Internet Engineering Task Force (IETF)                           T. Heer
Request for Comments: 6253                COMSYS, RWTH Aachen University
Updates: 5201                                                S. Varjonen
Category: Experimental     Helsinki Institute for Information Technology
ISSN: 2070-1721                                                 May 2011


                 Host Identity Protocol Certificates

Abstract

  The Certificate (CERT) parameter is a container for digital
  certificates.  It is used for carrying these certificates in Host
  Identity Protocol (HIP) control packets.  This document specifies the
  CERT parameter and the error signaling in case of a failed
  verification.  Additionally, this document specifies the
  representations of Host Identity Tags in X.509 version 3 (v3) and
  Simple Public Key Infrastructure (SPKI) certificates.

  The concrete use of certificates, including how certificates are
  obtained, requested, and which actions are taken upon successful or
  failed verification, is specific to the scenario in which the
  certificates are used.  Hence, the definition of these scenario-
  specific aspects is left to the documents that use the CERT
  parameter.

  This document updates RFC 5201.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for examination, experimental implementation, and
  evaluation.

  This document defines an Experimental Protocol for the Internet
  community.  This document is a product of the Internet Engineering
  Task Force (IETF).  It represents the consensus of the IETF
  community.  It has received public review and has been approved for
  publication by the Internet Engineering Steering Group (IESG).  Not
  all documents approved by the IESG are a candidate for any level of
  Internet Standard; see Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc6253.






Heer & Varjonen               Experimental                      [Page 1]

RFC 6253                        HIP CERT                        May 2011


Copyright Notice

  Copyright (c) 2011 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

  This document may contain material from IETF Documents or IETF
  Contributions published or made publicly available before November
  10, 2008.  The person(s) controlling the copyright in some of this
  material may not have granted the IETF Trust the right to allow
  modifications of such material outside the IETF Standards Process.
  Without obtaining an adequate license from the person(s) controlling
  the copyright in such materials, this document may not be modified
  outside the IETF Standards Process, and derivative works of it may
  not be created outside the IETF Standards Process, except to format
  it for publication as an RFC or to translate it into languages other
  than English.

1.  Introduction

  Digital certificates bind pieces of information to a public key by
  means of a digital signature and thus enable the holder of a private
  key to generate cryptographically verifiable statements.  The Host
  Identity Protocol (HIP) [RFC5201] defines a new cryptographic
  namespace based on asymmetric cryptography.  The identity of each
  host is derived from a public key, allowing hosts to digitally sign
  data and issue certificates with their private key.  This document
  specifies the CERT parameter, which is used to transmit digital
  certificates in HIP.  It fills the placeholder specified in
  Section 5.2 of [RFC5201] and thus updates [RFC5201].

1.1.  Requirements Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  RFC 2119 [RFC2119].





Heer & Varjonen               Experimental                      [Page 2]

RFC 6253                        HIP CERT                        May 2011


2.  CERT Parameter

  The CERT parameter is a container for certain types of digital
  certificates.  It does not specify any certificate semantics.
  However, it defines supplementary parameters that help HIP hosts to
  transmit semantically grouped CERT parameters in a more systematic
  way.  The specific use of the CERT parameter for different use cases
  is intentionally not discussed in this document, because it is
  specific to a concrete use case.  Hence, the use of the CERT
  parameter will be defined in the documents that use the CERT
  parameter.

  The CERT parameter is covered and protected, when present, by the HIP
  SIGNATURE field and is a non-critical parameter.

  The CERT parameter can be used in all HIP packets.  However, using it
  in the first Initiator (I1) packet is NOT RECOMMENDED, because it can
  increase the processing times of I1s, which can be problematic when
  processing storms of I1s.  Each HIP control packet MAY contain
  multiple CERT parameters.  These parameters MAY be related or
  unrelated.  Related certificates are managed in Cert groups.  A Cert
  group specifies a group of related CERT parameters that SHOULD be
  interpreted in a certain order (e.g., for expressing certificate
  chains).  For grouping CERT parameters, the Cert group and the Cert
  count field MUST be set.  Ungrouped certificates exhibit a unique
  Cert group field and set the Cert count to 1.  CERT parameters with
  the same Cert group number in the group field indicate a logical
  grouping.  The Cert count field indicates the number of CERT
  parameters in the group.

