Internet Engineering Task Force (IETF)                          H. Singh
Request for Comments: 6204                                     W. Beebee
Category: Informational                              Cisco Systems, Inc.
ISSN: 2070-1721                                                C. Donley
                                                              CableLabs
                                                               B. Stark
                                                                   AT&T
                                                          O. Troan, Ed.
                                                    Cisco Systems, Inc.
                                                             April 2011


          Basic Requirements for IPv6 Customer Edge Routers

Abstract

  This document specifies requirements for an IPv6 Customer Edge (CE)
  router.  Specifically, the current version of this document focuses
  on the basic provisioning of an IPv6 CE router and the provisioning
  of IPv6 hosts attached to it.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Not all documents
  approved by the IESG are a candidate for any level of Internet
  Standard; see Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc6204.

Copyright Notice

  Copyright (c) 2011 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must



Singh, et al.                 Informational                     [Page 1]

RFC 6204               IPv6 CE Router Requirements            April 2011


  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1. Introduction ....................................................2
     1.1. Requirements Language ......................................3
  2. Terminology .....................................................3
  3. Architecture ....................................................4
     3.1. Current IPv4 End-User Network Architecture .................4
     3.2. IPv6 End-User Network Architecture .........................4
          3.2.1. Local Communication .................................6
  4. Requirements ....................................................6
     4.1. General Requirements .......................................6
     4.2. WAN-Side Configuration .....................................7
     4.3. LAN-Side Configuration ....................................11
     4.4. Security Considerations ...................................13
  5. Acknowledgements ...............................................13
  6. Contributors ...................................................14
  7. References .....................................................14
     7.1. Normative References ......................................14
     7.2. Informative References ....................................16

1.  Introduction

  This document defines basic IPv6 features for a residential or small-
  office router, referred to as an IPv6 CE router.  Typically, these
  routers also support IPv4.

  Mixed environments of dual-stack hosts and IPv6-only hosts (behind
  the CE router) can be more complex if the IPv6-only devices are using
  a translator to access IPv4 servers [RFC6144].  Support for such
  mixed environments is not in scope of this document.

  This document specifies how an IPv6 CE router automatically
  provisions its WAN interface, acquires address space for provisioning
  of its LAN interfaces, and fetches other configuration information
  from the service provider network.  Automatic provisioning of more
  complex topology than a single router with multiple LAN interfaces is
  out of scope for this document.

  See [RFC4779] for a discussion of options available for deploying
  IPv6 in service provider access networks.







Singh, et al.                 Informational                     [Page 2]

RFC 6204               IPv6 CE Router Requirements            April 2011


1.1.  Requirements Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [RFC2119].

2.  Terminology

  End-User Network          one or more links attached to the IPv6 CE
                            router that connect IPv6 hosts.

  IPv6 Customer Edge Router a node intended for home or small-office
                            use that forwards IPv6 packets not
                            explicitly addressed to itself.  The IPv6
                            CE router connects the end-user network to
                            a service provider network.

  IPv6 Host                 any device implementing an IPv6 stack
                            receiving IPv6 connectivity through the
                            IPv6 CE router.

  LAN Interface             an IPv6 CE router's attachment to a link in
                            the end-user network.  Examples are
                            Ethernets (simple or bridged), 802.11
                            wireless, or other LAN technologies.  An
                            IPv6 CE router may have one or more
                            network-layer LAN interfaces.

  Service Provider          an entity that provides access to the
                            Internet.  In this document, a service
                            provider specifically offers Internet
                            access using IPv6, and may also offer IPv4
                            Internet access.  The service provider can
                            provide such access over a variety of
                            different transport methods such as DSL,
                            cable, wireless, and others.

  WAN Interface             an IPv6 CE router's attachment to a link
                            used to provide connectivity to the service
                            provider network; example link technologies
                            include Ethernets (simple or bridged), PPP
                            links, Frame Relay, or ATM networks, as
                            well as Internet-layer (or higher-layer)
                            "tunnels", such as tunnels over IPv4 or
                            IPv6 itself.






