Internet Engineering Task Force (IETF)                         A. Durand
Request for Comments: 6333                              Juniper Networks
Category: Standards Track                                       R. Droms
ISSN: 2070-1721                                                    Cisco
                                                            J. Woodyatt
                                                                  Apple
                                                                 Y. Lee
                                                                Comcast
                                                            August 2011


   Dual-Stack Lite Broadband Deployments Following IPv4 Exhaustion

Abstract

  This document revisits the dual-stack model and introduces the Dual-
  Stack Lite technology aimed at better aligning the costs and benefits
  of deploying IPv6 in service provider networks.  Dual-Stack Lite
  enables a broadband service provider to share IPv4 addresses among
  customers by combining two well-known technologies: IP in IP (IPv4-
  in-IPv6) and Network Address Translation (NAT).

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc6333.
















Durand, et al.               Standards Track                    [Page 1]

RFC 6333                     Dual-Stack Lite                 August 2011


Copyright Notice

  Copyright (c) 2011 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1. Introduction ....................................................3
  2. Requirements Language ...........................................4
  3. Terminology .....................................................4
  4. Deployment Scenarios ............................................4
     4.1. Access Model ...............................................4
     4.2. CPE ........................................................5
     4.3. Directly Connected Device ..................................6
  5. B4 Element ......................................................7
     5.1. Definition .................................................7
     5.2. Encapsulation ..............................................7
     5.3. Fragmentation and Reassembly ...............................7
     5.4. AFTR Discovery .............................................7
     5.5. DNS ........................................................8
     5.6. Interface Initialization ...................................8
     5.7. Well-Known IPv4 Address ....................................8
  6. AFTR Element ....................................................9
     6.1. Definition .................................................9
     6.2. Encapsulation ..............................................9
     6.3. Fragmentation and Reassembly ...............................9
     6.4. DNS .......................................................10
     6.5. Well-Known IPv4 Address ...................................10
     6.6. Extended Binding Table ....................................10
  7. Network Considerations .........................................10
     7.1. Tunneling .................................................10
     7.2. Multicast Considerations ..................................10
  8. NAT Considerations .............................................11
     8.1. NAT Pool ..................................................11
     8.2. NAT Conformance ...........................................11
     8.3. Application Level Gateways (ALGs) .........................11
     8.4. Sharing Global IPv4 Addresses .............................11
     8.5. Port Forwarding / Keep Alive ..............................11



Durand, et al.               Standards Track                    [Page 2]

RFC 6333                     Dual-Stack Lite                 August 2011


  9. Acknowledgements ...............................................12
  10. IANA Considerations ...........................................12
  11. Security Considerations .......................................12
  12. References ....................................................13
     12.1. Normative References .....................................13
     12.2. Informative References ...................................14
  Appendix A. Deployment Considerations .............................16
    A.1. AFTR Service Distribution and Horizontal Scaling ...........16
    A.2. Horizontal Scaling .........................................16
    A.3. High Availability ..........................................16
    A.4. Logging ....................................................16
  Appendix B. Examples ..............................................17
    B.1. Gateway-Based Architecture .................................17
      B.1.1. Example Message Flow ...................................19
      B.1.2. Translation Details ....................................23
    B.2. Host-Based Architecture ....................................24
      B.2.1. Example Message Flow ...................................27
      B.2.2. Translation Details ....................................31

1.  Introduction

  The common thinking for more than 10 years has been that the
  transition to IPv6 will be based solely on the dual-stack model and
  that most things would be converted this way before we ran out of
  IPv4.  However, this has not happened.  The IANA free pool of IPv4
  addresses has now been depleted, well before sufficient IPv6
  deployment had taken place.  As a result, many IPv4 services have to
  continue to be provided even under severely limited address space.

  This document specifies the Dual-Stack Lite technology, which is
  aimed at better aligning the costs and benefits in service provider
  networks.  Dual-Stack Lite will enable both continued support for
  IPv4 services and incentives for the deployment of IPv6.  It also
  de-couples IPv6 deployment in the service provider network from the
  rest of the Internet, making incremental deployment easier.

  Dual-Stack Lite enables a broadband service provider to share IPv4
  addresses among customers by combining two well-known technologies:
  IP in IP (IPv4-in-IPv6) and Network Address Translation (NAT).

  This document makes a distinction between a dual-stack-capable and a
  dual-stack-provisioned device.  The former is a device that has code
  that implements both IPv4 and IPv6, from the network layer to the
  applications.  The latter is a similar device that has been
  provisioned with both an IPv4 and an IPv6 address on its
  interface(s).  This document will also further refine this notion by
  distinguishing between interfaces provisioned directly by the service
  provider from those provisioned by the customer.



Durand, et al.               Standards Track                    [Page 3]

RFC 6333                     Dual-Stack Lite                 August 2011


  Pure IPv6-only devices (i.e., devices that do not include an IPv4
  stack) are outside of the scope of this document.

  This document will first present some deployment scenarios and then
  define the behavior of the two elements of the Dual-Stack Lite
  technology: the Basic Bridging BroadBand (B4) element and the Address
  Family Transition Router (AFTR) element.  It will then go into
  networking and NAT-ing considerations.

2.  Requirements Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [RFC2119].

3.  Terminology

  The technology described in this document is known as Dual-Stack
  Lite.  The abbreviation "DS-Lite" will be used throughout this text.

  This document also introduces two new terms: the DS-Lite Basic
  Bridging BroadBand (B4) element and the DS-Lite Address Family
  Transition Router (AFTR) element.

  Dual-stack is defined in [RFC4213].

  NAT-related terminology is defined in [RFC4787].

  CPE stands for Customer Premise Equipment.  This is the layer 3
  device in the customer premise that is connected to the service
  provider network.  That device is often a home gateway.  However,
  sometimes computers are directly attached to the service provider
  network.  In such cases, such computers can be viewed as CPEs as
  well.

4.  Deployment Scenarios

4.1.  Access Model

  Instead of relying on a cascade of NATs, the Dual-Stack Lite model is
  built on IPv4-in-IPv6 tunnels to cross the network to reach a
  carrier-grade IPv4-IPv4 NAT (the AFTR), where customers will share
  IPv4 addresses.  There are a number of benefits to this approach:

  o  This technology decouples the deployment of IPv6 in the service
     provider network (up to the customer premise equipment or CPE)
     from the deployment of IPv6 in the global Internet and in customer
     applications and devices.



Durand, et al.               Standards Track                    [Page 4]

RFC 6333                     Dual-Stack Lite                 August 2011


  o  The management of the service provider access networks is
     simplified by leveraging the large IPv6 address space.
     Overlapping private IPv4 address spaces are not required to
     support very large customer bases.

  o  As tunnels can terminate anywhere in the service provider network,
     this architecture lends itself to horizontal scaling and provides
     some flexibility to adapt to changing traffic load.  More
     discussion of horizontal scaling can be found in Appendix A.

  o  Tunnels provide a direct connection between B4 and the AFTR.  This
     can be leveraged to enable customers and their applications to
     control how the NAT function of the AFTR is performed.

