Internet Engineering Task Force (IETF)                         S. Wadhwa
Request for Comments: 6320                                Alcatel-Lucent
Category: Standards Track                                     J. Moisand
ISSN: 2070-1721                                         Juniper Networks
                                                               T.  Haag
                                                       Deutsche Telekom
                                                               N. Voigt
                                                 Nokia Siemens Networks
                                                         T. Taylor, Ed.
                                                    Huawei Technologies
                                                           October 2011


   Protocol for Access Node Control Mechanism in Broadband Networks

Abstract

  This document describes the Access Node Control Protocol (ANCP).
  ANCP operates between a Network Access Server (NAS) and an Access
  Node (e.g., a Digital Subscriber Line Access Multiplexer (DSLAM)) in
  a multi-service reference architecture in order to perform operations
  related to Quality of Service, service, and subscribers.  Use cases
  for ANCP are documented in RFC 5851.  As well as describing the base
  ANCP protocol, this document specifies capabilities for Digital
  Subscriber Line (DSL) topology discovery, line configuration, and
  remote line connectivity testing.  The design of ANCP allows for
  protocol extensions in other documents if they are needed to support
  other use cases and other access technologies.

  ANCP is based on the General Switch Management Protocol version 3
  (GSMPv3) described in RFC 3292, but with many modifications and
  extensions, to the point that the two protocols are not
  interoperable.  For this reason, ANCP was assigned a separate version
  number to distinguish it.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc6320.



Wadhwa, et al.               Standards Track                    [Page 1]

RFC 6320                      ANCP Protocol                 October 2011


Copyright Notice

  Copyright (c) 2011 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

  This document may contain material from IETF Documents or IETF
  Contributions published or made publicly available before November
  10, 2008.  The person(s) controlling the copyright in some of this
  material may not have granted the IETF Trust the right to allow
  modifications of such material outside the IETF Standards Process.
  Without obtaining an adequate license from the person(s) controlling
  the copyright in such materials, this document may not be modified
  outside the IETF Standards Process, and derivative works of it may
  not be created outside the IETF Standards Process, except to format
  it for publication as an RFC or to translate it into languages other
  than English.

Table of Contents

  1. Introduction ....................................................5
     1.1. Historical Note ............................................6
     1.2. Requirements Language ......................................6
     1.3. Terminology ................................................6
  2. Broadband Access Aggregation ....................................8
     2.1. ATM-Based Broadband Aggregation ............................8
     2.2. Ethernet-Based Broadband Aggregation .......................9
  3. Access Node Control Protocol -- General Aspects ................10
     3.1. Protocol Version ..........................................10
     3.2. ANCP Transport ............................................10
     3.3. Encoding of Text Fields ...................................11
     3.4. Treatment of Reserved and Unused Fields ...................12
     3.5. The ANCP Adjacency Protocol ...............................12
          3.5.1. ANCP Adjacency Message Format ......................12
          3.5.2. ANCP Adjacency Procedures ..........................18
     3.6. ANCP General Message Formats ..............................29
          3.6.1. The ANCP Message Header ............................29
          3.6.2. The ANCP Message Body ..............................36
     3.7. General Principles for the Design of ANCP Messages ........37



Wadhwa, et al.               Standards Track                    [Page 2]

RFC 6320                      ANCP Protocol                 October 2011


  4. Generally Useful ANCP Messages and TLVs ........................38
     4.1. Provisioning Message ......................................38
     4.2. Generic Response Message ..................................39
     4.3. Target TLV ................................................41
     4.4. Command TLV ...............................................41
     4.5. Status-Info TLV ...........................................42
  5. Introduction to ANCP Capabilities for Digital
     Subscriber Lines (DSLs) ........................................43
     5.1. DSL Access Line Identification ............................44
          5.1.1. Control Context (Informative) ......................44
          5.1.2. TLVs for DSL Access Line Identification ............45
  6. ANCP-Based DSL Topology Discovery ..............................48
     6.1. Control Context (Informative) .............................48
     6.2. Protocol Requirements .....................................50
          6.2.1. Protocol Requirements on the AN Side ...............50
          6.2.2. Protocol Requirements on the NAS Side ..............50
     6.3. ANCP Port Up and Port Down Event Message Descriptions .....51
     6.4. Procedures ................................................52
          6.4.1. Procedures on the AN Side ..........................52
          6.4.2. Procedures on the NAS Side .........................53
     6.5. TLVs for DSL Line Attributes ..............................53
          6.5.1. DSL-Line-Attributes TLV ............................53
          6.5.2. DSL-Type TLV .......................................54
          6.5.3. Actual-Net-Data-Rate-Upstream TLV ..................54
          6.5.4. Actual-Net-Data-Rate-Downstream TLV ................54
          6.5.5. Minimum-Net-Data-Rate-Upstream TLV .................55
          6.5.6. Minimum-Net-Data-Rate-Downstream TLV ...............55
          6.5.7. Attainable-Net-Data-Rate-Upstream TLV ..............55
          6.5.8. Attainable-Net-Data-Rate-Downstream TLV ............55
          6.5.9. Maximum-Net-Data-Rate-Upstream TLV .................56
          6.5.10. Maximum-Net-Data-Rate-Downstream TLV ..............56
          6.5.11. Minimum-Net-Low-Power-Data-Rate-Upstream TLV ......56
          6.5.12. Minimum-Net-Low-Power-Data-Rate-Downstream TLV ....56
          6.5.13. Maximum-Interleaving-Delay-Upstream TLV ...........57
          6.5.14. Actual-Interleaving-Delay-Upstream TLV ............57
          6.5.15. Maximum-Interleaving-Delay-Downstream TLV .........57
          6.5.16. Actual-Interleaving-Delay-Downstream ..............57
          6.5.17. DSL-Line-State TLV ................................58
          6.5.18. Access-Loop-Encapsulation TLV .....................58
  7. ANCP-Based DSL Line Configuration ..............................59
     7.1. Control Context (Informative) .............................59
     7.2. Protocol Requirements .....................................61
          7.2.1. Protocol Requirements on the NAS Side ..............61
          7.2.2. Protocol Requirements on the AN Side ...............61
     7.3. ANCP Port Management (Line Configuration) Message Format ..62
     7.4. Procedures ................................................64
          7.4.1. Procedures on the NAS Side .........................64
          7.4.2. Procedures on the AN Side ..........................64



Wadhwa, et al.               Standards Track                    [Page 3]

RFC 6320                      ANCP Protocol                 October 2011


     7.5. TLVs for DSL Line Configuration ...........................64
          7.5.1. Service-Profile-Name TLV ...........................65
  8. ANCP-Based DSL Remote Line Connectivity Testing ................65
     8.1. Control Context (Informative) .............................65
     8.2. Protocol Requirements .....................................66
          8.2.1. Protocol Requirements on the NAS Side ..............66
          8.2.2. Protocol Requirements on the AN Side ...............66
     8.3. Port Management (OAM) Message Format ......................67
     8.4. Procedures ................................................68
          8.4.1. NAS-Side Procedures ................................68
          8.4.2. AN-Side Procedures .................................69
     8.5. TLVs for the DSL Line Remote Connectivity Testing
          Capability ................................................70
          8.5.1. OAM-Loopback-Test-Parameters TLV ...................70
          8.5.2. Opaque-Data TLV ....................................71
          8.5.3. OAM-Loopback-Test-Response-String TLV ..............71
  9. IANA Considerations ............................................71
  10. IANA Actions ..................................................72
     10.1. ANCP Message Type Registry ...............................72
     10.2. ANCP Result Code Registry ................................73
     10.3. ANCP Port Management Function Registry ...................74
     10.4. ANCP Technology Type Registry ............................75
     10.5. ANCP Command Code Registry ...............................75
     10.6. ANCP TLV Type Registry ...................................75
     10.7. ANCP Capability Type Registry ............................77
     10.8. Joint GSMP / ANCP Version Registry .......................77
  11. Security Considerations .......................................77
  12. Contributors ..................................................79
  13. Acknowledgements ..............................................79
  14. References ....................................................79
     14.1. Normative References .....................................79
     14.2. Informative References ...................................80



















Wadhwa, et al.               Standards Track                    [Page 4]

RFC 6320                      ANCP Protocol                 October 2011


1.  Introduction

  This document defines a new protocol, the Access Node Control
  Protocol (ANCP), to realize a control plane between a service-
  oriented layer 3 edge device (the Network Access Server, NAS) and a
  layer 2 Access Node (e.g., Digital Subscriber Line Access
  Multiplexer, DSLAM) in order to perform operations related to quality
  of service (QoS), services, and subscriptions.  The requirements for
  ANCP and the context within which it operates are described in
  [RFC5851].

  ANCP provides its services to control applications operating in the
  AN and NAS, respectively.  This relationship is shown in Figure 1.
  Specification of the control applications is beyond the scope of this
  document, but informative partial descriptions are provided as
  necessary to give a context for the operation of the protocol.

         Access Node                            Network Access Server
    +--------------------+                     +--------------------+
    | +----------------+ |                     | +----------------+ |
    | |   AN Control   | |                     | |  NAS Control   | |
    | |  Application   | |                     | |  Application   | |
    | +----------------+ |                     | +----------------+ |
    | +----------------+ |                     | +----------------+ |
    | |   ANCP Agent   | |    ANCP Messages    | |   ANCP Agent   | |
    | |   (AN side)    |<----------------------->|   (NAS side)   | |
    | +----------------+ |                     | +----------------+ |
    +--------------------+                     +--------------------+

  Figure 1:  Architectural Context for the Access Node Control Protocol

  At various points in this document, information flows between the
  control applications and ANCP are described.  The purpose of such
  descriptions is to clarify the boundary between this specification
  and, for example, [TR-147].  There is no intention to place limits on
  the degree to which the control application and the protocol
  implementation are integrated.

  This specification specifies ANCP transport over TCP/IP.  TCP
  encapsulation for ANCP is as defined in Section 3.2.

  The organization of this document is as follows:

  o  Sections 1.2 and 1.3 introduce some terminology that will be
     useful in understanding the rest of the document.

  o  Section 2 provides a description of the access networks within
     which ANCP will typically be deployed.



Wadhwa, et al.               Standards Track                    [Page 5]

RFC 6320                      ANCP Protocol                 October 2011


  o  Section 3 specifies generally applicable aspects of ANCP.

  o  Section 4 specifies some messages and TLVs intended for use by
     multiple capabilities spanning multiple technologies.

  o  Section 5 and the three following sections describe and specify
     the ANCP implementation of three capabilities applicable to the
     control of DSL access technology: topology discovery, line
     configuration, and remote line connectivity testing.

  o  Section 9 is the IANA Considerations section.  This section
     defines a number of new ANCP-specific registries as well as the
     joint GSMP/ANCP version registry mentioned below.

  o  Section 11 addresses security considerations relating to ANCP,
     beginning with the requirements stated in [RFC5713].

1.1.  Historical Note

  Initial implementations of the protocol that became ANCP were based
  on the General Switch Management Protocol version 3 (GSMPv3)
  [RFC3292].  The ANCP charter required the Working Group to develop
  its protocol based on these implementations.  In the end, ANCP
  introduced so many extensions and modifications to GSMPv3 that the
  two protocols are not interoperable.  Nevertheless, although this
  specification has no normative dependencies on [RFC3292], the mark of
  ANCP's origins can be seen in the various unused fields within the
  ANCP message header.

  Early in ANCP's development, the decision was made to use the same
  TCP port and encapsulation as GSMPv3, and by the time ANCP was
  finished, it was too late to reverse that decision because of
  existing implementations.  As a result, it is necessary to have a way
  for an ANCP peer to quickly distinguish ANCP from GSMP during initial
  adjacency negotiations.  This has been provided by a joint registry
  of GSMP and ANCP version numbers.  GSMP has version numbers 1 through
  3.  ANCP has the initial version number 50.

1.2.  Requirements Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

1.3.  Terminology

  This section repeats some definitions from [RFC5851], but it also
  adds definitions for terms used only in this document.



Wadhwa, et al.               Standards Track                    [Page 6]

RFC 6320                      ANCP Protocol                 October 2011


  Access Node (AN):  [RFC5851] Network device, usually located at a
     service provider central office or street cabinet that terminates
     access (local) loop connections from subscribers.  In case the
     access loop is a Digital Subscriber Line (DSL), the Access Node
     provides DSL signal termination and is referred to as a DSL Access
     Multiplexer (DSLAM).

  Network Access Server (NAS):  [RFC5851] Network element that
     aggregates subscriber traffic from a number of Access Nodes.  The
     NAS is an enforcement point for policy management and IP QoS in
     the access network.  It is also referred to as a Broadband Network
     Gateway (BNG) or Broadband Remote Access Server (BRAS).

  Home Gateway (HGW):  Network element that connects subscriber devices
     to the Access Node and the access network.  In the case of DSL,
     the Home Gateway is a DSL network termination that may operate
     either as a layer 2 bridge or as a layer 3 router.  In the latter
     case, such a device is also referred to as a Routing Gateway (RG).

  ANCP agent:  A logical entity that implements ANCP in the Access Node
     (AN-side) or NAS (NAS-side).

  Access Node control adjacency:  (modified from [RFC5851]) The
     relationship between the AN-side ANCP agent and the NAS-side ANCP
     agent for the purpose of exchanging Access Node Control Protocol
     messages.  The adjacency may be either up or down, depending on
     the result of the Access Node Control adjacency protocol
     operation.

  ANCP capability:  A specific set of ANCP messages, message content,
     and procedures required to implement a specific use case or set of
     use cases.  Some ANCP capabilities are applicable to just one
     access technology while others are technology independent.  The
     capabilities applicable to a given ANCP adjacency are negotiated
     during adjacency startup.

  Type-Length-Value (TLV):  A data structure consisting of a 16-bit
     type field, a sixteen-bit length field, and a variable-length
     value field padded to the nearest 32-bit word boundary, as
     described in Section 3.6.2.  The value field of a TLV can contain
     other TLVs.  An IANA registry is maintained for values of the ANCP
     TLV Type field.

  Net data rate:  [RFC5851] Defined by ITU-T G.993.2 [G.993.2], Section
     3.39, i.e., the portion of the total data rate that can be used to
     transmit user information (e.g., ATM cells or Ethernet frames).
     It excludes overhead that pertains to the physical transmission
     mechanism (e.g., trellis coding in the case of DSL).  It includes



Wadhwa, et al.               Standards Track                    [Page 7]

RFC 6320                      ANCP Protocol                 October 2011


     TPS-TC (Transport Protocol Specific - Transmission Convergence)
     encapsulation; this is zero for ATM encapsulation and non-zero for
     64/65 encapsulation.

  Line rate:  [RFC5851] Defined by ITU-T G.993.2.  It contains the
     complete overhead including Reed-Solomon and trellis coding.

  DSL multi-pair bonding:  Method for bonding (or aggregating) multiple
     xDSL access lines into a single bidirectional logical link,
     henceforth referred to in this document as "DSL bonded circuit".
     DSL "multi-pair" bonding allows an operator to combine the data
     rates on two or more copper pairs, and deliver the aggregate data
     rate to a single customer.  ITU-T recommendations G.998.1
     [G.998.1] and G.998.2 [G.998.2], respectively, describe ATM- and
     Ethernet-based multi-pair bonding.

2.   Broadband Access Aggregation

2.1.  ATM-Based Broadband Aggregation

  The end-to-end DSL network consists of network service provider (NSP)
  and application service provider (ASP) networks, regional/access
  network, and customer premises network.  Figure 2 shows ATM broadband
  access network components.

  The regional/access network consists of the regional network, Network
  Access Server (NAS), and the access network as shown in Figure 2.
  Its primary function is to provide end-to-end transport between the
  customer premises and the NSP or ASP.

  The Access Node terminates the DSL signal.  It may be in the form of
  a DSLAM in the central office, a remote DSLAM, or a Remote Access
  Multiplexer (RAM).  The Access Node is the first point in the network
  where traffic on multiple DSL access lines will be aggregated onto a
  single network.

  The NAS performs multiple functions in the network.  The NAS is the
  aggregation point for subscriber traffic.  It provides aggregation
  capabilities (e.g., IP, PPP, ATM) between the Regional/Access Network
  and the NSP or ASP.  These include traditional ATM-based offerings
  and newer, more native IP-based services.  This includes support for
  Point-to-Point Protocol over ATM (PPPoA) and PPP over Ethernet
  (PPPoE), as well as direct IP services encapsulated over an
  appropriate layer 2 transport.

  Beyond aggregation, the NAS is also the enforcement point for policy
  management and IP QoS in the regional/access networks.  To allow IP
  QoS support over an existing non-IP-aware layer 2 access network



Wadhwa, et al.               Standards Track                    [Page 8]

RFC 6320                      ANCP Protocol                 October 2011


  without using multiple layer 2 QoS classes, a mechanism based on
  hierarchical scheduling is used.  This mechanism, defined in
  [TR-059], preserves IP QoS over the ATM network between the NAS and
  the Routing Gateway (RG) at the edge of the subscriber network, by
  carefully controlling downstream traffic in the NAS, so that
  significant queuing and congestion do not occur farther down the ATM
  network.  This is achieved by using a Diffserv-aware hierarchical
  scheduler in the NAS that will account for downstream trunk
  bandwidths and DSL synchronization rates.

  [RFC5851] provides detailed definitions of the functions of each
  network element in the broadband reference architecture.