Singh, et al.                 Informational                     [Page 3]

RFC 6204               IPv6 CE Router Requirements            April 2011


3.  Architecture

3.1.  Current IPv4 End-User Network Architecture

  An end-user network will likely support both IPv4 and IPv6.  It is
  not expected that an end-user will change their existing network
  topology with the introduction of IPv6.  There are some differences
  in how IPv6 works and is provisioned; these differences have
  implications for the network architecture.  A typical IPv4 end-user
  network consists of a "plug and play" router with NAT functionality
  and a single link behind it, connected to the service provider
  network.

  A typical IPv4 NAT deployment by default blocks all incoming
  connections.  Opening of ports is typically allowed using a Universal
  Plug and Play Internet Gateway Device (UPnP IGD) [UPnP-IGD] or some
  other firewall control protocol.

  Another consequence of using private address space in the end-user
  network is that it provides stable addressing; i.e., it never changes
  even when you change service providers, and the addresses are always
  there even when the WAN interface is down or the customer edge router
  has not yet been provisioned.

  Rewriting addresses on the edge of the network also allows for some
  rudimentary multihoming, even though using NATs for multihoming does
  not preserve connections during a fail-over event [RFC4864].

  Many existing routers support dynamic routing, and advanced end-users
  can build arbitrary, complex networks using manual configuration of
  address prefixes combined with a dynamic routing protocol.

3.2.  IPv6 End-User Network Architecture

  The end-user network architecture for IPv6 should provide equivalent
  or better capabilities and functionality than the current IPv4
  architecture.

  The end-user network is a stub network.  Figure 1 illustrates the
  model topology for the end-user network.











Singh, et al.                 Informational                     [Page 4]

RFC 6204               IPv6 CE Router Requirements            April 2011


                    +-------+-------+                      \
                    |   Service     |                       \
                    |   Provider    |                        | Service
                    |    Router     |                        | Provider
                    +-------+-------+                        | network
                            |                               /
                            | Customer                     /
                            | Internet connection         /
                            |
                     +------+--------+                    \
                     |     IPv6      |                     \
                     | Customer Edge |                      \
                     |    Router     |                      /
                     +---+-------+-+-+                     /
         Network A       |       |   Network B            | End-User
   ---+-------------+----+-    --+--+-------------+---    | network(s)
      |             |               |             |        \
  +----+-----+ +-----+----+     +----+-----+ +-----+----+   \
  |IPv6 Host | |IPv6 Host |     | IPv6 Host| |IPv6 Host |   /
  |          | |          |     |          | |          |  /
  +----------+ +-----+----+     +----------+ +----------+ /

           Figure 1: An Example of a Typical End-User Network

  This architecture describes the:

  o  Basic capabilities of an IPv6 CE router

  o  Provisioning of the WAN interface connecting to the service
     provider

  o  Provisioning of the LAN interfaces

  For IPv6 multicast traffic, the IPv6 CE router may act as a Multicast
  Listener Discovery (MLD) proxy [RFC4605] and may support a dynamic
  multicast routing protocol.

  The IPv6 CE router may be manually configured in an arbitrary
  topology with a dynamic routing protocol.  Automatic provisioning and
  configuration are described for a single IPv6 CE router only.











Singh, et al.                 Informational                     [Page 5]

RFC 6204               IPv6 CE Router Requirements            April 2011


3.2.1.  Local Communication

  Link-local IPv6 addresses are used by hosts communicating on a single
  link.  Unique Local IPv6 Unicast Addresses (ULAs) [RFC4193] are used
  by hosts communicating within the end-user network across multiple
  links, but without requiring the application to use a globally
  routable address.  The IPv6 CE router defaults to acting as the
  demarcation point between two networks by providing a ULA boundary, a
  multicast zone boundary, and ingress and egress traffic filters.