  A key characteristic of this approach is that communications between
  end-nodes stay within their address family.  IPv6 sources only
  communicate with IPv6 destinations, and IPv4 sources only communicate
  with IPv4 destinations.  There is no protocol family translation
  involved in this approach.  This simplifies greatly the task of
  applications that may carry literal IP addresses in their payloads.

4.2.  CPE

  This section describes home Local Area networks characterized by the
  presence of a home gateway, or CPE, provisioned only with IPv6 by the
  service provider.

  A DS-Lite CPE is an IPv6-aware CPE with a B4 interface implemented in
  the WAN interface.

  A DS-Lite CPE SHOULD NOT operate a NAT function between an internal
  interface and a B4 interface, as the NAT function will be performed
  by the AFTR in the service provider's network.  This will avoid
  accidentally operating in a double-NAT environment.

  However, it SHOULD operate its own DHCP(v4) server handing out
  [RFC1918] address space (e.g., 192.168.0.0/16) to hosts in the home.
  It SHOULD advertise itself as the default IPv4 router to those home
  hosts.  It SHOULD also advertise itself as a DNS server in the DHCP
  Option 6 (DNS Server).  Additionally, it SHOULD operate a DNS proxy
  to accept DNS IPv4 requests from home hosts and send them using IPv6
  to the service provider DNS servers, as described in Section 5.5.









Durand, et al.               Standards Track                    [Page 5]

RFC 6333                     Dual-Stack Lite                 August 2011


  Note: If an IPv4 home host decides to use another IPv4 DNS server,
  the DS-Lite CPE will forward those DNS requests via the B4 interface,
  the same way it forwards any regular IPv4 packets.  However, each DNS
  request will create a binding in the AFTR.  A large number of DNS
  requests may have a direct impact on the AFTR's NAT table
  utilization.

  IPv6-capable devices directly reach the IPv6 Internet.  Packets
  simply follow IPv6 routing, they do not go through the tunnel, and
  they are not subject to any translation.  It is expected that most
  IPv6-capable devices will also be IPv4 capable and will simply be
  configured with an IPv4 [RFC1918]-style address within the home
  network and access the IPv4 Internet the same way as the legacy IPv4-
  only devices within the home.

  Pure IPv6-only devices (i.e., devices that do not include an IPv4
  stack) are outside of the scope of this document.

4.3.  Directly Connected Device

  In broadband home networks, some devices are directly connected to
  the broadband service provider.  They are connected straight to a
  modem, without a home gateway.  Those devices are, in fact, acting as
  CPEs.

  Under this scenario, the customer device is a dual-stack-capable host
  that is provisioned by the service provider with IPv6 only.  The
  device itself acts as a B4 element, and the IPv4 service is provided
  by an IPv4-in-IPv6 tunnel, just as in the home gateway/CPE case.
  That device can run any combinations of IPv4 and/or IPv6
  applications.

  A directly connected DS-Lite device SHOULD send its DNS requests over
  IPv6 to the IPv6 DNS server it has been configured to use.

  Similarly to the previous sections, IPv6 packets follow IPv6 routing,
  they do not go through the tunnel, and they are not subject to any
  translation.

  The support of IPv4-only devices and IPv6-only devices in this
  scenario is out of scope for this document.










Durand, et al.               Standards Track                    [Page 6]

RFC 6333                     Dual-Stack Lite                 August 2011


5.  B4 Element

5.1.  Definition

  The B4 element is a function implemented on a dual-stack-capable
  node, either a directly connected device or a CPE, that creates a
  tunnel to an AFTR.

5.2.  Encapsulation

  The tunnel is a multipoint-to-point IPv4-in-IPv6 tunnel ending on a
  service provider AFTR.

  See Section 7.1 for additional tunneling considerations.

  Note: At this point, DS-Lite only defines IPv4-in-IPv6 tunnels;
  however, other types of encapsulation could be defined in the future.

5.3.  Fragmentation and Reassembly

  Using an encapsulation (IPv4-in-IPv6 or anything else) to carry IPv4
  traffic over IPv6 will reduce the effective MTU of the datagram.
  Unfortunately, path MTU discovery [RFC1191] is not a reliable method
  to deal with this problem.

  A solution to deal with this problem is for the service provider to
  increase the MTU size of all the links between the B4 element and the
  AFTR elements by at least 40 bytes to accommodate both the IPv6
  encapsulation header and the IPv4 datagram without fragmenting the
  IPv6 packet.

  However, as not all service providers will be able to increase their
  link MTU, the B4 element MUST perform fragmentation and reassembly if
  the outgoing link MTU cannot accommodate the extra IPv6 header.  The
  original IPv4 packet is not oversized.  The packet is oversized after
  the IPv6 encapsulation.  The inner IPv4 packet MUST NOT be
  fragmented.  Fragmentation MUST happen after the encapsulation of the
  IPv6 packet.  Reassembly MUST happen before the decapsulation of the
  IPv4 packet.  A detailed procedure has been specified in [RFC2473]
  Section 7.2.

5.4.  AFTR Discovery

  In order to configure the IPv4-in-IPv6 tunnel, the B4 element needs
  the IPv6 address of the AFTR element.  This IPv6 address can be
  configured using a variety of methods, ranging from an out-of-band
  mechanism, manual configuration, or a variety of DHCPv6 options.




Durand, et al.               Standards Track                    [Page 7]

RFC 6333                     Dual-Stack Lite                 August 2011


  In order to guarantee interoperability, a B4 element SHOULD implement
  the DHCPv6 option defined in [RFC6334].

5.5.  DNS

  A B4 element is only configured from the service provider with IPv6.
  As such, it can only learn the address of a DNS recursive server
  through DHCPv6 (or other similar method over IPv6).  As DHCPv6 only
  defines an option to get the IPv6 address of such a DNS recursive
  server, the B4 element cannot easily discover the IPv4 address of
  such a recursive DNS server, and as such will have to perform all DNS
  resolution over IPv6.

  The B4 element can pass this IPv6 address to downstream IPv6 nodes,
  but not to downstream IPv4 nodes.  As such, the B4 element SHOULD
  implement a DNS proxy, following the recommendations of [RFC5625].

  To support a security-aware resolver behind the B4 element, the DNS
  proxy in the B4 element must also be security aware.  Details can be
  found in [RFC4033] Section 6.

5.6.  Interface Initialization

  The B4 element can be implemented in a host and CPE in conjunction
  with other technologies such as native dual-stack.  The host and the
  CPE SHOULD select to start only one technology during initialization.
  For example, if the CPE selects to start in native dual-stack mode,
  it SHOULD NOT initialize the B4 element.  This selection process is
  out of scope for this document.

