Internet Engineering Task Force (IETF)                        R. Housley
Request for Comments: 6318                                Vigil Security
Obsoletes: 5008                                               J. Solinas
Category: Informational                         National Security Agency
ISSN: 2070-1721                                                June 2011


   Suite B in Secure/Multipurpose Internet Mail Extensions (S/MIME)

Abstract

  This document specifies the conventions for using the United States
  National Security Agency's Suite B algorithms in Secure/Multipurpose
  Internet Mail Extensions (S/MIME) as specified in RFC 5751.  This
  document obsoletes RFC 5008.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Not all documents
  approved by the IESG are a candidate for any level of Internet
  Standard; see Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc6318.




















Housley & Solinas             Informational                     [Page 1]

RFC 6318                    Suite B in S/MIME                  June 2011


Copyright Notice

  Copyright (c) 2011 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

  This document may contain material from IETF Documents or IETF
  Contributions published or made publicly available before November
  10, 2008.  The person(s) controlling the copyright in some of this
  material may not have granted the IETF Trust the right to allow
  modifications of such material outside the IETF Standards Process.
  Without obtaining an adequate license from the person(s) controlling
  the copyright in such materials, this document may not be modified
  outside the IETF Standards Process, and derivative works of it may
  not be created outside the IETF Standards Process, except to format
  it for publication as an RFC or to translate it into languages other
  than English.

Table of Contents

  1. Introduction ....................................................3
     1.1. Terminology ................................................4
     1.2. ASN.1 ......................................................4
     1.3. Suite B Security Levels ....................................4
  2. SHA-256 and SHA-384 Message Digest Algorithms ...................5
  3. ECDSA Signature Algorithm .......................................6
  4. Key Management ..................................................7
     4.1. ECDH Key Agreement Algorithm ...............................7
     4.2. AES Key Wrap ...............................................8
     4.3. Key Derivation Functions ...................................9
  5. AES CBC Content Encryption .....................................11
  6. Security Considerations ........................................12
  7. References .....................................................13
     7.1. Normative References ......................................13
     7.2. Informative References ....................................14







Housley & Solinas             Informational                     [Page 2]

RFC 6318                    Suite B in S/MIME                  June 2011


1.  Introduction

  The Fact Sheet on National Security Agency (NSA) Suite B Cryptography
  [NSA] states:

     A Cryptographic Interoperability Strategy (CIS) was developed to
     find ways to increase assured rapid sharing of information both
     within the U.S. and between the U.S. and her partners through the
     use of a common suite of public standards, protocols, algorithms
     and modes referred to as the "Secure Sharing Suite" or S.3.  The
     implementation of CIS will facilitate the development of a broader
     range of secure cryptographic products which will be available to
     a wide customer base.  The use of selected public cryptographic
     standards and protocols and Suite B is the core of CIS.

     In 2005, NSA announced Suite B Cryptography which built upon the
     National Policy on the use of the Advanced Encryption Standard
     (AES) to Protect National Security Systems and National Security
     Information.  In addition to the AES algorithm, Suite B includes
     cryptographic algorithms for key exchanges, digital signatures and
     hashing.  Suite B cryptography has been selected from cryptography
     that has been approved by NIST for use by the U.S. Government and
     specified in NIST standards or recommendations.

  This document specifies the conventions for using the United States
  National Security Agency's Suite B algorithms [NSA] in
  Secure/Multipurpose Internet Mail Extensions (S/MIME) [MSG].  S/MIME
  makes use of the Cryptographic Message Syntax (CMS) [CMS].  In
  particular, the signed-data and the enveloped-data content types are
  used.  This document only addresses Suite B compliance for S/MIME.
  Other applications of CMS are outside the scope of this document.

  Since many of the Suite B algorithms enjoy uses in other environments
  as well, the majority of the conventions needed for the Suite B
  algorithms are already specified in other documents.  This document
  references the source of these conventions, with some relevant
  details repeated to aid developers that choose to support Suite B.

  This specification obsoletes RFC 5008 [SUITEBSMIME].  The primary
  reason for the publication of this document is to allow greater
  flexibility in the use of the Suite B Security Levels as discussed in
  Section 1.3.  It also removes some duplication between this document
  and referenced RFCs.