  A dual-stack host is multihomed to IPv4 and IPv6 networks.  The IPv4
  and IPv6 topologies may not be congruent, and different addresses may
  have different reachability, e.g., ULAs.  A host stack has to be able
  to quickly fail over and try a different source address and
  destination address pair if communication fails, as outlined in
  [HAPPY-EYEBALLS].

  At the time of this writing, several host implementations do not
  handle the case where they have an IPv6 address configured and no
  IPv6 connectivity, either because the address itself has a limited
  topological reachability (e.g., ULA) or because the IPv6 CE router is
  not connected to the IPv6 network on its WAN interface.  To support
  host implementations that do not handle multihoming in a multi-prefix
  environment [MULTIHOMING-WITHOUT-NAT], the IPv6 CE router should not,
  as detailed in the requirements below, advertise itself as a default
  router on the LAN interface(s) when it does not have IPv6
  connectivity on the WAN interface or when it is not provisioned with
  IPv6 addresses.  For local IPv6 communication, the mechanisms
  specified in [RFC4191] are used.

  ULA addressing is useful where the IPv6 CE router has multiple LAN
  interfaces with hosts that need to communicate with each other.  If
  the IPv6 CE router has only a single LAN interface (IPv6 link), then
  link-local addressing can be used instead.

  In the event that more than one IPv6 CE router is present on the LAN,
  then coexistence with IPv4 requires all of them to conform to these
  recommendations, especially requirements ULA-5 and L-4 below.

4.  Requirements

4.1.  General Requirements

  The IPv6 CE router is responsible for implementing IPv6 routing; that
  is, the IPv6 CE router must look up the IPv6 destination address in
  its routing table to decide to which interface it should send the
  packet.




Singh, et al.                 Informational                     [Page 6]

RFC 6204               IPv6 CE Router Requirements            April 2011


  In this role, the IPv6 CE router is responsible for ensuring that
  traffic using its ULA addressing does not go out the WAN interface,
  and does not originate from the WAN interface.

  G-1:  An IPv6 CE router is an IPv6 node according to the IPv6 Node
        Requirements [RFC4294] specification.

  G-2:  The IPv6 CE router MUST implement ICMP according to [RFC4443].
        In particular, point-to-point links MUST be handled as
        described in Section 3.1 of [RFC4443].

  G-3:  The IPv6 CE router MUST NOT forward any IPv6 traffic between
        its LAN interface(s) and its WAN interface until the router has
        successfully completed the IPv6 address acquisition process.

  G-4:  By default, an IPv6 CE router that has no default router(s) on
        its WAN interface MUST NOT advertise itself as an IPv6 default
        router on its LAN interfaces.  That is, the "Router Lifetime"
        field is set to zero in all Router Advertisement messages it
        originates [RFC4861].

  G-5:  By default, if the IPv6 CE router is an advertising router and
        loses its IPv6 default router(s) on the WAN interface, it MUST
        explicitly invalidate itself as an IPv6 default router on each
        of its advertising interfaces by immediately transmitting one
        or more Router Advertisement messages with the "Router
        Lifetime" field set to zero [RFC4861].

4.2.  WAN-Side Configuration

  The IPv6 CE router will need to support connectivity to one or more
  access network architectures.  This document describes an IPv6 CE
  router that is not specific to any particular architecture or service
  provider and that supports all commonly used architectures.

  IPv6 Neighbor Discovery and DHCPv6 protocols operate over any type of
  IPv6-supported link layer, and there is no need for a link-layer-
  specific configuration protocol for IPv6 network-layer configuration
  options as in, e.g., PPP IP Control Protocol (IPCP) for IPv4.  This
  section makes the assumption that the same mechanism will work for
  any link layer, be it Ethernet, the Data Over Cable Service Interface
  Specification (DOCSIS), PPP, or others.









Singh, et al.                 Informational                     [Page 7]

RFC 6204               IPv6 CE Router Requirements            April 2011


  WAN-side requirements:

  W-1:  When the router is attached to the WAN interface link, it MUST
        act as an IPv6 host for the purposes of stateless [RFC4862] or
        stateful [RFC3315] interface address assignment.