5.7.  Well-Known IPv4 Address

  Any locally unique IPv4 address could be configured on the IPv4-in-
  IPv6 tunnel to represent the B4 element.  Configuring such an address
  is often necessary when the B4 element is sourcing IPv4 datagrams
  directly over the tunnel.  In order to avoid conflicts with any other
  address, IANA has defined a well-known range, 192.0.0.0/29.

  192.0.0.0 is the reserved subnet address.  192.0.0.1 is reserved for
  the AFTR element, and 192.0.0.2 is reserved for the B4 element.  If a
  service provider has a special configuration that prevents the B4
  element from using 192.0.0.2, the B4 element MAY use any other
  addresses within the 192.0.0.0/29 range.

  Note: A range of addresses has been reserved for this purpose.  The
  intent is to accommodate nodes implementing multiple B4 elements.





Durand, et al.               Standards Track                    [Page 8]

RFC 6333                     Dual-Stack Lite                 August 2011


6.  AFTR Element

6.1.  Definition

  An AFTR element is the combination of an IPv4-in-IPv6 tunnel endpoint
  and an IPv4-IPv4 NAT implemented on the same node.

6.2.  Encapsulation

  The tunnel is a point-to-multipoint IPv4-in-IPv6 tunnel ending at the
  B4 elements.

  See Section 7.1 for additional tunneling considerations.

  Note: At this point, DS-Lite only defines IPv4-in-IPv6 tunnels;
  however, other types of encapsulation could be defined in the future.

6.3.  Fragmentation and Reassembly

  As noted previously, fragmentation and reassembly need to be taken
  care of by the tunnel endpoints.  As such, the AFTR MUST perform
  fragmentation and reassembly if the underlying link MTU cannot
  accommodate the encapsulation overhead.  Fragmentation MUST happen
  after the encapsulation on the IPv6 packet.  Reassembly MUST happen
  before the decapsulation of the IPv6 header.  A detailed procedure
  has been specified in [RFC2473] Section 7.2.

  Fragmentation at the Tunnel Entry-Point is a lightweight operation.
  In contrast, reassembly at the Tunnel Exit-Point can be expensive.
  When the Tunnel Exit-Point receives the first fragmented packet, it
  must wait for the second fragmented packet to arrive in order to
  reassemble the two fragmented IPv6 packets for decapsulation.  This
  requires the Tunnel Exit-Point to buffer and keep track of fragmented
  packets.  Consider that the AFTR is the Tunnel Exit-Point for many
  tunnels.  If many devices simultaneously source a large number of
  fragmented packets through the AFTR to its managed B4 elements, this
  will require the AFTR to buffer and consume enormous resources to
  keep track of the flows.  This reassembly process will significantly
  impact the AFTR's performance.  However, this impact only happens
  when many clients simultaneously source large IPv4 packets.  Since we
  believe that the majority of the clients will receive large IPv4
  packets (such as watching video streams) instead of sourcing large
  IPv4 packets (such as sourcing video streams), reassembly is only a
  fraction of the overall AFTR's workload.







Durand, et al.               Standards Track                    [Page 9]

RFC 6333                     Dual-Stack Lite                 August 2011


  When the AFTR's resources are running below a pre-defined threshold,
  the AFTR SHOULD generate a notification to the administrator before
  the resources are completely exhausted.  The threshold and
  notification procedures are implementation dependent and are out of
  scope for this document.

  Methods to avoid fragmentation, such as rewriting the TCP Maximum
  Segment Size (MSS) option or using technologies such as the
  Subnetwork Encapsulation and Adaptation Layer as defined in
  [RFC5320], are out of scope for this document.

6.4.  DNS

  As noted previously, a DS-Lite node implementing a B4 element will
  perform DNS resolution over IPv6.  As a result, DNS packets are not
  expected to go through the AFTR element.

6.5.  Well-Known IPv4 Address

  The AFTR SHOULD use the well-known IPv4 address 192.0.0.1 reserved by
  IANA to configure the IPv4-in-IPv6 tunnel.  That address can then be
  used to report ICMP problems and will appear in traceroute outputs.

6.6.  Extended Binding Table

  The NAT binding table of the AFTR element is extended to include the
  source IPv6 address of the incoming packets.  This IPv6 address is
  used to disambiguate between the overlapping IPv4 address space of
  the service provider customers.

  By doing a reverse lookup in the extended IPv4 NAT binding table, the
  AFTR knows how to reconstruct the IPv6 encapsulation when the packets
  come back from the Internet.  That way, there is no need to keep a
  static configuration for each tunnel.

7.  Network Considerations

7.1.  Tunneling

  Tunneling MUST be done in accordance to [RFC2473] and [RFC4213].
  Traffic classes ([RFC2474]) from the IPv4 headers MUST be carried
  over to the IPv6 headers and vice versa.

7.2.  Multicast Considerations

  Discussion of multicast is out of scope for this document.





Durand, et al.               Standards Track                   [Page 10]

RFC 6333                     Dual-Stack Lite                 August 2011


8.  NAT Considerations

8.1.  NAT Pool

  The AFTR MAY be provisioned with different NAT pools.  The address
  ranges in the pools may be disjoint but MUST NOT be overlapped.
  Operators may implement policies in the AFTR to assign clients in
  different pools.  For example, an AFTR can have two interfaces.  Each
  interface will have a disjoint pool NAT assigned to it.  In another
  case, a policy implemented on the AFTR may specify that one set of
  B4s will use NAT pool 1 and a different set of B4s will use NAT
  pool 2.

8.2.  NAT Conformance

  A Dual-Stack Lite AFTR MUST implement behavior conforming to the best
  current practice, currently documented in [RFC4787], [RFC5508], and
  [RFC5382].  More discussions about carrier-grade NATs can be found in
  [LSN-REQS].

8.3.  Application Level Gateways (ALGs)

  The AFTR performs NAT-44 and inherits the limitations of NAT.  Some
  protocols require ALGs in the NAT device to traverse through the NAT.
  For example, Active FTP requires the ALG to work properly.  ALGs
  consume resources, and there are many different types of ALGs.  The
  AFTR is a shared network device that supports a large number of B4
  elements.  It is impossible for the AFTR to implement every current
  and future ALG.

8.4.  Sharing Global IPv4 Addresses

  The AFTR shares a single IP with multiple users.  This helps to
  increase the IPv4 address utilization.  However, it also brings some
  issues such as logging and lawful intercept.  More considerations on
  sharing the port space of IPv4 addresses can be found in [RFC6269].

8.5.  Port Forwarding / Keep Alive

  The PCP working group is standardizing a control plane to the
  carrier-grade NAT [LSN-REQS] in the IETF.  The Port Control Protocol
  (PCP) enables applications to directly negotiate with the NAT to open
  ports and negotiate lifetime values to avoid keep-alive traffic.
  More on PCP can be found in [PCP-BASE].