                             Access                   Customer
                      <--- Aggregation -->  <------- Premises ------->
                             Network                   Network

                      +------------------+ +--------------------------+
  +---------+   +---+ | +-----+ +------+ | |+-----+ +---+ +---------+ |
NSP|         | +-|NAS|-| |ATM  |-|Access| --||DSL  |-|HGW|-|Subscriber||
---+ Regional| | +---+ | +-----+ | Node | | ||Modem| +---+ |Devices   ||
  |Broadband| | +---+ |         +------+ | |+-----+       +----------+|
ASP|Network  |-+-|NAS| +--------------|---+ +--------------------------+
---+         | | +---+                |     +--------------------------+
  |         | | +---+                |     |+-----+ +---+ +----------+|
  +---------+ +-|NAS|                +-----|| DSL |-|HGW|-|Subscriber||
                +---+                      ||Modem| +---+ |Devices   ||
                                           |+-----+       +----------+|
                                           +--------------------------+
HGW: Home Gateway
NAS: Network Access Server

              Figure 2: ATM Broadband Aggregation Topology

2.2.  Ethernet-Based Broadband Aggregation

  The Ethernet aggregation network architecture builds on the Ethernet
  bridging/switching concepts defined in IEEE 802.  The Ethernet
  aggregation network provides traffic aggregation, class of service
  distinction, and customer separation and traceability.  VLAN tagging,
  defined in [IEEE802.1Q] and enhanced by [IEEE802.1ad], is used as the
  standard virtualization mechanism in the Ethernet aggregation
  network.  The aggregation devices are "provider edge bridges" defined
  in [IEEE802.1ad].

  Stacked VLAN tags provide one possible way to create an equivalent of
  "virtual paths" and "virtual circuits" in the aggregation network.
  The "outer" VLAN can be used to create a form of "virtual path"



Wadhwa, et al.               Standards Track                    [Page 9]

RFC 6320                      ANCP Protocol                 October 2011


  between a given DSLAM and a given NAS.  "Inner" VLAN tags create a
  form of "virtual circuit" on a per-DSL-line basis.  This is the 1:1
  VLAN allocation model.  An alternative model is to bridge sessions
  from multiple subscribers behind a DSLAM into a single VLAN in the
  aggregation network.  This is the N:1 VLAN allocation model.  Section
  1.6 of [TR-101] provides brief definitions of these two models, while
  Section 2.5.1 describes them in more detail.

3.  Access Node Control Protocol -- General Aspects

  This section specifies aspects of the Access Node Control Protocol
  (ANCP) that are generally applicable.

3.1.  Protocol Version

  ANCP messages contain an 8-bit protocol version field.  For the
  protocol version specified in this document, the value of that field
  MUST be set to 50.

3.2.  ANCP Transport

  This document specifies the use of TCP / IPsec+IKEv2 / IP for
  transport of ANCP messages.  For further discussion of the use of
  IPsec and IKEv2, see Section 11.  The present section deals with the
  TCP aspects.  Other specifications may introduce additional
  transports in the future.

     In the case of ATM access, a separate permanent virtual circuit
     (PVC) that is a control channel and is capable of transporting IP
     MAY be configured between the NAS and the AN for ANCP messages.

     In the case of an Ethernet access/aggregation network, a typical
     practice is to send the Access Node Control Protocol messages over
     a dedicated Ethernet virtual LAN (VLAN) using a separate VLAN
     identifier (VLAN ID).

  When transported over TCP, ANCP messages MUST use an encapsulation
  consisting of a 4-byte header field prepended to the ANCP message as
  shown in Figure 3.












Wadhwa, et al.               Standards Track                   [Page 10]

RFC 6320                      ANCP Protocol                 October 2011


      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |    Identifier (0x880C)        |           Length              |
     |-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     ~                         ANCP Message                          ~
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

          Figure 3: Encapsulation of ANCP Messages over TCP/IP

  The fields of the encapsulating header are as follows:

  Identifier (16 bits):  This identifies a GSMP or ANCP message.  It
     MUST be set to 0x880C.

  Length (16 bits):  Total length of the ANCP message in bytes, not
     including the 4-byte encapsulating header.

  The Access Node MUST initiate the TCP session to the NAS, using
  destination port 6068.

     This is necessary to avoid static address provisioning on the NAS
     for all the ANs that are being served by the NAS.  It is easier to
     configure a given AN with the single IP address of the NAS that
     serves the AN.

  The NAS MUST listen on port 6068 for incoming connections from the
  Access Nodes.

  In the event of an ANCP transport protocol failure, all pending ANCP
  messages destined to the disconnected recipient SHOULD be discarded
  until the transport connection is re-established.

3.3.  Encoding of Text Fields

  In ANCP, all text fields use UTF-8 encoding [RFC3629].  Note that US-
  ASCII characters have the same representation when coded as UTF-8 as
  they do when coded according to [US_ASCII].

  When extracting text fields from a message, the ANCP agent MUST NOT
  assume that the fields are zero-terminated.








Wadhwa, et al.               Standards Track                   [Page 11]

RFC 6320                      ANCP Protocol                 October 2011


3.4.  Treatment of Reserved and Unused Fields

  ANCP messages contain a number of fields that are unused or reserved.
  Some fields are always unused (typically because they were inherited
  from GSMPv3 but are not useful in the ANCP context).  Others are
  reserved in the current specification, but are provided for
  flexibility in future extensions to ANCP.  Both reserved and unused
  fields MUST be set to zeroes by the sender and MUST be ignored by the
  receiver.

  Unused bits in a flag field are shown in figures as 'x'.  The above
  requirement (sender set to zero, receiver ignore) applies to such
  unused bits.

3.5.  The ANCP Adjacency Protocol

  ANCP uses the adjacency protocol to synchronize the NAS and Access
  Nodes and maintain the ANCP session.  After the TCP connection is
  established, adjacency protocol messages MUST be exchanged as
  specified in this section.  ANCP messages other than adjacency
  protocol messages MUST NOT be sent until the adjacency protocol has
  achieved synchronization.

3.5.1.  ANCP Adjacency Message Format

  The ANCP adjacency message format is shown in Figure 4 below.

























Wadhwa, et al.               Standards Track                   [Page 12]

RFC 6320                      ANCP Protocol                 October 2011


      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Version   | Message Type  |     Timer     |M|     Code    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                          Sender Name                          |
     +                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                               |                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
     |                         Receiver Name                         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                          Sender Port                          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                         Receiver Port                         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | PType |P Flag |               Sender Instance                 |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Partition ID  |              Receiver Instance                |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Reserved      | # of Caps     | Total Length                  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     ~                   Capability Fields                           ~
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 4: ANCP Adjacency Message Format

  The fields of the ANCP adjacency message are as follows:

  Version (8 bits):  ANCP version, which is subject to negotiation.
     This is the key parameter by means of which ANCP messages can be
     distinguished from GSMP messages received over the same port.

  Message Type (8 bits):  Always has value 10 (adjacency protocol).

  Timer (8 bits):  The Timer field is used to negotiate the timer value
     used in the adjacency protocol with the peer.  The timer specifies
     the nominal time between periodic adjacency protocol messages.  It
     is a constant for the duration of an ANCP session.  The Timer
     field is specified in units of 100 ms, with a default value of 250
     (i.e., 25 seconds).

  M flag (1 bit):  Used in the SYN message to prevent the NAS from
     synchronizing with another NAS and the AN from synchronizing with
     another AN.  In the SYN message, it is always set to 1 by the NAS
     and to 0 by the AN.  In other adjacency message types, it is
     always set to 0 by the sender and ignored by the receiver.



Wadhwa, et al.               Standards Track                   [Page 13]

RFC 6320                      ANCP Protocol                 October 2011


  Code (7 bits):  The adjacency protocol message type.  It MUST have
     one of the following values:

        Code = 1: SYN;

        Code = 2: SYNACK;

        Code = 3: ACK;

        Code = 4: RSTACK.

  Sender Name (48 bits):  For the SYN, SYNACK, and ACK messages, is the
     identifier of the entity sending the message.  The Sender Name is
     a 48-bit quantity that is unique within the operational context of
     the device.  A 48-bit IEEE 802 Media Access Control (MAC) address,
     if available, may be used for the Sender Name.  If the Ethernet
     encapsulation is used, the Sender Name MUST be the Source Address
     from the MAC header.  For the RSTACK message, the Sender Name
     field is set to the value of the Receiver Name field from the
     incoming message that caused the RSTACK message to be generated.

  Receiver Name (48 bits)  For the SYN, SYNACK, and ACK messages, is
     the name of the entity that the sender of the message believes is
     at the far end of the link.  If the sender of the message does not
     know the name of the entity at the far end of the link, this field
     SHOULD be set to zero.  For the RSTACK message, the Receiver Name
     field is set to the value of the Sender Name field from the
     incoming message that caused the RSTACK message to be generated.

  Sender Port (32 bits):  For the SYN, SYNACK, and ACK messages, is the
     local port number of the link across which the message is being
     sent.  For the RSTACK message, the Sender Port field is set to the
     value of the Receiver Port field from the incoming message that
     caused the RSTACK message to be generated.

  Receiver Port (32 bits):  For the SYN, SYNACK, and ACK messages, is
     what the sender believes is the local port number for the link,
     allocated by the entity at the far end of the link.  If the sender
     of the message does not know the port number at the far end of the
     link, this field SHOULD be set to zero.  For the RSTACK message,
     the Receiver Port field is set to the value of the Sender Port
     field from the incoming message that caused the RSTACK message to
     be generated.

  PType (4 bits):  PType is used to specify if partitions are used and
     how the Partition ID is negotiated.





Wadhwa, et al.               Standards Track                   [Page 14]

RFC 6320                      ANCP Protocol                 October 2011


        Type of partition being requested:

        0 - no partition;

        1 - fixed partition request;

        2 - fixed partition assigned.

  P Flag (4 bits):  Used to indicate the type of partition request.

        1 - new adjacency;

        2 - recovered adjacency.

     In case of a conflict between the peers' views of the value of the
     P Flag, the lower value is used.

  Sender Instance (24 bits):  For the SYN, SYNACK, and ACK messages, is
     the sender's instance number for the link to the peer.  It is used
     to detect when the link comes back up after going down or when the
     identity of the entity at the other end of the link changes.  The
     instance number is a 24-bit number that is guaranteed to be unique
     within the recent past and to change when the link or node comes
     back up after going down.  Zero is not a valid instance number.
     For the RSTACK message, the Sender Instance field is set to the
     value of the Receiver Instance field from the incoming message
     that caused the RSTACK message to be generated.

  Partition ID (8 bits):  Field used to associate the message with a
     specific partition of the AN.  The value of this field is
     negotiated during the adjacency procedure.  The AN makes the final
     decision, but will consider a request from the NAS.  If the AN
     does not support partitions, the value of this field MUST be 0.
     Otherwise, it MUST be non-zero.

  Receiver Instance (24 bits):  For the SYN, SYNACK, and ACK messages,
     is what the sender believes is the current instance number for the
     link, allocated by the entity at the far end of the link.  If the
     sender of the message does not know the current instance number at
     the far end of the link, this field SHOULD be set to zero.  For
     the RSTACK message, the Receiver Instance field is set to the
     value of the Sender Instance field from the incoming message that
     caused the RSTACK message to be generated.

  Reserved (8 bits):  Reserved for use by a future version of this
     specification.





Wadhwa, et al.               Standards Track                   [Page 15]

RFC 6320                      ANCP Protocol                 October 2011


  # of Caps (8 bits):  Indicates the number of Capability fields that
     follow.

  Total Length (16 bits):  Indicates the total number of bytes occupied
     by the Capability fields that follow.

  Capability Fields:  Each Capability field indicates one ANCP
     capability supported by the sender of the adjacency message.
     Negotiation of a common set of capabilities to be supported within
     the ANCP session is described below.  The detailed format of a
     Capability field is shown in Figure 5 and described below.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Capability Type           |   Capability Length           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     ~                                                               ~
     ~                   Capability Data                             ~
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                       Figure 5: Capability Field

  The sub-fields of this structure are as follows:

  Capability Type (16 bits):  Indicates the specific capability
     supported.  An IANA registry exists for values of this sub-field.
     The values specified by this document are listed below.

  Capability Length (16 bits):  The number of bytes of data contained
     in the Capability Data sub-field, excluding padding.  If the
     definition of a particular capability includes no capability data,
     the value of the Capability Length sub-field is zero.

  Capability Data (as indicated by Capability Length):  Contains data
     associated with the capability as specified for that capability.
     If the definition of a particular capability includes no
     capability data, the Capability Data sub-field is absent (has zero
     length).  Otherwise, the Capability Data sub-field MUST be padded
     with zeroes as required to terminate on a 4-byte word boundary.
     The possibility of specifying capability data provides the
     flexibility to advertise more than the mere presence or absence of
     a capability if needed.







Wadhwa, et al.               Standards Track                   [Page 16]

RFC 6320                      ANCP Protocol                 October 2011


  The following capabilities are defined for ANCP as applied to DSL
  access:

  o  Capability Type: DSL Topology Discovery = 0x01

        Access technology: DSL

        Length (in bytes): 0

        Capability Data: NULL

     For the detailed protocol specification of this capability, see
     Section 6.

  o  Capability Type: DSL Line Configuration = 0x02

        Access technology: DSL

        Length (in bytes): 0

        Capability Data: NULL

     For the detailed protocol specification of this capability, see
     Section 7.

  o  Capability Type: DSL Remote Line Connectivity Testing = 0x04

        Access technology: DSL

        Length (in bytes): 0

        Capability Data: NULL

     For the detailed protocol specification of this capability, see
     Section 8.

  In addition to the adjacency messages whose format is shown in
  Figure 6, ANCP adjacency procedures use the Adjacency Update message
  (Figure 6) to inform other NASs controlling the same AN partition
  when a particular NAS joins or loses an adjacency with that
  partition.










Wadhwa, et al.               Standards Track                   [Page 17]

RFC 6320                      ANCP Protocol                 October 2011


      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |    Version    | Message Type  | Result|        Code           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Partition ID  |            Transaction Identifier             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |I|      SubMessage Number      |           Length              |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 6: The Adjacency Update Message

  The Adjacency Update message is identical to the general ANCP message
  header described in Section 3.6, but the field settings are in part
  specific to the Adjacency Update message.  The fields in this message
  are as follows:

  Version (8 bits):  The ANCP version negotiated and running in this
     adjacency.

  Message Type (8 bits):  Always 85.

  Result (4 bits):  Set to Ignore (0).

  Code (12 bits):  Set to the total number of adjacencies currently
     established on this partition, from the point of view of the AN.

  Partition ID (8 bits):  The partition identifier of the partition for
     which this notification is being sent.

  Transaction Identifier (24 bits):  MUST be set to 0.

  I (1 bit), SubMessage number (15 bits):  Set as described in
     Section 3.6.1.7.

  Length (16 bits):  Set as described in Section 3.6.1.8.

3.5.2.  ANCP Adjacency Procedures

3.5.2.1.  Overview

  The ANCP adjacency protocol operates symmetrically between the NAS
  and the AN.  In the absence of errors or race conditions, each peer
  sends a SYN message, receives a SYNACK message in acknowledgement,
  and completes the establishment of the adjacency by sending an ACK
  message.  Through this exchange, each peer learns the values of the
  Name, Port, and Instance parameters identifying the other peer, and




Wadhwa, et al.               Standards Track                   [Page 18]

RFC 6320                      ANCP Protocol                 October 2011


  the two peers negotiate the values of the Version, Timer, P Flag, and
  Partition ID parameters and the set of capabilities that the
  adjacency will support.

  Once the adjacency has been established, its liveness is periodically
  tested.  The peers engage in an ACK message exchange at a frequency
  determined by the negotiated value of the Timer field.

  If an inconsistency, loss of contact, or protocol violation is
  detected, the detecting peer can force a restart of the
  synchronization process by sending an RSTACK message to the other
  end.

  Once an adjacency has been established, if more than one NAS has
  established an adjacency to the same partition, then the AN sends an
  Adjacency Update message to each such NAS to let it know how many
  established adjacencies the partition currently supports.  Similarly,
  if an adjacency is lost, the AN sends an Adjacency Update message to
  each of the remaining adjacent NASs to let them know about the change
  in status.

3.5.2.2.  Adjacency Protocol State Machine

  The adjacency protocol is described by the following rules and state
  tables.  It begins with the sending of a SYN by each end as soon as
  the transport connection has been established.  If at any point the
  operations A, B, C, or "Verify Adjacent State" defined below detect a
  mismatch, a log SHOULD be generated, identifying the fields concerned
  and the expected and received values for each.

  The rules and state tables use the following operations:

  o  The "Record Adjacency State" operation is defined in
     Section 3.5.2.3.2.

  o  The "Verify Adjacency State" operation consists of verifying that
     the contents of the incoming SYNACK message match the adjacency
     state values previously recorded.

  o  The procedure "Reset the link" is defined as:

     1.  Generate a new instance number for the link.

     2.  Delete the peer verifier (set to zero the values of Sender
         Instance, Sender Port, and Sender Name previously stored by
         the "Record Adjacency State" operation).

     3.  Send a SYN message (Section 3.5.2.3.1).



Wadhwa, et al.               Standards Track                   [Page 19]

RFC 6320                      ANCP Protocol                 October 2011


     4.  Enter the SYNSENT state.

  o  The state tables use the following Boolean terms and operators.