  W-2:  The IPv6 CE router MUST generate a link-local address and
        finish Duplicate Address Detection according to [RFC4862] prior
        to sending any Router Solicitations on the interface.  The
        source address used in the subsequent Router Solicitation MUST
        be the link-local address on the WAN interface.

  W-3:  Absent other routing information, the IPv6 CE router MUST use
        Router Discovery as specified in [RFC4861] to discover a
        default router(s) and install default route(s) in its routing
        table with the discovered router's address as the next hop.

  W-4:  The router MUST act as a requesting router for the purposes of
        DHCPv6 prefix delegation ([RFC3633]).

  W-5:  DHCPv6 address assignment (IA_NA) and DHCPv6 prefix delegation
        (IA_PD) SHOULD be done as a single DHCPv6 session.

  W-6:  The IPv6 CE router MUST use a persistent DHCP Unique Identifier
        (DUID) for DHCPv6 messages.  The DUID MUST NOT change between
        network interface resets or IPv6 CE router reboots.

  Link-layer requirements:

  WLL-1:  If the WAN interface supports Ethernet encapsulation, then
          the IPv6 CE router MUST support IPv6 over Ethernet [RFC2464].

  WLL-2:  If the WAN interface supports PPP encapsulation, the IPv6 CE
          router MUST support IPv6 over PPP [RFC5072].

  WLL-3:  If the WAN interface supports PPP encapsulation, in a dual-
          stack environment with IPCP and IPV6CP running over one PPP
          logical channel, the Network Control Protocols (NCPs) MUST be
          treated as independent of each other and start and terminate
          independently.











Singh, et al.                 Informational                     [Page 8]

RFC 6204               IPv6 CE Router Requirements            April 2011


  Address assignment requirements:

  WAA-1:  The IPv6 CE router MUST support Stateless Address
          Autoconfiguration (SLAAC) [RFC4862].

  WAA-2:  The IPv6 CE router MUST follow the recommendations in Section
          4 of [RFC5942], and in particular the handling of the L flag
          in the Router Advertisement Prefix Information option.

  WAA-3:  The IPv6 CE router MUST support DHCPv6 [RFC3315] client
          behavior.

  WAA-4:  The IPv6 CE router MUST be able to support the following
          DHCPv6 options: IA_NA, Reconfigure Accept [RFC3315], and
          DNS_SERVERS [RFC3646].

  WAA-5:  The IPv6 CE router SHOULD support the DHCPv6 Simple Network
          Time Protocol (SNTP) option [RFC4075] and the Information
          Refresh Time option [RFC4242].

  WAA-6:  If the IPv6 CE router receives a Router Advertisement message
          (described in [RFC4861]) with the M flag set to 1, the IPv6
          CE router MUST do DHCPv6 address assignment (request an IA_NA
          option).

  WAA-7:  If the IPv6 CE router is unable to assign address(es) through
          SLAAC, it MAY do DHCPv6 address assignment (request an IA_NA
          option) even if the M flag is set to 0.

  WAA-8:  If the IPv6 CE router does not acquire global IPv6
          address(es) from either SLAAC or DHCPv6, then it MUST create
          global IPv6 address(es) from its delegated prefix(es) and
          configure those on one of its internal virtual network
          interfaces.

  WAA-9:  As a router, the IPv6 CE router MUST follow the weak host
          (Weak ES) model [RFC1122].  When originating packets from an
          interface, it will use a source address from another one of
          its interfaces if the outgoing interface does not have an
          address of suitable scope.











Singh, et al.                 Informational                     [Page 9]

RFC 6204               IPv6 CE Router Requirements            April 2011


  Prefix delegation requirements:

  WPD-1:  The IPv6 CE router MUST support DHCPv6 prefix delegation
          requesting router behavior as specified in [RFC3633] (IA_PD
          option).

  WPD-2:  The IPv6 CE router MAY indicate as a hint to the delegating
          router the size of the prefix it requires.  If so, it MUST
          ask for a prefix large enough to assign one /64 for each of
          its interfaces, rounded up to the nearest nibble, and MUST be
          configurable to ask for more.