Housley & Solinas             Informational                     [Page 3]

RFC 6318                    Suite B in S/MIME                  June 2011


1.1.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [STDWORDS].

1.2.  ASN.1

  CMS values are generated using ASN.1 [X.208-88], the Basic Encoding
  Rules (BER) [X.209-88], and the Distinguished Encoding Rules (DER)
  [X.509-88].

1.3.  Suite B Security Levels

  Suite B offers two suites of algorithms for key agreement, key
  derivation, key wrap and content encryption, and two possible
  combinations of hash and signing algorithm.  Suite B algorithms are
  defined to support two minimum levels of cryptographic security: 128
  and 192 bits.

  For S/MIME signed messages, Suite B follows the direction set by
  RFC 5753 [CMSECC] and RFC 5754 [SHA2].  Suite B uses these
  combinations of message digest (hash) and signature functions (Sig
  Sets):

                           Sig Set 1          Sig Set 2
                           ----------------   ----------------
     Message Digest:       SHA-256            SHA-384
     Signature:            ECDSA with P-256   ECDSA with P-384

  For S/MIME encrypted messages, Suite B follows the direction set by
  RFC 5753 [CMSECC] and follows the conventions set by RFC 3565
  [CMSAES].

  Suite B uses these key establishment (KE) algorithms (KE Sets):

                           KE Set 1           KE Set 2
                           ----------------   ----------------
     Key Agreement:        ECDH with P-256    ECDH with P-384
     Key Derivation:       SHA-256            SHA-384
     Key Wrap:             AES-128 Key Wrap   AES-256 Key Wrap
     Content Encryption:   AES-128 CBC        AES-256 CBC









Housley & Solinas             Informational                     [Page 4]

RFC 6318                    Suite B in S/MIME                  June 2011


  The two elliptic curves used in Suite B are specified in [DSS], and
  each appear in the literature under two different names.  For the
  sake of clarity, we list both names below:

     Curve       NIST Name    SECG Name    OID  [DSS]
     ---------------------------------------------------------
     nistp256    P-256        secp256r1    1.2.840.10045.3.1.7
     nistp384    P-384        secp384r1    1.3.132.0.34

  If configured at a minimum level of security of 128 bits, a Suite B
  compliant S/MIME system performing encryption MUST use either KE
  Set 1 or KE Set 2, with KE Set 1 being the preferred suite.  A
  digital signature, if applied, MUST use either Sig Set 1 or Sig Set
  2, independent of the encryption choice.

  A recipient in an S/MIME system configured at a minimum level of
  security of 128 bits MUST be able to verify digital signatures from
  Sig Set 1 and SHOULD be able to verify digital signatures from Sig
  Set 2.

  Note that for S/MIME systems configured at a minimum level of
  security of 128 bits, the algorithm set used for a signed-data
  content type is independent of the algorithm set used for an
  enveloped-data content type.

  If configured at a minimum level of security of 192 bits, a Suite B
  compliant S/MIME system performing encryption MUST use KE Set 2.  A
  digital signature, if applied, MUST use Sig Set 2.

  A recipient in an S/MIME system configured at a minimum level of
  security of 192 bits MUST be able to verify digital signatures from
  Sig Set 2.

2.  SHA-256 and SHA-384 Message Digest Algorithms

  SHA-256 and SHA-384 are the Suite B message digest algorithms.
  RFC 5754 [SHA2] specifies the conventions for using SHA-256 and
  SHA-384 with the Cryptographic Message Syntax (CMS).  Suite B
  compliant S/MIME implementations MUST follow the conventions in
  RFC 5754.  Relevant details are repeated below.

  Within the CMS signed-data content type, message digest algorithm
  identifiers are located in the SignedData digestAlgorithms field and
  the SignerInfo digestAlgorithm field.

