video 30000 RTP/AVP 101
       c=IN IP4 233.252.0.2/127
       a=rtpmap:101 MP2T/90000
       a=fec-source-flow: id=1
       a=mid:S5
       m=application 30000 UDP/FEC
       c=IN IP4 233.252.0.3/127
       a=fec-repair-flow: encoding-id=0; ss-fssi=n:7,k:5
       a=repair-window:200ms
       a=mid:R3
       m=application 30000 UDP/FEC
       c=IN IP4 233.252.0.4/127
       a=fec-repair-flow: encoding-id=0; ss-fssi=n:14,k:10
       a=repair-window:400ms
       a=mid:R4

6.4.  One Source Flow, Two Repair Flows, and Two FEC Schemes

                SOURCE FLOWS             | INSTANCE #1
                S6: Source Flow |--------| R5: Repair Flow
                                |
                                |--------| INSTANCE #2
                                         | R6: Repair Flow

                          Figure 4: Scenario #4

  In this example, we have one source video flow (mid:S6) and two FEC
  repair flows (mid:R5 and mid:R6) with different preference levels.
  The source flow mid:S6 is protected by both of the repair flows.  We
  form two FEC groups with the "a=group:FEC-FR S6 R5" and
  "a=group:FEC-FR S6 R6" lines.  The source and repair flows are sent
  to the same port on different multicast groups.  The repair window is
  set to 200 ms for both FEC groups.







Begen                        Standards Track                   [Page 14]

RFC 6364             SDP Elements for FEC Framework         October 2011


    v=0
    o=ali 1122334455 1122334466 IN IP4 fec.example.com
    s=FEC Framework Examples
    t=0 0
    a=group:FEC-FR S6 R5
    a=group:FEC-FR S6 R6
    m=video 30000 RTP/AVP 100
    c=IN IP4 233.252.0.1/127
    a=rtpmap:100 MP2T/90000
    a=fec-source-flow: id=0
    a=mid:S6
    m=application 30000 UDP/FEC
    c=IN IP4 233.252.0.3/127
    a=fec-repair-flow: encoding-id=0; preference-lvl=0; ss-fssi=n:7,k:5
    a=repair-window:200ms
    a=mid:R5
    m=application 30000 UDP/FEC
    c=IN IP4 233.252.0.4/127
    a=fec-repair-flow: encoding-id=1; preference-lvl=1; ss-fssi=t:3
    a=repair-window:200ms
    a=mid:R6

7.  Security Considerations

  There is a weak threat if the SDP is modified in a way that it shows
  an incorrect association and/or grouping of the source and repair
  flows.  Such attacks can result in failure of FEC protection and/or
  mishandling of other media streams.  It is RECOMMENDED that the
  receiver perform an integrity check on SDP to only trust SDP from
  trusted sources.  The receiver MUST also follow the security
  considerations of SDP [RFC4566].  For other general security
  considerations related to SDP, refer to [RFC4566].  For the security
  considerations related to the use of source address filters in SDP,
  refer to [RFC4570].

  The security considerations for the FEC Framework also apply.  Refer
  to [RFC6363] for details.

8.  IANA Considerations

8.1.  Registration of Transport Protocols

  This specification updates the "Session Description Protocol (SDP)
  Parameters" registry as defined in Section 8.2.2 of [RFC4566].
  Specifically, it adds the following values to the table for the
  'proto' field.





Begen                        Standards Track                   [Page 15]

RFC 6364             SDP Elements for FEC Framework         October 2011


     Type            SDP Name             Reference
     ------          ----------           -----------
     proto           FEC/UDP              [RFC6364]
     proto           UDP/FEC              [RFC6364]

8.2.  Registration of SDP Attributes

  This document registers new attribute names in SDP.

  SDP Attribute ("att-field"):
       Attribute name:     fec-source-flow
       Long form:          Pointer to FEC Source Flow
       Type of name:       att-field
       Type of attribute:  Media level
       Subject to charset: No
       Purpose:            Provide parameters for a FEC source flow
       Reference:          [RFC6364]
       Values:             See [RFC6364]

  SDP Attribute ("att-field"):
       Attribute name:     fec-repair-flow
       Long form:          Pointer to FEC Repair Flow
       Type of name:       att-field
       Type of attribute:  Media level
       Subject to charset: No
       Purpose:            Provide parameters for a FEC repair flow
       Reference:          [RFC6364]
       Values:             See [RFC6364]

  SDP Attribute ("att-field"):
       Attribute name:     repair-window
       Long form:          Pointer to FEC Repair Window
       Type of name:       att-field
       Type of attribute:  Media level
       Subject to charset: No
       Purpose:            Indicate the size of the repair window
       Reference:          [RFC6364]
       Values:             See [RFC6364]

9.  Acknowledgments

  The author would like to thank the FEC Framework Design Team for
  their inputs, suggestions, and contributions.








Begen                        Standards Track                   [Page 16]

RFC 6364             SDP Elements for FEC Framework         October 2011


10.  References

10.1.  Normative References

  [RFC6363]  Watson, M., Begen, A., and V. Roca, "Forward Error
             Correction (FEC) Framework", RFC 6363, October 2011.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC4566]  Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
             Description Protocol", RFC 4566, July 2006.

  [RFC4570]  Quinn, B. and R. Finlayson, "Session Description Protocol
             (SDP) Source Filters", RFC 4570, July 2006.

  [RFC5888]  Camarillo, G. and H. Schulzrinne, "The Session Description
             Protocol (SDP) Grouping Framework", RFC 5888, June 2010.

  [RFC5956]  Begen, A., "Forward Error Correction Grouping Semantics in
             the Session Description Protocol", RFC 5956,
             September 2010.

  [RFC3890]  Westerlund, M., "A Transport Independent Bandwidth
             Modifier for the Session Description Protocol (SDP)",
             RFC 3890, September 2004.

  [RFC5234]  Crocker, D., Ed., and P. Overell, "Augmented BNF for
             Syntax Specifications: ABNF", STD 68, RFC 5234,
             January 2008.

  [RFC3264]  Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
             with Session Description Protocol (SDP)", RFC 3264,
             June 2002.

10.2.  Informative References

  [FECFRAME-CFG-SIGNAL]
             Asati, R., "Methods to convey FEC Framework Configuration
             Information", Work in Progress, September 2011.

  [RFC5939]  Andreasen, F., "Session Description Protocol (SDP)
             Capability Negotiation", RFC 5939, September 2010.








Begen                        Standards Track                   [Page 17]

RFC 6364             SDP Elements for FEC Framework         October 2011


Author's Address

  Ali Begen
  Cisco
  181 Bay Street
  Toronto, ON  M5J 2T3
  Canada

  EMail: [email protected]










































Begen                        Standards Track                   [Page 18]