Durand, et al.               Standards Track                   [Page 11]

RFC 6333                     Dual-Stack Lite                 August 2011


9.  Acknowledgements

  The authors would like to acknowledge the role of Mark Townsley for
  his input on the overall architecture of this technology by pointing
  this work in the direction of [SNAT].  Note that this document
  results from a merging of [DURAND-DS-LITE] and [SNAT].  Also to be
  acknowledged are the many discussions with a number of people
  including Shin Miyakawa, Katsuyasu Toyama, Akihide Hiura, Takashi
  Uematsu, Tetsutaro Hara, Yasunori Matsubayashi, and Ichiro Mizukoshi.
  The authors would also like to thank David Ward, Jari Arkko, Thomas
  Narten, and Geoff Huston for their constructive feedback.  Special
  thanks go to Dave Thaler and Dan Wing for their reviews and comments.

10.  IANA Considerations

  Per this document, IANA has allocated a well-known IPv4 192.0.0.0/29
  network prefix.  That range is used to number the Dual-Stack Lite
  interfaces.  Reserving a /29 allows for 6 possible interfaces on a
  multi-home node.  The IPv4 address 192.0.0.1 is reserved as the IPv4
  address of the default router for such Dual-Stack Lite hosts.

11.  Security Considerations

  Security issues associated with NAT have long been documented.  See
  [RFC2663] and [RFC2993].

  However, moving the NAT functionality from the CPE to the core of the
  service provider network and sharing IPv4 addresses among customers
  create additional requirements when logging data for abuse usage.
  With any architecture where an IPv4 address does not uniquely
  represent an end host, IPv4 addresses and timestamps are no longer
  sufficient to identify a particular broadband customer.  The AFTR
  should have the capability to log the tunnel-id, protocol, ports/IP
  addresses, and the creation time of the NAT binding to uniquely
  identify the user sessions.  Exact details of what is logged are
  implementation specific and out of scope for this document.

  The AFTR performs translation functions for interior IPv4 hosts using
  RFC 1918 addresses or the IANA reserved address range (192.0.0.0/29).
  In some circumstances, an ISP may provision policies in the AFTR and
  instruct the AFTR to bypass translation functions based on <IPv4
  Address, port number, protocol>.  When the AFTR receives a packet
  with matching information of the policy from the interior host, the
  AFTR can simply forward the packet without translation.  The
  addresses, ports, and protocol information must be provisioned on the
  AFTR before receiving the packet.  The provisioning mechanism is out
  of scope for this specification.




Durand, et al.               Standards Track                   [Page 12]

RFC 6333                     Dual-Stack Lite                 August 2011


  When decapsulating packets, the AFTR MUST only forward packets
  sourced by RFC 1918 addresses, an IANA reserved address range, or any
  other out-of-band pre-authorized addresses.  The AFTR MUST drop all
  other packets.  This prevents rogue devices from launching denial-of-
  service attacks using unauthorized public IPv4 addresses in the IPv4
  source header field or an unauthorized transport port range in the
  IPv4 transport header field.  For example, rogue devices could
  bombard a public web server by launching a TCP SYN ACK attack
  [RFC4987].  The victim will receive TCP SYN from random IPv4 source
  addresses at a rapid rate and deny TCP services to legitimate users.

  With IPv4 addresses shared by multiple users, ports become a critical
  resource.  As such, some mechanisms need to be put in place by an
  AFTR to limit port usage, either by rate-limiting new connections or
  putting a hard limit on the maximum number of ports usable by a
  single user.  If this number is high enough, it should not interfere
  with normal usage and still provide reasonable protection of the
  shared pool.  More considerations on sharing IPv4 addresses can be
  found in [RFC6269].  Other considerations and recommendations on
  logging can be found in [RFC6302].

  AFTRs should support ways to limit service only to registered
  customers.  One simple option is to implement an IPv6 ingress filter
  on the AFTR's tunnel interface to accept only the IPv6 address range
  defined in the filter.

12.  References

12.1.  Normative References

  [RFC2119]   Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2473]   Conta, A. and S. Deering, "Generic Packet Tunneling in
              IPv6 Specification", RFC 2473, December 1998.

  [RFC2474]   Nichols, K., Blake, S., Baker, F., and D. Black,
              "Definition of the Differentiated Services Field (DS
              Field) in the IPv4 and IPv6 Headers", RFC 2474,
              December 1998.

  [RFC4213]   Nordmark, E. and R. Gilligan, "Basic Transition
              Mechanisms for IPv6 Hosts and Routers", RFC 4213,
              October 2005.







Durand, et al.               Standards Track                   [Page 13]

RFC 6333                     Dual-Stack Lite                 August 2011


  [RFC5625]   Bellis, R., "DNS Proxy Implementation Guidelines",
              BCP 152, RFC 5625, August 2009.

  [RFC6334]   Hankins, D. and T. Mrugalski, "Dynamic Host Configuration
              Protocol for IPv6 (DHCPv6) Option for Dual-Stack Lite",
              RFC 6334, August 2011.

12.2.  Informative References

  [DURAND-DS-LITE]
              Durand, A., "Dual-stack lite broadband deployments post
              IPv4 exhaustion", Work in Progress, July 2008.

  [LSN-REQS]  Perreault, S., Ed., Yamagata, I., Miyakawa, S., Nakagawa,
              A., and H. Ashida, "Common requirements for Carrier Grade
              NAT (CGN)", Work in Progress, July 2011.

  [PCP-BASE]  Wing, D., Ed., Cheshire, S., Boucadair, M., Penno, R.,
              and P. Selkirk, "Port Control Protocol (PCP)", Work
              in Progress, July 2011.

  [RFC1191]   Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
              November 1990.

  [RFC1918]   Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G.,
              and E. Lear, "Address Allocation for Private Internets",
              BCP 5, RFC 1918, February 1996.

  [RFC2663]   Srisuresh, P. and M. Holdrege, "IP Network Address
              Translator (NAT) Terminology and Considerations",
              RFC 2663, August 1999.

  [RFC2993]   Hain, T., "Architectural Implications of NAT", RFC 2993,
              November 2000.

  [RFC4033]   Arends, R., Austein, R., Larson, M., Massey, D., and S.
              Rose, "DNS Security Introduction and Requirements",
              RFC 4033, March 2005.

  [RFC4787]   Audet, F., Ed., and C. Jennings, "Network Address
              Translation (NAT) Behavioral Requirements for Unicast
              UDP", BCP 127, RFC 4787, January 2007.

  [RFC4987]   Eddy, W., "TCP SYN Flooding Attacks and Common
              Mitigations", RFC 4987, August 2007.

  [RFC5320]   Templin, F., Ed., "The Subnetwork Encapsulation and
              Adaptation Layer (SEAL)", RFC 5320, February 2010.



Durand, et al.               Standards Track                   [Page 14]

RFC 6333                     Dual-Stack Lite                 August 2011


  [RFC5382]   Guha, S., Ed., Biswas, K., Ford, B., Sivakumar, S., and
              P.  Srisuresh, "NAT Behavioral Requirements for TCP",
              BCP 142, RFC 5382, October 2008.

  [RFC5508]   Srisuresh, P., Ford, B., Sivakumar, S., and S. Guha, "NAT
              Behavioral Requirements for ICMP", BCP 148, RFC 5508,
              April 2009.