  WPD-3:  The IPv6 CE router MUST be prepared to accept a delegated
          prefix size different from what is given in the hint.  If the
          delegated prefix is too small to address all of its
          interfaces, the IPv6 CE router SHOULD log a system management
          error.

  WPD-4:  The IPv6 CE router MUST always initiate DHCPv6 prefix
          delegation, regardless of the M and O flags in a received
          Router Advertisement message.

  WPD-5:  If the IPv6 CE router initiates DHCPv6 before receiving a
          Router Advertisement, it MUST also request an IA_NA option in
          DHCPv6.

  WPD-6:  If the delegated prefix(es) are aggregate route(s) of
          multiple, more-specific routes, the IPv6 CE router MUST
          discard packets that match the aggregate route(s), but not
          any of the more-specific routes.  In other words, the next
          hop for the aggregate route(s) should be the null
          destination.  This is necessary to prevent forwarding loops
          when some addresses covered by the aggregate are not
          reachable [RFC4632].

          (a)  The IPv6 CE router SHOULD send an ICMPv6 Destination
               Unreachable message in accordance with Section 3.1 of
               [RFC4443] back to the source of the packet, if the
               packet is to be dropped due to this rule.

  WPD-7:  If the IPv6 CE router requests both an IA_NA and an IA_PD
          option in DHCPv6, it MUST accept an IA_PD option in DHCPv6
          Advertise/Reply messages, even if the message does not
          contain any addresses.

  WPD-8:  By default, an IPv6 CE router MUST NOT initiate any dynamic
          routing protocol on its WAN interface.




Singh, et al.                 Informational                    [Page 10]

RFC 6204               IPv6 CE Router Requirements            April 2011


4.3.  LAN-Side Configuration

  The IPv6 CE router distributes configuration information obtained
  during WAN interface provisioning to IPv6 hosts and assists IPv6
  hosts in obtaining IPv6 addresses.  It also supports connectivity of
  these devices in the absence of any working WAN interface.

  An IPv6 CE router is expected to support an IPv6 end-user network and
  IPv6 hosts that exhibit the following characteristics:

  1.  Link-local addresses may be insufficient for allowing IPv6
      applications to communicate with each other in the end-user
      network.  The IPv6 CE router will need to enable this
      communication by providing globally scoped unicast addresses or
      ULAs [RFC4193], whether or not WAN connectivity exists.

  2.  IPv6 hosts should be capable of using SLAAC and may be capable of
      using DHCPv6 for acquiring their addresses.

  3.  IPv6 hosts may use DHCPv6 for other configuration information,
      such as the DNS_SERVERS option for acquiring DNS information.

  Unless otherwise specified, the following requirements apply to the
  IPv6 CE router's LAN interfaces only.

  ULA requirements:

  ULA-1:  The IPv6 CE router SHOULD be capable of generating a ULA
          prefix [RFC4193].

  ULA-2:  An IPv6 CE router with a ULA prefix MUST maintain this prefix
          consistently across reboots.

  ULA-3:  The value of the ULA prefix SHOULD be user-configurable.

  ULA-4:  By default, the IPv6 CE router MUST act as a site border
          router according to Section 4.3 of [RFC4193] and filter
          packets with local IPv6 source or destination addresses
          accordingly.

  ULA-5:  An IPv6 CE router MUST NOT advertise itself as a default
          router with a Router Lifetime greater than zero whenever all
          of its configured and delegated prefixes are ULA prefixes.








Singh, et al.                 Informational                    [Page 11]

RFC 6204               IPv6 CE Router Requirements            April 2011


  LAN requirements:

  L-1:   The IPv6 CE router MUST support router behavior according to
         Neighbor Discovery for IPv6 [RFC4861].

  L-2:   The IPv6 CE router MUST assign a separate /64 from its
         delegated prefix(es) (and ULA prefix if configured to provide
         ULA addressing) for each of its LAN interfaces.

