Internet Engineering Task Force (IETF)                         D. McGrew
Request for Comments: 6188                           Cisco Systems, Inc.
Category: Standards Track                                     March 2011
ISSN: 2070-1721


             The Use of AES-192 and AES-256 in Secure RTP

Abstract

  This memo describes the use of the Advanced Encryption Standard (AES)
  with 192- and 256-bit keys within the Secure RTP (SRTP) protocol.  It
  details counter mode encryption for SRTP and Secure Realtime
  Transport Control Protocol (SRTCP) and a new SRTP Key Derivation
  Function (KDF) for AES-192 and AES-256.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc6188.

Copyright Notice

  Copyright (c) 2011 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.







McGrew                       Standards Track                    [Page 1]

RFC 6188                SRTP AES-192 and AES-256              March 2011


Table of Contents

  1. Introduction ....................................................3
     1.1. Conventions Used in This Document ..........................3
  2. AES-192 and AES-256 Encryption ..................................3
  3. The AES_192_CM_PRF and AES_256_CM_PRF Key Derivation Functions ..4
     3.1. Usage Requirements .........................................5
  4. Crypto Suites ...................................................6
  5. IANA Considerations .............................................9
  6. Security Considerations .........................................9
  7. Test Cases .....................................................10
     7.1. AES-256-CM Test Cases .....................................10
     7.2. AES_256_CM_PRF Test Cases .................................11
     7.3. AES-192-CM Test Cases .....................................13
     7.4. AES_192_CM_PRF Test Cases .................................13
  8. Acknowledgements ...............................................15
  9. References .....................................................15
     9.1. Normative References ......................................15
     9.2. Informative References ....................................15
































McGrew                       Standards Track                    [Page 2]

RFC 6188                SRTP AES-192 and AES-256              March 2011


1.  Introduction

  This memo describes the use of the Advanced Encryption Standard (AES)
  [FIPS197] with 192- and 256-bit keys within the Secure RTP (SRTP)
  protocol [RFC3711].  Below, those block ciphers are referred to as
  AES-192 and AES-256, respectively, and the use of AES with a 128-bit
  key is referred to as AES-128.  This document describes counter mode
  encryption for SRTP and SRTCP and appropriate SRTP key derivation
  functions for AES-192 and AES-256.  It also defines new crypto suites
  that use these new functions.

  While AES-128 is widely regarded as more than adequately secure, some
  users may be motivated to adopt AES-192 or AES-256 due to a perceived
  need to pursue a highly conservative security strategy.  For
  instance, the Suite B profile requires AES-256 for the protection of
  TOP SECRET information [suiteB].  (Note that while the AES-192 and
  AES-256 encryption methods defined in this document use Suite B
  algorithms, the crypto suites in this document use the HMAC-SHA-1
  algorithm, which is not included in Suite B.) See Section 6 for more
  discussion of security issues.

  The crypto functions described in this document are an addition to,
  and not a replacement for, the crypto functions defined in [RFC3711].

1.1.  Conventions Used in This Document

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

2.  AES-192 and AES-256 Encryption

  Section 4.1.1 of [RFC3711] defines AES counter mode encryption, which
  it refers to as AES_CM.  This definition applies to all of the AES
  key sizes.  In this note, AES-192 counter mode and AES-256 counter
  mode and are denoted as AES_192_CM and AES_256_CM, respectively.  In
  both of these ciphers, the plaintext inputs to the block cipher are
  formed as in AES_CM, and the block cipher outputs are processed as in
  AES_CM.  The only difference in the processing is that AES_192_CM
  uses AES-192, and AES_256_CM uses AES-256.  Both AES_192_CM and
  AES_256_CM use a 112-bit salt as an input, as does AES_CM.

  For the convenience of the reader, the structure of the counter
  blocks in SRTP counter mode encryption is illustrated in Figure 1,
  using the terminology from Section 4.1.1 of [RFC3711].  In this
  diagram, the symbol (+) denotes the bitwise exclusive-or operation,
  and the AES encrypt operation uses AES-128, AES-192, or AES-256 for
  AES_CM, AES_192_CM, and AES_256_CM, respectively.  The field labeled



McGrew                       Standards Track                    [Page 3]

RFC 6188                SRTP AES-192 and AES-256              March 2011


  b_c contains a block counter, the value of which increments once for
  each invocation of the "AES Encrypt" function.  The SSRC field is
  part of the RTP header [RFC3550].