     A.  The Sender Instance in the incoming message matches the value
         stored from a previous message by the "Record Adjacency State"
         operation.

     B.  The Sender Instance, Sender Port, Sender Name, and Partition
         ID fields in the incoming message match the values stored from
         a previous message by the "Record Adjacency State" operation.

     C.  The Receiver Instance, Receiver Port, Receiver Name, and
         Partition ID fields in the incoming message match the values
         of the Sender Instance, Sender Port, Sender Name, and
         Partition ID currently sent in outgoing SYN, SYNACK, and ACK
         messages, except that the NAS always accepts the Partition ID
         value presented to it in a SYN or SYNACK message.

        "&&" Represents the logical AND operation.

        "||" Represents the logical OR operation.

        "!"  Represents the logical negation (NOT) operation.

  o  A timer is required for the periodic generation of SYN, SYNACK,
     and ACK messages.  The value of the timer is negotiated in the
     Timer field.  The period of the timer is unspecified, but a value
     of 25 seconds is suggested.  Note that since ANCP uses a reliable
     transport protocol, the timer is unlikely to expire in any state
     other than ESTAB.

     There are two independent events: the timer expires, and a packet
     arrives.  The processing rules for these events are:

        Timer Expires: Reset Timer

           If state = SYNSENT Send SYN

           If state = SYNRCVD Send SYNACK

           If state = ESTAB Send ACK









Wadhwa, et al.               Standards Track                   [Page 20]

RFC 6320                      ANCP Protocol                 October 2011


        Packet Arrives:

           If incoming message is an RSTACK:

              If (A && C && !SYNSENT) Reset the link

              Else discard the message.

           If incoming message is a SYN, SYNACK, or ACK:

              Response defined by the following state tables.

           If incoming message is any other ANCP message and state !=
           ESTAB:

              Discard incoming message.

              If state = SYNSENT Send SYN (Note 1)

              If state = SYNRCVD Send SYNACK (Note 1)

        Note 1: No more than two SYN or SYNACK messages should be sent
        within any time period of length defined by the timer.

  o  State synchronization across a link is considered to be achieved
     when the protocol reaches the ESTAB state.  All ANCP messages,
     other than adjacency protocol messages, that are received before
     synchronization is achieved will be discarded.

3.5.2.2.1.  State Tables

   State: SYNSENT

  +===================================================================+
  |    Condition    |                Action               | New State |
  +=================+=====================================+===========+
  |   SYNACK && C   |  Update Peer Verifier; Send ACK     |   ESTAB   |
  +-----------------+-------------------------------------+-----------+
  |   SYNACK && !C  |            Send RSTACK              |  SYNSENT  |
  +-----------------+-------------------------------------+-----------+
  |       SYN       |  Update Peer Verifier; Send SYNACK  |  SYNRCVD  |
  +-----------------+-------------------------------------+-----------+
  |       ACK       |            Send RSTACK              |  SYNSENT  |
  +===================================================================+







Wadhwa, et al.               Standards Track                   [Page 21]

RFC 6320                      ANCP Protocol                 October 2011


   State: SYNRCVD

  +===================================================================+
  |    Condition    |                Action               | New State |
  +=================+=====================================+===========+
  |   SYNACK && C   |  Verify Adjacency State; Send ACK   |   ESTAB   |
  +-----------------+-------------------------------------+-----------+
  |   SYNACK && !C  |            Send RSTACK              |  SYNRCVD  |
  +-----------------+-------------------------------------+-----------+
  |       SYN       | Record Adjacency State; Send SYNACK |  SYNRCVD  |
  +-----------------+-------------------------------------+-----------+
  |  ACK && B && C  |              Send ACK               |   ESTAB   |
  +-----------------+-------------------------------------+-----------+
  | ACK && !(B && C)|            Send RSTACK              |  SYNRCVD  |
  +===================================================================+


   State: ESTAB

  +===================================================================+
  |    Condition    |                Action               | New State |
  +=================+=====================================+===========+
  |  SYN || SYNACK  |           Send ACK (Note 2)         |   ESTAB   |
  +-----------------+-------------------------------------+-----------+
  |  ACK && B && C  |           Send ACK (Note 3)         |   ESTAB   |
  +-----------------+-------------------------------------+-----------+
  | ACK && !(B && C)|              Send RSTACK            |   ESTAB   |
  +===================================================================+

  Note 2: No more than two ACKs should be sent within any time period
  of length defined by the timer.  Thus, one ACK MUST be sent every
  time the timer expires.  In addition, one further ACK may be sent
  between timer expirations if the incoming message is a SYN or SYNACK.
  This additional ACK allows the adjacency protocol to reach
  synchronization more quickly.

  Note 3: No more than one ACK should be sent within any time period of
  length defined by the timer.

3.5.2.3.  The Adjacency Protocol SYN Message

3.5.2.3.1.  Action by the Sender

  The SYN message is sent in accordance with the state tables just
  described.  The sender sets the individual fields as follows:






Wadhwa, et al.               Standards Track                   [Page 22]

RFC 6320                      ANCP Protocol                 October 2011


  Version:  SHOULD be set to the highest version of ANCP that the
     sender supports.

  Message Type:  MUST be set to 10.

  Timer:  SHOULD be set to the value configured in the AN or NAS
     sending the message.

  M Flag:  MUST be set to 1 by the NAS, and 0 by the AN.

  Code:  MUST be set to 1 (SYN).

  Sender Name:  Set as described in Section 3.5.1.

  Receiver Name:  SHOULD be set to 0.

  Sender Port:  Set as described in Section 3.5.1.

  Receiver Port:  SHOULD be set to 0.

  PType:  Set according to the following rules:

        Settings by the AN:

           0 - the AN does not support partitions;

           2 - the value of Partition ID contained in this message is
           assigned to the current partition.

        Settings by the NAS:

           0 - the NAS leaves the decision on partitioning to the AN
           (RECOMMENDED setting);

           1 - the NAS requests that the AN use the value of Partition
           ID contained in this message for the current partition.  The
           NAS MAY use this setting even if it has already received a
           SYN message from the AN, provided that the AN has indicated
           support for partitions.  The NAS MUST be prepared to use
           whatever value it receives in a subsequent SYN or SYNACK
           message, even if this differs from the requested value.

  P Flag:  Set to the mode of adjacency setup (new adjacency vs.
     recovered adjacency) requested by the sender.  Warning: setting P
     Flag=1 runs the risk of state mismatch because ANCP does not
     provide the means for the NAS to audit the current state of the
     AN.




Wadhwa, et al.               Standards Track                   [Page 23]

RFC 6320                      ANCP Protocol                 October 2011


  Sender Instance:  Set as described in Section 3.5.1.

  Partition ID:  MUST be set to 0 if PType=0; otherwise, set to the
     assigned or requested partition identifier value.

  Receiver Instance:  SHOULD be set to 0.

  # of Caps:  MUST be set to the number of Capability fields that
     follow.

  Total Length:  MUST be set to the total number of bytes in the
     Capability fields that follow.

  Capability Fields:  One Capability field MUST be present for each
     ANCP capability for which the sender wishes to advertise support.

3.5.2.3.2.  Action by the Receiver

  Upon receiving a validly formed SYN message, the receiver first
  checks the value of the Version field.  If this value is not within
  the range of ANCP versions that the receiver supports, the message
  MUST be silently ignored.  Similarly, the message is silently ignored
  if the M flag is 0 and the receiver is an AN or if the M flag is 1
  and the receiver is a NAS.  If these checks are passed and the
  receiver is in ESTAB state, it returns an ACK (as indicated by the
  ESTAB state table in Section 3.5.2.2.1).  The contents of the ACK
  MUST reflect the adjacency state as previously recorded by the
  receiver.

  Otherwise, the receiver MUST perform the "Record Adjacency State"
  operation by recording the following fields:

  Version:  The supported Version value received in the SYN message.
     This value MUST be used for all subsequent ANCP messages sent
     during the life of the adjacency.

  Timer:  The larger of the Timer value received in the SYN message and
     the value with which the receiver is configured.

  Sender Name:  The value of the Sender Name field in the SYN message
     just received.

  Receiver Name:  The value used by the receiver in the Sender Name
     field of SYN, SYNACK, and ACK messages it sends in this adjacency.







Wadhwa, et al.               Standards Track                   [Page 24]

RFC 6320                      ANCP Protocol                 October 2011


  Sender Port:  The value of the Sender Port field in the SYN message
     just received.

  Receiver Port:  The value used by the receiver in the Sender Port
     field of SYN, SYNACK, and ACK messages it sends in this adjacency.

  Sender Instance:  The value of the Sender Instance field in the SYN
     message just received.

  P Flag:  The lesser of the value determined by local policy and the
     value received in the SYN message.  That is, preference is given
     to "0 - New adjacency" if there is a conflict.

  Partition ID:  If the SYN receiver is the AN, this is set to 0 if the
     AN does not support partitions or to the non-zero value of the
     partition identifier it chooses to assign otherwise.  If the SYN
     receiver is the NAS, this is set to the value of the Partition ID
     field copied from the SYN.

  Receiver Instance:  The value used by the receiver in the Sender
     Instance field of SYN, SYNACK, and ACK messages it sends in this
     adjacency.

  Capabilities:  The set of ANCP capabilities that were offered in the
     SYN and are supported by the receiver.

3.5.2.4.  The Adjacency Protocol SYNACK Message

3.5.2.4.1.  Action by the Sender

  The SYNACK is sent in response to a successfully received SYN
  message, as indicated by the state tables.  The Version, Timer, P
  Flag, and Partition ID fields MUST be populated with the values
  recorded as part of adjacency state.  The # of Caps, Total Length,
  and Capability fields MUST also be populated in accordance with the
  Capabilities recorded as part of adjacency state.  The remaining
  fields of the SYNACK message MUST be populated as follows:

  Message Type:  MUST be 10.

  M flag:  MUST be set to 0.

  Code:  MUST be 2 (SYNACK).

  PType:  MUST be 0 if the Partition ID value is 0 or 2 if the
     Partition ID value is non-zero.





Wadhwa, et al.               Standards Track                   [Page 25]

RFC 6320                      ANCP Protocol                 October 2011


  Sender Name:  MUST be set to the Receiver Name value recorded as part
     of adjacency state.

  Receiver Name:  MUST be set to the Sender Name value recorded as part
     of adjacency state.

  Sender Port:  MUST be set to the Receiver Port value recorded as part
     of adjacency state.

  Receiver Port:  MUST be set to the Sender Port value recorded as part
     of adjacency state.

  Sender Instance:  MUST be set to the Receiver Instance value recorded
     as part of adjacency state.

  Receiver Instance:  MUST be set to the Sender Instance value recorded
     as part of adjacency state.

  If the set of capabilities recorded in the adjacency state is empty,
  then after sending the SYNACK the sender MUST raise an alarm to
  management, halt the adjacency procedure, and tear down the TCP
  session if it is not being used by another adjacency.  The sender MAY
  also terminate the IPsec security association if no other adjacency
  is using it.

3.5.2.4.2.  Action by the Receiver

  As indicated by the state tables, the receiver of a SYNACK first
  checks that the Receiver Name, Receiver Port, and Receiver Instance
  values match the Sender Name, Sender Port, and Sender Instance values
  it sent in SYN message that is being acknowledged.  The AN also
  checks that the PType and Partition ID match.  If any of these checks
  fail, the receiver sends an RSTACK as described in Section 3.5.2.6.1.

  The receiver next checks whether the set of capabilities provided in
  the SYNACK is empty.  If so, the receiver MUST raise an alarm to
  management and halt the adjacency procedure.

  Assuming that the SYNACK passes these checks, two cases arise.  The
  first possibility is that the receiver has already recorded adjacency
  state.  This will occur if the SYNACK is received while the receiver
  is in SYNRCVD state.  In this case, the Version, Timer, Sender Name,
  Sender Port, Sender Instance, P Flag, and capability-related fields
  in the SYNACK MUST match those recorded as part of adjacency state.
  If a mismatch is detected, the receiver sends an RSTACK.  This is the
  "Verify Adjacency State" procedure shown in the SYNRCVD state table.





Wadhwa, et al.               Standards Track                   [Page 26]

RFC 6320                      ANCP Protocol                 October 2011


  If, on the other hand, the SYNACK is received while the receiver is
  in SYNSENT state, the receiver MUST record session state as described
  in Section 3.5.2.3.2.

  In either case, if the receiver is the NAS, it MUST accept the
  Partition ID value provided in the SYNACK, updating its recorded
  adjacency state if necessary.

3.5.2.5.  The Adjacency Protocol ACK Message

3.5.2.5.1.  Actions by the Sender

  As indicated by the state tables, the ACK message is sent in a number
  of different circumstances.  The main-line usages are as a response
  to SYNACK, leading directly to the ESTAB state, and as a periodic
  test of liveness once the ESTAB state has been reached.

  The sender MUST populate the ACK from recorded adjacency state,
  exactly as described in Section 3.5.2.4.1.  The only difference is
  that Code MUST be set to 3 (ACK).

3.5.2.5.2.  Actions by the Receiver

  The required actions by the receiver are specified by the state
  tables.  In addition to the checks B and C, the receiver SHOULD
  verify that the remaining contents of the ACK match the recorded
  adjacency state at the receiver.  If that check fails, the receiver
  MUST send an RSTACK as described in Section 3.5.2.6.1.

  Once the adjacency has been established, either peer can initiate the
  ACK exchange that tests for liveness.  To meet the restrictions on
  ACK frequency laid down in the notes to the state tables, it is
  desirable that only one such exchange occur during any one interval.
  Hence, if a peer receives an ACK when in ESTAB state, it MUST reply
  to that ACK as directed by the state tables, but SHOULD NOT initiate
  another ACK exchange in the same interval.  To meet this objective,
  the receiver MUST reset its timer when it receives an ACK while in
  ESTAB state.

     It is, of course, possible that two exchanges happen because of
     race conditions.










Wadhwa, et al.               Standards Track                   [Page 27]

RFC 6320                      ANCP Protocol                 October 2011


3.5.2.6.  The Adjacency Protocol RSTACK Message

3.5.2.6.1.  Action by the Sender

  The RSTACK is sent in response to various error conditions as
  indicated by the state tables.  In general, it leads to a restart of
  adjacency negotiations (although this takes a few steps when the
  original sender of the RSTACK is in ESTAB state).

  As indicated in Section 3.5.1, the Sender Name, Port, and Instance
  fields in the RSTACK MUST be copied from the Receiver, Name, Port,
  and Instance fields in the message that caused the RSTACK to be sent.
  Similarly, the Receiver identifier fields in the RSTACK MUST be
  copied from the corresponding Sender identifier fields in the message
  that triggered the RSTACK.

  If the sender has recorded adjacency state, the Version, Timer,
  PType, P Flag, Partition ID, and capability-related fields SHOULD be
  set based on the recorded adjacency state.  Otherwise, they SHOULD be
  the same as the sender would send in a SYN message.  The Message Type
  MUST be 10, the M flag MUST be 0, and Code MUST be 4 (RSTACK).

3.5.2.6.2.  Action by the Receiver

  The receiver of an RSTACK MAY attempt to diagnose the problem that
  caused the RSTACK to be generated by comparing its own adjacency
  state with the contents of the RSTACK.  However, the primary purpose
  of the RSTACK is to trigger action as prescribed by Section 3.5.2.2.

3.5.2.7.  Loss of Synchronization

  Loss of synchronization MAY be declared if after synchronization is
  achieved:

  o  no valid ANCP messages are received in any period of time in
     excess of three times the value of the Timer field negotiated in
     the adjacency protocol messages, or

  o  a mismatch in adjacency state is detected.

  In either case, the peer detecting the condition MUST send an RSTACK
  to the other peer, as directed in Section 3.5.2.6.1, in order to
  initiate resynchronization.

  While re-establishing synchronization with a controller, a switch
  SHOULD maintain its connection state, deferring the decision about
  resetting the state until after synchronization is re-established.




Wadhwa, et al.               Standards Track                   [Page 28]

RFC 6320                      ANCP Protocol                 October 2011


  Once synchronization is re-established, the decision about resetting
  the connection state SHOULD be made based on the negotiated value of
  the P Flag.

3.6.  ANCP General Message Formats

  This section describes the general format of ANCP messages other than
  the adjacency messages.  See Figure 7.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |    Version    | Message Type  | Result|      Result Code      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Partition ID  |            Transaction Identifier             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |I|      SubMessage Number      |           Length              |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     ~                          Message Payload                      ~
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                  Figure 7: ANCP General Message Format

3.6.1.  The ANCP Message Header

  A complete explanation of the ANCP general message header fields
  follows.

3.6.1.1.  Version Field (8 bits)

  This field carries the version of ANCP that was agreed upon for the
  session during adjacency negotiation.

3.6.1.2.  Message Type Field (8 bits)

  This field indicates the ANCP message type.  Message type values are
  registered in an IANA registry.

3.6.1.3.  Result Field (4 bits)

  In request messages, the Result field indicates the circumstances
  under which a response is required.  ANCP specifies what Result value
  each request message type should have.  In responses, the Result
  field indicates either Success (0x3) or Failure (0x4), as the case
  may be.




Wadhwa, et al.               Standards Track                   [Page 29]

RFC 6320                      ANCP Protocol                 October 2011


  Ignore:  Res = 0x0 - Treat this field as a "no operation" and follow
     the response procedures specified for the received message type.