  CERT parameters that belong to the same Cert group MAY be contained
  in multiple sequential HIP control packets.  This is indicated by a
  higher Cert count than the amount of CERT parameters with matching
  Cert group fields in a HIP control packet.  The CERT parameters MUST
  be placed in ascending order, within a HIP control packet, according
  to their Cert group field.  Cert groups MAY only span multiple
  packets if the Cert group does not fit the packet.  A HIP packet MUST
  NOT contain more than one incomplete Cert group that continues in the
  next HIP control packet.

  The Cert ID acts as a sequence number to identify the certificates in
  a Cert group.  The numbers in the Cert ID field MUST start from 1 up
  to Cert count.

  The Cert group and Cert ID namespaces are managed locally by each
  host that sends CERT parameters in HIP control packets.





Heer & Varjonen               Experimental                      [Page 3]

RFC 6253                        HIP CERT                        May 2011


    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |             Type              |             Length            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Cert group   |  Cert count   |    Cert ID    |   Cert type   |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                          Certificate                          /
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    /                               |            Padding            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Type          768
   Length        Length in octets, excluding Type, Length, and Padding.
   Cert group    Group ID grouping multiple related CERT parameters.
   Cert count    Total count of certificates that are sent, possibly
                 in several consecutive HIP control packets.
   Cert ID       The sequence number for this certificate.
   Cert Type     Indicates the type of the certificate.
   Padding       Any Padding, if necessary, to make the TLV a multiple
                 of 8 bytes.

  The certificates MUST use the algorithms defined in [RFC5201] as the
  signature and hash algorithms.

  The following certificate types are defined:

            +--------------------------------+-------------+
            |           Cert format          | Type number |
            +--------------------------------+-------------+
            |            Reserved            |      0      |
            |            X.509 v3            |      1      |
            |              SPKI              |      2      |
            |    Hash and URL of X.509 v3    |      3      |
            |      Hash and URL of SPKI      |      4      |
            |      LDAP URL of X.509 v3      |      5      |
            |        LDAP URL of SPKI        |      6      |
            | Distinguished Name of X.509 v3 |      7      |
            |   Distinguished Name of SPKI   |      8      |
            +--------------------------------+-------------+

  The next sections outline the use of Host Identity Tags (HITs) in
  X.509 v3 and in Simple Public Key Infrastructure (SPKI) certificates.
  X.509 v3 certificates and the handling procedures are defined in
  [RFC5280].  The wire format for X.509 v3 is the Distinguished
  Encoding Rules format as defined in [X.690].  The SPKI, the handling
  procedures, and the formats are defined in [RFC2693].




Heer & Varjonen               Experimental                      [Page 4]

RFC 6253                        HIP CERT                        May 2011


  Hash and Uniform Resource Locator (URL) encodings (3 and 4) are used
  as defined in Section 3.6 of [RFC5996].  Using hash and URL encodings
  results in smaller HIP control packets than by including the
  certificate(s), but requires the receiver to resolve the URL or check
  a local cache against the hash.

  Lightweight Directory Access Protocol (LDAP) URL encodings (5 and 6)
  are used as defined in [RFC4516].  Using LDAP URL encoding results in
  smaller HIP control packets but requires the receiver to retrieve the
  certificate or check a local cache against the URL.

  Distinguished Name (DN) encodings (7 and 8) are represented by the
  string representation of the certificate's subject DN as defined in
  [RFC4514].  Using the DN encoding results in smaller HIP control
  packets, but requires the receiver to retrieve the certificate or
  check a local cache against the DN.

3.  X.509 v3 Certificate Object and Host Identities

  If needed, HITs can represent an issuer, a subject, or both in
  X.509 v3.  HITs are represented as IPv6 addresses as defined in
  [RFC4843].  When the Host Identifier (HI) is used to sign the
  certificate, the respective HIT MUST be placed into the Issuer
  Alternative Name (IAN) extension using the GeneralName form iPAddress
  as defined in [RFC5280].  When the certificate is issued for a HIP
  host, identified by a HIT and HI, the respective HIT MUST be placed
  into the Subject Alternative Name (SAN) extension using the
  GeneralName form iPAddress, and the full HI is presented as the
  subject's public key info as defined in [RFC5280].

