Internet Engineering Task Force (IETF)                         R. Koodli
Request for Comments: 6342                                 Cisco Systems
Obsoletes: 6312                                              August 2011
Category: Informational
ISSN: 2070-1721


          Mobile Networks Considerations for IPv6 Deployment

Abstract

  Mobile Internet access from smartphones and other mobile devices is
  accelerating the exhaustion of IPv4 addresses.  IPv6 is widely seen
  as crucial for the continued operation and growth of the Internet,
  and in particular, it is critical in mobile networks.  This document
  discusses the issues that arise when deploying IPv6 in mobile
  networks.  Hence, this document can be a useful reference for service
  providers and network designers.

RFC Editor Note

  This document obsoletes RFC 6312.

  Due to a publishing error, RFC 6312 contains the incorrect RFC number
  in its header.  This document corrects that error with a new RFC
  number.  The specification herein is otherwise unchanged with respect
  to RFC 6312.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Not all documents
  approved by the IESG are a candidate for any level of Internet
  Standard; see Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc6342.








Koodli                        Informational                     [Page 1]

RFC 6342                 IPv6 in Mobile Networks             August 2011


Copyright Notice

  Copyright (c) 2011 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1. Introduction ....................................................2
  2. Reference Architecture and Terminology ..........................3
  3. IPv6 Considerations .............................................4
     3.1. IPv4 Address Exhaustion ....................................4
     3.2. NAT Placement in Mobile Networks ...........................7
     3.3. IPv6-Only Deployment Considerations .......................10
     3.4. Fixed-Mobile Convergence ..................................13
  4. Summary and Conclusion .........................................14
  5. Security Considerations ........................................16
  6. Acknowledgements ...............................................16
  7. Informative References .........................................16

1.  Introduction

  The dramatic growth of the Mobile Internet is accelerating the
  exhaustion of the available IPv4 addresses.  It is widely accepted
  that IPv6 is necessary for the continued operation and growth of the
  Internet in general and of the Mobile Internet in particular.  While
  IPv6 brings many benefits, certain unique challenges arise when
  deploying it in mobile networks.  This document describes such
  challenges and outlines the applicability of the existing IPv6
  deployment solutions.  As such, it can be a useful reference document
  for service providers as well as network designers.  This document
  does not propose any new protocols or suggest new protocol
  specification work.

  The primary considerations that we address in this document on IPv6
  deployment in mobile networks are:

  o  Public and Private IPv4 address exhaustion and implications to
     mobile network deployment architecture;



Koodli                        Informational                     [Page 2]

RFC 6342                 IPv6 in Mobile Networks             August 2011


  o  Placement of Network Address Translation (NAT) functionality and
     its implications;

  o  IPv6-only deployment considerations and roaming implications; and

  o  Fixed-Mobile Convergence and implications to overall architecture.

  In the following sections, we discuss each of these in detail.

  For the most part, we assume the Third Generation Partnership Project
  (3GPP) 3G and 4G network architectures specified in [3GPP.3G] and
  [3GPP.4G].  However, the considerations are general enough for other
  mobile network architectures as well [3GPP2.EHRPD].

2.  Reference Architecture and Terminology

  The following is a reference architecture of a mobile network.

                               +-----+    +-----+
                               | AAA |    | PCRF|
                               +-----+    +-----+
             Home Network         \          /
                                   \        /                       /-
                                    \      /                       / I
 MN     BS                           \    /                       /  n
  |     /\    +-----+ /-----------\ +-----+ /-----------\ +----+ /   t
+-+    /_ \---| ANG |/ Operator's  \| MNG |/ Operator's  \| BR |/    e
| |---/    \  +-----+\ IP Network  /+-----+\ IP Network  /+----+\    r
+-+                   \-----------/    /    \-----------/        \   n
                      ----------------/------                     \  e
                    Visited Network  /                             \ t
                                    /                               \-
        +-----+ /------------------\
        | ANG |/ Visited Operator's \
        +-----+\     IP Network     /
                \------------------/

                 Figure 1: Mobile Network Architecture

  A Mobile Node (MN) connects to the mobile network either via its Home
  Network or via a Visited Network when the user is roaming outside of
  the Home Network.  In the 3GPP network architecture, an MN accesses
  the network by connecting to an Access Point Name (APN), which maps
  to a mobile gateway.  Roughly speaking, an APN is similar to a
  Service Set Identifier (SSID) in wireless LAN.  An APN is a logical
  concept that can be used to specify what kinds of services, such as
  Internet access, high-definition video streaming, content-rich
  gaming, and so on, that an MN is entitled to.  Each APN can specify



Koodli                        Informational                     [Page 3]

RFC 6342                 IPv6 in Mobile Networks             August 2011


  what type of IP connectivity (i.e., IPv4, IPv6, IPv4v6) is enabled on
  that particular APN.