  Nack:  Res = 0x1 - Result value indicating that a response is
     expected to the request only in cases of failure caused during the
     processing of the message contents or of the contained
     directive(s).

  AckAll:  Res = 0x2 - Result value indicating that a response to the
     message is requested in all cases.

  Success:  Res = 0x3 - Result value indicating that this is a response
     and that the request was executed successfully.  The Result Code
     field for a successful result is typically 0, but it MAY take on
     other values as specified for particular message types.

  Failure:  Res = 0x4 - Result value indicating that this is a response
     and that the request was not executed successfully.  The receiver
     of the response SHOULD take further action as indicated by the
     Result Code value and any diagnostic data contained in a Status-
     Info TLV included in the response.

3.6.1.4.  Result Code Field (12 bits)

  This field gives further information concerning the result in a
  response message.  It is mostly used to pass an error code in a
  failure response, but it can also be used to give further information
  in a success response message or an event message.  In a request
  message, the Result Code field is not used and MUST be set to 0x0 (No
  result).

  A number of Result Code values are specified below.  Specification of
  additional Result Code values in extensions or updates to this
  document MUST include the following information:

  o  Result Code value;

  o  One-line description;

  o  Where condition detected (control application or ANCP agent);

  o  Further description (if any);

  o  Required additional information in the response message;

  o  Target (control application or ANCP agent at the peer that sent
     the original request);




Wadhwa, et al.               Standards Track                   [Page 30]

RFC 6320                      ANCP Protocol                 October 2011


  o  Action RECOMMENDED for the receiving ANCP agent.

  In addition to any suggested action in the text that follows, a count
  of the number of times a given non-zero Result Code value was
  received SHOULD be provided for management.  Where an action includes
  the re-sending of a request, a given request SHOULD NOT be re-sent
  more than once.

  This document specifies the following Result Code values.

  Result Code value: 0x2

     *  One-line description: Invalid request message

     *  Where condition detected: ANCP agent

     *  Further description: The request was a properly formed message
        that violates the protocol through its timing or direction of
        transmission.  The most likely reason for this outcome in the
        field will be a race condition.

     *  Required additional information in the response message: None,
        if the response message is of the same type as the request.  As
        specified in Section 4.2, if the response message is a Generic
        Response message.

     *  Target: ANCP agent at the peer that sent the original request

     *  Action RECOMMENDED for the receiving ANCP agent: The original
        request MAY be re-sent once only after a short delay.  Inform
        the control application with appropriate identification of the
        failed transaction if the second attempt fails or no second
        attempt is made.

  Result Code value: 0x6

     *  One-line description: One or more of the specified ports are
        down

     *  Where condition detected: Control application

     *  Further description (if any): This Result Code value indicates
        a state mismatch between the NAS and AN control applications,
        possibly due to a race condition.







Wadhwa, et al.               Standards Track                   [Page 31]

RFC 6320                      ANCP Protocol                 October 2011


     *  Required additional information in the response message: If the
        request identified multiple access lines or the response is a
        Generic Response message, then the response MUST contain a
        Status-Info TLV encapsulating TLV(s) containing the line
        identifier(s) of the access lines that are not operational.

     *  Target: Control application at the peer that sent the original
        request

     *  Action RECOMMENDED for the receiving ANCP agent: Indicate the
        error and forward the line identifier(s) to the control
        application.

  Result Code value: 0x13

     *  One-line description: Out of resources

     *  Where condition detected: ANCP protocol layer or control
        application

     *  Further description (e.g., memory exhausted): This Result Code
        value MUST be reported only by the AN, and indicates a
        condition that is probably unrelated to specific access lines
        (although it may be related to the specific request).

     *  Required additional information in the response message: None,
        if the response message is of the same type as the request.  As
        specified in Section 4.2, if the response message is a Generic
        Response message.

     *  Target: ANCP agent at the peer that sent the original request

     *  Action RECOMMENDED for the receiving ANCP agent: If the NAS
        receives this Result Code value from multiple requests for the
        same AN in a short interval, it SHOULD reduce the rate at which
        it sends requests in proportion to the rate at which requests
        are failing with Result Code = 19.  It MAY retry individual
        requests.  If only a specific request is failing with Result
        Code = 19, the ANCP agent in the NAS MAY request the control
        application to decompose the request into simpler components if
        this is possible.

  Result Code value: 0x51

     *  One-line description: Request message type not implemented

     *  Where condition detected: ANCP agent




Wadhwa, et al.               Standards Track                   [Page 32]

RFC 6320                      ANCP Protocol                 October 2011


     *  Further description: This could indicate a mismatch in protocol
        version or capability state.  It is also possible that support
        of a specific message is optional within some ANCP capability.

     *  Required additional information in the response message: None,
        if the response message is of the same type as the request.  As
        specified in Section 4.2, if the response message is a Generic
        Response message.

     *  Target: ANCP agent at the peer that sent the original request

     *  Action RECOMMENDED for the receiving ANCP agent: If the
        receiver of this Result Code value expects that support of the
        message type concerned is mandatory according to the
        capabilities negotiated for the session, it MAY re-send the
        message in case the message was corrupted in transit the first
        time.  If that fails, and use of the message type cannot be
        avoided, the ANCP agent MAY reset the adjacency by sending an
        RSTACK adjacency message as described in Section 3.5.2.6.1,
        where Sender and Receiver Name, Port, and Instance are taken
        from recorded adjacency state.  If a reset does not eliminate
        the problem, the receiving ANCP agent SHOULD raise an alarm to
        management and then cease to operate.

  Result Code value: 0x53

     *  One-line description: Malformed message

     *  Where condition detected: ANCP agent

     *  Further description: This could be the result of corruption in
        transit, or an error in implementation at one end or the other.

     *  Required additional information in the response message: None,
        if the response message is of the same type as the request.  As
        specified in Section 4.2, if the response message is a Generic
        Response message.

     *  Target: ANCP agent at the peer that sent the original request

     *  Action RECOMMENDED for the receiving ANCP agent: The request
        SHOULD be re-sent once to eliminate the possibility of in-
        transit corruption.

  Result Code value: 0x54

     *  One-line description: Mandatory TLV missing




Wadhwa, et al.               Standards Track                   [Page 33]

RFC 6320                      ANCP Protocol                 October 2011


     *  Where condition detected: ANCP agent

     *  Further description: None

     *  Required additional information in the response message: The
        response message MUST contain a Status-Info message that
        encapsulates an instance of each missing mandatory TLV, where
        the length is set to zero and the value field is empty (i.e.,
        only the 4-byte TLV header is present).

     *  Target: ANCP agent at the peer that sent the original request

     *  Action RECOMMENDED for the receiving ANCP agent: Re-send the
        message with the missing TLV(s), if possible.  Otherwise,
        report the error to the control application with an indication
        of the missing information required to construct the missing
        TLV(s).

  Result Code value: 0x55

     *  One-line description: Invalid TLV contents

     *  Where condition detected: ANCP agent

     *  Further description: The contents of one or more TLVs in the
        request do not match the specifications provided for the those
        TLVs.

     *  Required additional information in the response message: The
        response MUST contain a Status-Info TLV encapsulating the
        erroneous TLVs copied from the original request.

     *  Target: ANCP agent at the peer that sent the original request

     *  Action RECOMMENDED for the receiving ANCP agent: Correct the
        error and re-send the request, if possible.  Otherwise, report
        the error to the control application with an indication of the
        erroneous information associated with the invalid TLV(s).

  Result Code value: 0x500

     *  One-line description: One or more of the specified ports do not
        exist

     *  Where condition detected: Control application






Wadhwa, et al.               Standards Track                   [Page 34]

RFC 6320                      ANCP Protocol                 October 2011


     *  Further description (if any): This may indicate a configuration
        mismatch between the AN and the NAS or Authentication,
        Authorization, and Accounting (AAA).

     *  Required additional information in the response message: If the
        request identified multiple access lines or the response is a
        Generic Response message, then the response MUST contain a
        Status-Info TLV encapsulating TLV(s) containing the rejected
        line identifier(s).

     *  Target: Control application at the peer that sent the original
        request

     *  Action RECOMMENDED for the receiving ANCP agent: Indicate the
        error and forward the line identifiers to the control
        application.

3.6.1.5.  Partition ID (8 bits)

  The Partition ID field MUST contain the value that was negotiated for
  Partition ID during the adjacency procedure as described above.

3.6.1.6.  Transaction ID (24 bits)

  The Transaction ID is set by the sender of a request message to
  associate a response message with the original request message.
  Unless otherwise specified for a given message type, the Transaction
  ID in request messages MUST be set to a value in the range
  (1, 2^24 - 1).  When used in this manner, the Transaction ID
  sequencing MUST be maintained independently for each message type
  within each ANCP adjacency.  Furthermore, it SHOULD be incremented by
  1 for each new message of the given type, cycling back to 1 after
  running the full range.  For event messages, the Transaction ID
  SHOULD be set to zero.

  Unless otherwise specified, the default behavior for all ANCP
  responses is that the value of the Transaction ID MUST be copied from
  the corresponding request message.

3.6.1.7.  I Flag and SubMessage Number (1 + 15 bits)

  In GSMPv3, these provide a mechanism for message fragmentation.
  Because ANCP uses TCP transport, this mechanism is unnecessary.  An
  ANCP agent MUST set the I Flag and subMessage Number fields to 1 to
  signify "no fragmentation".






Wadhwa, et al.               Standards Track                   [Page 35]

RFC 6320                      ANCP Protocol                 October 2011


3.6.1.8.  Length (16 bits)

  This field MUST be set to the length of the ANCP message in bytes,
  including its header fields and message body but excluding the 4-byte
  encapsulating header defined in Section 3.2.

3.6.2.  The ANCP Message Body

  The detailed contents of the message payload portion of a given ANCP
  message can vary with the capability in the context of which it is
  being used.  However, the general format consists of zero or more
  fixed fields, followed by a variable amount of data in the form of
  Type-Length-Value (TLV) data structures.

  The general format of a TLV is shown in Figure 8:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type (IANA registered)    |          Length               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                            Value                              ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Figure 8: General TLV Format

  The fields of a TLV are defined as follows:

  Type (16 bits):  The TLV Type is an unsigned value identifying the
     TLV type and nature of its contents.  An IANA registry has been
     established for ANCP TLV Type codes.

  Length (16 bits):  The number of bytes of data in the Value field of
     the TLV, excluding any padding required to bring this TLV to a
     4-byte word boundary (see "Value" below).  If a TLV contains other
     TLVs, any padding in the contained TLVs MUST be included in the
     value of Length.  Depending on the specification of the TLV, the
     value of Length can be zero, a constant for all instances of the
     TLV, or a varying quantity.

  Value (variable):  The actual data carried by the TLV, if any.  The
     Value field in each TLV MUST be padded with zeroes as required to
     align with a 4-byte word boundary.  The Value field of a TLV MAY
     include fixed fields and/or other TLVs.





Wadhwa, et al.               Standards Track                   [Page 36]

RFC 6320                      ANCP Protocol                 October 2011


  Unless otherwise specified, TLVs MAY be added to a message in any
  order.  If the recipient of a message does not understand a
  particular TLV, it MUST silently ignore it.

  A number of TLVs are specified in the remainder of this document.

3.7.  General Principles for the Design of ANCP Messages

  ANCP allows for two messaging constructs to support request/response
  interaction:

  a.  The same message type is used for both the request message and
      the response message.  The Result and Result Code field settings
      are used to differentiate between request and response messages.

  b.  The request and response messages use two different message
      types.

  The first approach is illustrated by the protocol specifications in
  Section 8.4, the second by specifications in Section 6.4.  The
  purpose of this section is to provide more details about the second
  approach in order to allow the use of this messaging construct for
  the development of additional ANCP extensions.

  As Section 3.6 indicated, all ANCP messages other than adjacency
  messages share a common header format.  When the response message
  type is different from that of the request, the specification of the
  request message will typically indicate that the Result field is set
  to Ignore (0x0) and provide procedures indicating explicitly when the
  receiver should generate a response and what message type it should
  use.

  The Transaction ID field is used to distinguish between multiple
  request messages of the same type and to associate a response message
  to a request.  Specifications of ANCP messages for applications not
  requiring response correlation SHOULD indicate that the Transaction
  ID MUST be set to zero in requests.  Applications that require
  response correlation SHOULD refer to the Transaction ID behavior
  described in Section 3.6.1.

  The specification for a response message SHOULD indicate in all cases
  that the value of the Transaction Identifier MUST be set to that of
  the corresponding request message.  This allows the requester to
  establish whether or not correlation is needed (by setting a non-zero
  or zero value for the Transaction ID).






Wadhwa, et al.               Standards Track                   [Page 37]

RFC 6320                      ANCP Protocol                 October 2011


4.  Generally Useful ANCP Messages and TLVs

  This section defines two messages and a number of TLVs that could be
  useful in multiple capabilities.  In some cases, the content is
  under-specified, with the intention that particular capabilities
  spell out the remaining details.

4.1.  Provisioning Message

  The Provisioning message is sent by the NAS to the AN to provision
  information of global scope (i.e., not associated with specific
  access lines) on the AN.  The Provisioning message has the format
  shown in Figure 9.  Support of the Provisioning message is OPTIONAL
  unless the ANCP agent claims support for a capability that requires
  its use.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |           TCP/IP Encapsulating Header (Section 3.2)           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                ANCP General Message Header                    |
  +                      (Section 3.6.1)                          +
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                             TLVs                              ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

              Figure 9: Format of the Provisioning Message

  The message header field settings given below are REQUIRED in the
  Provisioning message.  The remaining message header fields MUST be
  set as specified in Section 3.6.1.  Which TLVs to carry in the
  Provisioning message is specified as part of the specification of the
  capabilities that use that message.  The Provisioning message MAY be
  used to carry data relating to more than one capability at once,
  assuming that the capabilities concerned can coexist and have all
  been negotiated during adjacency establishment.

  Message Type:  MUST be set to 93.

  Result:  MUST be set to 0x0 (Ignore).

  Result Code:  MUST be set to zero.





Wadhwa, et al.               Standards Track                   [Page 38]

RFC 6320                      ANCP Protocol                 October 2011


  Transaction ID:  MUST be populated with a non-zero value chosen in
     the manner described in Section 3.6.1.6.

  If the AN can process the message successfully and accept all the
  provisioning directives contained in it, the AN MUST NOT send any
  response.

  Unless otherwise specified for a particular capability, if the AN
  fails to process the message successfully it MUST send a Generic
  Response message (Section 4.2) indicating failure and providing
  appropriate diagnostic information.

4.2.  Generic Response Message

  This section defines the Generic Response message.  The Generic
  Response message MAY be specified as the appropriate response to a
  message defined in an extension to ANCP, instead of a more specific
  response message.  As a general guideline, specification of the
  Generic Response message as a response is appropriate where no data
  needs to be returned to the peer other than a result (success or
  failure), plus, in the case of a failure, a code indicating the
  reason for failure and a limited amount of diagnostic data.
  Depending on the particular use case, the Generic Response message
  MAY be sent by either the NAS or the AN.

  Support of the Generic Response message, both as sender and as
  receiver, is REQUIRED for all ANCP agents, regardless of what
  capabilities they support.

  The AN or NAS MAY send a Generic Response message indicating a
  failure condition independently of a specific request before closing
  the adjacency as a consequence of that failure condition.  In this
  case, the sender MUST set the Transaction ID field in the header and
  the Message Type field within the Status-Info TLV to zeroes.  The
  receiver MAY record the information contained in the Status-Info TLV
  for management use.

  The format of the Generic Response message is shown in Figure 10.













Wadhwa, et al.               Standards Track                   [Page 39]

RFC 6320                      ANCP Protocol                 October 2011


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |           TCP/IP Encapsulating Header (Section 3.2)           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                ANCP General Message Header                    |
  +                      (Section 3.6.1)                          +
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                Access line identifying TLV(s)                 |
  +                (copied from original request)                 +
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                    Status-Info TLV                            |
  ~                     (Section 4.5)                             ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  NOTE: TLVs MAY be in a different order from what is shown in this
  figure.

          Figure 10: Structure of the Generic Response Message

  This document specifies the following header fields.  The remaining
  fields in the ANCP general message header MUST be set as specified in
  Section 3.6.1.

  Message Type:  MUST be set to 91.

  Result:  MUST be set to 0x3 (Success) or 0x4 (Failure).

  Result Code:  MUST be set to zero for success or an appropriate non-
     zero value for failure.

  Transaction ID:  MUST be copied from the message to which this
     message is a response.

  If the original request applied to a specific access line or set of
  lines, the TLVs identifying the line(s) and possibly the user MUST be
  copied into the Generic Response message at the top level.

  The Status-Info TLV MAY be present in a success response, to provide
  a warning as defined for a specific request message type.  It MUST be
  present in a failure response.  See Section 4.5 for a detailed
  description of the Status-Info TLV.  The actual contents will depend
  on the request message type this message is responding to and the
  value of the Result Code field.




Wadhwa, et al.               Standards Track                   [Page 40]

RFC 6320                      ANCP Protocol                 October 2011


  To prevent an infinite loop of error responses, if the Generic
  Response message is itself in error, the receiver MUST NOT generate
  an error response in return.