  [RFC5571]   Storer, B., Pignataro, C., Ed., Dos Santos, M., Stevant,
              B., Ed., Toutain, L., and J. Tremblay, "Softwire Hub and
              Spoke Deployment Framework with Layer Two Tunneling
              Protocol Version 2 (L2TPv2)", RFC 5571, June 2009.

  [RFC6269]   Ford, M., Boucadair, M., Durand, A., Levis, P., and P.
              Roberts, "Issues with IP Address Sharing", RFC 6269,
              June 2011.

  [RFC6302]   Durand, A., Gashinsky, I., Lee, D., and S. Sheppard,
              "Logging Recommendations for Internet-Facing Servers",
              BCP 162, RFC 6302, June 2011.

  [SNAT]      Droms, R. and B. Haberman, "Softwires Network Address
              Translation (SNAT)", Work in Progress, July 2008.




























Durand, et al.               Standards Track                   [Page 15]

RFC 6333                     Dual-Stack Lite                 August 2011


Appendix A.  Deployment Considerations

A.1.  AFTR Service Distribution and Horizontal Scaling

  One of the key benefits of the Dual-Stack Lite technology lies in the
  fact that it is a tunnel-based solution.  As such, tunnel endpoints
  can be anywhere in the service provider network.

  Using the DHCPv6 tunnel endpoint option [RFC6334], service providers
  can create groups of users sharing the same AFTR.  Those groups can
  be merged or divided at will.  This leads to a horizontally scaled
  solution, where more capacity is added with more AFTRs.  As those
  groups of users can evolve over time, it is best to make sure that
  AFTRs do not require per-user configuration in order to provide
  service.

A.2.  Horizontal Scaling

  A service provider can start using just a few centralized AFTRs.
  Later, when more capacity is needed, more AFTRs can be added and
  pushed closer to the edges of the access network.

A.3.  High Availability

  An important element in the design of the Dual-Stack Lite technology
  is the simplicity of implementation on the customer side.  An IP4-in-
  IPv6 tunnel and a default route over it in the B4 element are all
  that is needed to get IPv4 connectivity.  It is assumed that high
  availability is the responsibility of the service provider, not the
  customer devices implementing Dual-Stack Lite.  As such, a single
  IPv6 address of the tunnel endpoint is provided in the DHCPv6 option
  defined in [RFC6334].  Specific means to achieve high availability on
  the service provider side are outside the scope of this
  specification.

A.4.  Logging

  DS-Lite AFTR implementation should offer the functionality to log NAT
  binding creations or other ways to keep track of the ports/IP
  addresses used by customers.  This is both to support
  troubleshooting, which is very important to service providers trying
  to figure out why something may not be working, and to meet region-
  specific requirements for responding to legally binding requests for
  information from law enforcement authorities.







Durand, et al.               Standards Track                   [Page 16]

RFC 6333                     Dual-Stack Lite                 August 2011


Appendix B.  Examples

B.1.  Gateway-Based Architecture

  This architecture is targeted at residential broadband deployments
  but can be adapted easily to other types of deployment where the
  installed base of IPv4-only devices is important.

  Consider a scenario where a Dual-Stack Lite CPE is provisioned only
  with IPv6 in the WAN port, not IPv4.  The CPE acts as an IPv4 DHCP
  server for the LAN (wireline and wireless) handing out [RFC1918]
  addresses.  In addition, the CPE may support IPv6 Auto-Configuration
  and/or a DHCPv6 server for the LAN.  When an IPv4-only device
  connects to the CPE, that CPE will hand out a [RFC1918] address to
  the device.  When a dual-stack-capable device connects to the CPE,
  that CPE will hand out a [RFC1918] address and a global IPv6 address
  to the device.  Besides, the CPE will create an IPv4-in-IPv6 softwire
  tunnel [RFC5571] to an AFTR that resides in the service provider
  network.

  When the device accesses IPv6 service, it will send the IPv6 datagram
  to the CPE natively.  The CPE will route the traffic upstream to the
  IPv6 default gateway.

  When the device accesses IPv4 service, it will source the IPv4
  datagram with the [RFC1918] address and send the IPv4 datagram to the
  CPE.  The CPE will encapsulate the IPv4 datagram inside the IPv4-in-
  IPv6 softwire tunnel and forward the IPv6 datagram to the AFTR.  This
  is in contrast to what the CPE normally does today, which is to NAT
  the [RFC1918] address to the public IPv4 address and route the
  datagram upstream.  When the AFTR receives the IPv6 datagram, it will
  decapsulate the IPv6 header and perform an IPv4-to-IPv4 NAT on the
  source address.

  As illustrated in Figure 1, this Dual-Stack Lite deployment model
  consists of three components: the Dual-Stack Lite home router with a
  B4 element, the AFTR, and a softwire between the B4 element acting as
  softwire initiator (SI) [RFC5571] in the Dual-Stack Lite home router
  and the softwire concentrator (SC) [RFC5571] in the AFTR.  The AFTR
  performs IPv4-IPv4 NAT translations to multiplex multiple subscribers
  through a pool of global IPv4 addresses.  Overlapping address spaces
  used by subscribers are disambiguated through the identification of
  tunnel endpoints.








Durand, et al.               Standards Track                   [Page 17]

RFC 6333                     Dual-Stack Lite                 August 2011


                  +-----------+
                  |    Host   |
                  +-----+-----+
                        |10.0.0.1
                        |
                        |
                        |10.0.0.2
              +---------|---------+
              |         |         |
              |    Home router    |
              |+--------+--------+|
              ||       B4        ||
              |+--------+--------+|
              +--------|||--------+
                       |||2001:db8:0:1::1
                       |||
                       |||<-IPv4-in-IPv6 softwire
                       |||
                -------|||-------
              /        |||        \
             |   ISP core network  |
              \        |||        /
                -------|||-------
                       |||
                       |||2001:db8:0:2::1
              +--------|||--------+
              |        AFTR       |
              |+--------+--------+|
              ||   Concentrator  ||
              |+--------+--------+|
              |       |NAT|       |
              |       +-+-+       |
              +---------|---------+
                        |192.0.2.1
                        |
                --------|--------
              /         |         \
             |       Internet      |
              \         |         /
                --------|--------
                        |
                        |198.51.100.1
                  +-----+-----+
                  | IPv4 Host |
                  +-----------+

                  Figure 1: Gateway-Based Architecture




Durand, et al.               Standards Track                   [Page 18]

RFC 6333                     Dual-Stack Lite                 August 2011


  Notes:

  o  The Dual-Stack Lite home router is not required to be on the same
     link as the host.

  o  The Dual-Stack Lite home router could be replaced by a Dual-Stack
     Lite router in the service provider network.

  The resulting solution accepts an IPv4 datagram that is translated
  into an IPv4-in-IPv6 softwire datagram for transmission across the
  softwire.  At the corresponding endpoint, the IPv4 datagram is
  decapsulated, and the translated IPv4 address is inserted based on a
  translation from the softwire.

