Internet Engineering Task Force (IETF)                             X. Li
Request for Comments: 6219                                        C. Bao
Category: Informational                                          M. Chen
ISSN: 2070-1721                                                 H. Zhang
                                                                  J. Wu
                                                 CERNET Center/Tsinghua
                                                             University
                                                               May 2011


  The China Education and Research Network (CERNET) IVI Translation
  Design and Deployment for the IPv4/IPv6 Coexistence and Transition

Abstract

  This document presents the China Education and Research Network
  (CERNET)'s IVI translation design and deployment for the IPv4/IPv6
  coexistence and transition.

  The IVI is a prefix-specific and stateless address mapping mechanism
  for "an IPv6 network to the IPv4 Internet" and "the IPv4 Internet to
  an IPv6 network" scenarios.  In the IVI design, subsets of the ISP's
  IPv4 addresses are embedded in the ISP's IPv6 addresses, and the
  hosts using these IPv6 addresses can therefore communicate with the
  global IPv6 Internet directly and can communicate with the global
  IPv4 Internet via stateless translators.  The communications can
  either be IPv6 initiated or IPv4 initiated.  The IVI mechanism
  supports the end-to-end address transparency and incremental
  deployment.  The IVI is an early design deployed in the CERNET as a
  reference for the IETF standard documents on IPv4/IPv6 stateless
  translation.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Not all documents
  approved by the IESG are a candidate for any level of Internet
  Standard; see Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc6219.




Li, et al.                    Informational                     [Page 1]

RFC 6219              CERNET IVI Translation Design             May 2011


Copyright Notice

  Copyright (c) 2011 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1. Introduction ....................................................3
     1.1. Analysis of IPv4-IPv6 Translation Mechanisms ...............3
     1.2. CERNET Translation Requirements ............................4
  2. Terms and Abbreviations .........................................6
  3. The IVI Translation Algorithm ...................................6
     3.1. Address Format .............................................8
     3.2. Routing and Forwarding .....................................9
     3.3. Network-Layer Header Translation ..........................10
     3.4. Transport-Layer Header Translation ........................11
     3.5. Fragmentation and MTU Handling ............................11
     3.6. ICMP Handling .............................................11
     3.7. Application Layer Gateway .................................12
  4. The IVI DNS Configuration ......................................12
     4.1. DNS Configuration for the IVI6(i) Addresses ...............12
     4.2. DNS Service for the IVIG6(i) Addresses ....................12
  5. The Advanced IVI Translation Functions .........................12
     5.1. IVI Multicast .............................................12
  6. IVI Host Operation .............................................13
     6.1. IVI Address Assignment ....................................13
     6.2. IPv6 Source Address Selection .............................13
  7. The IVI Implementation .........................................14
     7.1. Linux Implementation ......................................14
     7.2. Testing Environment .......................................14
  8. Security Considerations ........................................14
  9. Contributors ...................................................15
  10. Acknowledgments ...............................................15
  Appendix A. The IVI Translator Configuration Example ..............16
  Appendix B. The traceroute Results ................................17
  11. References ....................................................19
     11.1. Normative References .....................................19
     11.2. Informative References ...................................20



Li, et al.                    Informational                     [Page 2]

RFC 6219              CERNET IVI Translation Design             May 2011


1.  Introduction

  This document presents the CERNET IVI translation design and
  deployment for the IPv4/IPv6 coexistence and transition.  In Roman
  numerals, the "IV" stands for 4, and "VI" stands for 6, so "IVI"
  stands for the IPv4/IPv6 translation.

  The experiences with IPv6 deployment in the past 10 years indicate
  that the ability to communicate between IPv4 and IPv6 address
  families would be beneficial.  However, the current transition
  methods do not fully support this requirement [RFC4213].  For
  example, dual-stack hosts can communicate with both the IPv4 and IPv6
  hosts, but single-stack hosts can only communicate with hosts in the
  same address family.  While the dual-stack approach continues to work
  in many cases even in the face of IPv4 address depletion [COUNT],
  there are situations where it would be desirable to communicate with
  a device in another address family.  Tunneling-based architectures
  can link the IPv6 islands across IPv4 networks, but they cannot
  provide communication between the two different address families
  [RFC3056] [RFC5214] [RFC4380].  Translation can relay communications
  for hosts located in IPv4 and IPv6 networks, but the current
  implementation of this kind of architecture is not scalable, and it
  cannot maintain end-to-end address transparency [RFC2766] [RFC3142]
  [RFC4966] [RFC2775].

1.1.  Analysis of IPv4-IPv6 Translation Mechanisms

  Since IPv4 and IPv6 are different protocols with different addressing
  structures, a translation mechanism is necessary for communication
  between endpoints using different address families.  There are
  several ways to implement the translation.  One is the Stateless IP/
  ICMP Translation Algorithm (SIIT) [RFC2765], which provides a
  mechanism for translation between IPv4 and IPv6 packet headers
  (including ICMP headers) without requiring any per-connection state.
  However, SIIT does not specify the address assignment and routing
  scheme [RFC2766].  For example, SIIT uses IPv4-mapped IPv6 addresses
  [::ffff:ipv4-addr/96] and IPv4-compatible IPv6 addresses
  [::ipv4-address/96] for the address mapping, but these addresses
  violate the aggregation principle of IPv6 routing [RFC4291].  The
  other translation mechanism is Network Address Translation - Protocol
  Translation (NAT-PT), which has serious technical and operational
  difficulties; the IETF has reclassified it from Proposed Standard to
  Historic status [RFC4966].