  While an APN directs an MN to an appropriate gateway, the MN needs an
  end-to-end "link" to that gateway.  In the Long-Term Evolution (LTE)
  networks, this link is realized through an Evolved Packet System
  (EPS) bearer.  In the 3G Universal Mobile Telecommunications System
  (UMTS) networks, such a link is realized through a Packet Data
  Protocol (PDP) context.  The end-to-end link traverses multiple
  nodes, which are defined below:

  o  Base Station (BS): The radio Base Station provides wireless
     connectivity to the MN.

  o  Access Network Gateway (ANG): The ANG forwards IP packets to and
     from the MN.  Typically, this is not the MN's default router, and
     the ANG does not perform IP address allocation and management for
     the mobile nodes.  The ANG is located either in the Home Network
     or in the Visited Network.

  o  The Mobile Network Gateway (MNG): The MNG is the MN's default
     router, which provides IP address management.  The MNG performs
     functions such as offering Quality of Service (QoS), applying
     subscriber-specific policy, and enabling billing and accounting;
     these functions are sometimes collectively referred to as
     "subscriber-management" operations.  The mobile network
     architecture, as shown in Figure 1, defines the necessary protocol
     interfaces to enable subscriber-management operations.  The MNG is
     typically located in the Home Network.

  o  Border Router (BR): As the name implies, a BR borders the Internet
     for the mobile network.  The BR does not perform subscriber
     management for the mobile network.

  o  Authentication, Authorization, and Accounting (AAA): The general
     functionality of AAA is used for subscriber authentication and
     authorization for services as well as for generating billing and
     accounting information.

     In 3GPP network environments, the subscriber authentication and
     the subsequent authorization for connectivity and services is
     provided using the "Home Location Register" (HLR) / "Home
     Subscriber Server" (HSS) functionality.

  o  Policy and Charging Rule Function (PCRF): The PCRF enables
     applying policy and charging rules at the MNG.





Koodli                        Informational                     [Page 4]

RFC 6342                 IPv6 in Mobile Networks             August 2011


  In the rest of this document, we use the terms "operator", "service
  provider", and "provider" interchangeably.

3.  IPv6 Considerations

3.1.  IPv4 Address Exhaustion

  It is generally agreed that the pool of public IPv4 addresses is
  nearing its exhaustion.  The IANA has exhausted the available '/8'
  blocks for allocation to the Regional Internet Registries (RIRs).
  The RIRs themselves have either "run out" of their blocks or are
  projected to exhaust them in the near future.  This has led to a
  heightened awareness among service providers to consider introducing
  technologies to keep the Internet operational.  For providers, there
  are two simultaneous approaches to addressing the run-out problem:
  delaying the IPv4 address pool exhaustion (i.e., conserving their
  existing pool) and introducing IPv6 in operational networks.  We
  consider both in the following.

  Delaying public IPv4 address exhaustion for providers involves
  assigning private IPv4 addressing for end-users or extending an IPv4
  address with the use of port ranges, which requires tunneling and
  additional signaling.  A mechanism such as the Network Address
  Translator (NAT) is used at the provider premises (as opposed to
  customer premises) to manage the private IP address assignment and
  access to the Internet.  In the following, we primarily focus on
  translation-based mechanisms such as NAT44 (i.e., translation from
  public IPv4 to private IPv4 and vice versa) and NAT64 (i.e.,
  translation from public IPv6 to public IPv4 and vice versa).  We do
  this because the 3GPP architecture already defines a tunneling
  infrastructure with the General Packet Radio Service (GPRS) Tunneling
  Protocol (GTP), and the architecture allows for dual-stack and
  IPv6-only deployments.

  In a mobile network, the IPv4 address assignment for an MN is
  performed by the MNG.  In the 3GPP network architecture, this
  assignment is performed in conjunction with the Packet Data Network
  (PDN) connectivity establishment.  A PDN connection implies an end-
  end link (i.e., an EPS bearer in 4G LTE or a PDP context in 3G UMTS)
  from the MN to the MNG.  There can be one or more PDN connections
  active at any given time for each MN.  A PDN connection may support
  both IPv4 and IPv6 traffic (as in a dual-stack PDN in 4G LTE
  networks), or it may support only one of the two traffic types (as in
  the existing 3G UMTS networks).  The IPv4 address is assigned at the
  time of PDN connectivity establishment or is assigned using DHCP
  after the PDN connectivity is established.  In order to delay the
  exhaustion of public IPv4 addresses, this IP address needs to be a
  private IPv4 address that is translated into a shared public IPv4



Koodli                        Informational                     [Page 5]

RFC 6342                 IPv6 in Mobile Networks             August 2011


  address.  Hence, there is a need for a private-public IPv4
  translation mechanism in the mobile network.