  The following examples illustrate how HITs are presented as issuer
  and subject in the X.509 v3 extension alternative names.

      Format of X509v3 extensions:
          X509v3 Issuer Alternative Name:
              IP Address:hit-of-issuer
          X509v3 Subject Alternative Name:
              IP Address:hit-of-subject

      Example X509v3 extensions:
          X509v3 Issuer Alternative Name:
              IP Address:2001:14:6cf:fae7:bb79:bf78:7d64:c056
          X509v3 Subject Alternative Name:
              IP Address:2001:1c:5a14:26de:a07c:385b:de35:60e3

  Appendix B shows a full example of an X.509 v3 certificate with HIP
  content.




Heer & Varjonen               Experimental                      [Page 5]

RFC 6253                        HIP CERT                        May 2011


  As another example, consider a managed Public Key Infrastructure
  (PKI) environment in which the peers have certificates that are
  anchored in (potentially different) managed trust chains.  In this
  scenario, the certificates issued to HIP hosts are signed by
  intermediate Certification Authorities (CAs) up to a root CA.  In
  this example, the managed PKI environment is neither HIP aware, nor
  can it be configured to compute HITs and include them in the
  certificates.

  When HIP communications are established, the HIP hosts not only need
  to send their identity certificates (or pointers to their
  certificates), but also the chain of intermediate CAs (or pointers to
  the CAs) up to the root CA, or to a CA that is trusted by the remote
  peer.  This chain of certificates MUST be sent in a Cert group as
  specified in Section 2.  The HIP peers validate each other's
  certificates and compute peer HITs based on the certificate public
  keys.

4.  SPKI Cert Object and Host Identities

  When using SPKI certificates to transmit information related to HIP
  hosts, HITs need to be enclosed within the certificates.  HITs can
  represent an issuer, a subject, or both.  In the following, we define
  the representation of those identifiers for SPKI given as
  S-expressions.  Note that the S-expressions are only the human-
  readable representation of SPKI certificates.  Full HIs are presented
  in the public key sequences of SPKI certificates.

  As an example, the Host Identity Tag of a host is expressed as
  follows:

      Format:  (hash hit hit-of-host)
      Example: (hash hit 2001:13:724d:f3c0:6ff0:33c2:15d8:5f50)

  Appendix A shows a full example of a SPKI certificate with HIP
  content.

5.  Revocation of Certificates

  Revocation of X.509 v3 certificates is handled as defined in
  Section 5 of [RFC5280].  Revocation of SPKI certificates is handled
  as defined in Section 5 of [RFC2693].









Heer & Varjonen               Experimental                      [Page 6]

RFC 6253                        HIP CERT                        May 2011


6.  Error Signaling

  If the Initiator does not send the certificate that the Responder
  requires, the Responder may take actions (e.g., reject the
  connection).  The Responder MAY signal this to the Initiator by
  sending a HIP NOTIFY message with NOTIFICATION parameter error type
  CREDENTIALS_REQUIRED.

  If the verification of a certificate fails, a verifier MAY signal
  this to the provider of the certificate by sending a HIP NOTIFY
  message with NOTIFICATION parameter error type INVALID_CERTIFICATE.

    NOTIFICATION PARAMETER - ERROR TYPES     Value
    ------------------------------------     -----

    CREDENTIALS_REQUIRED                      48

    The Responder is unwilling to set up an association,
    as the Initiator did not send the needed credentials.

    INVALID_CERTIFICATE                       50

    Sent in response to a failed verification of a certificate.
    Notification Data MAY contain n groups of 2 octets (n calculated
    from the NOTIFICATION parameter length), in order Cert group and
    Cert ID of the Certificate parameter that caused the failure.

7.  IANA Considerations

  This document defines the CERT parameter for the Host Identity
  Protocol [RFC5201].  This parameter is defined in Section 2 with type
  768.  The parameter type number is also defined in [RFC5201].

  The CERT parameter has an 8-bit unsigned integer field for different
  certificate types, for which IANA has created and now maintains a new
  sub-registry entitled "HIP Certificate Types" under the "Host
  Identity Protocol (HIP) Parameters".  Initial values for the
  Certificate type registry are given in Section 2.  New values for the
  Certificate types from the unassigned space are assigned through IETF
  Review.