  In order to solve the technical difficulties in NAT-PT, the issues
  and the possible workarounds are:





Li, et al.                    Informational                     [Page 3]

RFC 6219              CERNET IVI Translation Design             May 2011


  1.  NAT-PT disrupts all protocols that embed IP addresses (and/or
      ports) in packet payloads.  There is little that can be done
      about this, other than using Application Layer Gateways (ALGs) or
      preferring protocols that transport DNS names instead of
      addresses.

  2.  Loss of end-to-end address transparency may occur.  End-to-end
      address transparency implies a global address space, the ability
      to pass packets unaltered throughout the network, and the ability
      to use source and destination addresses as unique labels
      [RFC2775].  A reversible, algorithmic mapping can restore some of
      this transparency.  However, it is still not possible to ensure
      that all nodes in the existing Internet support such reversible
      mappings.

  3.  The states maintained in the translator cause scalability,
      multihoming, and load-sharing problems.  Hence, a stateless
      translation scheme is preferred.

  4.  Loss of information due to incompatible semantics between IPv4
      and IPv6 versions of headers and protocols may occur.  A partial
      remedy to this is the proper attention to the details of the
      protocol translation, for example, the error-codes mapping
      between ICMP and ICMPv6.  However, some semantic differences
      remain.

  5.  The DNS is tightly coupled with the translator and lack of
      address mapping persistence discussed in Section 3.3 of
      [RFC4966].  Hence, the DNS should be decoupled from the
      translator.

  6.  Support for referrals is difficult in NAT-PT, given that
      translated addresses may leak outside the network where these
      addresses have a meaning.  Stateless translation, algorithmic
      address mappings, and the decoupling of DNS from the translation
      process can help the handling of referrals.  Nevertheless, it is
      still possible that an address-based referral is passed to
      someone who cannot employ it.  For instance, an IPv6-only node
      may pass a referral based on an IPv6 address to a node that only
      understands IPv4.

1.2.  CERNET Translation Requirements

  The China Education and Research Network has two backbones using
  different address families.  The CERNET is IPv4-only [CERNET] and
  CERNET2 is IPv6-only [CNGI-CERNET2], which fit in "an IPv6 network to
  the IPv4 Internet" and "the IPv4 Internet to an IPv6 network"
  scenarios in the IETF BEHAVE working group definition [BEHAVE]



Li, et al.                    Informational                     [Page 4]

RFC 6219              CERNET IVI Translation Design             May 2011


  [RFC6144].  In order to make CERNET2 communicate with the IPv4
  Internet, we designed the IVI mechanism and installed IVI translators
  between the CERNET and CERNET2.

  The requirements of the IVI mechanism are:

  1.  It should support both IPv6-initiated and IPv4-initiated
      communications for the IPv6 clients/servers in "an IPv6 network".

  2.  It should follow current IPv4 and IPv6 routing practice without
      increasing the global routing table size in both address
      families.

  3.  It should be able to be deployed incrementally.

  4.  It should be able to use IPv4 addresses effectively due to the
      IPv4 address depletion problem.

  5.  It should be stateless to achieve scalability.

  6.  The DNS function should be decoupled from the translator.

  The specific IVI design presented in this document can satisfy the
  above requirements, with the following notes:

  1.  It restricts the IPv6 hosts to use a subset of the addresses
      inside the ISP's IPv6 block.  Therefore, IPv6 autoconfiguration
      cannot be used for these IPv6 hosts.  Manual configuration or
      autoconfiguration via stateful DHCPv6 is required.

  2.  It defines a one-to-one mapping between IPv4 addresses and IPv6
      addresses; hence, the IPv4 addresses cannot be used efficiently.
      However, the IVI6 addresses can be used both for IPv6 clients and
      IPv6 servers.  Due to this limitation, we suggest using IVI6
      addresses for servers.

  3.  An ALG is still required for any applications that embed
      address(es) in the payload.

  4.  Some issues with end-to-end transparency, address referrals, and
      incompatible semantics between protocol versions still remain, as
      discussed above.

  The IVI is an early design deployed in the CERNET for the stateless
  translation.  The IETF standard IPv4-IPv6 stateless and stateful
  translation mechanisms are defined in [RFC6144], [RFC6052],
  [RFC6145], [RFC6146], and [RFC6147].




Li, et al.                    Informational                     [Page 5]

RFC 6219              CERNET IVI Translation Design             May 2011


2.  Terms and Abbreviations

  The following terms and abbreviations are used in this document:

  ISP(i):  A specific Internet service provider "i".

  IVIG4:  The global IPv4 address space.

  IPS4(i):  A subset of IVIG4 allocated to ISP(i).