B.1.1.  Example Message Flow

  In the example shown in Figure 2, the translation tables in the AFTR
  are configured to forward between IP/TCP (10.0.0.1/10000) and IP/TCP
  (192.0.2.1/5000).  That is, a datagram received by the Dual-Stack
  Lite home router from the host at address 10.0.0.1, using TCP DST
  port 10000, will be translated to a datagram with IPv4 SRC address
  192.0.2.1 and TCP SRC port 5000 in the Internet.





























Durand, et al.               Standards Track                   [Page 19]

RFC 6333                     Dual-Stack Lite                 August 2011


                  +-----------+
                  |    Host   |
                  +-----+-----+
                     |  |10.0.0.1
     IPv4 datagram 1 |  |
                     |  |
                     v  |10.0.0.2
              +---------|---------+
              |         |         |
              |    home router    |
              |+--------+--------+|
              ||        B4       ||
              |+--------+--------+|
              +--------|||--------+
                     | |||2001:db8:0:1::1
      IPv6 datagram 2| |||
                     | |||<-IPv4-in-IPv6 softwire
                -----|-|||-------
              /      | |||        \
             |   ISP core network  |
              \      | |||        /
                -----|-|||-------
                     | |||
                     | |||2001:db8:0:2::1
              +------|-|||--------+
              |      | AFTR       |
              |      v |||        |
              |+--------+--------+|
              ||  Concentrator   ||
              |+--------+--------+|
              |       |NAT|       |
              |       +-+-+       |
              +---------|---------+
                     |  |192.0.2.1
     IPv4 datagram 3 |  |
                     |  |
                -----|--|--------
              /      |  |         \
             |       Internet      |
              \      |  |         /
                -----|--|--------
                     |  |
                     v  |198.51.100.1
                  +-----+-----+
                  | IPv4 Host |
                  +-----------+

                       Figure 2: Outbound Datagram



Durand, et al.               Standards Track                   [Page 20]

RFC 6333                     Dual-Stack Lite                 August 2011


          +-----------------+--------------+-----------------+
          |        Datagram | Header field | Contents        |
          +-----------------+--------------+-----------------+
          | IPv4 datagram 1 |     IPv4 Dst | 198.51.100.1    |
          |                 |     IPv4 Src | 10.0.0.1        |
          |                 |      TCP Dst | 80              |
          |                 |      TCP Src | 10000           |
          | --------------- | ------------ | -------------   |
          | IPv6 datagram 2 |     IPv6 Dst | 2001:db8:0:2::1 |
          |                 |     IPv6 Src | 2001:db8:0:1::1 |
          |                 |     IPv4 Dst | 198.51.100.1    |
          |                 |     IPv4 Src | 10.0.0.1        |
          |                 |      TCP Dst | 80              |
          |                 |      TCP Src | 10000           |
          | --------------- | ------------ | -------------   |
          | IPv4 datagram 3 |     IPv4 Dst | 198.51.100.1    |
          |                 |     IPv4 Src | 192.0.2.1       |
          |                 |      TCP Dst | 80              |
          |                 |      TCP Src | 5000            |
          +-----------------+--------------+-----------------+

                        Datagram Header Contents

  When datagram 1 is received by the Dual-Stack Lite home router, the
  B4 element encapsulates the datagram in datagram 2 and forwards it to
  the Dual-Stack Lite carrier-grade NAT over the softwire.

  When the tunnel concentrator in the AFTR receives datagram 2, it
  forwards the IPv4 datagram to the NAT, which determines from its NAT
  table that the datagram received on the softwire with TCP SRC
  port 10000 should be translated to datagram 3 with IPv4 SRC address
  192.0.2.1 and TCP SRC port 5000.

  Figure 3 shows an inbound message received at the AFTR.  When the NAT
  function in the AFTR receives datagram 1, it looks up the IP/TCP DST
  information in its translation table.  In the example in Figure 3,
  the NAT changes the TCP DST port to 10000, sets the IP DST address to
  10.0.0.1, and forwards the datagram to the softwire.  The B4 in the
  home router decapsulates the IPv4 datagram from the inbound softwire
  datagram and forwards it to the host.











Durand, et al.               Standards Track                   [Page 21]

RFC 6333                     Dual-Stack Lite                 August 2011


                  +-----------+
                  |    Host   |
                  +-----+-----+
                     ^  |10.0.0.1
     IPv4 datagram 3 |  |
                     |  |
                     |  |10.0.0.2
              +---------|---------+
              |       +-+-+       |
              |    home router    |
              |+--------+--------+|
              ||        B4       ||
              |+--------+--------+|
              +--------|||--------+
                     ^ |||2001:db8:0:1::1
     IPv6 datagram 2 | |||
                     | |||<-IPv4-in-IPv6 softwire
                     | |||
                -----|-|||-------
              /      | |||        \
             |   ISP core network  |
              \      | |||        /
                -----|-|||-------
                     | |||
                     | |||2001:db8:0:2::1
              +------|-|||--------+
              |       AFTR        |
              |+--------+--------+|
              ||   Concentrator  ||
              |+--------+--------+|
              |       |NAT|       |
              |       +-+-+       |
              +---------|---------+
                     ^  |192.0.2.1
     IPv4 datagram 1 |  |
                     |  |
                -----|--|--------
              /      |  |         \
             |       Internet      |
              \      |  |         /
                -----|--|--------
                     |  |
                     |  |198.51.100.1
                  +-----+-----+
                  | IPv4 Host |
                  +-----------+

                       Figure 3: Inbound Datagram



Durand, et al.               Standards Track                   [Page 22]

RFC 6333                     Dual-Stack Lite                 August 2011


          +-----------------+--------------+-----------------+
          |        Datagram | Header field | Contents        |
          +-----------------+--------------+-----------------+
          | IPv4 datagram 1 |     IPv4 Dst | 192.0.2.1       |
          |                 |     IPv4 Src | 198.51.100.1    |
          |                 |      TCP Dst | 5000            |
          |                 |      TCP Src | 80              |
          | --------------- | ------------ | -------------   |
          | IPv6 datagram 2 |     IPv6 Dst | 2001:db8:0:1::1 |
          |                 |     IPv6 Src | 2001:db8:0:2::1 |
          |                 |     IPv4 Dst | 10.0.0.1        |
          |                 |     IPv4 Src | 198.51.100.1    |
          |                 |      TCP Dst | 10000           |
          |                 |      TCP Src | 80              |
          | --------------- | ------------ | -------------   |
          | IPv4 datagram 3 |     IPv4 Dst | 10.0.0.1        |
          |                 |     IPv4 Src | 198.51.100.1    |
          |                 |      TCP Dst | 10000           |
          |                 |      TCP Src | 80              |
          +-----------------+--------------+-----------------+

                        Datagram Header Contents

B.1.2.  Translation Details

  The AFTR has a NAT that translates between softwire/port pairs and
  IPv4-address/port pairs.  The same translation is applied to IPv4
  datagrams received on the device's external interface and from the
  softwire endpoint in the device.