  In Section 6, this document defines two new types for the "NOTIFY
  Message Types" sub-registry under "Host Identity Protocol (HIP)
  Parameters".







Heer & Varjonen               Experimental                      [Page 7]

RFC 6253                        HIP CERT                        May 2011


8.  Security Considerations

  Certificate grouping allows the certificates to be sent in multiple
  consecutive packets.  This might allow similar attacks, as IP-layer
  fragmentation allows, for example, the sending of fragments in the
  wrong order and skipping some fragments to delay or stall packet
  processing by the victim in order to use resources (e.g., CPU or
  memory).  Hence, hosts SHOULD implement mechanisms to discard
  certificate groups with outstanding certificates if state space is
  scarce.

  Checking of the URL and LDAP entries might allow denial-of-service
  (DoS) attacks, where the target host may be subjected to bogus work.

  Security considerations for SPKI certificates are discussed in
  [RFC2693] and for X.509 v3 in [RFC5280].

9.  Acknowledgements

  The authors would like to thank A. Keranen, D. Mattes, M. Komu, and
  T. Henderson for the fruitful conversations on the subject.  D.
  Mattes most notably contributed the non-HIP aware use case in
  Section 3.

10.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2693]  Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas,
             B., and T. Ylonen, "SPKI Certificate Theory", RFC 2693,
             September 1999.

  [RFC4514]  Zeilenga, K., Ed., "Lightweight Directory Access Protocol
             (LDAP): String Representation of Distinguished Names",
             RFC 4514, June 2006.

  [RFC4516]  Smith, M., Ed., and T. Howes, "Lightweight Directory
             Access Protocol (LDAP): Uniform Resource Locator",
             RFC 4516, June 2006.

  [RFC4843]  Nikander, P., Laganier, J., and F. Dupont, "An IPv6 Prefix
             for Overlay Routable Cryptographic Hash Identifiers
             (ORCHID)", RFC 4843, April 2007.

  [RFC5201]  Moskowitz, R., Nikander, P., Jokela, P., Ed., and T.
             Henderson, "Host Identity Protocol", RFC 5201, April 2008.




Heer & Varjonen               Experimental                      [Page 8]

RFC 6253                        HIP CERT                        May 2011


  [RFC5280]  Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
             Housley, R., and W. Polk, "Internet X.509 Public Key
             Infrastructure Certificate and Certificate Revocation List
             (CRL) Profile", RFC 5280, May 2008.

  [RFC5996]  Kaufman, C., Hoffman, P., Nir, Y., and P. Eronen,
             "Internet Key Exchange Protocol Version 2 (IKEv2)",
             RFC 5996, September 2010.

  [X.690]    ITU-T, "Recommendation X.690 (2002) | ISO/IEC 8825-1:2002,
             Information Technology - ASN.1 encoding rules:
             Specification of Basic Encoding Rules (BER), Canonical
             Encoding Rules (CER) and Distinguished Encoding Rules
             (DER)", July 2002.





































Heer & Varjonen               Experimental                      [Page 9]

RFC 6253                        HIP CERT                        May 2011


Appendix A.  SPKI Certificate Example

  This section shows an SPKI certificate with encoded HITs.  The
  example has been indented for readability.

  (sequence
    (public_key
      (rsa-pkcs1-sha1
        (e #010001#)
        (n |yDwznOwX0w+zvQbpWoTnfWrUPLKW2NFrpXbsIcH/QBSLb
            k1RKTZhLasFwvtSHAjqh220W8gRiQAGIqKplyrDEqSrJp
            OdIsHIQ8BQhJAyILWA1Sa6f5wAnWozDfgdXoKLNdT8ZNB
            mzluPiw4ozc78p6MHElH75Hm3yHaWxT+s83M=|
        )
        )
      )
      (cert
        (issuer
          (hash hit 2001:15:2453:698a:9aa:253a:dcb5:981e)
        )
        (subject
          (hash hit 2001:12:ccd6:4715:72a3:2ab1:77e4:4acc)
        )
        (not-before "2011-01-12_13:43:09")
        (not-after "2011-01-22_13:43:09")
      )
      (signature
        (hash sha1 |h5fC8HUMATTtK0cjYqIgeN3HCIMA|)
        |u8NTRutINI/AeeZgN6bngjvjYPtVahvY7MhGfenTpT7MCgBy
        NoZglqH5Cy2vH6LrQFYWx0MjWoYwHKimEuBKCNd4TK6hrCyAI
        CIDJAZ70TyKXgONwDNWPOmcc3lFmsih8ezkoBseFWHqRGISIm
        MLdeaMciP4lVfxPY2AQKdMrBc=|
    )
  )

