  In the Long-Term Evolution (LTE) 4G network, there is a requirement
  for an always-on PDN connection in order to reliably reach a mobile
  user in the All-IP network.  This requirement is due to the need for
  supporting Voice over IP service in LTE, which does not have circuit-
  based infrastructure.  If this PDN connection were to use IPv4
  addressing, a private IPv4 address is needed for every MN that
  attaches to the network.  This could significantly affect the
  availability and usage of private IPv4 addresses.  One way to address
  this is by making the always-on PDN (that requires voice service) to
  be IPv6.  The IPv4 PDN is only established when the user needs it.

  The 3GPP standards also specify a deferred IPv4 address allocation on
  a dual-stack IPv4v6 PDN at the time of connection establishment.
  This has the advantage of a single PDN for IPv6 and IPv4 along with
  deferring IPv4 address allocation until an application needs it.  The
  deferred address allocation requires support for a dynamic
  configuration protocol such as DHCP as well as appropriate triggers
  to invoke the protocol.  Such a support does not exist today in
  mobile phones.  The newer iterations of smartphones could provide
  such support.  Also, the tethering of smartphones to laptops (which
  typically support DHCP) could use deferred allocation depending on
  when a laptop attaches to the smartphone.  Until appropriate triggers
  and host stack support is available, the applicability of the
  address-deferring option may be limited.

  On the other hand, in the existing 3G UMTS networks, there is no
  requirement for an always-on connection even though many smartphones
  seldom relinquish an established PDP context.  The existing so-called
  pre-Release-8 deployments do not support the dual-stack PDP
  connection.  Hence, two separate PDP connections are necessary to
  support IPv4 and IPv6 traffic.  Even though some MNs, especially the
  smartphones, in use today may have IPv6 stack, there are two
  remaining considerations.  First, there is little operational
  experience and compliance testing with these existing stacks.  Hence,
  it is expected that their use in large deployments may uncover
  software errors and interoperability problems that inhibit providing
  services based on IPv6 for such hosts.  Second, only a fraction of
  current phones in use have such a stack.  As a result, providers need
  to test, deploy, and operationalize IPv6 as they introduce new
  handsets, which also continue to need access to the predominantly
  IPv4 Internet.

  The considerations from the preceeding paragraphs lead to the
  following observations.  First, there is an increasing need to
  support private IPv4 addressing in mobile networks because of the



Koodli                        Informational                     [Page 6]

RFC 6342                 IPv6 in Mobile Networks             August 2011


  public IPv4 address run-out problem.  Correspondingly, there is a
  greater need for private-public IPv4 translation in mobile networks.
  Second, there is support for IPv6 in both 3G and 4G LTE networks
  already in the form of PDP context and PDN connections.  To begin
  with, operators can introduce IPv6 for their own applications and
  services.  In other words, the IETF's recommended model of dual-stack
  IPv6 and IPv4 networks is readily applicable to mobile networks with
  the support for distinct APNs and the ability to carry IPv6 traffic
  on PDP/PDN connections.  The IETF dual-stack model can be applied
  using a single IPv4v6 PDN connection in Release-8 and onwards but
  requires separate PDP contexts in the earlier releases.  Finally,
  operators can make IPv6 the default for always-on mobile connections
  using either the IPv4v6 PDN or the IPv6 PDN and use IPv4 PDNs as
  necessary.

3.2.  NAT Placement in Mobile Networks

  In the previous section, we observed that NAT44 functionality is
  needed in order to conserve the available pool and delay public IPv4
  address exhaustion.  However, the available private IPv4 pool itself
  is not abundant for large networks such as mobile networks.  For
  instance, the so-called NET10 block [RFC1918] has approximately 16.7
  million private IPv4 addresses starting with 10.0.0.0.  A large
  mobile service provider network can easily have more than 16.7
  million subscribers attached to the network at a given time.  Hence,
  the private IPv4 address pool management and the placement of NAT44
  functionality becomes important.

  In addition to the developments cited above, NAT placement is
  important for other reasons as well.  Access networks generally need
  to produce network and service usage records for billing and
  accounting.  This is true also for mobile networks where "subscriber
  management" features (i.e., QoS, Policy, and Billing and Accounting)
  can be fairly detailed.  Since a NAT introduces a binding between two
  addresses, the bindings themselves become necessary information for
  subscriber management.  For instance, the offered QoS on private IPv4
  address and the (shared) public IPv4 address may need to be
  correlated for accounting purposes.  As another example, the
  Application Servers within the provider network may need to treat
  traffic based on policy provided by the PCRF.  If the IP address seen
  by these Application Servers is not unique, the PCRF needs to be able
  to inspect the NAT binding to disambiguate among the individual MNs.
  The subscriber session management information and the service usage
  information also need to be correlated in order to produce harmonized
  records.  Furthermore, there may be legal requirements for storing
  the NAT binding records.  Indeed, these problems disappear with the





Koodli                        Informational                     [Page 7]

RFC 6342                 IPv6 in Mobile Networks             August 2011


  transition to IPv6.  For now, it suffices to assert that NAT
  introduces state, which needs to be correlated and possibly stored
  with other routine subscriber information.