4.3.  Target TLV

  Type:  0x1000 to 0x1020 depending on the specific content.  Only
     0x1000 has been assigned in this specification (see below).
     Support of any specific variant of the Target TLV is OPTIONAL
     unless the ANCP agent claims support for a capability that
     requires its use.

  Description:  The Target TLV (0x1000 - 0x1020) is intended to be a
     general means to represent different types of objects.

  Length:  Variable, depending on the specific object type.

  Value:  Target information as defined for each object type.  The
     Value field MAY consist of sub-TLVs.

  TLV Type 0x1000 is assigned to a variant of the Target TLV
  representing a single access line and encapsulating one or more sub-
  TLVs identifying the target.  Figure 11 is an example illustrating
  the TLV format for a single port identified by an Access-Loop-
  Circuit-ID TLV (0x0001) (Section 5.1.2.1).

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    TLV Type = 0x1000          |Length = Circuit-ID Length + 4 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Access-Loop-Circuit-ID=0x0001 |       Circuit-ID Length       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                    Access Loop Circuit ID                     ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

         Figure 11: Example of Target TLV for Single Access Line

4.4.   Command TLV

  Type:  0x0011

  Description:  The Command TLV (0x0011) is intended to be a general
     means of encapsulating one or more command directives in a TLV-
     oriented message.  The semantics of the command can be specified
     for each message type using it.  That is, the specification of



Wadhwa, et al.               Standards Track                   [Page 41]

RFC 6320                      ANCP Protocol                 October 2011


     each message type that can carry the Command TLV is expected to
     define the meaning of the content of the payload, although re-use
     of specifications is, of course, permissible when appropriate.
     Support of any specific variant of the Command TLV is OPTIONAL
     unless the ANCP agent claims support for a capability that
     requires its use.

  Length:  Variable, depending on the specific contents.

  Value:  Command information as defined for each message type.  The
     field MAY include sub-TLVs.  The contents of this TLV MUST be
     specified as one "command" or alternatively a sequence of one or
     more "commands", each beginning with a 1-byte Command Code and
     possibly including other data following the Command Code.  An IANA
     registry has been established for Command Code values.  This
     document reserves the Command Code value 0 as an initial entry in
     the registry.

4.5.  Status-Info TLV

  Name:  Status-Info

  Type:  0x0106

  Description:  The Status-Info-TLV is intended to be a general
     container for warning or error diagnostics relating to commands
     and/or requests.  It is a supplement to the Result Code field in
     the ANCP general header.  The specifications for individual
     message types MAY indicate the use of this TLV as part of
     responses, particularly for failures.  As mentioned above, the
     Generic Response message will usually include an instance of the
     Status-Info TLV.  Support of the Status-Info TLV, both as sender
     and as receiver, is REQUIRED for all ANCP agents, regardless of
     what capabilities they support.

  Length:  Variable, depending on the specific contents.

  Value:  The following fixed fields.  In addition, sub-TLVs MAY be
     appended to provide further diagnostic information.

     Reserved (8 bits):  See Section 3.4 for handling of reserved
        fields.

     Msg Type (8 bits):  Message Type of the request for which this TLV
        is providing diagnostics.






Wadhwa, et al.               Standards Track                   [Page 42]

RFC 6320                      ANCP Protocol                 October 2011


     Error Message Length (16 bits):  Number of bytes in the error
        message, excluding padding, but including the language tag and
        delimiter.  This MAY be zero if no error message is provided.

     Error Message:  Human-readable string providing information about
        the warning or error condition.  The initial characters of the
        string MUST be a language tag as described in [RFC5646],
        terminated by a colon (":").  The actual text string follows
        the delimiter.  The field is padded at the end with zeroes as
        necessary to extend it to a 4-byte word boundary.

     Section 3.6.1.4 provides recommendations for what TLVs to add in
     the Status-Info TLV for particular values of the message header
     Result Code field.

  Figure 12 illustrates the Status-Info TLV.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    TLV Type = 0x0106          |              Length           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Reserved   |  Msg Type     |      Error Message Length     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |        Error Message (padded to 4-byte boundary)              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |           optional sub-TLVs...                                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                     Figure 12: The Status-Info TLV

5.  Introduction to ANCP Capabilities for Digital Subscriber Lines
   (DSLs)

  DSL is a widely deployed access technology for Broadband Access for
  Next Generation Networks.  Specifications such as [TR-059], [TR-058],
  and [TR-092] describe possible architectures for these access
  networks.  The scope of these specifications includes the delivery of
  voice, video, and data services.

  The next three sections of this document specify basic ANCP
  capabilities for use specifically in controlling Access Nodes serving
  DSL access (Tech Type = 0x05).  The same ANs could be serving other
  access technologies (e.g., Metro-Ethernet, Passive Optical
  Networking, WiMax), in which case the AN will also have to support
  the corresponding other-technology-specific capabilities.  Those
  additional capabilities are outside the scope of the present
  document.



Wadhwa, et al.               Standards Track                   [Page 43]

RFC 6320                      ANCP Protocol                 October 2011


5.1.  DSL Access Line Identification

  Most ANCP messages involve actions relating to a specific access
  line.  Thus, it is necessary to describe how access lines are
  identified within those messages.  This section defines four TLVs for
  that purpose and provides an informative description of how they are
  used.

5.1.1.  Control Context (Informative)

  Three types of identification are described in [TR-101] and provided
  for in the TLVs defined in this section:

  o  identification of an access line by its logical appearance on the
     user side of the Access Node;

  o  identification of an access line by its logical appearance on the
     NAS side of the Access Node; and

  o  identification down to the user or host level as a supplement to
     access line identification in one of the other two forms.

  All of these identifiers originate with the AN control application,
  during the process of DSL topology discovery.  The control
  application chooses which identifiers to use and the values to place
  into them on a line-by-line basis, based on AN configuration and
  deployment considerations.

  Aside from its use in ANCP signalling, access line identification is
  also used in DHCP ([RFC2131], [RFC3315]) transactions involving hosts
  served by DSL.  Either the AN or the NAS can serve as a DHCP relay
  node.  [TR-101] requires the AN or NAS in this role to add access
  line identification in Option 82 (Information) ([RFC3046], with its
  IPv6 equivalent in [RFC4649]) to each DHCP request it forwards to the
  DHCP server.  It is desirable for efficiency that the identification
  used in this signalling should be the same as the identification used
  in ANCP messages.

  From the point of view of ANCP itself, the identifiers are opaque.
  From the point of view of the AN control application, the syntax for
  the user-side access line identifier is the same as specified in
  Section 3.9.3 of [TR-101] for DHCP Option 82.  The syntax for the
  ASCII form of the NAS-side access line identifier will be similar.

  Access line identification by logical appearance on the user side of
  the Access Node will always identify a DSL access line uniquely.
  Identification by the logical appearance on the NAS side of the
  Access Node is unique only if there is a one-to-one mapping between



Wadhwa, et al.               Standards Track                   [Page 44]

RFC 6320                      ANCP Protocol                 October 2011


  the appearances on the two sides and no identity-modifying
  aggregation between the AN and the NAS.  In other cases, and in
  particular in the case of Ethernet aggregation using the N:1 VLAN
  model, the user-side access line identification is necessary, but the
  NAS-side identification is potentially useful information allowing
  the NAS to build up a picture of the aggregation network topology.

  Additional identification down to the user or host level is intended
  to supplement rather than replace either of the other two forms of
  identification.

     Sections 3.8 and 3.9 of [TR-101] are contradictory on this point.
     It is assumed here that Section 3.9 is meant to be authoritative.

  The user-level identification takes the form of an administered
  string that again is opaque at the ANCP level.

  The NAS control application will use the identifying information it
  receives from the AN directly for some purposes.  For examples, see
  the introductory part of Section 3.9 of [TR-101].  For other
  purposes, the NAS will build a mapping between the unique access line
  identification provided by the AN, the additional identification of
  the user or host (where provided), and the IP interface on a
  particular host.  For access lines with static IP address assignment,
  that mapping could be configured instead.

5.1.2.  TLVs for DSL Access Line Identification

  This section provides a normative specification of the TLVs that ANCP
  provides to carry the types of identification just described.  The
  Access-Loop-Circuit-ID TLV identifies an access line by its logical
  appearance on the user side of the Access Node.  Two alternatives,
  the Access-Aggregation-Circuit-ID-ASCII TLV and the Access-
  Aggregation-Circuit-ID-Binary TLV, identify an access line by its
  logical appearance on the NAS side of the Access Node.  It is
  unlikely that a given AN uses both of these TLVs, either for the same
  line or for different lines, since they carry equivalent information.
  Finally, the Access-Loop-Remote-ID TLV contains an operator-
  configured string that uniquely identifies the user on the associated
  access line, as described in Sections 3.9.1 and 3.9.2 of [TR-101].











Wadhwa, et al.               Standards Track                   [Page 45]

RFC 6320                      ANCP Protocol                 October 2011


  ANCP agents conforming to this section MUST satisfy the following
  requirements:

  o  ANCP agents MUST be able to build and send the Access-Loop-
     Circuit-ID TLV, the Access-Loop-Remote-ID TLV, and either the
     Access-Aggregation-Circuit-ID-ASCII TLV or the Access-Aggregation-
     Circuit-ID-Binary TLV (implementation choice), when passed the
     associated information from the AN control application.

  o  ANCP agents MUST be able to receive all four TLV types, extract
     the relevant information, and pass it to the control application.

  o  If the Access-Loop-Remote-ID TLV is present in a message, it MUST
     be accompanied by an Access-Loop-Circuit-ID TLV and/or an Access-
     Aggregation-Circuit-ID-ASCII TLV or Access-Aggregation-Circuit-ID-
     Binary TLV with two VLAN identifiers.

        The Access-Loop-Remote-ID TLV is not enough to identify an
        access line uniquely on its own.  As indicated above, an
        Access-Aggregation-Circuit-ID-ASCII TLV or Access-Aggregation-
        Circuit-ID-Binary TLV with two VLAN identifiers may or may not
        identify an access line uniquely, but this is up to the control
        application to decide.

  o  If the Access-Aggregation-Circuit-ID-ASCII TLV or Access-
     Aggregation-Circuit-ID-Binary TLV is present in a message with
     just one VLAN identifier, it MUST be accompanied by an Access-
     Loop-Circuit-ID TLV.

5.1.2.1.  Access-Loop-Circuit-ID TLV

  Type:  0x0001

  Description:  A locally administered human-readable string generated
     by or configured on the Access Node, identifying the corresponding
     access loop logical port on the user side of the Access Node.

  Length:  Up to 63 bytes

  Value:  ASCII string

5.1.2.2.  Access-Loop-Remote-ID TLV

  Type:  0x0002

  Description:  An operator-configured string that uniquely identifies
     the user on the associated access line, as described in Sections
     3.9.1 and 3.9.2 of [TR-101].



Wadhwa, et al.               Standards Track                   [Page 46]

RFC 6320                      ANCP Protocol                 October 2011


  Length:  Up to 63 bytes

  Value:  ASCII string

5.1.2.3.  Access-Aggregation-Circuit-ID-Binary TLV

  Type:  0x0006

  Description:  This TLV identifies or partially identifies a specific
     access line by means of its logical circuit identifier on the NAS
     side of the Access Node.

     For Ethernet access aggregation, where a per-subscriber (stacked)
     VLAN can be applied (1:1 model as defined in [TR-101]), the TLV
     contains two value fields.  Each field carries a 12-bit VLAN
     identifier (which is part of the VLAN tag defined by
     [IEEE802.1Q]).  The first field MUST carry the inner VLAN
     identifier, while the second field MUST carry the outer VLAN
     identifier.

     When the N:1 VLAN model is used, only one VLAN tag is available.
     For the N:1 model, the Access-Aggregation-Circuit-ID-Binary TLV
     contains a single value field, which MUST carry the 12-bit VLAN
     identifier derived from the single available VLAN tag.

     In the case of an ATM aggregation network, where the DSLAM is
     directly connected to the NAS (without an intermediate ATM
     switch), the Virtual Path Identifier (VPI) and Virtual Circuit
     Identifier (VCI) on the DSLAM uplink correspond uniquely to the
     DSL access line on the DSLAM.  The Access-Aggregation-Circuit-ID-
     Binary TLV MAY be used to carry the VPI and VCI.  The first value
     field of the TLV MUST carry the VCI, while the second value field
     MUST carry the VPI.

     Each identifier MUST be placed in the low-order bits of its
     respective 32-bit field, with the higher-order bits set to zero.
     The ordering of the bits of the identifier MUST be the same as
     when the identifier is transmitted on the wire to identify an
     Ethernet frame or ATM cell.

     The Access-Aggregation-Circuit-ID-Binary is illustrated in
     Figure 13.

  Length:  4 or 8 bytes

  Value:  One or two 32-bit binary fields.





Wadhwa, et al.               Standards Track                   [Page 47]

RFC 6320                      ANCP Protocol                 October 2011


     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |    TLV Type = 0x0006          |        Length = 4 or 8        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Single VLAN Identifier, inner VLAN identifier, or VCI        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                Outer VLAN identifier or VPI                   |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

         Figure 13: The Access-Aggregation-Circuit-ID-Binary TLV

5.1.2.4.  Access-Aggregation-Circuit-ID-ASCII TLV

  Type:  0x0003

  Description:  This TLV transmits the ASCII equivalent of the Access-
     Aggregation-Circuit-ID-Binary TLV.  As mentioned in the previous
     section, the AN control application will use a format similar to
     that specified in Section 3.9.3 of [TR-101] for the format of the
     "circuit-id".

     As an extension to the present document, the Access Node could
     convey to the NAS the characteristics (e.g., bandwidth) of the
     uplink on the Access Node.  This TLV or the binary equivalent
     defined above then serves the purpose of uniquely identifying the
     uplink whose characteristics are being defined.  The present
     document does not specify the TLVs needed to convey the uplink
     characteristics.

  Length:  Up to 63 bytes

  Value:  ASCII string

6.  ANCP-Based DSL Topology Discovery

  Section 3.1 of [RFC5851] describes the requirements for the DSL
  Topology Discovery capability.

6.1.  Control Context (Informative)

  The AN control application in the DSLAM requests ANCP to send a DSL-
  specific Port Up message to the NAS under the following
  circumstances:

  o  when a new adjacency with the NAS is established, for each DSL
     loop that is synchronized at that time;




Wadhwa, et al.               Standards Track                   [Page 48]

RFC 6320                      ANCP Protocol                 October 2011


  o  subsequent to that, whenever a DSL access line resynchronizes; and

  o  whenever the AN control application wishes to signal that a line
     attribute has changed.

  The AN control application in the DSLAM requests ANCP to send a DSL-
  specific Port Down message to the NAS under the following
  circumstances:

  o  when a new adjacency with the NAS is established, for each DSL
     loop that is provisioned but not synchronized at that time;

  o  whenever a DSL access line that is equipped in an AN but
     administratively disabled is signaled as "IDLE"; and

  o  subsequent to that, whenever a DSL access line loses
     synchronization.

  The AN control application passes information to identify the DSL
  loop to ANCP to include in the Port Up or Port Down message, along
  with information relating to DSL access line attributes.

  In the case of bonded copper loops to the customer premise (as per
  DSL multi-pair bonding described by [G.998.1] and [G.998.2]), the AN
  control application requests that ANCP send DSL-specific Port Up and
  Port Down messages for the aggregate "DSL bonded circuit"
  (represented as a single logical port) as well as the individual DSL
  access lines of which it is comprised.  The information relating to
  DSL access line attributes that is passed by the AN control
  application is aggregate information.

  ANCP generates the DSL-specific Port Up or Port Down message and
  transfers it to the NAS.  ANCP on the NAS side passes an indication
  to the NAS control application that a DSL Port Up or Port Down
  message has been received along with the information contained in the
  message.

  The NAS control application updates its view of the DSL access line
  state, performs any required accounting operations, and uses any
  included line attributes to adjust the operation of its queuing/
  scheduling mechanisms as they apply to data passing to and from that
  DSL access line.

  Figure 14 summarizes the interaction.







Wadhwa, et al.               Standards Track                   [Page 49]

RFC 6320                      ANCP Protocol                 October 2011


  1.   Home            Access                          NAS
      Gateway           Node

            ----------->     -------------------------->
                 DSL          Port Up (Event message)
                Signal        (default line parameters)

  2.   Home            Access                          NAS
      Gateway           Node

            ----------->     -------------------------->
                 DSL           Port Up (Event message)
               Resynch        (updated line parameters)

  3.   Home            Access                          NAS
      Gateway           Node

            ----------->     -------------------------->
            Loss of          Port Down (Event message)
            DSL Signal       (selected line parameters)

         Figure 14: ANCP Message Flow for DSL Topology Discovery

6.2.  Protocol Requirements

  The DSL topology discovery capability is assigned capability type
  0x0001.  No capability data is associated with this capability.

6.2.1.  Protocol Requirements on the AN Side

  The AN-side ANCP agent MUST be able to create DSL-specific Port Up
  and Port Down messages according to the format specified in
  Section 6.3.

  The AN-side ANCP agent MUST conform to the normative requirements of
  Section 5.1.2.

  The AN-side ANCP agent MUST follow the AN-side procedures associated
  with DSL-specific Port Up and Port Down messages as they are
  specified in Section 6.4.

6.2.2.  Protocol Requirements on the NAS Side

  The NAS-side ANCP agent MUST be able to receive and validate DSL-
  specific Port Up and Port Down messages according to the format
  specified in Section 6.3.