  L-3:   An IPv6 CE router MUST advertise itself as a router for the
         delegated prefix(es) (and ULA prefix if configured to provide
         ULA addressing) using the "Route Information Option" specified
         in Section 2.3 of [RFC4191].  This advertisement is
         independent of having or not having IPv6 connectivity on the
         WAN interface.

  L-4:   An IPv6 CE router MUST NOT advertise itself as a default
         router with a Router Lifetime [RFC4861] greater than zero if
         it has no prefixes configured or delegated to it.

  L-5:   The IPv6 CE router MUST make each LAN interface an advertising
         interface according to [RFC4861].

  L-6:   In Router Advertisement messages, the Prefix Information
         option's A and L flags MUST be set to 1 by default.

  L-7:   The A and L flags' settings SHOULD be user-configurable.

  L-8:   The IPv6 CE router MUST support a DHCPv6 server capable of
         IPv6 address assignment according to [RFC3315] OR a stateless
         DHCPv6 server according to [RFC3736] on its LAN interfaces.

  L-9:   Unless the IPv6 CE router is configured to support the DHCPv6
         IA_NA option, it SHOULD set the M flag to 0 and the O flag to
         1 in its Router Advertisement messages [RFC4861].

  L-10:  The IPv6 CE router MUST support providing DNS information in
         the DHCPv6 DNS_SERVERS and DOMAIN_LIST options [RFC3646].

  L-11:  The IPv6 CE router SHOULD support providing DNS information in
         the Router Advertisement Recursive DNS Server (RDNSS) and DNS
         Search List (DNSSL) options as specified in [RFC6106].

  L-12:  The IPv6 CE router SHOULD make available a subset of DHCPv6
         options (as listed in Section 5.3 of [RFC3736]) received from
         the DHCPv6 client on its WAN interface to its LAN-side DHCPv6
         server.




Singh, et al.                 Informational                    [Page 12]

RFC 6204               IPv6 CE Router Requirements            April 2011


  L-13:  If the delegated prefix changes, i.e., the current prefix is
         replaced with a new prefix without any overlapping time
         period, then the IPv6 CE router MUST immediately advertise the
         old prefix with a Preferred Lifetime of zero and a Valid
         Lifetime of the lower of the current Valid Lifetime and 2
         hours (which must be decremented in real time) in a Router
         Advertisement message as described in Section 5.5.3, (e) of
         [RFC4862].

  L-14:  The IPv6 CE router MUST send an ICMP Destination Unreachable
         message, code 5 (Source address failed ingress/egress policy)
         for packets forwarded to it that use an address from a prefix
         that has been deprecated.

4.4.  Security Considerations

  It is considered a best practice to filter obviously malicious
  traffic (e.g., spoofed packets, "Martian" addresses, etc.).  Thus,
  the IPv6 CE router ought to support basic stateless egress and
  ingress filters.  The CE router is also expected to offer mechanisms
  to filter traffic entering the customer network; however, the method
  by which vendors implement configurable packet filtering is beyond
  the scope of this document.

  Security requirements:

  S-1:  The IPv6 CE router SHOULD support [RFC6092].  In particular,
        the IPv6 CE router SHOULD support functionality sufficient for
        implementing the set of recommendations in [RFC6092],
        Section 4.  This document takes no position on whether such
        functionality is enabled by default or mechanisms by which
        users would configure it.

  S-2:  The IPv6 CE router MUST support ingress filtering in accordance
        with BCP 38 [RFC2827].