  Mobile network deployments vary in their allocation of IP address
  pools.  Some network deployments use the "centralized model" where
  the pool is managed by a common node, such as the PDN's BR, and the
  pool shared by multiple MNGs all attached to the same BR.  This model
  has served well in the pre-3G deployments where the number of
  subscribers accessing the Mobile Internet at any given time has not
  exceeded the available address pool.  However, with the advent of 3G
  networks and the subsequent dramatic growth in the number of users on
  the Mobile Internet, service providers are increasingly forced to
  consider their existing network design and choices.  Specifically,
  providers are forced to address private IPv4 pool exhaustion as well
  as scalable NAT solutions.

  In order to tackle the private IPv4 exhaustion in the centralized
  model, there would be a need to support overlapped private IPv4
  addresses in the common NAT functionality as well as in each of the
  gateways.  In other words, the IP addresses used by two or more MNs
  (which may be attached to the same MNG) are very likely to overlap at
  the centralized NAT, which needs to be able to differentiate traffic.
  Tunneling mechanisms such as Generic Routing Encapsulation (GRE)
  [RFC2784] [RFC2890], MPLS [RFC3031] VPN tunnels, or even IP-in-IP
  encapsulation [RFC2003] that can provide a unique identifier for a
  NAT session can be used to separate overlapping private IPv4 traffic
  as described in [GI-DS-LITE].  An advantage of centralizing the NAT
  and using the overlapped private IPv4 addressing is conserving the
  limited private IPv4 pool.  It also enables the operator's enterprise
  network to use IPv6 from the MNG to the BR; this (i.e., the need for
  an IPv6-routed enterprise network) may be viewed as an additional
  requirement by some providers.  The disadvantages include the need
  for additional protocols to correlate the NAT state (at the common
  node) with subscriber session information (at each of the gateways),
  suboptimal MN-MN communication, absence of subscriber-aware NAT (and
  policy) function, and, of course, the need for a protocol from the
  MNG to BR itself.  Also, if the NAT function were to experience
  failure, all the connected gateway service will be affected.  These
  drawbacks are not present in the "distributed" model, which we
  discuss in the following.

  In a distributed model, the private IPv4 address management is
  performed by the MNG, which also performs the NAT functionality.  In
  this model, each MNG has a block of 16.7 million unique addresses,
  which is sufficient compared to the number of mobile subscribers
  active on each MNG.  By distributing the NAT functionality to the
  edge of the network, each MNG is allowed to reuse the available NET10



Koodli                        Informational                     [Page 8]

RFC 6342                 IPv6 in Mobile Networks             August 2011


  block, which avoids the problem of overlapped private IPv4 addressing
  at the network core.  In addition, since the MNG is where subscriber
  management functions are located, the NAT state correlation is
  readily enabled.  Furthermore, an MNG already has existing interfaces
  to functions such as AAA and PCRF, which allows it to perform
  subscriber management functions with the unique private IPv4
  addresses.  Finally, the MNG can also pass-through certain traffic
  types without performing NAT to the Application Servers located
  within the service provider's domain, which allows the servers to
  also identify subscriber sessions with unique private IPv4 addresses.
  The disadvantages of the "distributed model" include the absence of
  centralized addressing and centralized management of NAT.

  In addition to the two models described above, a hybrid model is to
  locate NAT in a dedicated device other than the MNG or the BR.  Such
  a model would be similar to the distributed model if the IP pool
  supports unique private addressing for the mobile nodes, or it would
  be similar to the centralized model if it supports overlapped private
  IP addresses.  In any case, the NAT device has to be able to provide
  the necessary NAT session binding information to an external entity
  (such as AAA or PCRF), which then needs to be able to correlate those
  records with the user's session state present at the MNG.

  The foregoing discussion can be summarized as follows.  First, the
  management of the available private IPv4 pool has become important
  given the increase in Mobile Internet users.  Mechanisms that enable
  reuse of the available pool are required.  Second, in the context of
  private IPv4 pool management, the placement of NAT functionality has
  implications to the network deployment and operations.  The
  centralized models with a common NAT have the advantages of
  continuing their legacy deployments and the reuse of private IPv4
  addressing.  However, they need additional functions to enable
  traffic differentiation and NAT state correlation with subscriber
  state management at the MNG.  The distributed models also achieve
  private IPv4 address reuse and avoid overlapping private IPv4 traffic
  in the operator's core, but without the need for additional
  mechanisms.  Since the MNG performs (unique) IPv4 address assignment
  and has standard interfaces to AAA and PCRF, the distributed model
  also enables a single point for subscriber and NAT state reporting as
  well as policy application.  In summary, providers interested in
  readily integrating NAT with other subscriber management functions,
  as well as conserving and reusing their private IPv4 pool, may find
  the distributed model compelling.  On the other hand, those providers
  interested in common management of NAT may find the centralized model
  more compelling.