  The SHA-256 and SHA-384 message digest algorithms are defined in FIPS
  Pub 180-3 [SHA2FIPS].  The algorithm identifiers for SHA-256 and
  SHA-384 are defined in [SHA2] and are repeated here:



Housley & Solinas             Informational                     [Page 5]

RFC 6318                    Suite B in S/MIME                  June 2011


     id-sha256  OBJECT IDENTIFIER  ::=  { joint-iso-itu-t(2)
         country(16) us(840) organization(1) gov(101) csor(3)
         nistalgorithm(4) hashalgs(2) 1 }

     id-sha384  OBJECT IDENTIFIER  ::=  { joint-iso-itu-t(2)
         country(16) us(840) organization(1) gov(101) csor(3)
         nistalgorithm(4) hashalgs(2) 2 }

  For both SHA-256 and SHA-384, the AlgorithmIdentifier parameters
  field is OPTIONAL, and if present, the parameters field MUST contain
  a NULL.  Implementations MUST accept SHA-256 and SHA-384
  AlgorithmIdentifiers with absent parameters.  Implementations MUST
  accept SHA-256 and SHA-384 AlgorithmIdentifiers with NULL parameters.
  As specified in RFC 5754 [SHA2], implementations MUST generate
  SHA-256 and SHA-384 AlgorithmIdentifiers with absent parameters.

3.  ECDSA Signature Algorithm

  In Suite B, public key certificates used to verify S/MIME signatures
  MUST be compliant with the Suite B Certificate Profile specified in
  RFC 5759 [SUITEBCERT].

  The Elliptic Curve Digital Signature Algorithm (ECDSA) is the Suite B
  digital signature algorithm.  RFC 5753 [CMSECC] specifies the
  conventions for using ECDSA with the Cryptographic Message Syntax
  (CMS).  Suite B compliant S/MIME implementations MUST follow the
  conventions in RFC 5753.  Relevant details are repeated below.

  Within the CMS signed-data content type, signature algorithm
  identifiers are located in the SignerInfo signatureAlgorithm field of
  SignedData.  In addition, signature algorithm identifiers are located
  in the SignerInfo signatureAlgorithm field of countersignature
  attributes.

  RFC 5480 [PKI-ALG] defines the signature algorithm identifiers used
  in CMS for ECDSA with SHA-256 and ECDSA with SHA-384.  The
  identifiers are repeated here:

     ecdsa-with-SHA256  OBJECT IDENTIFIER  ::=  { iso(1) member-body(2)
        us(840) ansi-X9-62(10045) signatures(4) ecdsa-with-sha2(3) 2 }

     ecdsa-with-SHA384  OBJECT IDENTIFIER  ::=  { iso(1) member-body(2)
        us(840) ansi-X9-62(10045) signatures(4) ecdsa-with-sha2(3) 3 }

  When either the ecdsa-with-SHA256 or the ecdsa-with-SHA384 algorithm
  identifier is used, the AlgorithmIdentifier parameters field MUST be
  absent.




Housley & Solinas             Informational                     [Page 6]

RFC 6318                    Suite B in S/MIME                  June 2011


  When signing, the ECDSA algorithm generates two values, commonly
  called r and s.  To transfer these two values as one signature, they
  MUST be encoded using the ECDSA-Sig-Value type specified in RFC 5480
  [PKI-ALG]:

     ECDSA-Sig-Value  ::=  SEQUENCE {
        r  INTEGER,
        s  INTEGER }

4.  Key Management

  CMS accommodates the following general key management techniques: key
  agreement, key transport, previously distributed symmetric key-
  encryption keys, and passwords.  In Suite B for S/MIME, ephemeral-
  static key agreement MUST be used as described in Section 4.1.

  When a key agreement algorithm is used, a key-encryption algorithm is
  also needed.  In Suite B for S/MIME, the Advanced Encryption Standard
  (AES) Key Wrap, as specified in RFC 3394 [SH] and [AESWRAP], MUST be
  used as the key-encryption algorithm.  AES Key Wrap is discussed
  further in Section 4.2.  The key-encryption key used with the AES Key
  Wrap algorithm is obtained from a key derivation function (KDF).  In
  Suite B for S/MIME, there are two KDFs -- one based on SHA-256 and
  one based on SHA-384.  These KDFs are discussed further in
  Section 4.3.

4.1.  ECDH Key Agreement Algorithm

  Elliptic Curve Diffie-Hellman (ECDH) is the Suite B key agreement
  algorithm.