  IVI4(i):  A subset of IPS4(i); the addresses in this set will be
     mapped to IPv6 via the IVI mapping mechanism and used by IPv6
     hosts of ISP(i).

  IPG6:  The global IPv6 address space.

  IPS6(i):  A subset of IPG6 allocated to ISP(i).

  IVIG6(i):  A subset of IPS6(i), and an image of IVIG4 in the IPv6
     address family via the IVI mapping mechanism.  It is defined as
     the IPv4-converted address in [RFC6144].

  IVI6(i):  A subset of IVIG6(i) and an image of IVI4(i) in the IPv6
     address family via the IVI mapping mechanism.  It is defined as
     the IPv4-translatable address in [RFC6144].

  IVI translator:  The mapping and translation gateway between IPv4 and
     IPv6 based on the IVI mechanism.

  IVI DNS:  Providing the IVI Domain Name System (DNS).

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL", when
  they appear in this document, are to be interpreted as described in
  [RFC2119].

3.  The IVI Translation Algorithm

  The IVI is a prefix-specific and stateless address mapping scheme
  that can be carried out by individual ISPs.  In the IVI design,
  subsets of the ISP's IPv4 addresses are embedded in the ISP's IPv6
  addresses, and the hosts using these IPv6 addresses can therefore
  communicate with the global IPv6 Internet directly and can
  communicate with the global IPv4 Internet via stateless translators.
  The communications can either be IPv6 initiated or IPv4 initiated.






Li, et al.                    Informational                     [Page 6]

RFC 6219              CERNET IVI Translation Design             May 2011


  The IVI mapping and translation mechanism is implemented in an IVI
  translator that connects between "an IPv6 network" and the IPv4
  Internet via the ISP's IPv4 network, as shown in the following
  figure.

           ------                        -----           ------
         /  The   \       -----        /  An   \       /  The   \
        |  IPv4    |-----|Xlate|------|  IPv6   |-----|  IPv6    |
         \Internet/       -----        \Network/       \Internet/
           ------                        -----           ------
                          <===>

   Figure 1: The Scenarios: "An IPv6 Network to the IPv4 Internet" and
                 "the IPv4 Internet to an IPv6 Network"

  In order to perform the translation function between IPv4 and IPv6
  addresses, the translator needs to represent the IPv4 addresses in
  IPv6 and the IPv6 addresses in IPv4.

  To represent the IPv4 addresses in IPv6, a unique, prefix-specific,
  and stateless mapping scheme is defined between IPv4 addresses and
  subsets of IPv6 addresses, so each provider-independent IPv6 address
  block (usually a /32) will have a small portion of IPv6 addresses
  (for example, /40 defined by PREFIX), which is the image of the
  totality of the global IPv4 addresses, as shown in the following
  figure.  The SUFFIX is all zeros.

                           +-+-+-+-+-+-+
                           |  IVIG4    |
                           +-+-+-+-+-+-+
                                ||
                               \  /
                                \/
            +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
            |  PREFIX      | IPv4 addr |  SUFFIX            |
            +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

            Figure 2: Representing the IPv4 Addresses in IPv6













Li, et al.                    Informational                     [Page 7]

RFC 6219              CERNET IVI Translation Design             May 2011


  To represent the IPv6 addresses in IPv4, each provider can borrow a
  portion of its IPv4 addresses and map them into IPv6 based on the
  above mapping rule.  These special IPv6 addresses will be physically
  used by IPv6 hosts.  The original IPv4 form of the borrowed addresses
  is the image of these special IPv6 addresses, and it can be accessed
  by the IPv4 Internet, as shown in the following figure.  The SUFFIX
  can either be all zeros, or some other value for future extensions.

            +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
            |  PREFIX      |   |IVI4|  |  SUFFIX            |
            +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
                                 ||
                                \  /
                                 \/
                               -+-+-+
                               |IVI4|
                               -+-+-+

            Figure 3: Representing the IPv6 Addresses in IPv4

3.1.  Address Format

  The IVI address format is defined based on an individual ISP's IPv6
  prefix, as shown in the following figure

    | 0                 |32 |40                   |72             127|
    ------------------------------------------------------------------
    |                   |ff |                     |                  |
    ------------------------------------------------------------------
    |<-     PREFIX        ->|<-  IPv4 address   ->|   <- SUFFIX ->   |

                      Figure 4: IVI Address Mapping

  where bit 0 to bit 31 are the prefix of ISP(i)'s /32 (e.g., using
  document IPv6 address IPS6=2001:db8::/32) in the CERNET
  implementation, bit 32 to bit 39 are all ones as the identifier of
  the IVI addresses, and bit 40 to bit 71 are embedded global IPv4
  space (IVIG4), presented in hexadecimal format (e.g.,
  2001:db8:ff00::/40).  Note that based on the IVI mapping mechanism,
  an IPv4 /24 is mapped to an IPv6 /64, and an IPv4 /32 is mapped to an
  IPv6 /72.

  The IETF standard for the address format is defined in [RFC6052].