       one octet
        <-->
         0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15
        +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
        |00|00|00|00|   SSRC    |   packet index  | b_c |---+
        +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+   |
                                                            |
        +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+   v
        |                  salt (k_s)             |00|00|->(+)
        +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+   |
                                                            |
                                                            v
                                                     +-------------+
                             encryption key (k_e) -> | AES encrypt |
                                                     +-------------+
                                                            |
        +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+   |
        |                keystream block                |<--+
        +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

                       Figure 1: AES Counter Mode

3.  The AES_192_CM_PRF and AES_256_CM_PRF Key Derivation Functions

  Section 4.3.3 of [RFC3711] defines an AES counter mode key derivation
  function, which it refers to as AES_CM PRF (and sometimes as AES-CM
  PRF).  (That specification uses the term PRF, or pseudo-random
  function, interchangeably with the phrase "key derivation function".)
  This key derivation function can be used with any AES key size.  In
  this note, the AES-192 counter mode PRF and AES-256 counter mode PRF
  are denoted as AES_192_CM_PRF and AES_256_CM_PRF, respectively.  In
  both of these PRFs, the plaintext inputs to the block cipher are
  formed as in the AES_CM PRF, and the block cipher outputs are
  processed as in the AES_CM PRF.  The only difference in the
  processing is that AES_192_CM_PRF uses AES-192, and AES_256_CM_PRF
  uses AES-256.  Both AES_192_CM_PRF and AES_256_CM_PRF use a 112-bit
  salt as an input, as does the AES_CM PRF.

  For the convenience of the reader, the structure of the counter
  blocks in SRTP counter mode key derivation is illustrated in
  Figure 2, using the terminology from Section 4.3.3 of [RFC3711].  In
  this diagram, the symbol (+) denotes the bitwise exclusive-or
  operation, and the "AES Encrypt" operation uses AES-128, AES-192, or
  AES-256 for the AES_CM PRF, AES_192_CM_PRF, and AES_256_CM_PRF,



McGrew                       Standards Track                    [Page 4]

RFC 6188                SRTP AES-192 and AES-256              March 2011


  respectively.  The field "LB" contains the 8-bit constant "label",
  which is provided as an input to the key derivation function (and
  which is distinct for each type of key generated by that function).
  The field labeled b_c contains a block counter, the value of which
  increments once for each invocation of the "AES Encrypt" function.
  The DIV operation is defined in Section 4.3.1 of [RFC3711] as
  follows.  Let "a DIV t" denote integer division of a by t, rounded
  down, and with the convention that "a DIV 0 = 0" for all a.  We also
  make the convention of treating "a DIV t" as a bit string of the same
  length as a, and thus "a DIV t" will, in general, have leading zeros.

       one octet
        <-->
         0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15
        +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
        |00|00|00|00|00|00|00|LB| index DIV kdr   | b_c |---+
        +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+   |
                                                            |
        +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+   v
        |               master salt               |00|00|->(+)
        +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+   |
                                                            |
                                                            v
                                                     +-------------+
                                       master key -> | AES encrypt |
                                                     +-------------+
                                                            |
        +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+   |
        |                   output block                |<--+
        +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

         Figure 2: The AES Counter Mode Key Derivation Function

3.1.  Usage Requirements

  When AES_192_CM is used for encryption, AES_192_CM_PRF SHOULD be used
  as the key derivation function, and AES_128_CM_PRF MUST NOT be used
  as the key derivation function.

  When AES_256_CM is used for encryption, AES_256_CM_PRF SHOULD be used
  as the key derivation function.  Both AES_128_CM_PRF and
  AES_192_CM_PRF MUST NOT be used as the key derivation function.

  AES_256_CM_PRF MAY be used as the key derivation function when AES_CM
  is used for encryption, and when AES_192_CM is used for encryption.
  AES_192_CM_PRF MAY be used as the key derivation function when AES_CM
  is used for encryption.




McGrew                       Standards Track                    [Page 5]

RFC 6188                SRTP AES-192 and AES-256              March 2011


     Rationale: it is essential that the cryptographic strength of the
     key derivation meets or exceeds that of the encryption method.  It
     is natural to use the same function for both encryption and key
     derivation.  However, it is not required to do so because it is
     desirable to allow these ciphers to be used with alternative key
     derivation functions that may be defined in the future.

4.  Crypto Suites

  This section defines SRTP crypto suites that use the ciphers and key
  derivation functions defined in this document.  The parameters in
  these crypto suites are described in Section 8.2 of [RFC3711].  These
  suites are registered with IANA for use with the SDP Security
  Descriptions attributes (Section 10.3.2.1 of [RFC4568]).  Other SRTP
  key management methods that use the crypto functions defined in this
  document are encouraged to also use these crypto suite definitions.