Heer & Varjonen               Experimental                     [Page 10]

RFC 6253                        HIP CERT                        May 2011


Appendix B.  X.509 v3 Certificate Example

  This section shows a X.509 v3 certificate with encoded HITs.

  Certificate:
      Data:
          Version: 3 (0x2)
          Serial Number: 0 (0x0)
          Signature Algorithm: sha1WithRSAEncryption
          Issuer: CN=Example issuing host, DC=example, DC=com
          Validity
              Not Before: Mar 11 09:01:39 2011 GMT
              Not After : Mar 21 09:01:39 2011 GMT
          Subject: CN=Example subject host, DC=example, DC=com
          Subject Public Key Info:
              Public Key Algorithm: rsaEncryption
              RSA Public Key: (1024 bit)
                  Modulus (1024 bit):
                      00:c0:db:38:50:8e:63:ed:96:ea:c6:c4:ec:a3:36:
                      62:e2:28:e9:74:9c:f5:2f:cb:58:0e:52:54:60:b5:
                      fa:98:87:0d:22:ab:d8:6a:61:74:a9:ee:0b:ae:cd:
                      18:6f:05:ab:69:66:42:46:00:a2:c0:0c:3a:28:67:
                      09:cc:52:27:da:79:3e:67:d7:d8:d0:7c:f1:a1:26:
                      fa:38:8f:73:f5:b0:20:c6:f2:0b:7d:77:43:aa:c7:
                      98:91:7e:1e:04:31:0d:ca:94:55:20:c4:4f:ba:b1:
                      df:d4:61:9d:dd:b9:b5:47:94:6c:06:91:69:30:42:
                      9c:0a:8b:e3:00:ce:49:ab:e3
                  Exponent: 65537 (0x10001)
          X509v3 extensions:
              X509v3 Issuer Alternative Name:
                  IP Address:2001:13:8d83:41c5:dc9f:38ed:e742:7281
              X509v3 Subject Alternative Name:
                  IP Address:2001:1c:6e02:d3e0:9b90:8417:673e:99db
      Signature Algorithm: sha1WithRSAEncryption
          83:68:b4:38:63:a6:ae:57:68:e2:4d:73:5d:8f:11:e4:ba:30:
          a0:19:ca:86:22:e9:6b:e9:36:96:af:95:bd:e8:02:b9:72:2f:
          30:a2:62:ac:b2:fa:3d:25:c5:24:fd:8d:32:aa:01:4f:a5:8a:
          f5:06:52:56:0a:86:55:39:2b:ee:7a:7b:46:14:d7:5d:15:82:
          4d:74:06:ca:b7:8c:54:c1:6b:33:7f:77:82:d8:95:e1:05:ca:
          e2:0d:22:1d:86:fc:1c:c4:a4:cf:c6:bc:ab:ec:b8:2a:1e:4b:
          04:7e:49:9c:8f:9d:98:58:9c:63:c5:97:b5:41:94:f7:ef:93:
          57:29









Heer & Varjonen               Experimental                     [Page 11]

RFC 6253                        HIP CERT                        May 2011


Authors' Addresses

  Tobias Heer
  Chair of Communication and Distributed Systems - COMSYS
  RWTH Aachen University
  Ahornstrasse 55
  Aachen
  Germany

  Phone: +49 241 80 20 776
  EMail: [email protected]
  URI:   http://www.comsys.rwth-aachen.de/team/tobias-heer/


  Samu Varjonen
  Helsinki Institute for Information Technology
  Gustaf Haellstroemin katu 2b
  Helsinki
  Finland

  EMail: [email protected]
  URI:   http://www.hiit.fi





























Heer & Varjonen               Experimental                     [Page 12]