Li, et al.                    Informational                     [Page 8]

RFC 6219              CERNET IVI Translation Design             May 2011


3.2.  Routing and Forwarding

  Based on the IVI address mapping rule, routing is straightforward, as
  shown in the following figure

   /-----\                                                     /-----\
  ( ISP's )   --  192.0.2.2    -----------  2001:db8::2 --    ( ISP's )
  ( IPv4  )--|R1|-------------| IVI Xlate |------------|R2|---( IPv6  )
  (network)   --    192.0.2.1  ----------- 2001:db8::1  --    (network)
   \-----/                                                     \-----/
      |                                                           |
      |                                                           |
  The IPv4 Internet                                   The IPv6 Internet

                          Figure 5: IVI Routing

  where

  1.  IVI Xlate is a special dual-stack router, with two interfaces,
      one to the IPv4 network and the other to the IPv6 network (it is
      also possible to have a single interface configured with both
      IPv4 and IPv6 addresses).  IVI Xlate can support dynamic routing
      protocols in IPv4 and IPv6 address families.  In the above
      configuration, the static routing configuration can be used.

  2.  Router R1 has an IPv4 route for IVI4(i)/k (k is the prefix length
      of IVI4(i)) with the next hop equal to 192.0.2.1, and this route
      is distributed to the Internet with proper aggregation.

  3.  Router R2 has an IPv6 route for IVIG6(i)/40 with the next hop
      equal to 2001:db8::1, and this route is distributed to the IPv6
      Internet with proper aggregation.

  4.  The IVI translator has an IPv6 route for IVI6(i)/(40+k) with the
      next hop equal to 2001:db8::2.  The IVI translator also has an
      IPv4 default route 0.0.0.0/0 with the next hop equal to
      192.0.2.2.

  Note that the routes described above can be learned/inserted by
  dynamic routing protocols (IGP or BGP) in the IVI translator peering
  with R1 and R2.

  Since both IVI4(i) and IVI6(i) are aggregated to IPS4(i) and IPS6(i)
  in ISP(i)'s border routers, respectively, they will not affect the
  global IPv4 and IPv6 routing tables [RFC4632].

  Since the IVI translation is stateless, it can support multihoming
  when the same prefix is used for multiple translators.



Li, et al.                    Informational                     [Page 9]

RFC 6219              CERNET IVI Translation Design             May 2011


  Since the IVI translation can be implemented independently in each
  ISP's network, it can be incrementally deployed in the global
  Internet.

3.3.  Network-Layer Header Translation

  IPv4 [RFC0791] and IPv6 [RFC2460] are different protocols with
  different network-layer header formats; the translation of the IPv4
  and IPv6 headers MUST be performed according to SIIT [RFC2765],
  except for the source and destination addresses in the header, as
  shown in the following figures.

      -------------------------------------------------------------
      IPv4 Field             Translated to IPv6
      -------------------------------------------------------------
      Version (0x4)          Version (0x6)
      IHL                    discarded
      Type of Service        Traffic Class
      Total Length           Payload Length = Total Length - 20
      Identification         discarded
      Flags                  discarded
      Offset                 discarded
      TTL                    Hop Limit
      Protocol               Next Header
      Header Checksum        discarded
      Source Address         IVI address mapping
      Destination Address    IVI address mapping
      Options                discarded
      -------------------------------------------------------------

                Figure 6: IPv4-to-IPv6 Header Translation

      -------------------------------------------------------------
      IPv6 Field             Translated to IPv4 Header
      -------------------------------------------------------------
      Version (0x6)          Version (0x4)
      Traffic Class          Type of Service
      Flow Label             discarded
      Payload Length         Total Length = Payload Length + 20
      Next Header            Protocol
      Hop Limit              TTL
      Source Address         IVI address mapping
      Destination Address    IVI address mapping
      -                      IHL = 5
      -                      Header Checksum recalculated
      -------------------------------------------------------------

                Figure 7: IPv6-to-IPv4 Header Translation



Li, et al.                    Informational                    [Page 10]

RFC 6219              CERNET IVI Translation Design             May 2011


  The IETF standard for IP/ICMP translation is defined in [RFC6145],
  which contains updated technical specifications.

3.4.  Transport-Layer Header Translation

  Since the TCP and UDP headers [RFC0793] [RFC0768] consist of
  checksums that include the IP header, the recalculation and updating
  of the transport-layer headers MUST be performed.  Note that SIIT
  does not recalculate the transport-layer checksum, since checksum-
  neutral IPv6 addresses are used in SIIT [RFC2765].

  The IETF standard for transport-layer header translation is defined
  in [RFC6145], which contains updated technical specifications.

3.5.  Fragmentation and MTU Handling

  When the packet is translated by the IVI translator, due to the
  different sizes of the IPv4 and IPv6 headers, the IVI6 packets will
  be at least 20 bytes larger than the IVI4 packets, which may exceed
  the MTU of the next link in the IPv6 network.  Therefore, the MTU
  handling and translation between IPv6 fragmentation headers and the
  fragmentation field in the IPv4 headers are necessary; this is
  performed in the IVI translator according to SIIT [RFC2765].

  The IETF standard for fragmentation and MTU handling is defined in
  [RFC6145], which contains updated technical specifications.