  In Figure 2, the translator network interface in the AFTR is on the
  Internet, and the softwire interface connects to the Dual-Stack Lite
  home router.  The AFTR translator is configured as follows:

  Network interface:  Translate IPv4 destination address and TCP
     destination port to the softwire identifier and TCP destination
     port

  Softwire interface:  Translate softwire identifier and TCP source
     port to IPv4 source address and TCP source port

  Here is how the translation in Figure 3 works:

  o  Datagram 1 is received on the AFTR translator network interface.
     The translator looks up the IPv4-address/port pair in its
     translator table, rewrites the IPv4 destination address to
     10.0.0.1 and the TCP source port to 10000, and forwards the
     datagram to the softwire.



Durand, et al.               Standards Track                   [Page 23]

RFC 6333                     Dual-Stack Lite                 August 2011


  o  The IPv4 datagram is received on the Dual-Stack Lite home router
     B4.  The B4 function extracts the IPv4 datagram, and the Dual-
     Stack Lite home router forwards datagram 3 to the host.

       +------------------------------------+--------------------+
       |         Softwire-Id/IPv4/Prot/Port | IPv4/Prot/Port     |
       +------------------------------------+--------------------+
       | 2001:db8:0:1::1/10.0.0.1/TCP/10000 | 192.0.2.1/TCP/5000 |
       +------------------------------------+--------------------+

           Dual-Stack Lite Carrier-Grade NAT Translation Table

  The Softwire-Id is the IPv6 address assigned to the Dual-Stack Lite
  CPE.  Hosts behind the same Dual-Stack Lite home router have the same
  Softwire-Id.  The source IPv4 address is the [RFC1918] address
  assigned by the Dual-Stack home router and is unique to each host
  behind the CPE.  The AFTR would receive packets sourced from
  different IPv4 addresses in the same softwire tunnel.  The AFTR
  combines the Softwire-Id and IPv4 address/port [Softwire-Id, IPv4+
  Port] to uniquely identify the host behind the same Dual-Stack Lite
  home router.

B.2.  Host-Based Architecture

  This architecture is targeted at new, large-scale deployments of
  dual-stack-capable devices implementing a Dual-Stack Lite interface.

  Consider a scenario where a Dual-Stack Lite host device is directly
  connected to the service provider network.  The host device is dual-
  stack capable but only provisioned with an IPv6 global address.
  Besides, the host device will pre-configure a well-known IPv4
  non-routable address; see Section 10 (IANA Considerations).  This
  well-known IPv4 non-routable address is similar to the 127.0.0.1
  loopback address.  Every host device that implements Dual-Stack Lite
  will pre-configure the same address.  This address will be used to
  source the IPv4 datagram when the device accesses IPv4 services.
  Besides, the host device will create an IPv4-in-IPv6 softwire tunnel
  to an AFTR.  The carrier-grade NAT will reside in the service
  provider network.

  When the device accesses IPv6 service, the device will send the IPv6
  datagram natively to the default gateway.









Durand, et al.               Standards Track                   [Page 24]

RFC 6333                     Dual-Stack Lite                 August 2011


  When the device accesses IPv4 service, it will source the IPv4
  datagram with the well-known non-routable IPv4 address.  Then, the
  host device will encapsulate the IPv4 datagram inside the IPv4-in-
  IPv6 softwire tunnel and send the IPv6 datagram to the AFTR.  When
  the AFTR receives the IPv6 datagram, it will decapsulate the IPv6
  header and perform IPv4-to-IPv4 NAT on the source address.

  This scenario works on both wireline and wireless networks.  A
  typical wireless device will connect directly to the service provider
  without a CPE in between.

  As illustrated in Figure 4, this Dual-Stack Lite deployment model
  consists of three components: the Dual-Stack Lite host, the AFTR, and
  a softwire between the softwire initiator B4 in the host and the
  softwire concentrator in the AFTR.  The Dual-Stack Lite host is
  assumed to have IPv6 service and can exchange IPv6 traffic with the
  AFTR.

  The AFTR performs IPv4-IPv4 NAT translations to multiplex multiple
  subscribers through a pool of global IPv4 addresses.  Overlapping
  IPv4 address spaces used by the Dual-Stack Lite hosts are
  disambiguated through the identification of tunnel endpoints.

  In this situation, the Dual-Stack Lite host configures the IPv4
  address 192.0.0.2 out of the well-known range 192.0.0.0/29 (defined
  by IANA) on its B4 interface.  It also configures the first
  non-reserved IPv4 address of the reserved range, 192.0.0.1, as the
  address of its default gateway.























Durand, et al.               Standards Track                   [Page 25]

RFC 6333                     Dual-Stack Lite                 August 2011


              +-------------------+
              |                   |
              |  Host 192.0.0.2   |
              |+--------+--------+|
              ||        B4       ||
              |+--------+--------+|
              +--------|||--------+
                       |||2001:db8:0:1::1
                       |||
                       |||<-IPv4-in-IPv6 softwire
                       |||
                -------|||-------
              /        |||        \
             |   ISP core network  |
              \        |||        /
                -------|||-------
                       |||
                       |||2001:db8:0:2::1
              +--------|||--------+
              |       AFTR        |
              |+--------+--------+|
              ||  Concentrator   ||
              |+--------+--------+|
              |       |NAT|       |
              |       +-+-+       |
              +---------|---------+
                        |192.0.2.1
                        |
                --------|--------
              /         |         \
             |       Internet      |
              \         |         /
                --------|--------
                        |
                        |198.51.100.1
                  +-----+-----+
                  | IPv4 Host |
                  +-----------+

                    Figure 4: Host-Based Architecture

  The resulting solution accepts an IPv4 datagram that is translated
  into an IPv4-in-IPv6 softwire datagram for transmission across the
  softwire.  At the corresponding endpoint, the IPv4 datagram is
  decapsulated, and the translated IPv4 address is inserted based on a
  translation from the softwire.