  S/MIME is used in store-and-forward communications, which means that
  ephemeral-static ECDH is always employed.  This means that the
  message originator possesses an ephemeral ECDH key pair and that the
  message recipient possesses a static ECDH key pair whose public key
  is represented by an X.509 certificate.  In Suite B, the certificate
  used to obtain the recipient's public key MUST be compliant with the
  Suite B Certificate Profile specified in RFC 5759 [SUITEBCERT].

  Section 3.1 of RFC 5753 [CMSECC] specifies the conventions for using
  ECDH with the CMS.  Suite B compliant S/MIME implementations MUST
  follow these conventions.  Relevant details are repeated below.

  Within the CMS enveloped-data content type, key agreement algorithm
  identifiers are located in the EnvelopedData RecipientInfos
  KeyAgreeRecipientInfo keyEncryptionAlgorithm field.





Housley & Solinas             Informational                     [Page 7]

RFC 6318                    Suite B in S/MIME                  June 2011


  keyEncryptionAlgorithm MUST be one of the two algorithm identifiers
  listed below, and the algorithm identifier parameter field MUST be
  present and identify the key wrap algorithm.  The key wrap algorithm
  denotes the symmetric encryption algorithm used to encrypt the
  content-encryption key with the pairwise key-encryption key generated
  using the ephemeral-static ECDH key agreement algorithm (see
  Section 4.3).

  When implementing KE Set 1, the keyEncryptionAlgorithm MUST be
  dhSinglePass-stdDH-sha256kdf-scheme, and the keyEncryptionAlgorithm
  parameter MUST be a KeyWrapAlgorithm containing id-aes128-wrap (see
  Section 4.2).  When implementing KE Set 2, the keyEncryptionAlgorithm
  MUST be dhSinglePass-stdDH-sha384kdf-scheme, and the
  keyEncryptionAlgorithm parameter MUST be a KeyWrapAlgorithm
  containing id-aes256-wrap.

  The algorithm identifiers for dhSinglePass-stdDH-sha256kdf-scheme and
  dhSinglePass-stdDH-sha384kdf-scheme, repeated from Section 7.1.4 of
  [CMSECC], are:

     dhSinglePass-stdDH-sha256kdf-scheme  OBJECT IDENTIFIER  ::=
         { iso(1) identified-organization(3) certicom(132)
           schemes(1) 11 1 }

     dhSinglePass-stdDH-sha384kdf-scheme  OBJECT IDENTIFIER  ::=
         { iso(1) identified-organization(3) certicom(132)
           schemes(1) 11 2 }

  Both of these algorithm identifiers use KeyWrapAlgorithm as the type
  for their parameter:

     KeyWrapAlgorithm  ::=  AlgorithmIdentifier

4.2.  AES Key Wrap

  The AES Key Wrap key-encryption algorithm, as specified in RFC 3394
  [SH] and [AESWRAP], is used to encrypt the content-encryption key
  with a pairwise key-encryption key that is generated using ephemeral-
  static ECDH.  Section 8 of RFC 5753 [CMSECC] specifies the
  conventions for using AES Key Wrap with the pairwise key generated
  with ephemeral-static ECDH with the CMS.  Suite B compliant S/MIME
  implementations MUST follow these conventions.  Relevant details are
  repeated below.

  When implementing KE Set 1, the KeyWrapAlgorithm MUST be
  id-aes128-wrap.  When implementing KE Set 2, the KeyWrapAlgorithm
  MUST be id-aes256-wrap.




Housley & Solinas             Informational                     [Page 8]

RFC 6318                    Suite B in S/MIME                  June 2011


  Within the CMS enveloped-data content type, key wrap algorithm
  identifiers are located in the KeyWrapAlgorithm parameters within the
  EnvelopedData RecipientInfos KeyAgreeRecipientInfo
  keyEncryptionAlgorithm field.