5.  Acknowledgements

  Thanks to the following people (in alphabetical order) for their
  guidance and feedback:

  Mikael Abrahamsson, Tore Anderson, Merete Asak, Scott Beuker, Mohamed
  Boucadair, Rex Bullinger, Brian Carpenter, Lorenzo Colitti, Remi
  Denis-Courmont, Gert Doering, Alain Durand, Katsunori Fukuoka, Tony
  Hain, Thomas Herbst, Kevin Johns, Erik Kline, Stephen Kramer, Victor






Singh, et al.                 Informational                    [Page 13]

RFC 6204               IPv6 CE Router Requirements            April 2011


  Kuarsingh, Francois-Xavier Le Bail, Arifumi Matsumoto, David Miles,
  Shin Miyakawa, Jean-Francois Mule, Michael Newbery, Carlos Pignataro,
  John Pomeroy, Antonio Querubin, Hiroki Sato, Teemu Savolainen, Matt
  Schmitt, David Thaler, Mark Townsley, Bernie Volz, Dan Wing, James
  Woodyatt, and Cor Zwart.

  This document is based in part on CableLabs' eRouter specification.
  The authors wish to acknowledge the additional contributors from the
  eRouter team:

  Ben Bekele, Amol Bhagwat, Ralph Brown, Eduardo Cardona, Margo Dolas,
  Toerless Eckert, Doc Evans, Roger Fish, Michelle Kuska, Diego
  Mazzola, John McQueen, Harsh Parandekar, Michael Patrick, Saifur
  Rahman, Lakshmi Raman, Ryan Ross, Ron da Silva, Madhu Sudan, Dan
  Torbet, and Greg White.

6.  Contributors

  The following people have participated as co-authors or provided
  substantial contributions to this document: Ralph Droms, Kirk
  Erichsen, Fred Baker, Jason Weil, Lee Howard, Jean-Francois Tremblay,
  Yiu Lee, John Jason Brzozowski, and Heather Kirksey.

7.  References

7.1.  Normative References

  [RFC1122]  Braden, R., Ed., "Requirements for Internet Hosts -
             Communication Layers", STD 3, RFC 1122, October 1989.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2464]  Crawford, M., "Transmission of IPv6 Packets over Ethernet
             Networks", RFC 2464, December 1998.

  [RFC2827]  Ferguson, P. and D. Senie, "Network Ingress Filtering:
             Defeating Denial of Service Attacks which employ IP Source
             Address Spoofing", BCP 38, RFC 2827, May 2000.

  [RFC3315]  Droms, R., Ed., Bound, J., Volz, B., Lemon, T., Perkins,
             C., and M. Carney, "Dynamic Host Configuration Protocol
             for IPv6 (DHCPv6)", RFC 3315, July 2003.

  [RFC3633]  Troan, O. and R. Droms, "IPv6 Prefix Options for Dynamic
             Host Configuration Protocol (DHCP) version 6", RFC 3633,
             December 2003.




Singh, et al.                 Informational                    [Page 14]

RFC 6204               IPv6 CE Router Requirements            April 2011


  [RFC3646]  Droms, R., Ed., "DNS Configuration options for Dynamic
             Host Configuration Protocol for IPv6 (DHCPv6)", RFC 3646,
             December 2003.

  [RFC3736]  Droms, R., "Stateless Dynamic Host Configuration Protocol
             (DHCP) Service for IPv6", RFC 3736, April 2004.

  [RFC4075]  Kalusivalingam, V., "Simple Network Time Protocol (SNTP)
             Configuration Option for DHCPv6", RFC 4075, May 2005.

  [RFC4191]  Draves, R. and D. Thaler, "Default Router Preferences and
             More-Specific Routes", RFC 4191, November 2005.

  [RFC4193]  Hinden, R. and B. Haberman, "Unique Local IPv6 Unicast
             Addresses", RFC 4193, October 2005.

  [RFC4242]  Venaas, S., Chown, T., and B. Volz, "Information Refresh
             Time Option for Dynamic Host Configuration Protocol for
             IPv6 (DHCPv6)", RFC 4242, November 2005.

  [RFC4294]  Loughney, J., Ed., "IPv6 Node Requirements", RFC 4294,
             April 2006.

  [RFC4443]  Conta, A., Deering, S., and M. Gupta, Ed., "Internet
             Control Message Protocol (ICMPv6) for the Internet
             Protocol Version 6 (IPv6) Specification", RFC 4443,
             March 2006.