Koodli                        Informational                     [Page 9]

RFC 6342                 IPv6 in Mobile Networks             August 2011


3.3.  IPv6-Only Deployment Considerations

  As we observed in the previous section, the presence of NAT
  functionality in the network brings up multiple issues that would
  otherwise be absent.  NAT should be viewed as an interim solution
  until IPv6 is widely available, i.e., IPv6 is available for mobile
  users for all (or most) practical purposes.  Whereas NATs at provider
  premises may slow down the exhaustion of public IPv4 addresses,
  expeditious and simultaneous introduction of IPv6 in the operational
  networks is necessary to keep the Internet "going and growing".
  Towards this goal, it is important to understand the considerations
  in deploying IPv6-only networks.

  There are three dimensions to IPv6-only deployments: the network
  itself, the mobile nodes, and the applications, represented by the
  3-tuple {nw, mn, ap}.  The goal is to reach the coordinate {IPv6,
  IPv6, IPv6} from {IPv4, IPv4, IPv4}.  However, there are multiple
  paths to arrive at this goal.  The classic dual-stack model would
  traverse the coordinate {IPv4v6, IPv4v6, IPv4v6}, where each
  dimension supports co-existence of IPv4 and IPv6.  This appears to be
  the path of least disruption, although we are faced with the
  implications of supporting large-scale NAT in the network.  There is
  also the cost of supporting separate PDP contexts in the existing 3G
  UMTS networks.  The other intermediate coordinate of interest is
  {IPv6, IPv6, IPv4}, where the network and the MN are IPv6-only, and
  the Internet applications are recognized to be predominantly IPv4.
  This transition path would, ironically, require interworking between
  IPv6 and IPv4 in order for the IPv6-only MNs to be able to access
  IPv4 services and applications on the Internet.  In other words, in
  order to disengage NAT (for IPv4-IPv4), we need to introduce another
  form of NAT (i.e., IPv6-IPv4) to expedite the adoption of IPv6.

  It is interesting to consider the preceeding discussion surrounding
  the placement of NAT for IPv6-IPv4 interworking.  There is no
  overlapping private IPv4 address problem because each IPv6 address is
  unique and there are plenty of them available.  Hence, there is also
  no requirement for (IPv6) address reuse, which means no protocol is
  necessary in the centralized model to disambiguate NAT sessions.
  However, there is an additional requirement of DNS64 [RFC6147]
  functionality for IPv6-IPv4 translation.  This DNS64 functionality
  must ensure that the synthesized AAAA record correctly maps to the
  IPv6-IPv4 translator.

  IPv6-only deployments in mobile networks need to reckon with the
  following considerations.  First, both the network and the MNs need
  to be IPv6 capable.  Expedited network upgrades as well as rollout of
  MNs with IPv6 would greatly facilitate this.  Fortunately, the 3GPP
  network design for LTE already requires the network nodes and the



Koodli                        Informational                    [Page 10]

RFC 6342                 IPv6 in Mobile Networks             August 2011


  mobile nodes to support IPv6.  Even though there are no requirements
  for the transport network to be IPv6, an operational IPv6
  connectivity service can be deployed with appropriate existing
  tunneling mechanisms in the IPv4-only transport network.  Hence, a
  service provider may choose to enforce IPv6-only PDN and address
  assignment for their own subscribers in their Home Networks (see
  Figure 1).  This is feasible for the newer MNs when the mobile
  network is able to provide IPv6-only PDN support and IPv6-IPv4
  interworking for Internet access.  For the existing MNs, however, the
  provider still needs to be able to support IPv4-only PDP/PDN
  connectivity.

  Migration of applications to IPv6 in MNs with IPv6-only PDN
  connectivity brings challenges.  The applications and services
  offered by the provider obviously need to be IPv6-capable.  However,
  an MN may host other applications, which also need to be IPv6-capable
  in IPv6-only deployments.  This can be a "long-tail" phenomenon;
  however, when a few prominent applications start offering IPv6, there
  can be a strong incentive to provide application-layer (e.g., socket
  interface) upgrades to IPv6.  Also, some IPv4-only applications may
  be able to make use of alternative access such as WiFi when
  available.  A related challenge in the migration of applications is
  the use of IPv4 literals in application layer protocols (such as
  XMPP) or content (as in HTML or XML).  Some Internet applications
  expect their clients to supply IPv4 addresses as literals, and this
  will not be possible with IPv6-only deployments.  Some of these
  experiences and the related considerations in deploying an IPv6-only
  network are documented in [ARKKO-V6].  In summary, migration of
  applications to IPv6 needs to be done, and such a migration is not
  expected to be uniform across all subsets of existing applications.