  The algorithm identifiers for AES Key Wrap are specified in RFC 3394
  [SH], and the ones needed for Suite B compliant S/MIME
  implementations are repeated here:

     id-aes128-wrap  OBJECT IDENTIFIER  ::=  { joint-iso-itu-t(2)
        country(16) us(840) organization(1) gov(101) csor(3)
        nistAlgorithm(4) aes(1) 5 }

     id-aes256-wrap  OBJECT IDENTIFIER  ::=  { joint-iso-itu-t(2)
        country(16) us(840) organization(1) gov(101) csor(3)
        nistAlgorithm(4) aes(1) 45 }

4.3.  Key Derivation Functions

  KDFs based on SHA-256 and SHA-384 are used to derive a pairwise key-
  encryption key from the shared secret produced by ephemeral-static
  ECDH.  Sections 7.1.8 and 7.2 of RFC 5753 [CMSECC] specify the
  conventions for using the KDF with the shared secret generated with
  ephemeral-static ECDH with the CMS.  Suite B compliant S/MIME
  implementations MUST follow these conventions.  Relevant details are
  repeated below.

  When implementing KE Set 1, the KDF based on SHA-256 MUST be used.
  When implementing KE Set 2, the KDF based on SHA-384 MUST be used.

  As specified in Section 7.2 of RFC 5753 [CMSECC], using ECDH with the
  CMS enveloped-data content type, the derivation of key-encryption
  keys makes use of the ECC-CMS-SharedInfo type, which is repeated
  here:

     ECC-CMS-SharedInfo  ::=  SEQUENCE {
        keyInfo      AlgorithmIdentifier,
        entityUInfo  [0] EXPLICIT OCTET STRING OPTIONAL,
        suppPubInfo  [2] EXPLICIT OCTET STRING }












Housley & Solinas             Informational                     [Page 9]

RFC 6318                    Suite B in S/MIME                  June 2011


  In Suite B for S/MIME, the fields of ECC-CMS-SharedInfo are used as
  follows:

     keyInfo contains the object identifier of the key-encryption
        algorithm used to wrap the content-encryption key.  In Suite B
        for S/MIME, if the AES-128 Key Wrap is used, then the keyInfo
        will contain id-aes128-wrap, and the parameters will be absent.
        In Suite B for S/MIME, if AES-256 Key Wrap is used, then the
        keyInfo will contain id-aes256-wrap, and the parameters will be
        absent.

     entityUInfo optionally contains a random value provided by the
        message originator.  If the user keying material (ukm) is
        present, then the entityUInfo MUST be present, and it MUST
        contain the ukm value.  If the ukm is not present, then the
        entityUInfo MUST be absent.

     suppPubInfo contains the length of the generated key-encryption
        key, in bits, represented as a 32-bit unsigned number, as
        described in RFC 2631 [CMSDH].  When a 128-bit AES key is used,
        the length MUST be 0x00000080.  When a 256-bit AES key is used,
        the length MUST be 0x00000100.

  ECC-CMS-SharedInfo is DER encoded and used as input to the key
  derivation function, as specified in Section 3.6.1 of [SEC1].  Note
  that ECC-CMS-SharedInfo differs from the OtherInfo specified in
  [CMSDH].  Here, a counter value is not included in the keyInfo field
  because the KDF specified in [SEC1] ensures that sufficient keying
  data is provided.

  The KDF specified in [SEC1] provides an algorithm for generating an
  essentially arbitrary amount of keying material (KM) from the shared
  secret produced by ephemeral-static ECDH, which is called Z for the
  remainder of this discussion.  The KDF can be summarized as:

     KM = Hash ( Z || Counter || ECC-CMS-SharedInfo )

  To generate a key-encryption key (KEK), one or more KM blocks are
  generated, incrementing Counter appropriately, until enough material
  has been generated.  The KM blocks are concatenated left to right:

     KEK = KM ( counter=1 ) || KM ( counter=2 ) ...

  The elements of the KDF are used as follows:

     Hash is the one-way hash function.  If KE Set 1 is used, the
        SHA-256 hash MUST be used.  If KE Set 2 is used, the SHA-384
        hash MUST be used.



Housley & Solinas             Informational                    [Page 10]

RFC 6318                    Suite B in S/MIME                  June 2011


     Z is the shared secret value generated by ephemeral-static ECDH.
        Leading zero bits MUST be preserved.  In Suite B for S/MIME, if
        KE Set 1 is used, Z MUST be exactly 256 bits.  In Suite B for
        S/MIME, if KE Set 2 is used, Z MUST be exactly 384 bits.