     Rationale: the crypto suites use the same authentication function
     that is mandatory to implement in SRTP, HMAC-SHA1 with a 160-bit
     key.  HMAC-SHA1 would accept larger key sizes, but when it is used
     with keys larger than 160 bits, it does not provide resistance to
     cryptanalysis greater than that security level, because it has
     only 160 bits of internal state.  By retaining 160-bit
     authentication keys, the crypto suites in this note have more
     compatibility with existing crypto suites and implementations of
     them.

























McGrew                       Standards Track                    [Page 6]

RFC 6188                SRTP AES-192 and AES-256              March 2011


  +------------------------------+------------------------------------+
  | Parameter                    | Value                              |
  +------------------------------+------------------------------------+
  | Master key length            | 192 bits                           |
  | Master salt length           | 112 bits                           |
  | Key Derivation Function      | AES_192_CM_PRF (Section 3)         |
  | Default key lifetime         | 2^31 packets                       |
  | Cipher (for SRTP and SRTCP)  | AES_192_CM (Section 2)             |
  | SRTP authentication function | HMAC-SHA1 (Section 4.2.1 of        |
  |                              | [RFC3711])                         |
  | SRTP authentication key      | 160 bits                           |
  | length                       |                                    |
  | SRTP authentication tag      | 80 bits                            |
  | length                       |                                    |
  | SRTCP authentication         | HMAC-SHA1 (Section 4.2.1 of        |
  | function                     | [RFC3711])                         |
  | SRTCP authentication key     | 160 bits                           |
  | length                       |                                    |
  | SRTCP authentication tag     | 80 bits                            |
  | length                       |                                    |
  +------------------------------+------------------------------------+

            Table 1: The AES_192_CM_HMAC_SHA1_80 Crypto Suite

  +------------------------------+------------------------------------+
  | Parameter                    | Value                              |
  +------------------------------+------------------------------------+
  | Master key length            | 192 bits                           |
  | Master salt length           | 112 bits                           |
  | Key Derivation Function      | AES_192_CM_PRF (Section 3)         |
  | Default key lifetime         | 2^31 packets                       |
  | Cipher (for SRTP and SRTCP)  | AES_192_CM (Section 2)             |
  | SRTP authentication function | HMAC-SHA1 (Section 4.2.1 of        |
  |                              | [RFC3711])                         |
  | SRTP authentication key      | 160 bits                           |
  | length                       |                                    |
  | SRTP authentication tag      | 32 bits                            |
  | length                       |                                    |
  | SRTCP authentication         | HMAC-SHA1 (Section 4.2.1 of        |
  | function                     | [RFC3711])                         |
  | SRTCP authentication key     | 160 bits                           |
  | length                       |                                    |
  | SRTCP authentication tag     | 80 bits                            |
  | length                       |                                    |
  +------------------------------+------------------------------------+

            Table 2: The AES_192_CM_HMAC_SHA1_32 Crypto Suite




McGrew                       Standards Track                    [Page 7]

RFC 6188                SRTP AES-192 and AES-256              March 2011


  +------------------------------+------------------------------------+
  | Parameter                    | Value                              |
  +------------------------------+------------------------------------+
  | Master key length            | 256 bits                           |
  | Master salt length           | 112 bits                           |
  | Key Derivation Function      | AES_256_CM_PRF (Section 3)         |
  | Default key lifetime         | 2^31 packets                       |
  | Cipher (for SRTP and SRTCP)  | AES_256_CM (Section 2)             |
  | SRTP authentication function | HMAC-SHA1 (Section 4.2.1 of        |
  |                              | [RFC3711])                         |
  | SRTP authentication key      | 160 bits                           |
  | length                       |                                    |
  | SRTP authentication tag      | 80 bits                            |
  | length                       |                                    |
  | SRTCP authentication         | HMAC-SHA1 (Section 4.2.1 of        |
  | function                     | [RFC3711])                         |
  | SRTCP authentication key     | 160 bits                           |
  | length                       |                                    |
  | SRTCP authentication tag     | 80 bits                            |
  | length                       |                                    |
  +------------------------------+------------------------------------+