  Voice over LTE (VoLTE) also brings some unique challenges.  The
  signaling for voice is generally expected to be available for free
  while the actual voice call itself is typically charged on its
  duration.  Such a separation of signaling and the payload is unique
  to voice, whereas an Internet connection is accounted without
  specifically considering application signaling and payload traffic.
  This model is expected to be supported even during roaming.
  Furthermore, providers and users generally require voice service
  regardless of roaming, whereas Internet usage is subject to
  subscriber preferences and roaming agreements.  This requirement to
  ubiquitously support voice service while providing the flexibility
  for Internet usage exacerbates the addressing problem and may hasten
  provisioning of VoLTE using the IPv6-only PDN.

  As seen earlier, roaming is unique to mobile networks, and it
  introduces new challenges.  Service providers can control their own
  network design but not their peers' networks, which they rely on for



Koodli                        Informational                    [Page 11]

RFC 6342                 IPv6 in Mobile Networks             August 2011


  roaming.  Users expect uniformity in experience even when they are
  roaming.  This imposes a constraint on providers interested in
  IPv6-only deployments to also support IPv4 addressing when their own
  (outbound) subscribers roam to networks that do not offer IPv6.  For
  instance, when an LTE deployment is IPv6-only, a roamed 3G network
  may not offer IPv6 PDN connectivity.  Since a PDN connection involves
  the radio base station, the ANG, and the MNG (see Figure 1), it would
  not be possible to enable IPv6 PDN connectivity without roamed
  network support.  These considerations also apply when the visited
  network is used for offering services such as VoLTE in the so-called
  Local Breakout model; the roaming MN's capability as well as the
  roamed network capability to support VoLTE using IPv6 determine
  whether fallback to IPv4 would be necessary.  Similarly, there are
  inbound roamers to an IPv6-ready provider network whose MNs are not
  capable of IPv6.  The IPv6-ready provider network has to be able to
  support IPv4 PDN connectivity for such inbound roamers.  There are
  encouraging signs that the existing deployed network nodes in the
  3GPP architecture already provide support for IPv6 PDP context.  It
  would be necessary to scale this support for a (very) large number of
  mobile users and offer it as a ubiquitous service that can be
  accounted for.

  In summary, IPv6-only deployments should be encouraged alongside the
  dual-stack model, which is the recommended IETF approach.  This is
  relatively straightforward for an operator's own services and
  applications, provisioned through an appropriate APN and the
  corresponding IPv6-only PDP or EPS bearer.  Some providers may
  consider IPv6-only deployment for Internet access as well, and this
  would require IPv6-IPv4 interworking.  When the IPv6-IPv4 translation
  mechanisms are used in IPv6-only deployments, the protocols and the
  associated considerations specified in [RFC6146] and [RFC6145] apply.
  Finally, such IPv6-only deployments can be phased-in for newer mobile
  nodes, while the existing ones continue to demand IPv4-only
  connectivity.

  Roaming is important in mobile networks, and roaming introduces
  diversity in network deployments.  Until IPv6 connectivity is
  available in all mobile networks, IPv6-only mobile network
  deployments need to be prepared to support IPv4 connectivity (and
  NAT44) for their own outbound roaming users as well as for inbound
  roaming users.  However, by taking the initiative to introduce IPv6-
  only for the newer MNs, the mobile networks can significantly reduce
  the demand for private IPv4 addresses.








Koodli                        Informational                    [Page 12]

RFC 6342                 IPv6 in Mobile Networks             August 2011


3.4.  Fixed-Mobile Convergence

  Many service providers have both fixed broadband and mobile networks.
  Access networks are generally disparate, with some common
  characteristics but with enough differences to make it challenging to
  achieve "convergence".  For instance, roaming is not a consideration
  in fixed access networks.  An All-IP mobile network service provider
  is required to provide voice service, whereas this is not required
  for a fixed network provider.  A "link" in fixed networks is
  generally capable of carrying IPv6 and IPv4 traffic, whereas not all
  mobile networks have "links" (i.e., PDP/PDN connections) capable of
  supporting IPv6 and IPv4.  Indeed, roaming makes this problem worse
  when a portion of the link (i.e., the Home Network in Figure 1) is
  capable of supporting IPv6 and the other portion of the link (i.e.,
  the Visited Network in Figure 1) is not.  Such architectural
  differences, as well as policy and business model differences make
  convergence challenging.