     Counter is a 32-bit unsigned number, represented in network byte
        order.  Its initial value MUST be 0x00000001 for any key
        derivation operation.  In Suite B for S/MIME, with both KE
        Set 1 and KE Set 2, exactly one iteration is needed; the
        Counter is not incremented.

     ECC-CMS-SharedInfo is composed as described above.  It MUST be DER
        encoded.

  To generate a key-encryption key, one KM block is generated, with a
  Counter value of 0x00000001:

     KEK = KM ( 1 ) = Hash ( Z || Counter=1 || ECC-CMS-SharedInfo )

  In Suite B for S/MIME, when KE Set 1 is used, the key-encryption key
  MUST be the most significant 128 bits of the SHA-256 output value.
  In Suite B for S/MIME, when KE Set 2 is used, the key-encryption key
  MUST be the most significant 256 bits of the SHA-384 output value.

  Note that the only source of secret entropy in this computation is Z.
  The effective key space of the key-encryption key is limited by the
  size of Z, in addition to any security level considerations imposed
  by the elliptic curve that is used.  However, if entityUInfo is
  different for each message, a different key-encryption key will be
  generated for each message.

5.  AES CBC Content Encryption

  AES [AES] in Cipher Block Chaining (CBC) mode [MODES] is the Suite B
  for S/MIME content-encryption algorithm.  RFC 3565 [CMSAES] specifies
  the conventions for using AES with the CMS.  Suite B compliant S/MIME
  implementations MUST follow these conventions.  Relevant details are
  repeated below.

  In Suite B for S/MIME, if KE Set 1 is used, AES-128 in CBC mode MUST
  be used for content encryption.  In Suite B for S/MIME, if KE Set 2
  is used, AES-256 in CBC mode MUST be used.

  Within the CMS enveloped-data content type, content-encryption
  algorithm identifiers are located in the EnvelopedData
  EncryptedContentInfo contentEncryptionAlgorithm field.  The content-
  encryption algorithm is used to encipher the content located in the
  EnvelopedData EncryptedContentInfo encryptedContent field.



Housley & Solinas             Informational                    [Page 11]

RFC 6318                    Suite B in S/MIME                  June 2011


  The AES CBC content-encryption algorithm is described in [AES] and
  [MODES].  The algorithm identifier for AES-128 in CBC mode is:

     id-aes128-CBC  OBJECT IDENTIFIER  ::=  { joint-iso-itu-t(2)
        country(16) us(840) organization(1) gov(101) csor(3)
        nistAlgorithm(4) aes(1) 2 }

  The algorithm identifier for AES-256 in CBC mode is:

     id-aes256-CBC  OBJECT IDENTIFIER  ::=  { joint-iso-itu-t(2)
        country(16) us(840) organization(1) gov(101) csor(3)
        nistAlgorithm(4) aes(1) 42 }

  The AlgorithmIdentifier parameters field MUST be present, and the
  parameters field must contain AES-IV:

     AES-IV  ::=  OCTET STRING (SIZE(16))

  The 16-octet initialization vector is generated at random by the
  originator.  See [RANDOM] for guidance on generation of random
  values.

6.  Security Considerations

  This document specifies the conventions for using the NSA's Suite B
  algorithms in S/MIME.  All of the algorithms and algorithm
  identifiers have been specified in previous documents.

  Two minimum levels of security may be achieved using this
  specification.  Users must consider their risk environment to
  determine which level is appropriate for their own use.

  See [RANDOM] for guidance on generation of random values.

  The security considerations in RFC 5652 [CMS] discuss the CMS as a
  method for digitally signing data and encrypting data.

  The security considerations in RFC 3370 [CMSALG] discuss
  cryptographic algorithm implementation concerns in the context of the
  CMS.

  The security considerations in RFC 5753 [CMSECC] discuss the use of
  elliptic curve cryptography (ECC) in the CMS.

  The security considerations in RFC 3565 [CMSAES] discuss the use of
  AES in the CMS.





Housley & Solinas             Informational                    [Page 12]

RFC 6318                    Suite B in S/MIME                  June 2011


7.  References

7.1.  Normative References

  [AES]       National Institute of Standards and Technology, "Advanced
              Encryption Standard (AES)", FIPS PUB 197, November 2001.