Wadhwa, et al.               Standards Track                   [Page 50]

RFC 6320                      ANCP Protocol                 October 2011


  The NAS-side ANCP agent MUST conform to the normative requirements of
  Section 5.1.2.

  The NAS-side ANCP agent MUST follow the NAS-side procedures
  associated with DSL-specific Port Up and Port Down messages as they
  are specified in Section 6.4.

6.3.  ANCP Port Up and Port Down Event Message Descriptions

  The format of the ANCP Port Up and Port Down Event messages is shown
  in Figure 15.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |           TCP/IP Encapsulating Header (Section 3.2)           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                ANCP General Message Header                    |
  +                      (Section 3.6.1)                          +
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                    Unused (20 bytes)                          ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|x|x|x|x|x|x|x| Message Type  |   Tech Type   |  Reserved     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     # of TLVs                 | Extension Block length (bytes)|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                 Access line identifying TLV(s)                ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                DSL-Line-Attributes TLV                        |
  ~        (MANDATORY in Port Up, OPTIONAL in Port Down)          ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  NOTE: TLVs MAY be in a different order from what is shown in this
  figure.

   Figure 15: Format of the ANCP Port Up and Port Down Event Messages
                       for DSL Topology Discovery

  See Section 3.6.1 for a description of the ANCP general message
  header.  The Message Type field MUST be set to 80 for Port Up, 81 for
  Port Down.  The 4-bit Result field MUST be set to zero (signifying
  Ignore).  The 12-bit Result Code field and the 24-bit Transaction



Wadhwa, et al.               Standards Track                   [Page 51]

RFC 6320                      ANCP Protocol                 October 2011


  Identifier field MUST also be set to zeroes.  Other fields in the
  general header MUST be set a as described in Section 3.6.

  The five-word Unused field is a historical leftover.  The handling of
  unused/reserved fields is described in Section 3.4.

  The remaining message fields belong to the "extension block", and are
  described as follows:

  Extension Flags (8 bits):  The flag bits denoted by 'x' are currently
     unspecified and reserved.

  Message Type (8 bits):  Message Type has the same value as in the
     general header (i.e., 80 or 81).

  Tech Type (8 bits):  MUST be set to 0x05 (DSL).

  Reserved (8 bits):  set as described in Section 3.4.

  # of TLVs (16 bits):  The number of TLVs that follow, not counting
     TLVs encapsulated within other TLVs.

  Extension Block Length (16 bits):  The total length of the TLVs
     carried in the extension block in bytes, including any padding
     within individual TLVs.

  TLVs:  One or more TLVs to identify a DSL access line and zero or
     more TLVs to define its characteristics.

6.4.  Procedures

6.4.1.  Procedures on the AN Side

  The AN-side ANCP agent creates and transmits a DSL-specific Port Up
  or Port Down message when requested by the AN control application and
  presented with the information needed to build a valid message.  It
  is RECOMMENDED that the Access Node use a dampening mechanism per DSL
  access line to control the rate at which state changes are
  communicated to the NAS.

  At the top level, the extension block within a DSL-specific Port Up
  or Port Down message MUST include TLVs from Section 5.1.2 to identify
  the DSL access line.

  TLVs presenting DSL access line attributes (i.e., the TLVs specified
  in Section 6.5) MUST be encapsulated within the DSL-Line-Attributes
  TLV.  When the DSL-Line-Attributes TLV is present in a message, it
  MUST contain at least one such TLV and will generally contain more



Wadhwa, et al.               Standards Track                   [Page 52]

RFC 6320                      ANCP Protocol                 October 2011


  than one.  In the Port Up message, the DSL-Line-Attributes TLV MUST
  be present.  In the Port Down message, the DSL-Line-Attributes TLV
  MAY be present.

6.4.2.  Procedures on the NAS Side

  The NAS-side ANCP agent MUST be prepared to receive Port Up and Port
  Down messages for a given DSL access line or logical port at any time
  after negotiation of an adjacency has been completed.  It is possible
  for two Port Up messages in succession to be received for the same
  DSL access line without an intervening Port Down message, and vice
  versa.

  The NAS-side ANCP agent SHOULD validate each message against the
  specifications given in Section 6.3 and the TLV specifications given
  in Sections 5.1.2 and 6.5.  If it finds an error, it MAY generate a
  Generic Response message containing an appropriate Result Code value.
  If it does so, the message MUST contain copies of all of the
  identifier TLVs from Section 5.1.2 that were present in the Port Up
  or Port Down message.  The message MUST also contain a Status-Info
  TLV that in turn contains other information appropriate to the
  message header Result Code value as described in Section 3.6.1.4.

6.5.  TLVs for DSL Line Attributes

  As specified above, the DSL-Line-Attributes TLV is inserted into the
  Port Up or Port Down message at the top level.  The remaining TLVs
  defined below are encapsulated within the DSL-Line-Attributes TLV.

6.5.1.  DSL-Line-Attributes TLV

  Type:  0x0004

  Description:  This TLV encapsulates attribute values for a DSL access
     line serving a subscriber.

  Length:  Variable (up to 1023 bytes)

  Value:  One or more encapsulated TLVs corresponding to DSL access
     line attributes.  The DSL-Line-Attributes TLV MUST contain at
     least one TLV when it is present in a Port Up or Port Down
     message.  The actual contents are determined by the AN control
     application.








Wadhwa, et al.               Standards Track                   [Page 53]

RFC 6320                      ANCP Protocol                 October 2011


6.5.2.  DSL-Type TLV

  Type:  0x0091

  Description:  Indicates the type of transmission system in use.

  Length:  4 bytes

  Value:  32-bit unsigned integer

        ADSL1 = 1

        ADSL2 = 2

        ADSL2+ = 3

        VDSL1 = 4

        VDSL2 = 5

        SDSL = 6

        OTHER = 0

6.5.3.  Actual-Net-Data-Rate-Upstream TLV

  Type:  0x0081

  Description:  Actual upstream net data rate on a DSL access line.

  Length:  4 bytes

  Value:  Rate in kbits/s as a 32-bit unsigned integer

6.5.4.  Actual-Net-Data-Rate-Downstream TLV

  Type:  0x0082

  Description:  Actual downstream net data rate on a DSL access line.

  Length:  4 bytes

  Value:  Rate in kbits/s as a 32-bit unsigned integer








Wadhwa, et al.               Standards Track                   [Page 54]

RFC 6320                      ANCP Protocol                 October 2011


6.5.5.  Minimum-Net-Data-Rate-Upstream TLV

  Type:  0x0083

  Description:  Minimum upstream net data rate desired by the operator.

  Length:  4 bytes

  Value:  Rate in kbits/s as a 32-bit unsigned integer

6.5.6.  Minimum-Net-Data-Rate-Downstream TLV

  Type:  0x0084

  Description:  Minimum downstream net data rate desired by the
     operator.

  Length:  4 bytes

  Value:  Rate in kbits/s as a 32-bit unsigned integer

6.5.7.  Attainable-Net-Data-Rate-Upstream TLV

  Type:  0x0085

  Description:  Maximum net upstream rate that can be attained on the
     DSL access line.

  Length:  4 bytes

  Value:  Rate in kbits/s as a 32-bit unsigned integer

6.5.8.  Attainable-Net-Data-Rate-Downstream TLV

  Type:  0x0086

  Description:  Maximum net downstream rate that can be attained on the
     DSL access line.

  Length:  4 bytes

  Value:  Rate in kbits/s as a 32-bit unsigned integer









Wadhwa, et al.               Standards Track                   [Page 55]

RFC 6320                      ANCP Protocol                 October 2011


6.5.9.  Maximum-Net-Data-Rate-Upstream TLV

  Type:  0x0087

  Description:  Maximum net upstream data rate desired by the operator.

  Length:  4 bytes

  Value:  Rate in kbits/s as a 32-bit unsigned integer

6.5.10.  Maximum-Net-Data-Rate-Downstream TLV

  Type:  0x0088

  Description:  Maximum net downstream data rate desired by the
     operator.

  Length:  4 bytes

  Value:  Rate in kbits/s as a 32-bit unsigned integer

6.5.11.  Minimum-Net-Low-Power-Data-Rate-Upstream TLV

  Type:  0x0089

  Description:  Minimum net upstream data rate desired by the operator
     in low power state.

  Length:  4 bytes

  Value:  Rate in kbits/s as a 32-bit unsigned integer

6.5.12.  Minimum-Net-Low-Power-Data-Rate-Downstream TLV

  Type:  0x008A

  Description:  Minimum net downstream data rate desired by the
     operator in low power state.

  Length:  4 bytes

  Value:  Rate in kbits/s as a 32-bit unsigned integer









Wadhwa, et al.               Standards Track                   [Page 56]

RFC 6320                      ANCP Protocol                 October 2011


6.5.13.  Maximum-Interleaving-Delay-Upstream TLV

  Type:  0x008B

  Description:  Maximum one-way interleaving delay.

  Length:  4 bytes

  Value:  Time in ms as a 32-bit unsigned integer

6.5.14.  Actual-Interleaving-Delay-Upstream TLV

  Type:  0x008C

  Description:  Value corresponding to the interleaver setting.

  Length:  4 bytes

  Value:  Time in ms as a 32-bit unsigned integer

6.5.15.  Maximum-Interleaving-Delay-Downstream TLV

  Type:  0x008D

  Description:  Maximum one-way interleaving delay.

  Length:  4 bytes

  Value:  Time in ms as a 32-bit unsigned integer

6.5.16.  Actual-Interleaving-Delay-Downstream

  Type:  0x008E

  Description:  Value corresponding to the interleaver setting.

  Length:  4 bytes

  Value:  Time in ms as a 32-bit unsigned integer












Wadhwa, et al.               Standards Track                   [Page 57]

RFC 6320                      ANCP Protocol                 October 2011


6.5.17.  DSL-Line-State TLV

  Type:  0x008F

  Description:  The state of the DSL access line.

  Length:  4 bytes

  Value:  32-bit unsigned integer

        SHOWTIME = 1

        IDLE = 2

        SILENT = 3

6.5.18.  Access-Loop-Encapsulation TLV

  Type:  0x0090

  Description:  The data link protocol and, optionally, the
     encapsulation overhead on the access loop.  When this TLV is
     present, at least the data link protocol MUST be indicated.  The
     encapsulation overhead MAY be indicated.  The Access Node MAY
     choose to not convey the encapsulation on the access loop by
     specifying values of 0 (NA) for the two encapsulation fields.

  Length:  3 bytes

  Value:  The 3 bytes (most to least significant) and valid set of
     values for each byte are defined as follows:

        Byte 1: Data Link

           ATM AAL5 = 0

           ETHERNET = 1

        Byte 2: Encapsulation 1

           NA = 0

           Untagged Ethernet = 1

           Single-tagged Ethernet = 2

           Double-tagged Ethernet = 3




Wadhwa, et al.               Standards Track                   [Page 58]

RFC 6320                      ANCP Protocol                 October 2011


        Byte 3: Encapsulation 2

           NA = 0

           PPPoA LLC = 1

           PPPoA Null = 2

           IPoA LLC = 3

           IPoA Null = 4

           Ethernet over AAL5 LLC with FCS = 5

           Ethernet over AAL5 LLC without FCS = 6

           Ethernet over AAL5 NULL with FCS = 7

           Ethernet over AAL5 NULL without FCS = 8

  The Access-Loop-Encapsulation TLV is illustrated in Figure 16.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |    TLV Type = 0x0090          |        Length = 3             |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    | Data link     |    Encaps 1   |    Encaps 2   | Padding (=0)  |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

              Figure 16: The Access-Loop-Encapsulation TLV

7.  ANCP-Based DSL Line Configuration

  The use case for ANCP-based DSL Line Configuration is described in
  Section 3.2 of [RFC5851].

7.1.  Control Context (Informative)

  Triggered by topology information reporting a new DSL access line or
  triggered by a subsequent user session establishment (via PPP or
  DHCP), RADIUS/AAA sends service parameters to the NAS control
  application for configuration on the access line.  The NAS control
  application passes the request on to the NAS-side agent, which sends
  the information to the AN by means of a Port Management (line
  configuration) message.  The AN-side agent passes this information up
  to the AN control application, which applies it to the line.
  Figure 17 summarizes the interaction.



Wadhwa, et al.               Standards Track                   [Page 59]

RFC 6320                      ANCP Protocol                 October 2011


    Home            Access               NAS             RADIUS/AAA
   Gateway           Node                             Policy Server

         ----------->     --------------->
             DSL          Port Up message)
            Signal       (line parameters)

         -------------------------------->   -------------->
                 PPP/DHCP Session            Authentication &
                                             authorization

                         <----------------
                           Port Management message
                           (line configuration)

  Figure 17: Message Flow - ANCP Mapping for Initial Line Configuration

  The NAS could update the line configuration as a result of a
  subscriber service change (e.g., triggered by the policy server).
  Figure 18 summarizes the interaction.

  User     Home            Access         NAS
          Gateway           Node

               -------------------------->
                 PPP/DHCP Session

     ----------------------------------------------------> Web portal,
                 Service on demand                           OSS, etc.
                                                                |
                                            <-----------  RADIUS/AAA
                                            Change of     Policy Server
                                          authorization

                            <------------
                             Port Management
                                 message
                             (new profile)

  OSS: Operations Support System

  Figure 18: Message Flow - ANCP Mapping for Updated Line Configuration









Wadhwa, et al.               Standards Track                   [Page 60]

RFC 6320                      ANCP Protocol                 October 2011


7.2.  Protocol Requirements

  The DSL access line configuration capability is assigned capability
  type 0x0002.  No capability data is associated with this capability.

7.2.1.  Protocol Requirements on the NAS Side

  The NAS-side ANCP agent MUST be able to create DSL-specific Port
  Management (line configuration) messages according to the format
  specified in Section 7.3.

  The NAS-side ANCP agent MUST conform to the normative requirements of
  Section 5.1.2.

  The NAS-side ANCP agent MUST follow the NAS-side procedures
  associated with DSL-specific Port Management (line configuration)
  messages as they are specified in Section 7.4.

7.2.2.  Protocol Requirements on the AN Side

  The AN-side ANCP agent MUST conform to the normative requirements of
  Section 5.1.2.

  The AN-side ANCP agent MUST be able to receive and validate DSL-
  specific Port Management (line configuration) messages according to
  the format specified in Section 7.3.

  The AN-side ANCP agent MUST follow the AN-side procedures associated
  with DSL-specific Port Management (line configuration) messages as
  specified in Section 7.4.





















Wadhwa, et al.               Standards Track                   [Page 61]

RFC 6320                      ANCP Protocol                 October 2011


7.3.  ANCP Port Management (Line Configuration) Message Format

  The ANCP Port Management message for DSL access line configuration
  has the format shown in Figure 19.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |           TCP/IP Encapsulating Header (Section 3.2)           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                ANCP General Message Header                    |
  +                      (Section 3.6.1)                          +
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                       Unused (12 bytes)                       ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |        Unused (2 bytes)       |  Function=8   | X-Function=0  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       Unused (4 bytes)                        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|x|x|x|x|x|x|x| Message Type  |            Reserved           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     # of TLVs                 | Extension Block length (bytes)|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                 Access line identifying TLV(s)                ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                Line configuration TLV(s)                      ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  NOTE: TLVs MAY be in a different order from what is shown in this
  figure.

      Figure 19: Port Management Message for DSL Line Configuration

  See Section 3.6 for a description of the ANCP general message header.
  The Message Type field MUST be set to 32.  The 12-bit Result Code
  field MUST be set to 0x0.  The 4-bit Result field MUST be set to
  either 0x1 (Nack) or 0x2 (AckAll), as determined by policy on the
  NAS.  The 24-bit Transaction Identifier field MUST be set to a
  positive value.  Other fields in the general header MUST be set as
  described in Section 3.6.




Wadhwa, et al.               Standards Track                   [Page 62]

RFC 6320                      ANCP Protocol                 October 2011


  The handling of the various unused/reserved fields is described in
  Section 3.4.

  The remaining message fields are described as follows:

  Function (8 bits):  Action to be performed.  For line configuration,
     Function MUST be set to 8 (Configure Connection Service Data).
     This action type requests the Access Node (i.e., DSLAM) to apply
     service configuration data contained in the line configuration
     TLVs to the DSL access line designated by the access line
     identifying TLVs.

  X-Function (8 bits):  Qualifies the action set by Function.  For DSL
     access line configuration, this field MUST be set to 0.

  Extension Flags (8 bits):  The flag bits denoted by 'x' before the
     Message Type field are reserved for future use.

  Message Type (8 bits):  Message Type has the same value as in the
     general header (i.e., 32).

  Reserved (16 bits):  Reserved for future use.

  # of TLVs (16 bits):  The number of TLVs that follow, not counting
     TLVs encapsulated within other TLVs.

  Extension Block Length (16 bits):  The total length of the TLVs
     carried in the extension block in bytes, including any padding
     within individual TLVs.

  TLVs:  Two or more TLVs to identify a DSL access line and configure
     its service data.

  Other ANCP capabilities, either specific to DSL or technology-
  independent, MAY reuse the Port Management message for service
  configuration.  If the settings of the fixed fields are compatible
  with the settings just described, the same Port Management message
  that is used for DSL access line configuration MAY be used to carry
  TLVs relating to the other capabilities that apply to the same DSL
  access line.