  Nevertheless, within the same provider's space, some common
  considerations may apply.  For instance, IPv4 address management is a
  common concern for both of the access networks.  This implies that
  the same mechanisms discussed earlier, i.e., delaying IPv4 address
  exhaustion and introducing IPv6 in operational networks, apply for
  the converged networks as well.  However, the exact solutions
  deployed for each access network can vary for a variety of reasons,
  such as:

  o  Tunneling of private IPv4 packets within IPv6 is feasible in fixed
     networks where the endpoint is often a cable or DSL modem.  This
     is not the case in mobile networks where the endpoint is an MN
     itself.

  o  Encapsulation-based mechanisms such as 6rd [RFC5969] are useful
     where the operator is unable to provide native or direct IPv6
     connectivity and a residential gateway can become a tunnel
     endpoint for providing this service.  In mobile networks, the
     operator could provide IPv6 connectivity using the existing mobile
     network tunneling mechanisms without introducing an additional
     layer of tunneling.

  o  A mobile network provider may have Application Servers (e.g., an
     email server) in its network that require unique private IPv4
     addresses for MN identification, whereas a fixed network provider
     may not have such a requirement or the service itself.

  These examples illustrate that the actual solutions used in an access
  network are largely determined by the requirements specific to that
  access network.  Nevertheless, some sharing between an access and



Koodli                        Informational                    [Page 13]

RFC 6342                 IPv6 in Mobile Networks             August 2011


  core network may be possible depending on the nature of the
  requirement and the functionality itself.  For example, when a fixed
  network does not require a subscriber-aware feature such as NAT, the
  functionality may be provided at a core router while the mobile
  access network continues to provide the NAT functionality at the
  mobile gateway.  If a provider chooses to offer common subscriber
  management at the MNG for both fixed and wireless networks, the MNG
  itself becomes a convergence node that needs to support the
  applicable transition mechanisms for both fixed and wireless access
  networks.

  Different access networks of a provider are more likely to share a
  common core network.  Hence, common solutions can be more easily
  applied in the core network.  For instance, configured tunnels or
  MPLS VPNs from the gateways from both mobile and fixed networks can
  be used to carry traffic to the core routers until the entire core
  network is IPv6-enabled.

  There can also be considerations due to the use of NAT in access
  networks.  Solutions such as Femto Networks rely on a fixed Internet
  connection being available for the Femto Base Station to communicate
  with its peer on the mobile network, typically via an IPsec tunnel.
  When the Femto Base Station needs to use a private IPv4 address, the
  mobile network access through the Femto Base Station will be subject
  to NAT policy administration including periodic cleanup and purge of
  NAT state.  Such policies affect the usability of the Femto Network
  and have implications to the mobile network provider.  Using IPv6 for
  the Femto (or any other access technology) could alleviate some of
  these concerns if the IPv6 communication could bypass the NAT.

  In summary, there is interest in Fixed-Mobile Convergence, at least
  among some providers.  While there are benefits to harmonizing the
  network as much as possible, there are also idiosyncrasies of
  disparate access networks that influence the convergence.  Perhaps
  greater harmonization is feasible at the higher service layers, e.g.,
  in terms of offering unified user experience for services and
  applications.  Some harmonization of functions across access networks
  into the core network may be feasible.  A provider's core network
  appears to be the place where most convergence is feasible.

4.  Summary and Conclusion

  IPv6 deployment in mobile networks is crucial for the Mobile
  Internet.  In this document, we discussed the considerations in
  deploying IPv6 in mobile networks.  We summarize the discussion in
  the following:





Koodli                        Informational                    [Page 14]

RFC 6342                 IPv6 in Mobile Networks             August 2011


  o  IPv4 address exhaustion and its implications to mobile networks:
     As mobile service providers begin to deploy IPv6, conserving their
     available IPv4 pool implies the need for network address
     translation in mobile networks.  At the same time, providers can
     make use of the 3GPP architecture constructs such as APN and PDN
     connectivity to introduce IPv6 without affecting the predominantly
     IPv4 Internet access.  The IETF dual-stack model [RFC4213] can be
     applied to the mobile networks readily.

  o  The placement of NAT functionality in mobile networks: Both the
     centralized and distributed models of private IPv4 address pool
     management have their relative merits.  By enabling each MNG to
     manage its own NET10 pool, the distributed model achieves reuse of
     the available private IPv4 pool and avoids the problems associated
     with the non-unique private IPv4 addresses for the MNs without
     additional protocol mechanisms.  The distributed model also
     augments the "subscriber management" functions at an MNG, such as
     readily enabling NAT session correlation with the rest of the
     subscriber session state.  On the other hand, existing deployments
     that have used the centralized IP address management can continue
     their legacy architecture by placing the NAT at a common node.
     The centralized model also achieves private IPv4 address reuse but
     needs additional protocol extensions to differentiate overlapping
     addresses at the common NAT as well as to integrate with policy
     and billing infrastructure.