  [RFC4605]  Fenner, B., He, H., Haberman, B., and H. Sandick,
             "Internet Group Management Protocol (IGMP) / Multicast
             Listener Discovery (MLD)-Based Multicast Forwarding
             ("IGMP/MLD Proxying")", RFC 4605, August 2006.

  [RFC4632]  Fuller, V. and T. Li, "Classless Inter-domain Routing
             (CIDR): The Internet Address Assignment and Aggregation
             Plan", BCP 122, RFC 4632, August 2006.

  [RFC4779]  Asadullah, S., Ahmed, A., Popoviciu, C., Savola, P., and
             J. Palet, "ISP IPv6 Deployment Scenarios in Broadband
             Access Networks", RFC 4779, January 2007.

  [RFC4861]  Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
             "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
             September 2007.

  [RFC4862]  Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
             Address Autoconfiguration", RFC 4862, September 2007.




Singh, et al.                 Informational                    [Page 15]

RFC 6204               IPv6 CE Router Requirements            April 2011


  [RFC4864]  Van de Velde, G., Hain, T., Droms, R., Carpenter, B., and
             E. Klein, "Local Network Protection for IPv6", RFC 4864,
             May 2007.

  [RFC5072]  Varada, S., Ed., Haskins, D., and E. Allen, "IP Version 6
             over PPP", RFC 5072, September 2007.

  [RFC5942]  Singh, H., Beebee, W., and E. Nordmark, "IPv6 Subnet
             Model: The Relationship between Links and Subnet
             Prefixes", RFC 5942, July 2010.

  [RFC6092]  Woodyatt, J., Ed., "Recommended Simple Security
             Capabilities in Customer Premises Equipment (CPE) for
             Providing Residential IPv6 Internet Service", RFC 6092,
             January 2011.

  [RFC6106]  Jeong, J., Park, S., Beloeil, L., and S. Madanapalli,
             "IPv6 Router Advertisement Options for DNS Configuration",
             RFC 6106, November 2010.

7.2.  Informative References

  [HAPPY-EYEBALLS]
             Wing, D. and A. Yourtchenko, "Happy Eyeballs: Trending
             Towards Success with Dual-Stack Hosts", Work in Progress,
             March 2011.

  [MULTIHOMING-WITHOUT-NAT]
             Troan, O., Ed., Miles, D., Matsushima, S., Okimoto, T.,
             and D. Wing, "IPv6 Multihoming without Network Address
             Translation", Work in Progress, March 2011.

  [RFC6144]  Baker, F., Li, X., Bao, C., and K. Yin, "Framework for
             IPv4/IPv6 Translation", RFC 6144, April 2011.

  [UPnP-IGD]
             UPnP Forum, "Universal Plug and Play (UPnP) Internet
             Gateway Device (IGD)", November 2001,
             <http://www.upnp.org/>.












Singh, et al.                 Informational                    [Page 16]

RFC 6204               IPv6 CE Router Requirements            April 2011


Authors' Addresses

  Hemant Singh
  Cisco Systems, Inc.
  1414 Massachusetts Ave.
  Boxborough, MA  01719
  USA
  Phone: +1 978 936 1622
  EMail: [email protected]
  URI:   http://www.cisco.com/


  Wes Beebee
  Cisco Systems, Inc.
  1414 Massachusetts Ave.
  Boxborough, MA  01719
  USA
  Phone: +1 978 936 2030
  EMail: [email protected]
  URI:   http://www.cisco.com/


  Chris Donley
  CableLabs
  858 Coal Creek Circle
  Louisville, CO  80027
  USA
  EMail: [email protected]


  Barbara Stark
  AT&T
  725 W Peachtree St.
  Atlanta, GA  30308
  USA
  EMail: [email protected]


  Ole Troan (editor)
  Cisco Systems, Inc.
  Telemarksvingen 20
  N-0655 OSLO,
  Norway
  EMail: [email protected]







Singh, et al.                 Informational                    [Page 17]