  Use of the Port Management message for configuration MAY also be
  generalized to other access technologies, if the respective
  capabilities specify use of access line identifiers appropriate to
  those technologies in place of the identifiers defined in
  Section 5.1.2.





Wadhwa, et al.               Standards Track                   [Page 63]

RFC 6320                      ANCP Protocol                 October 2011


7.4.  Procedures

  Service configuration MAY be performed on an access line regardless
  of its current state.

7.4.1.  Procedures on the NAS Side

  When requested by the NAS control application and presented with the
  necessary information to do so, the NAS-side agent MUST create and
  send a Port Management message with the fixed fields set as described
  in the previous section.  The message MUST contain one or more TLVs
  to identify an access line according the requirements of
  Section 5.1.2.  The NAS MUST include one or more TLVs to configure
  line service parameters for that line.  Section 7.5 currently
  identifies only one such TLV, Service-Profile-Name, but other TLVs
  MAY be added by extensions to ANCP.

7.4.2.  Procedures on the AN Side

  The AN-side ANCP agent MUST be prepared to receive Port Management
  (line configuration) messages for a given DSL access line or logical
  port at any time after negotiation of an adjacency has been
  completed.

  The AN-side ANCP agent SHOULD validate each message against the
  specifications given in Section 7.3 and the TLV specifications given
  in Sections 5.1.2 and 7.5.  If it finds an error it MUST return a
  Port Management response message that copies the Port Management
  request as it was received, but has the Result header field set to
  0x04 (Failure) and the Result Code field set to the appropriate
  value.  The AN-side agent MAY add a Status-Info TLV (Section 4.5) to
  provide further information on the error, particularly if this is
  recommended in Section 3.6.1.4 for the given Result Code value.  If
  it does so, the various length fields and the # of TLVs field within
  the message MUST be adjusted accordingly.

7.5.  TLVs for DSL Line Configuration

  Currently, only the following TLV is specified for DSL access line
  configuration.  More TLVs may be defined in a future version of this
  specification or in ANCP extensions for individual service attributes
  of a DSL access line (e.g., rates, interleaving delay, multicast
  channel entitlement access-list).








Wadhwa, et al.               Standards Track                   [Page 64]

RFC 6320                      ANCP Protocol                 October 2011


7.5.1.  Service-Profile-Name TLV

  Type:  0x0005

  Description:  Reference to a pre-configured profile on the DSLAM that
     contains service-specific data for the subscriber.

  Length:  Up to 64 bytes

  Value:  ASCII string containing the profile name (which the NAS
     learns from a policy server after a subscriber is authorized).

8.  ANCP-Based DSL Remote Line Connectivity Testing

  The use case and requirements for ANCP-Based DSL remote line
  connectivity testing are specified in Section 3.3 of [RFC5851].

8.1.  Control Context (Informative)

  The NAS control application initiates a request for remote
  connectivity testing for a given access line.  The NAS control
  application can provide loop count and timeout test parameters and
  opaque data for its own use with the request.  The loop count
  parameter indicates the number of test messages or cells to be used.
  The timeout parameter indicates the longest that the NAS control
  application will wait for a result.

  The request is passed in a Port Management (Operations,
  Administration, and Maintenance, OAM) message.  If the NAS control
  application has supplied test parameters, they are used; otherwise,
  the AN control application uses default test parameters.  If a loop
  count parameter provided by the NAS is outside the valid range, the
  AN does not execute the test, but returns a result indicating that
  the test has failed due to an invalid parameter.  If the test takes
  longer than the timeout value (default or provided by the NAS), the
  AN control application can return a failure result indicating timeout
  or else can send no response.  The AN control application can provide
  a human-readable string describing the test results, for both
  failures and successes.  If provided, this string is included in the
  response.  Responses always include the opaque data, if any, provided
  by the NAS control application.

  Figure 20 summarizes the interaction.








Wadhwa, et al.               Standards Track                   [Page 65]

RFC 6320                      ANCP Protocol                 October 2011


  +-------------+    +-----+      +-------+          +----------------+
  |Radius/AAA   |----|NAS  |------| DSLAM |----------|    CPE         |
  |Policy Server|    +-----+      +-------+          | (DSL Modem +   |
  +-------------+                                    |Routing Gateway)|
                                                     +----------------+
                   Port Management Message
                   (Remote Loopback          ATM loopback
                    Trigger Request)         or EFM Loopback
                 1.  ---------------->     2. -------->
                                              <-------+
                      3. <---------------
                      Port Management Message
                 (Remote Loopback Test Response)

  CPE: Customer Premises Equipment
  EFM: Ethernet First Mile

               Figure 20: Message Flow for ANCP-Based OAM

8.2.  Protocol Requirements

  The DSL remote line connectivity testing capability is assigned
  capability type 0x0004.  No capability data is associated with this
  capability.

8.2.1.  Protocol Requirements on the NAS Side

  The NAS-side ANCP agent MUST be able to create DSL-specific Port
  Management (OAM) messages according to the format specified in
  Section 8.3.

  The NAS-side ANCP agent MUST conform to the normative requirements of
  Section 5.1.2.

  The NAS-side ANCP agent MUST follow the NAS-side procedures
  associated with DSL-specific Port Management (OAM) messages as they
  are specified in Section 8.4.

8.2.2.  Protocol Requirements on the AN Side

  The AN-side ANCP agent MUST conform to the normative requirements of
  Section 5.1.2.

  The AN-side ANCP agent MUST be able to receive and validate DSL-
  specific Port Management (OAM) messages according to the format
  specified in Section 8.3.





Wadhwa, et al.               Standards Track                   [Page 66]

RFC 6320                      ANCP Protocol                 October 2011


  The AN-side ANCP agent MUST follow the AN-side procedures associated
  with DSL-specific Port Management (OAM) messages as specified in
  Section 8.4.

8.3.  Port Management (OAM) Message Format

  The Port Management message for DSL access line testing has the same
  format as for DSL access line configuration (see Section 7.3), with
  the following differences:

  o  The Result field in the request SHOULD be set to AckAll (0x2), to
     allow the NAS to receive the information contained in a successful
     test response.

  o  The Function field MUST be set to 9 (Remote Loopback).  (The
     X-Function field continues to be 0.)

  o  The appended TLVs in the extension value field include testing-
     related TLVs rather than subscriber service information.

  The Port Management (OAM) message is illustrated in Figure 21.






























Wadhwa, et al.               Standards Track                   [Page 67]

RFC 6320                      ANCP Protocol                 October 2011


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |           TCP/IP Encapsulating Header (Section 3.2)           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                ANCP General Message Header                    |
  +                      (Section 3.6.1)                          +
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                       Unused (12 bytes)                       ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |        Unused (2 bytes)       |  Function=9   | X-Function=0  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       Unused (4 bytes)                        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|x|x|x|x|x|x|x| Message Type  |            Reserved           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     # of TLVs                 | Extension Block length (bytes)|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                 Access line identifying TLV(s)                ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                   Testing-related TLVs                        ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  NOTE: TLVs MAY be in a different order from what is shown in this
  figure.

                 Figure 21: Port Management Message for
                  DSL Line Remote Connectivity Testing

8.4.  Procedures

  From the point of view of ANCP, it is permissible to attempt line
  connectivity testing regardless of the state of the line.  However,
  testing could fail in some states due to technology limitations.

8.4.1.  NAS-Side Procedures

  When requested by the NAS control application and presented with the
  necessary information to do so, the NAS-side agent creates and sends
  a Port Management (OAM) request with the fixed fields set as
  described in the previous section.  The message MUST contain one or



Wadhwa, et al.               Standards Track                   [Page 68]

RFC 6320                      ANCP Protocol                 October 2011


  more TLVs to identify an access line according the requirements of
  Section 5.1.2.  The NAS MAY include the Opaque-Data TLV and/or the
  OAM-Loopback-Test-Parameters TLV (defined in Section 8.5) to
  configure the loopback test for that line.

8.4.2.  AN-Side Procedures

  The AN-side ANCP agent SHOULD validate each message against the
  specifications given in Section 8.3 and the TLV specifications given
  in Sections 5.1.2 and 8.5.  If it finds an error it MUST return a
  Port Management response message that copies the Port Management
  request as it was received, but has the Result header field set to
  0x04 (Failure) and the Result Code field set to the appropriate
  value.  Result Code value 0x509 as described below MAY apply, as well
  as the other Result Code values documented in Section 3.6.1.4.
  Result Code value 0x509 SHOULD be used if the OAM-Loopback-Test-
  Parameters TLV is present with an invalid value of the Count field.
  The AN-side agent MAY add a Status-Info TLV (Section 4.5) to provide
  further information on the error, particularly if this is recommended
  in Section 3.6.1.4 for the given Result Code value.  If it does so,
  the various length fields and the # of TLVs field within the message
  MUST be adjusted accordingly.

  If the received message passes validation, the AN-side ANCP agent
  extracts the information from the TLVs contained in the message and
  presents that information to the AN control application.  It MUST NOT
  generate an immediate response to the request, but it MUST instead
  wait for the AN control application to indicate that the response
  should be sent.

  When requested by the AN control application and presented with the
  necessary information to do so, the AN-side agent creates and sends a
  Port Management (OAM) response to the original request.  The Result
  field MUST be set to Success (0x3) or Failure (0x4), and the Result
  Code field SHOULD be set to one of the following values, as indicated
  by the AN control application.

  0x500:  Specified access line does not exist.  See the documentation
     of Result Code 0x500 in Section 3.6.1.4 for more information.  The
     Result header field MUST be set to Failure (0x4).

  0x501:  Loopback test timed out.  The Result header field MUST be set
     to Failure (0x4).

  0x503:  DSL access line status showtime






Wadhwa, et al.               Standards Track                   [Page 69]

RFC 6320                      ANCP Protocol                 October 2011


  0x504:  DSL access line status idle

  0x505:  DSL access line status silent

  0x506:  DSL access line status training

  0x507:  DSL access line integrity error

  0x508:  DSLAM resource not available.  The Result header field MUST
     be set to Failure (0x04).

  0x509:  Invalid test parameter.  The Result header field MUST be set
     to Failure (0x4).

  All other fields of the request including the TLVs MUST be copied
  into the response unchanged, except that in a successful response the
  OAM-Loopback-Test-Parameters TLV MUST NOT appear.  If the AN control
  application has provided the necessary information, the AN-side agent
  MUST also include an instance of the OAM-Loopback-Test-Response-
  String TLV in the response.

8.5.  TLVs for the DSL Line Remote Connectivity Testing Capability

  The following TLVs have been defined for use with the DSL access line
  testing capability.

8.5.1.  OAM-Loopback-Test-Parameters TLV

  Type:  0x0007

  Description:  Parameters intended to override the default values for
     this loopback test.

  Length:  2 bytes

  Value:  Two unsigned 1-byte fields described below (listed in order
     of most to least significant).

        Byte 1: Count.  Number of loopback cells/messages that should
        be generated on the local loop as part of the loopback test.
        The Count value SHOULD be greater than 0 and less than or equal
        to 32.

        Byte 2: Timeout.  Upper bound on the time in seconds that the
        NAS will wait for a response from the DSLAM.  The value 0 MAY
        be used to indicate that the DSLAM MUST use a locally
        determined value for the timeout.




Wadhwa, et al.               Standards Track                   [Page 70]

RFC 6320                      ANCP Protocol                 October 2011


  The OAM-Loopback-Test-Parameters TLV is illustrated in Figure 22.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |    TLV Type = 0x0007          |        Length = 2             |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |   Count       |  Timeout      |         Padding (=0)          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

             Figure 22: The OAM-Loopback-Test-Parameters TLV

8.5.2.  Opaque-Data TLV

  Type:  0x0008

  Description:  An 8-byte opaque field used by the NAS control
     application for its own purposes (e.g., response correlation).
     The procedures in Section 8.4.2 ensure that if it is present in
     the request it is copied unchanged to the response.

  Length:  8 bytes

  Value:  Two 32-bit unsigned integers.

8.5.3.  OAM-Loopback-Test-Response-String TLV

  Type:  0x0009

  Description:  Suitably formatted string containing useful details
     about the test that the NAS will display for the operator, exactly
     as received from the DSLAM (no manipulation or interpretation by
     the NAS).

  Length:  Up to 128 bytes

  Value:  UTF-8 encoded string of text.

9.  IANA Considerations

  This section documents the following IANA actions:

  o  establishment of the following new ANCP registries:

        ANCP Message Types;

        ANCP Result Codes;




Wadhwa, et al.               Standards Track                   [Page 71]

RFC 6320                      ANCP Protocol                 October 2011


        ANCP Port Management Functions;

        ANCP Technology Types;

        ANCP Command Codes;

        ANCP TLV Types;

        ANCP Capabilities.

  o  establishment of a new joint GSMP/ANCP version registry;

  o  addition of ANCP as another user of TCP port 6068 in the port
     number registry available from http://www.iana.org.  The current
     user is GSMP.

  All of these actions are described in detail below except for the
  port registration, for which the final point above provides
  sufficient information.

10.  IANA Actions

10.1.  ANCP Message Type Registry

  IANA has created a new registry, ANCP Message Types.  Additions to
  that registry are permitted by Standards Action, as defined by
  [RFC5226].  The values for Message Type MAY range from 0 to 255, but
  new Message Types SHOULD be assigned values sequentially from 90
  onwards (noting that 91 and 93 are already assigned).  The initial
  contents of the ANCP Message Types registry are as follows:

            +--------------+--------------------+-----------+
            | Message Type | Message Name       | Reference |
            +--------------+--------------------+-----------+
            | 10           | Adjacency Protocol | RFC 6320  |
            | 32           | Port Management    | RFC 6320  |
            | 80           | Port Up            | RFC 6320  |
            | 81           | Port Down          | RFC 6320  |
            | 85           | Adjacency Update   | RFC 6320  |
            | 91           | Generic Response   | RFC 6320  |
            | 93           | Provisioning       | RFC 6320  |
            +--------------+--------------------+-----------+









Wadhwa, et al.               Standards Track                   [Page 72]

RFC 6320                      ANCP Protocol                 October 2011


10.2.  ANCP Result Code Registry

  IANA has created a new registry, ANCP Result Codes.  The
  documentation of new Result Codes MUST include the following
  information:

  o  Result Code value (as assigned by IANA);

  o  One-line description;

  o  Where condition detected (control application or ANCP agent);

  o  Further description (if any);

  o  Required additional information in the response message;

  o  Target (control application or ANCP agent at the peer that sent
     the original request);

  o  Action RECOMMENDED for the receiving ANCP agent.

  The values for Result Code are expressed in hexadecimal and MAY range
  from 0x0 to 0xFFFFFF.  The range 0x0 to 0xFFF is allocated by the
  criterion of IETF Review, as defined by [RFC5226].  IANA SHOULD
  allocate new Result Code values from this range sequentially
  beginning at 0x100.  The range 0x1000 onwards is allocated by the
  criterion of Specification Required, as defined by [RFC5226].  IANA
  SHOULD allocate new Result Code values from this range sequentially
  beginning at 0x1000.  The initial contents of the ANCP Message Types
  registry are as follows:





















Wadhwa, et al.               Standards Track                   [Page 73]

RFC 6320                      ANCP Protocol                 October 2011


  +------------+------------------------------------------+-----------+
  | Result     | One-line description                     | Reference |
  | Code       |                                          |           |
  +------------+------------------------------------------+-----------+
  | 0x0        | No result                                | RFC 6320  |
  | 0x2        | Invalid request message                  | RFC 6320  |
  | 0x6        | One or more of the specified ports are   | RFC 6320  |
  |            | down                                     |           |
  | 0x13       | Out of resources                         | RFC 6320  |
  | 0x51       | Request message type not implemented     | RFC 6320  |
  | 0x53       | Malformed message                        | RFC 6320  |
  | 0x54       | Mandatory TLV missing                    | RFC 6320  |
  | 0x55       | Invalid TLV contents                     | RFC 6320  |
  | 0x500      | One or more of the specified ports do    | RFC 6320  |
  |            | not exist                                |           |
  | 0x501      | Loopback test timed out                  | RFC 6320  |
  | 0x502      | Reserved                                 | RFC 6320  |
  | 0x503      | DSL access line status showtime          | RFC 6320  |
  | 0x504      | DSL access line status idle              | RFC 6320  |
  | 0x505      | DSL access line status silent            | RFC 6320  |
  | 0x506      | DSL access line status training          | RFC 6320  |
  | 0x507      | DSL access line integrity error          | RFC 6320  |
  | 0x508      | DSLAM resource not available             | RFC 6320  |
  | 0x509      | Invalid test parameter                   | RFC 6320  |
  +------------+------------------------------------------+-----------+

10.3.  ANCP Port Management Function Registry

  IANA has created a new ANCP Port Management Function registry, with
  the following initial entries.  Additions to this registry will be by
  Standards Action, as defined by [RFC5226].  Values may range from 0
  to 255.  IANA SHOULD assign values sequentially beginning with 1,
  taking account of the values already assigned below.

     NOTE: Future extensions of ANCP may need to establish sub-
     registries of permitted X-Function values for specific values of
     Function.