Durand, et al.               Standards Track                   [Page 26]

RFC 6333                     Dual-Stack Lite                 August 2011


B.2.1.  Example Message Flow

  In the example shown in Figure 5, the translation tables in the AFTR
  are configured to forward between IP/TCP (192.0.0.2/10000) and IP/TCP
  (192.0.2.1/5000).  That is, a datagram received from the host at
  address 192.0.0.2, using TCP DST port 10000, will be translated to a
  datagram with IPv4 SRC address 192.0.2.1 and TCP SRC port 5000 in the
  Internet.











































Durand, et al.               Standards Track                   [Page 27]

RFC 6333                     Dual-Stack Lite                 August 2011


              +-------------------+
              |                   |
              |Host 192.0.0.2     |
              |+--------+--------+|
              ||        B4       ||
              |+--------+--------+|
              +--------|||--------+
                     | |||2001:db8:0:1::1
      IPv6 datagram 1| |||
                     | |||<-IPv4-in-IPv6 softwire
                     | |||
                -----|-|||-------
              /      | |||        \
             |   ISP core network  |
              \      | |||        /
                -----|-|||-------
                     | |||
                     | |||2001:db8:0:2::1
              +------|-|||--------+
              |      | AFTR       |
              |      v |||        |
              |+--------+--------+|
              ||  Concentrator   ||
              |+--------+--------+|
              |       |NAT|       |
              |       +-+-+       |
              +---------|---------+
                     |  |192.0.2.1
     IPv4 datagram 2 |  |
                -----|--|--------
              /      |  |         \
             |       Internet      |
              \      |  |         /
                -----|--|--------
                     |  |
                     v  |198.51.100.1
                  +-----+-----+
                  | IPv4 Host |
                  +-----------+

                       Figure 5: Outbound Datagram










Durand, et al.               Standards Track                   [Page 28]

RFC 6333                     Dual-Stack Lite                 August 2011


          +-----------------+--------------+-----------------+
          |        Datagram | Header field | Contents        |
          +-----------------+--------------+-----------------+
          | IPv6 datagram 1 |     IPv6 Dst | 2001:db8:0:2::1 |
          |                 |     IPv6 Src | 2001:db8:0:1::1 |
          |                 |     IPv4 Dst | 198.51.100.1    |
          |                 |     IPv4 Src | 192.0.0.2       |
          |                 |      TCP Dst | 80              |
          |                 |      TCP Src | 10000           |
          | --------------- | ------------ | -------------   |
          | IPv4 datagram 2 |     IPv4 Dst | 198.51.100.1    |
          |                 |     IPv4 Src | 192.0.2.1       |
          |                 |      TCP Dst | 80              |
          |                 |      TCP Src | 5000            |
          +-----------------+--------------+-----------------+

                        Datagram Header Contents

  When sending an IPv4 packet, the Dual-Stack Lite host encapsulates it
  in datagram 1 and forwards it to the AFTR over the softwire.

  When it receives datagram 1, the concentrator in the AFTR hands the
  IPv4 datagram to the NAT, which determines from its translation table
  that the datagram received on the softwire with TCP SRC port 10000
  should be translated to datagram 3 with IPv4 SRC address 192.0.2.1
  and TCP SRC port 5000.

  Figure 6 shows an inbound message received at the AFTR.  When the NAT
  function in the AFTR receives datagram 1, it looks up the IP/TCP DST
  in its translation table.  In the example in Figure 6, the NAT
  translates the TCP DST port to 10000, sets the IP DST address to
  192.0.0.2, and forwards the datagram to the softwire.  The B4 inside
  the host decapsulates the IPv4 datagram from the inbound softwire
  datagram, and forwards it to the host's application layer.

















Durand, et al.               Standards Track                   [Page 29]

RFC 6333                     Dual-Stack Lite                 August 2011


              +-------------------+
              |                   |
              |Host 192.0.0.2     |
              |+--------+--------+|
              ||        B4       ||
              |+--------+--------+|
              +--------|||--------+
                     ^ |||2001:db8:0:1::1
     IPv6 datagram 2 | |||
                     | |||<-IPv4-in-IPv6 softwire
                     | |||
                -----|-|||-------
              /      | |||        \
             |   ISP core network  |
              \      | |||        /
                -----|-|||-------
                     | |||
                     | |||2001:db8:0:2::1
              +------|-|||--------+
              |       AFTR        |
              |      | |||        |
              |+--------+--------+|
              ||  Concentrator   ||
              |+--------+--------+|
              |       |NAT|       |
              |       +-+-+       |
              +---------|---------+
                     ^  |192.0.2.1
     IPv4 datagram 1 |  |
                -----|--|--------
              /      |  |         \
             |       Internet      |
              \      |  |         /
                -----|--|--------
                     |  |
                     |  |198.51.100.1
                  +-----+-----+
                  | IPv4 Host |
                  +-----------+

                       Figure 6: Inbound Datagram










Durand, et al.               Standards Track                   [Page 30]

RFC 6333                     Dual-Stack Lite                 August 2011


          +-----------------+--------------+-----------------+
          |        Datagram | Header field | Contents        |
          +-----------------+--------------+-----------------+
          | IPv4 datagram 1 |     IPv4 Dst | 192.0.2.1       |
          |                 |     IPv4 Src | 198.51.100.1    |
          |                 |      TCP Dst | 5000            |
          |                 |      TCP Src | 80              |
          | --------------- | ------------ | -------------   |
          | IPv6 datagram 2 |     IPv6 Dst | 2001:db8:0:1::1 |
          |                 |     IPv6 Src | 2001:db8:0:2::1 |
          |                 |     IPv4 Dst | 192.0.0.2       |
          |                 |     IPv4 Src | 198.51.100.1    |
          |                 |      TCP Dst | 10000           |
          |                 |      TCP Src | 80              |
          +-----------------+--------------+-----------------+

                        Datagram Header Contents

B.2.2.  Translation Details

  The AFTR translation steps are the same as in Appendix B.1.2.  One
  difference is that all the host-based B4s will use the same well-
  known IPv4 address 192.0.0.2.  To uniquely identify the host-based
  B4, the AFTR will use the host-based B4's IPv6 address, which is
  unique for the host.

      +-------------------------------------+--------------------+
      |          Softwire-Id/IPv4/Prot/Port | IPv4/Prot/Port     |
      +-------------------------------------+--------------------+
      | 2001:db8:0:1::1/192.0.0.2/TCP/10000 | 192.0.2.1/TCP/5000 |
      +-------------------------------------+--------------------+

           Dual-Stack Lite Carrier-Grade NAT Translation Table

  The Softwire-Id is the IPv6 address assigned to the Dual-Stack host.
  Each host has a unique Softwire-Id.  The source IPv4 address is one
  of the well-known IPv4 addresses.  The AFTR could receive packets
  from different hosts sourced from the same IPv4 well-known address
  from different softwire tunnels.  Similar to the gateway
  architecture, the AFTR combines the Softwire-Id and IPv4 address/port
  [Softwire-Id, IPv4+Port] to uniquely identify the individual host.










Durand, et al.               Standards Track                   [Page 31]

RFC 6333                     Dual-Stack Lite                 August 2011


Authors' Addresses

  Alain Durand
  Juniper Networks
  1194 North Mathilda Avenue
  Sunnyvale, CA  94089-1206
  USA

  EMail: [email protected]


  Ralph Droms
  Cisco
  1414 Massachusetts Avenue
  Boxborough, MA  01714
  USA

  EMail: [email protected]


  James Woodyatt
  Apple
  1 Infinite Loop
  Cupertino, CA  95014
  USA

  EMail: [email protected]


  Yiu L. Lee
  Comcast
  One Comcast Center
  Philadelphia, PA  19103
  USA

  EMail: [email protected]















Durand, et al.               Standards Track                   [Page 32]