  [AESWRAP]   National Institute of Standards and Technology, "AES Key
              Wrap Specification", November 2001.

  [DSS]       National Institute of Standards and Technology, "Digital
              Signature Standard (DSS)", FIPS PUB 186-3, June 2009.

  [CMS]       Housley, R., "Cryptographic Message Syntax (CMS)",
              STD 70, RFC 5652, September 2009.

  [CMSAES]    Schaad, J., "Use of the Advanced Encryption Standard
              (AES) Encryption Algorithm in Cryptographic Message
              Syntax (CMS)", RFC 3565, July 2003.

  [CMSALG]    Housley, R., "Cryptographic Message Syntax (CMS)
              Algorithms", RFC 3370, August 2002.

  [CMSDH]     Rescorla, E., "Diffie-Hellman Key Agreement Method",
              RFC 2631, June 1999.

  [CMSECC]    Turner, S. and D. Brown, "Use of Elliptic Curve
              Cryptography (ECC) Algorithms in Cryptographic Message
              Syntax (CMS)", RFC 5753, January 2010.

  [MODES]     National Institute of Standards and Technology, "DES
              Modes of Operation", FIPS Pub 81, December 1980.

  [MSG]       Ramsdell, B. and S. Turner, "Secure/Multipurpose Internet
              Mail Extensions (S/MIME) Version 3.2 Message
              Specification", RFC 5751, January 2010.

  [PKI-ALG]   Turner, S., Brown, D., Yiu, K., Housley, R., and T. Polk,
              "Elliptic Curve Cryptography Subject Public Key
              Information", RFC 5480, March 2009.

  [SEC1]      Standards for Efficient Cryptography Group, "SEC 1:
              Elliptic Curve Cryptography", September 2000.
              <http://www.secg.org/collateral/sec1_final.pdf>.

  [SH]        Schaad, J. and R. Housley, "Advanced Encryption Standard
              (AES) Key Wrap Algorithm", RFC 3394, September 2002.




Housley & Solinas             Informational                    [Page 13]

RFC 6318                    Suite B in S/MIME                  June 2011


  [SHA2]      Turner, S., "Using SHA2 Algorithms with Cryptographic
              Message Syntax", RFC 5754, January 2010.

  [SHA2FIPS]  National Institute of Standards and Technology, "Secure
              Hash Standard (SHS)", FIPS 180-3, October 2008.

  [STDWORDS]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

  [SUITEBCERT]
              Solinas, J. and L. Zieglar, "Suite B Certificate and
              Certificate Revocation List (CRL) Profile", RFC 5759,
              January 2010.

  [SUITEBSMIME]
              Housley, R. and J. Solinas, "Suite B in
              Secure/Multipurpose Internet Mail Extensions (S/MIME)",
              RFC 5008, September 2007.

  [X.208-88]  CCITT.  Recommendation X.208: Specification of Abstract
              Syntax Notation One (ASN.1).  1988.

  [X.209-88]  CCITT.  Recommendation X.209: Specification of Basic
              Encoding Rules for Abstract Syntax Notation One (ASN.1).
              1988.

  [X.509-88]  CCITT.  Recommendation X.509: The Directory -
              Authentication Framework.  1988.

7.2.  Informative References

  [RANDOM]    Eastlake 3rd, D., Schiller, J., and S. Crocker,
              "Randomness Requirements for Security", BCP 106,
              RFC 4086, June 2005.

  [NSA]       U.S. National Security Agency, "Fact Sheet NSA Suite B
              Cryptography", January 2009.
              <http://www.nsa.gov/ia/programs/suiteb_cryptography>.













Housley & Solinas             Informational                    [Page 14]

RFC 6318                    Suite B in S/MIME                  June 2011


Authors' Addresses

  Russell Housley
  Vigil Security, LLC
  918 Spring Knoll Drive
  Herndon, VA  20170
  USA

  EMail: [email protected]


  Jerome A. Solinas
  National Information Assurance Laboratory
  National Security Agency
  9800 Savage Road
  Fort George G. Meade, MD  20755
  USA

  EMail: [email protected]
































Housley & Solinas             Informational                    [Page 15]