   +----------------+-----------------------------------+-----------+
   | Function Value | Function Name                     | Reference |
   +----------------+-----------------------------------+-----------+
   | 0              | Reserved                          | RFC 6320  |
   | 8              | Configure Connection Service Data | RFC 6320  |
   | 9              | Remote Loopback                   | RFC 6320  |
   +----------------+-----------------------------------+-----------+






Wadhwa, et al.               Standards Track                   [Page 74]

RFC 6320                      ANCP Protocol                 October 2011


10.4.  ANCP Technology Type Registry

  IANA has created a new ANCP Technology Type registry, with additions
  by Expert Review, as defined by [RFC5226].  The Technology Type MUST
  designate a distinct access transport technology.  Values may range
  from 0 to 255.  IANA SHOULD assign new values sequentially beginning
  at 2, taking into account of the values already assigned below.  The
  initial entries are as follows:

     +-----------------+-------------------------------+-----------+
     | Tech Type Value | Tech Type Name                | Reference |
     +-----------------+-------------------------------+-----------+
     | 0               | Not technology dependent      | RFC 6320  |
     | 1               | Passive Optical Network (PON) | RFC 6320  |
     | 5               | Digital Subscriber Line (DSL) | RFC 6320  |
     | 255             | Reserved                      | RFC 6320  |
     +-----------------+-------------------------------+-----------+

10.5.  ANCP Command Code Registry

  IANA has created a new ANCP Command Code registry, with additions by
  Standards Action, as defined by [RFC5226].  Values may range from 0
  to 255.  IANA SHOULD assign new values sequentially beginning with 1.
  The initial entry is as follows:

    +--------------------+-----------------------------+-----------+
    | Command Code Value | Command Code Directive Name | Reference |
    +--------------------+-----------------------------+-----------+
    | 0                  | Reserved                    | RFC 6320  |
    +--------------------+-----------------------------+-----------+

10.6.  ANCP TLV Type Registry

  IANA has created a new ANCP TLV Type registry.  Values are expressed
  in hexadecimal and may range from 0x0000 to 0xFFFF.  Additions in the
  range 0x0000 to 0x1FFF are by IETF Review, as defined by [RFC5226].
  IANA SHOULD assign new values in this range sequentially beginning at
  0x100, taking account of the assignments already made below.
  Additions in the range 0x2000 to 0xFFFF are by Specification
  Required, again as defined by [RFC5226].  IANA SHOULD assign new
  values in this range sequentially beginning at 0x2000.  In both
  cases, the documentation of the TLV MUST provide:

  o  a TLV name following the convention used for the initial entries
     (capitalized words separated by hyphens);

  o  a brief description of the intended use;




Wadhwa, et al.               Standards Track                   [Page 75]

RFC 6320                      ANCP Protocol                 October 2011


  o  a precise description of the contents of each fixed field,
     including its length, type, and units (if applicable);

  o  identification of any mandatory encapsulated TLVs;

  o  an indication of whether optional TLVs may be encapsulated, with
     whatever information is available on their identity (could range
     from a general class of information to specific TLV names,
     depending on the nature of the TLV being defined).

  The initial entries are as follows:

  +----------+--------------------------------------------+-----------+
  | Type Code| TLV Name                                   | Reference |
  +----------+--------------------------------------------+-----------+
  | 0x0000   | Reserved                                   | RFC 6320  |
  | 0x0001   | Access-Loop-Circuit-ID                     | RFC 6320  |
  | 0x0002   | Access-Loop-Remote-ID                      | RFC 6320  |
  | 0x0003   | Access-Aggregation-Circuit-ID-ASCII        | RFC 6320  |
  | 0x0004   | DSL-Line-Attributes                        | RFC 6320  |
  | 0x0005   | Service-Profile-Name                       | RFC 6320  |
  | 0x0006   | Access-Aggregation-Circuit-ID-Binary       | RFC 6320  |
  | 0x0007   | OAM-Loopback-Test-Parameters               | RFC 6320  |
  | 0x0008   | Opaque-Data                                | RFC 6320  |
  | 0x0009   | OAM-Loopback-Test-Response-String          | RFC 6320  |
  | 0x0011   | Command                                    | RFC 6320  |
  | 0x0081   | Actual-Net-Data-Rate-Upstream              | RFC 6320  |
  | 0x0082   | Actual-Net-Data-Rate-Downstream            | RFC 6320  |
  | 0x0083   | Minimum-Net-Data-Rate-Upstream             | RFC 6320  |
  | 0x0084   | Minimum-Net-Data-Rate-Downstream           | RFC 6320  |
  | 0x0085   | Attainable-Net-Data-Rate-Upstream          | RFC 6320  |
  | 0x0086   | Attainable-Net-Data-Rate-Downstream        | RFC 6320  |
  | 0x0087   | Maximum-Net-Data-Rate-Upstream             | RFC 6320  |
  | 0x0088   | Maximum-Net-Data-Rate-Downstream           | RFC 6320  |
  | 0x0089   | Minimum-Net-Low-Power-Data-Rate-Upstream   | RFC 6320  |
  | 0x008A   | Minimum-Net-Low-Power-Data-Rate-Downstream | RFC 6320  |
  | 0x008B   | Maximum-Interleaving-Delay-Upstream        | RFC 6320  |
  | 0x008C   | Actual-Interleaving-Delay-Upstream         | RFC 6320  |
  | 0x008D   | Maximum-Interleaving-Delay-Downstream      | RFC 6320  |
  | 0x008E   | Actual-Interleaving-Delay-Downstream       | RFC 6320  |
  | 0x008F   | DSL-Line-State                             | RFC 6320  |
  | 0x0090   | Access-Loop-Encapsulation                  | RFC 6320  |
  | 0x0091   | DSL-Type                                   | RFC 6320  |
  | 0x0106   | Status-Info                                | RFC 6320  |
  | 0x1000   | Target (single access line variant)        | RFC 6320  |
  | 0x1001 - | Reserved for Target variants               | RFC 6320  |
  | 0x1020   |                                            |           |
  +----------+--------------------------------------------+-----------+



Wadhwa, et al.               Standards Track                   [Page 76]

RFC 6320                      ANCP Protocol                 October 2011


10.7.  ANCP Capability Type Registry

  IANA has created a new ANCP Capability Type registry, with additions
  by Standards Action as defined by [RFC5226].  Values may range from 0
  to 255.  IANA SHOULD assign values sequentially beginning at 5.  The
  specification for a given capability MUST indicate the Technology
  Type value with which it is associated.  The specification MUST
  further indicate whether the capability is associated with any
  capability data.  Normally, a capability is expected to be defined in
  the same document that specifies the implementation of that
  capability in protocol terms.  The initial entries in the ANCP
  capability registry are as follows:

  +-------+------------------------+--------+-------------+-----------+
  | Value | Capability Type Name   | Tech   | Capability  | Reference |
  |       |                        | Type   | Data?       |           |
  +-------+------------------------+--------+-------------+-----------+
  | 0     | Reserved               |        |             | RFC 6320  |
  | 1     | DSL Topology Discovery | 5      | No          | RFC 6320  |
  | 2     | DSL Line Configuration | 5      | No          | RFC 6320  |
  | 3     | Reserved               |        |             | RFC 6320  |
  | 4     | DSL Line Testing       | 5      | No          | RFC 6320  |
  +-------+------------------------+--------+-------------+-----------+

10.8.  Joint GSMP / ANCP Version Registry

  IANA has created a new joint GSMP / ANCP Version registry.  Additions
  to this registry are by Standards Action as defined by [RFC5226].
  Values may range from 0 to 255.  Values for the General Switch
  Management Protocol (GSMP) MUST be assigned sequentially beginning
  with 4 for the next version.  Values for the Access Network Control
  Protocol (ANCP) MUST be assigned sequentially beginning with 50 for
  the present version.  The initial entries are as follows:

                +---------+----------------+-----------+
                | Version | Description    | Reference |
                +---------+----------------+-----------+
                | 1       | GSMP Version 1 | RFC 1987  |
                | 2       | GSMP Version 2 | RFC 2297  |
                | 3       | GSMP Version 3 | RFC 3292  |
                | 50      | ANCP Version 1 | RFC 6320  |
                +---------+----------------+-----------+

11.  Security Considerations

  Security of ANCP is discussed in [RFC5713].  A number of security
  requirements on ANCP are stated in Section 8 of that document.  Those
  applicable to ANCP itself are copied to the present document:



Wadhwa, et al.               Standards Track                   [Page 77]

RFC 6320                      ANCP Protocol                 October 2011


  o  The protocol solution MUST offer authentication of the AN to the
     NAS.

  o  The protocol solution MUST offer authentication of the NAS to the
     AN.

  o  The protocol solution MUST allow authorization to take place at
     the NAS and the AN.

  o  The protocol solution MUST offer replay protection.

  o  The protocol solution MUST provide data-origin authentication.

  o  The protocol solution MUST be robust against denial-of-service
     (DoS) attacks.  In this context, the protocol solution MUST
     consider a specific mechanism for the DoS that the user might
     create by sending many IGMP messages.

  o  The protocol solution SHOULD offer confidentiality protection.

  o  The protocol solution SHOULD ensure that operations in default
     configuration guarantee a low number of AN/NAS protocol
     interactions.

  Most of these requirements relate to secure transport of ANCP.
  Robustness against denial-of-service attacks partly depends on
  transport and partly on protocol design.  Ensuring a low number of
  AN/NAS protocol interactions in default mode is purely a matter of
  protocol design.

  For secure transport, either the combination of IPsec with IKEv2
  (references below) or the use of TLS [RFC5246] will meet the
  requirements listed above.  However, the use of TLS has been
  rejected.  The deciding point is a detail of protocol design that was
  unavailable when [RFC5713] was written.  The ANCP adjacency is a
  major point of vulnerability for denial-of-service attacks.  If the
  adjacency can be shut down, either the AN clears its state pending
  reestablishment of the adjacency, or the possibility of mismatches
  between the AN's and NAS's view of state on the AN is opened up.  Two
  ways to cause an adjacency to be taken down are to modify messages so
  that the ANCP agents conclude that they are no longer synchronized,
  or to attack the underlying TCP session.  TLS will protect message
  contents but not the TCP connection.  One has to use either IPsec or
  the TCP authentication option [RFC5925] for that.  Hence, the
  conclusion that ANCP MUST run over IPsec with IKEv2 for
  authentication and key management.





Wadhwa, et al.               Standards Track                   [Page 78]

RFC 6320                      ANCP Protocol                 October 2011


  In greater detail: the ANCP stack MUST include IPsec [RFC4301]
  running in transport mode, since the AN and NAS are the endpoints of
  the path.  The Encapsulating Security Payload (ESP) [RFC4303] MUST be
  used, in order to satisfy the requirement for data confidentiality.
  ESP MUST be configured for the combination of confidentiality,
  integrity, and anti-replay capability.  The traffic flow
  confidentiality service of ESP is unnecessary and, in fact,
  unworkable in the case of ANCP.

  IKEv2 [RFC5996] is also REQUIRED, to meet the requirements for mutual
  authentication and authorization.  Since the NAS and AN MAY be in
  different trust domains, the use of certificates for mutual
  authentication could be the most practical approach.  However, this
  is up to the operator(s) concerned.

  The AN MUST play the role of initiator of the IKEv2 conversation.

12.  Contributors

  Swami Subramanian was an early member of the authors' team.  The ANCP
  Working Group is grateful to Roberta Maglione, who served as design
  team member and primary editor of this document for two years before
  stepping down.

13.  Acknowledgements

  The authors would like to thank everyone who provided comments or
  inputs to this document.  The authors acknowledge the inputs provided
  by Wojciech Dec, Peter Arberg, Josef Froehler, Derek Harkness, Kim
  Hyldgaard, Sandy Ng, Robert Peschi, and Michel Platnic, and the
  further comments provided by Mykyta Yevstifeyev, Brian Carter, Ben
  Campbell, Alexey Melnikov, Adrian Farrel, Robert Sparks, Peter St.
  Andre, Sean Turner, Dan Romascanu, Brian Carter, and Michael Scott.

14.  References

14.1.  Normative References

  [RFC2119]      Bradner, S., "Key words for use in RFCs to Indicate
                 Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC3292]      Doria, A., Hellstrand, F., Sundell, K., and T.
                 Worster, "General Switch Management Protocol (GSMP)
                 V3", RFC 3292, June 2002.

  [RFC3629]      Yergeau, F., "UTF-8, a transformation format of ISO
                 10646", STD 63, RFC 3629, November 2003.




Wadhwa, et al.               Standards Track                   [Page 79]

RFC 6320                      ANCP Protocol                 October 2011


  [RFC4301]      Kent, S. and K. Seo, "Security Architecture for the
                 Internet Protocol", RFC 4301, December 2005.

  [RFC4303]      Kent, S., "IP Encapsulating Security Payload (ESP)",
                 RFC 4303, December 2005.

  [RFC5646]      Phillips, A. and M. Davis, "Tags for Identifying
                 Languages", BCP 47, RFC 5646, September 2009.

  [RFC5996]      Kaufman, C., Hoffman, P., Nir, Y., and P. Eronen,
                 "Internet Key Exchange Protocol Version 2 (IKEv2)",
                 RFC 5996, September 2010.

14.2.  Informative References

  [G.993.2]      "ITU-T Recommendation G.993.2, Very high speed digital
                 subscriber line transceivers 2 (VDSL2)", 2006.

  [G.998.1]      "ITU-T Recommendation G.998.1, ATM-based multi-pair
                 bonding", 2005.

  [G.998.2]      "ITU-T Recommendation G.998.2, Ethernet-based multi-
                 pair bonding,", 2005.

  [IEEE802.1Q]   IEEE, "IEEE 802.1Q-2005, IEEE Standard for Local and
                 Metropolitan Area Networks - Virtual Bridged Local
                 Area Networks - Revision", 2005.

  [IEEE802.1ad]  IEEE, "IEEE 802.1ad-2005, Amendment to IEEE 802.1Q-
                 2005. IEEE Standard for Local and Metropolitan Area
                 Networks - Virtual Bridged Local Area Networks -
                 Revision - Amendment 4: Provider Bridges", 2005.

  [RFC2131]      Droms, R., "Dynamic Host Configuration Protocol",
                 RFC 2131, March 1997.

  [RFC3046]      Patrick, M., "DHCP Relay Agent Information Option",
                 RFC 3046, January 2001.

  [RFC3315]      Droms, R., Bound, J., Volz, B., Lemon, T., Perkins,
                 C., and M. Carney, "Dynamic Host Configuration
                 Protocol for IPv6 (DHCPv6)", RFC 3315, July 2003.

  [RFC4649]      Volz, B., "Dynamic Host Configuration Protocol for
                 IPv6 (DHCPv6) Relay Agent Remote-ID Option", RFC 4649,
                 August 2006.





Wadhwa, et al.               Standards Track                   [Page 80]

RFC 6320                      ANCP Protocol                 October 2011


  [RFC5226]      Narten, T. and H. Alvestrand, "Guidelines for Writing
                 an IANA Considerations Section in RFCs", BCP 26,
                 RFC 5226, May 2008.

  [RFC5246]      Dierks, T. and E. Rescorla, "The Transport Layer
                 Security (TLS) Protocol Version 1.2", RFC 5246,
                 August 2008.

  [RFC5713]      Moustafa, H., Tschofenig, H., and S. De Cnodder,
                 "Security Threats and Security Requirements for the
                 Access Node Control Protocol (ANCP)", RFC 5713,
                 January 2010.

  [RFC5851]      Ooghe, S., Voigt, N., Platnic, M., Haag, T., and S.
                 Wadhwa, "Framework and Requirements for an Access Node
                 Control Mechanism in Broadband Multi-Service
                 Networks", RFC 5851, May 2010.

  [RFC5925]      Touch, J., Mankin, A., and R. Bonica, "The TCP
                 Authentication Option", RFC 5925, June 2010.

  [TR-058]       Broadband Forum, "TR-058, Multi-Service Architecture &
                 Framework Requirements", September 2003.

  [TR-059]       Broadband Forum, "TR-059, DSL Evolution - Architecture
                 Requirements for the Support of QoS-Enabled IP
                 Services", September 2003.

  [TR-092]       Broadband Forum, "TR-092, Broadband Remote access
                 server requirements document", 2005.

  [TR-101]       Broadband Forum, "TR-101, Architecture & Transport:
                 Migration to Ethernet Based DSL Aggregation", 2005.

  [TR-147]       Broadband Forum, "TR-147, Layer 2 Control Mechanism
                 For Broadband Multi-Service Architectures", 2008.

  [US_ASCII]     American National Standards Institute, "Coded
                 Character Set - 7-bit American Standard Code for
                 Information Interchange", ANSI X.34, 1986.











Wadhwa, et al.               Standards Track                   [Page 81]

RFC 6320                      ANCP Protocol                 October 2011


Authors' Addresses

  Sanjay Wadhwa
  Alcatel-Lucent
  701 E Middlefield Rd
  Mountain View, CA  94043-4079
  USA

  EMail: [email protected]


  Jerome Moisand
  Juniper Networks
  10 Technology Park Drive
  Westford, MA  01886
  USA

  EMail: [email protected]


  Thomas Haag
  Deutsche Telekom
  Heinrich-Hertz-Strasse 3-7
  Darmstadt  64295
  Germany

  EMail: [email protected]


  Norbert Voigt
  Nokia Siemens Networks
  Siemensallee 1
  Greifswald  17489
  Germany

  EMail: [email protected]


  Tom Taylor (editor)
  Huawei Technologies
  1852 Lorraine Ave
  Ottawa
  Canada

  EMail: [email protected]






Wadhwa, et al.               Standards Track                   [Page 82]