3.6.  ICMP Handling

  For ICMP message translation between IPv4 and IPv6, IVI follows the
  ICMP/ICMPv6 message correspondence as defined in SIIT [RFC2765].
  Note that the ICMP message may be generated by an intermediate router
  whose IPv6 address does not belong to IVIG6(i).  Since ICMP
  translation is important to the path MTU discovery and
  troubleshooting, the IPv4 representation of the non-IVIG6 addresses
  in the ICMP packets is required.  In the current IVI prototype, a
  small IPv4 address block is used to identify the non-IVIG6 addresses.
  This prevents translated ICMP messages from being discarded due to
  unknown or private IP sources.

  The IETF standard for IP/ICMP translation is defined in [RFC6145],
  which contains updated technical specifications.









Li, et al.                    Informational                    [Page 11]

RFC 6219              CERNET IVI Translation Design             May 2011


3.7.  Application Layer Gateway

  Due to the features of 1-to-1 address mapping and stateless
  operation, IVI can support most of the existing applications, such as
  HTTP, Secure SHell (SSH), and Telnet.  However, some applications are
  designed such that IP addresses are used to identify application-
  layer entities (e.g., FTP).  In these cases, an Application Layer
  Gateway (ALG) is unavoidable, and it can be integrated into the IVI
  translator.

  The discussion of the use of ALGs is in [RFC6144].

4.  The IVI DNS Configuration

  The DNS [RFC1035] service is important for the IVI mechanism.

4.1.  DNS Configuration for the IVI6(i) Addresses

  For providing authoritative DNS service for IVI4(i) and IVI6(i), each
  host name will have both an A record and a AAAA record pointing to
  IVI4(i) and IVI6(i), respectively.  Note that the same name always
  points to a unique host, which is an IVI6(i) host, and it has IVI4(i)
  representation via the IVI translator.

4.2.  DNS Service for the IVIG6(i) Addresses

  For resolving the IPv6 form of the global IPv4 space (IVIG6(i)), each
  ISP must provide customized IVI DNS service for the IVI6(i) hosts.
  The IVI DNS server MUST be deployed in a dual-stack environment.
  When the IVI6(i) host queries a AAAA record for an IPv4-only domain
  name, the IVI DNS will query the AAAA record first.  If the AAAA
  record does not exist, the IVI DNS will query the A record and map it
  to IVIG6(i), and return a AAAA record to the IVI6(i) host.  The
  technical specifications for this process are defined in [RFC6147].

5.  The Advanced IVI Translation Functions

5.1.  IVI Multicast

  The IVI mechanism can support IPv4/IPv6 communication of Protocol
  Independent Multicast - Source-Specific Multicast (PIM-SSM) [RFC5771]
  [RFC3569] [RFC4607].

  There will be 2^24 group addresses for IPv4 SSM.  The corresponding
  IPv6 SSM group addresses can be defined as shown in the following
  figure.





Li, et al.                    Informational                    [Page 12]

RFC 6219              CERNET IVI Translation Design             May 2011


         -------------------------------------------------------
         IPv4 Group Address          IPv6 Group Address
         -------------------------------------------------------
         232.0.0.0/8                 ff3e:0:0:0:0:0:f000:0000/96
         232.255.255.255/8           ff3e:0:0:0:0:0:f0ff:ffff/96
         -------------------------------------------------------

              Figure 8: IVI Multicast Group Address Mapping

  The source address in IPv6 MUST be IVI6(i) in order to perform
  Reverse Path Forwarding (RPF) as required by PIM - Sparse Mode
  (PIM-SM).

  The interoperation of PIM-SM for IPv4 and IPv6 address families can
  either be implemented via an Application Layer Gateway or via static
  joins based on IGMPv3 and Multicast Listener Discovery Version 2
  (MLDv2) in IPv4 and IPv6, respectively.

6.  IVI Host Operation

6.1.  IVI Address Assignment

  The IVI6 address has a special format (for example, IVI4=192.0.2.1/32
  and IVI6=2001:db8:ffc0:2:100::/72); therefore, stateless IPv6 address
  autoconfiguration cannot be used.  However, the IVI6 can be assigned
  to the IPv6 end system via manual configuration or stateful
  autoconfiguration via DHCPv6.

  o  For the manual configuration, the host needs to configure the IVI6
     address and the corresponding prefix length, as well as the
     default gateway address and the DNS resolver address.

  o  For the DHCPv6 configuration, the DHCPv6 will assign the IVI6
     address and the DNS resolver address to the host.  The router in
     the subnet should enable router advertisement (RA), since the
     default gateway is learned from the router.

6.2.  IPv6 Source Address Selection

  Since each IPv6 host may have multiple addresses, it is important for
  the host to use an IVI6(i) address to reach the global IPv4 networks.
  The short-term workaround is to use IVI6(i) as the default source
  IPv6 address of the host, defined as the policy table in [RFC3484].
  The long-term solution requires that the application should be able
  to select the source addresses for different services.