  o  IPv6-only mobile network deployments: This deployment model is
     feasible in the LTE architecture for an operator's own services
     and applications.  The existing MNs still expect IPv4 address
     assignment.  Furthermore, roaming, which is unique to mobile
     networks, requires that a provider support IPv4 connectivity when
     its (outbound) users roam into a mobile network that is not IPv6-
     enabled.  Similarly, a provider needs to support IPv4 connectivity
     for (inbound) users whose MNs are not IPv6-capable.  The IPv6-IPv4
     interworking is necessary for IPv6-only MNs to access the IPv4
     Internet.

  o  Fixed-Mobile Convergence: The examples discussed illustrate the
     differences in the requirements of fixed and mobile networks.
     While some harmonization of functions may be possible across the
     access networks, the service provider's core network is perhaps
     better-suited for converged network architecture.  Similar gains
     in convergence are feasible in the service and application layers.








Koodli                        Informational                    [Page 15]

RFC 6342                 IPv6 in Mobile Networks             August 2011


5.  Security Considerations

  This document does not introduce any new security vulnerabilities.

6.  Acknowledgements

  This document has benefitted from discussions with and reviews from
  Cameron Byrne, David Crowe, Hui Deng, Remi Despres, Fredrik Garneij,
  Jouni Korhonen, Teemu Savolainen, and Dan Wing.  Thanks to all of
  them.  Many thanks to Mohamed Boucadair for providing an extensive
  review of a draft version of this document.  Cameron Byrne, Kent
  Leung, Kathleen Moriarty, and Jari Arkko provided reviews that helped
  improve this document.  Thanks to Nick Heatley for providing valuable
  review and input on VoLTE.

7.  Informative References

  [3GPP.3G]     "General Packet Radio Service (GPRS); Service
                description; Stage 2, 3GPP TS 23.060, December 2006".

  [3GPP.4G]     "General Packet Radio Service (GPRS) enhancements for
                Evolved Universal Terrestrial Radio Access Network
                (E-UTRAN) access", 3GPP TS 23.401 8.8.0, December 2009.

  [3GPP2.EHRPD] "E-UTRAN - eHRPD Connectivity and Interworking: Core
                Network Aspects", http://www.3gpp2.org/public_html/
                Specs/X.S0057-0_v1.0_090406.pdf.

  [RFC1918]     Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot,
                G., and E. Lear, "Address Allocation for Private
                Internets", BCP 5, RFC 1918, February 1996.

  [RFC2003]     Perkins, C., "IP Encapsulation within IP", RFC 2003,
                October 1996.

  [RFC2784]     Farinacci, D., Li, T., Hanks, S., Meyer, D., and P.
                Traina, "Generic Routing Encapsulation (GRE)", RFC
                2784, March 2000.

  [RFC2890]     Dommety, G., "Key and Sequence Number Extensions to
                GRE", RFC 2890, September 2000.

  [RFC3031]     Rosen, E., Viswanathan, A., and R. Callon,
                "Multiprotocol Label Switching Architecture", RFC 3031,
                January 2001.






Koodli                        Informational                    [Page 16]

RFC 6342                 IPv6 in Mobile Networks             August 2011


  [RFC4213]     Nordmark, E. and R. Gilligan, "Basic Transition
                Mechanisms for IPv6 Hosts and Routers", RFC 4213,
                October 2005.

  [RFC5969]     Townsley, W. and O. Troan, "IPv6 Rapid Deployment on
                IPv4 Infrastructures (6rd) -- Protocol Specification",
                RFC 5969, August 2010.

  [RFC6145]     Li, X., Bao, C., and F. Baker, "IP/ICMP Translation
                Algorithm", RFC 6145, April 2011.

  [RFC6146]     Bagnulo, M., Matthews, P., and I. van Beijnum,
                "Stateful NAT64: Network Address and Protocol
                Translation from IPv6 Clients to IPv4 Servers", RFC
                6146, April 2011.

  [RFC6147]     Bagnulo, M., Sullivan, A., Matthews, P., and I. van
                Beijnum, "DNS64: DNS Extensions for Network Address
                Translation from IPv6 Clients to IPv4 Servers", RFC
                6147, April 2011.

  [ARKKO-V6]    Arkko, J. and A. Keranen, "Experiences from an
                IPv6-Only Network", Work in Progress, April 2011.

  [GI-DS-LITE]  Brockners, F., Gundavelli, S., Speicher, S., and D.
                Ward, "Gateway Initiated Dual-Stack Lite Deployment",
                Work in Progress, July 2011.

Author's Address

  Rajeev Koodli
  Cisco Systems
  USA

  EMail: [email protected]
















Koodli                        Informational                    [Page 17]