Li, et al.                    Informational                    [Page 13]

RFC 6219              CERNET IVI Translation Design             May 2011


7.  The IVI Implementation

7.1.  Linux Implementation

  An implementation of IVI exists for the Linux operating system.  The
  source code can be downloaded from [LINUX].  An example of how to
  configure an IVI deployment is shown in Appendix A.

  The IVI DNS source code for the IVIG6(i) addresses presented in this
  document can be downloaded from [DNS].

7.2.  Testing Environment

  The IVI translator based on the Linux implementation has been
  deployed between [CERNET] (IPv4-only) and [CNGI-CERNET2] (IPv6-only)
  since March 2006.  The pure-IPv6 web servers using IVI6 addresses
  [2001:250:ffca:2672:100::] behind the IVI translator can be accessed
  by the IPv4 hosts [TEST4], and also by the global IPv6 hosts [TEST6].
  The pure-IPv6 clients using IVI6 addresses behind the IVI translator
  can access IPv4 servers on the IPv4 Internet.

  Two traceroute results are presented in Appendix B to show the
  address mapping of the IVI mechanism.

  IVI6 manual configuration and DHCPv6 configuration of the IPv6 end
  system have also been tested with success.

8.  Security Considerations

  This document presents the prefix-specific and stateless address
  mapping mechanism (IVI) for the IPv4/IPv6 coexistence and transition.
  The IPv4 security and IPv6 security issues should be addressed by
  related documents of each address family and are not included in this
  document.

  However, there are several issues that need special considerations,
  specifically (a) IPsec and its NAT traversal, (b) DNS Security
  Extensions (DNSSEC), and (c) firewall filter rules.

  o  IPsec and its NAT traversal: Since the IVI scheme maintains end-
     to-end address transparency, IPsec could work with or without NAT
     traversal techniques.

  o  DNSSEC: DNSSEC verification will be terminated at the IVI DNS for
     the "A record to AAAA record" translation.  It would be fine to
     have a translation in a local IVI DNS server that also verifies





Li, et al.                    Informational                    [Page 14]

RFC 6219              CERNET IVI Translation Design             May 2011


     DNSSEC, or in the host, if the host both translates the DNS entry
     and again verifies DNSSEC validity.  The DNSSEC discussion is in
     [RFC6147].

  o  Firewall filter rules: Since the IVI scheme maintains the end-to-
     end address transparency and there is a unique mapping between
     IPv4 and IPv6 addresses, the firewall filter rule can therefore be
     implemented for one address family, or mapped to another address
     family and implemented in that address family.  However, the
     current IPv6 routers may only support the access-list or uRPF
     (unicast Reverse Path Forwarding) for the prefix length shorter
     than /64; there may a practical constraint for the construction of
     such rules.

  Except for the issues discussed above, we have not found special
  security problems introduced by the IVI translation in our
  experiments.

9.  Contributors

  The authors would like to acknowledge the following contributors in
  the different phases of the IVI development: Ang Li, Yuncheng Zhu,
  Junxiu Lu, Yu Zhai, Wentao Shang, Weifeng Jiang, and Bizheng Fu.

  The authors would like to acknowledge the following contributors, who
  provided helpful inputs concerning the IVI concept: Bill Manning,
  David Ward, Elwyn Davies, Lixia Zhang, Jun Murai, Fred Baker, Jari
  Arkko, Ralph Droms, Tony Hain, and Kevin Yin.

10.  Acknowledgments

  The authors thank the following for funding support: the CERNET,
  CNGI-CERNET2, CNGI Research and Development, and the China "863" and
  China "973" projects.

















Li, et al.                    Informational                    [Page 15]

RFC 6219              CERNET IVI Translation Design             May 2011


Appendix A.  The IVI Translator Configuration Example

  #!/bin/bash
  # open forwarding
  echo 1 > /proc/sys/net/ipv6/conf/all/forwarding
  echo 1 > /proc/sys/net/ipv4/conf/all/forwarding

  # config route for IVI6 = 2001:db8:ffc0:2:0::/64,
  #                  IVI4 = 192.0.2.0/24

  # configure IPv6 route
  route add -A inet6 2001:db8:ffc0:2:0::/64 \
  gw 2001:da8:aaae::206 dev eth0

  # config mapping for      source-PF = 2001:db8::/32
  # config mapping for destination-PF = 2001:db8::/32

  # for each mapping, a unique pseudo-address (10.0.0.x/8)
  # should be configured.
  # ip addr add 10.0.0.1/8 dev eth0

  # IPv4-to-IPv6 mapping: multiple mappings can be done via multiple
  # commands.
  # mroute IVI4-network IVI4-mask pseudo-address interface \
  # source-PF destination-PF
  /root/mroute 192.0.2.0 255.255.255.0 10.0.0.1 \
  eth0 2001:db8:: 2001:db8::

  # IPv6-to-IPv4 mapping
  # mroute6 destination-PF destination-PF-pref-len
  /root/mroute6 2001:db8:ff00:: 40

                   Figure 9: IVI Configuration Example


















Li, et al.                    Informational                    [Page 16]

RFC 6219              CERNET IVI Translation Design             May 2011


Appendix B.  The traceroute Results

  ivitraceroute 202.38.108.2

  1  202.112.0.65 6 ms 2 ms 1 ms
  2  202.112.53.73 4 ms 6 ms 12 ms
  3  202.112.53.178 1 ms 1 ms 1 ms
  4  202.112.61.242 1 ms 1 ms 1 ms
  5  192.0.2.100 1 ms 1 ms 1 ms
  6  192.0.2.102 1 ms 1 ms 1 ms
  7  192.0.2.103 2 ms 2 ms 2 ms
  8  192.0.2.104 2 ms 2 ms 2 ms
  9  192.0.2.105 4 ms 4 ms 3 ms
  10 202.38.108.2 2 ms 3 ms 3 ms

                    Figure 10: ivitraceroute Results

  Note that the non-IVIG6 addresses are mapped to IPv4 document address
  192.0.2.0/24.
































Li, et al.                    Informational                    [Page 17]

RFC 6219              CERNET IVI Translation Design             May 2011


  ivitraceroute6 www.mit.edu

  src_ivi4=202.38.97.205 src_ivi6=2001:da8:ffca:2661:cd00::
  dst_host=www.mit.edu
  dst_ip4=18.7.22.83 dst_ivig=2001:da8:ff12:716:5300::

  traceroute to 2001:da8:ff12:716:5300:: (2001:da8:ff12:716:5300::),
  30 hops max, 40 byte packets to not_ivi

  1  2001:da8:ff0a:0:100::      0.304 ms 0.262 ms 0.190 ms
     10.0.0.1
  2  2001:da8:ffca:7023:fe00::  0.589 ms * *
     202.112.35.254
  3  2001:da8:ffca:7035:4900::  1.660 ms 1.538 ms 1.905 ms
     202.112.53.73
  4  2001:da8:ffca:703d:9e00::  0.371 ms 0.530 ms 0.459 ms
     202.112.61.158
  5  2001:da8:ffca:7035:1200::  0.776 ms 0.704 ms 0.690 ms
     202.112.53.18
  6  2001:da8:ffcb:b5c2:7d00::  89.382 ms 89.076 ms 89.240 ms
     203.181.194.125
  7  2001:da8:ffc0:cb74:9100::  204.623 ms 204.685 ms 204.494 ms
     192.203.116.145
  8  2001:da8:ffcf:e7f0:8300::  249.842 ms 249.945 ms 250.329 ms
     207.231.240.131
  9  2001:da8:ff40:391c:2d00::  249.891 ms 249.936 ms 250.090 ms
     64.57.28.45
  10 2001:da8:ff40:391c:2a00::  259.030 ms 259.110 ms 259.086 ms
     64.57.28.42
  11 2001:da8:ff40:391c:700::   264.247 ms 264.399 ms 264.364 ms
     64.57.28.7
  12 2001:da8:ff40:391c:a00::   271.014 ms 269.572 ms 269.692 ms
     64.57.28.10
  13 2001:da8:ffc0:559:dd00::   274.300 ms 274.483 ms 274.316 ms
     192.5.89.221
  14 2001:da8:ffc0:559:ed00::   274.534 ms 274.367 ms 274.517 ms
     192.5.89.237
  15 * * *
  16 2001:da8:ff12:a800:1900::  276.032 ms 275.876 ms 276.090 ms
     18.168.0.25
  17 2001:da8:ff12:716:5300::   276.285 ms 276.370 ms 276.214 ms
     18.7.22.83

                    Figure 11: ivitraceroute6 Results

  Note that all of the IPv4 addresses can be mapped to prefix-specific
  IPv6 addresses (for example, 18.7.22.83 is mapped to 2001:da8:ff12:
  716:5300::).



Li, et al.                    Informational                    [Page 18]

RFC 6219              CERNET IVI Translation Design             May 2011


11.  References

11.1.  Normative References

  [RFC0768]  Postel, J., "User Datagram Protocol", STD 6, RFC 768,
             August 1980.

  [RFC0791]  Postel, J., "Internet Protocol", STD 5, RFC 791,
             September 1981.

  [RFC0793]  Postel, J., "Transmission Control Protocol", STD 7,
             RFC 793, September 1981.

  [RFC1035]  Mockapetris, P., "Domain names - implementation and
             specification", STD 13, RFC 1035, November 1987.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2460]  Deering, S. and R. Hinden, "Internet Protocol, Version 6
             (IPv6) Specification", RFC 2460, December 1998.

  [RFC2765]  Nordmark, E., "Stateless IP/ICMP Translation Algorithm
             (SIIT)", RFC 2765, February 2000.

  [RFC2766]  Tsirtsis, G. and P. Srisuresh, "Network Address
             Translation - Protocol Translation (NAT-PT)", RFC 2766,
             February 2000.

  [RFC3056]  Carpenter, B. and K. Moore, "Connection of IPv6 Domains
             via IPv4 Clouds", RFC 3056, February 2001.

  [RFC4213]  Nordmark, E. and R. Gilligan, "Basic Transition Mechanisms
             for IPv6 Hosts and Routers", RFC 4213, October 2005.

  [RFC4291]  Hinden, R. and S. Deering, "IP Version 6 Addressing
             Architecture", RFC 4291, February 2006.

  [RFC4380]  Huitema, C., "Teredo: Tunneling IPv6 over UDP through
             Network Address Translations (NATs)", RFC 4380,
             February 2006.

  [RFC4607]  Holbrook, H. and B. Cain, "Source-Specific Multicast for
             IP", RFC 4607, August 2006.

  [RFC4632]  Fuller, V. and T. Li, "Classless Inter-domain Routing
             (CIDR): The Internet Address Assignment and Aggregation
             Plan", BCP 122, RFC 4632, August 2006.



Li, et al.                    Informational                    [Page 19]

RFC 6219              CERNET IVI Translation Design             May 2011


  [RFC5214]  Templin, F., Gleeson, T., and D. Thaler, "Intra-Site
             Automatic Tunnel Addressing Protocol (ISATAP)", RFC 5214,
             March 2008.

  [RFC5771]  Cotton, M., Vegoda, L., and D. Meyer, "IANA Guidelines for
             IPv4 Multicast Address Assignments", BCP 51, RFC 5771,
             March 2010.

  [RFC6052]  Bao, C., Huitema, C., Bagnulo, M., Boucadair, M., and X.
             Li, "IPv6 Addressing of IPv4/IPv6 Translators", RFC 6052,
             October 2010.

  [RFC6144]  Baker, F., Li, X., Bao, C., and K. Yin, "Framework for
             IPv4/IPv6 Translation", RFC 6144, April 2011.

  [RFC6145]  Li, X., Bao, C., and F. Baker, "IP/ICMP Translation
             Algorithm", RFC 6145, April 2011.

  [RFC6146]  Bagnulo, M., Matthews, P., and I. van Beijnum, "Stateful
             NAT64: Network Address and Protocol Translation from IPv6
             Clients to IPv4 Servers", RFC 6146, April 2011.

  [RFC6147]  Bagnulo, M., Sullivan, A., Matthews, P., and I. van
             Beijnum, "DNS64: DNS Extensions for Network Address
             Translation from IPv6 Clients to IPv4 Servers", RFC 6147,
             April 2011.

11.2.  Informative References

  [BEHAVE]   "The IETF Behave Working Group Charter:
             http://datatracker.ietf.org/wg/behave/charter/".

  [CERNET]   "CERNET Homepage:
             http://www.edu.cn/english_1369/index.shtml".

  [CNGI-CERNET2]
             "CNGI-CERNET2 Homepage:
             http://www.cernet2.edu.cn/index_en.htm".

  [COUNT]    "IPv4 address countdown: http://penrose.uk6x.com/".

  [DNS]      "Source Code of the IVI DNS
             http://www.ivi2.org/IVI/src/ividns-0.1.tar.gz/".

  [LINUX]    "Source Code of the IVI implementation for Linux:
             http://linux.ivi2.org/impl/".





Li, et al.                    Informational                    [Page 20]

RFC 6219              CERNET IVI Translation Design             May 2011


  [RFC2775]  Carpenter, B., "Internet Transparency", RFC 2775,
             February 2000.

  [RFC3142]  Hagino, J. and K. Yamamoto, "An IPv6-to-IPv4 Transport
             Relay Translator", RFC 3142, June 2001.

  [RFC3484]  Draves, R., "Default Address Selection for Internet
             Protocol version 6 (IPv6)", RFC 3484, February 2003.

  [RFC3569]  Bhattacharyya, S., Ed., "An Overview of Source-Specific
             Multicast (SSM)", RFC 3569, July 2003.

  [RFC4966]  Aoun, C. and E. Davies, "Reasons to Move the Network
             Address Translator - Protocol Translator (NAT-PT) to
             Historic Status", RFC 4966, July 2007.

  [TEST4]    "Test homepage for the IVI4(i): http://test4.ivi2.org".

  [TEST6]    "Test homepage for the IVI6(i): http://test6.ivi2.org",
             Available using IPv6 only.































Li, et al.                    Informational                    [Page 21]

RFC 6219              CERNET IVI Translation Design             May 2011


Authors' Addresses

  Xing Li
  CERNET Center/Tsinghua University
  Room 225, Main Building, Tsinghua University
  Beijing  100084
  CN
  Phone: +86 10-62785983
  EMail: [email protected]


  Congxiao Bao
  CERNET Center/Tsinghua University
  Room 225, Main Building, Tsinghua University
  Beijing  100084
  CN
  Phone: +86 10-62785983
  EMail: [email protected]


  Maoke Chen
  CERNET Center/Tsinghua University
  Room 225, Main Building, Tsinghua University
  Beijing  100084
  CN
  Phone: +86 10-62785983
  EMail: [email protected]


  Hong Zhang
  CERNET Center/Tsinghua University
  Room 225, Main Building, Tsinghua University
  Beijing  100084
  CN
  Phone: +86 10-62785983
  EMail: [email protected]


  Jianping Wu
  CERNET Center/Tsinghua University
  Room 225, Main Building, Tsinghua University
  Beijing  100084
  CN
  Phone: +86 10-62785983
  EMail: [email protected]






Li, et al.                    Informational                    [Page 22]