            Table 3: The AES_256_CM_HMAC_SHA1_80 Crypto Suite

  +------------------------------+------------------------------------+
  | Parameter                    | Value                              |
  +------------------------------+------------------------------------+
  | Master key length            | 256 bits                           |
  | Master salt length           | 112 bits                           |
  | Key Derivation Function      | AES_256_CM_PRF (Section 3)         |
  | Default key lifetime         | 2^31 packets                       |
  | Cipher (for SRTP and SRTCP)  | AES_256_CM (Section 2)             |
  | SRTP authentication function | HMAC-SHA1 (Section 4.2.1 of        |
  |                              | [RFC3711])                         |
  | SRTP authentication key      | 160 bits                           |
  | length                       |                                    |
  | SRTP authentication tag      | 32 bits                            |
  | length                       |                                    |
  | SRTCP authentication         | HMAC-SHA1 (Section 4.2.1 of        |
  | function                     | [RFC3711])                         |
  | SRTCP authentication key     | 160 bits                           |
  | length                       |                                    |
  | SRTCP authentication tag     | 80 bits                            |
  | length                       |                                    |
  +------------------------------+------------------------------------+

            Table 4: The AES_256_CM_HMAC_SHA1_32 Crypto Suite




McGrew                       Standards Track                    [Page 8]

RFC 6188                SRTP AES-192 and AES-256              March 2011


5.  IANA Considerations

  IANA has assigned the following parameters in the Session Description
  Protocol (SDP) Security Descriptions registry.

                 +-------------------------+-----------+
                 | Crypto Suite Name       | Reference |
                 +-------------------------+-----------+
                 | AES_192_CM_HMAC_SHA1_80 | [RFC6188] |
                 | AES_192_CM_HMAC_SHA1_32 | [RFC6188] |
                 | AES_256_CM_HMAC_SHA1_80 | [RFC6188] |
                 | AES_256_CM_HMAC_SHA1_32 | [RFC6188] |
                 +-------------------------+-----------+

6.  Security Considerations

  AES-128 provides a level of security that is widely regarded as being
  more than sufficient for providing confidentiality.  It is believed
  that the economic cost of breaking AES-128 is significantly higher
  than the cost of more direct approaches to violating system security,
  e.g., theft, bribery, wiretapping, and other forms of malfeasance.

  Future advances in state-of-the art cryptanalysis could eliminate
  this confidence in AES-128, and motivate the use of AES-192 or AES-
  256.  AES-192 is regarded as being secure even against some
  adversaries for which breaking AES-128 may be feasible.  Similarly,
  AES-256 is regarded as being secure even against some adversaries for
  which it may be feasible to break AES-192.  The availability of the
  larger key size versions of AES provides a fallback plan in case of
  unanticipated cryptanalytic results.

  It is conjectured that AES-256 provides adequate security even
  against adversaries that possess the ability to construct a quantum
  computer that works on 256 or more quantum bits.  No such computer is
  known to exist; its feasibility is an area of active speculation and
  research.

  Despite the apparent sufficiency of AES-128, some users are
  interested in the larger AES key sizes.  For some applications, the
  40% increase in computational cost for AES-256 over AES-128 is a
  worthwhile bargain when traded for the security advantages outlined
  above.  These applications include those with a perceived need for
  very high security, e.g., due to a desire for very long-term
  confidentiality.

  AES-256 (as it is used in this note) provides the highest level of
  security, and it SHOULD be used whenever the highest possible
  security is desired.  AES-192 provides a middle ground between the



McGrew                       Standards Track                    [Page 9]

RFC 6188                SRTP AES-192 and AES-256              March 2011


  128-bit and 256-bit versions of AES, and it MAY be used when security
  higher than that of AES-128 is desired.  In this note, AES-192 and
  AES-256 are used with keys that are generated via a strong pseudo-
  random source, and thus the related-key attacks that have been
  described in the theoretical literature are not applicable.

  As with any cipher, the conjectured security level of AES may change
  over time.  The considerations in this section reflect the best
  knowledge available at the time of publication of this document.

  It is desirable that AES_192_CM and AES_192_CM_PRF be used with an
  authentication function that uses a 192-bit key, and that AES_256_CM
  and AES_256_CM_PRF be used with an authentication function that uses
  a 256-bit key.  However, this desire is not regarded as security
  critical.  Cryptographic authentication is resilient against future
  advances in cryptanalysis, since the opportunity for a forgery attack
  against a session closes when that session closes.  For this reason,
  this note defines new ciphers, but not new authentication functions.

7.  Test Cases

  The test cases in this section are based on Appendix B of [RFC3711].

7.1.  AES-256-CM Test Cases


   Keystream segment length: 1044512 octets (65282 AES blocks)
   Session Key:      57f82fe3613fd170a85ec93c40b1f092
                     2ec4cb0dc025b58272147cc438944a98
   Rollover Counter: 00000000
   Sequence Number:  0000
   SSRC:             00000000
   Session Salt:     f0f1f2f3f4f5f6f7f8f9fafbfcfd0000 (already shifted)
   Offset:           f0f1f2f3f4f5f6f7f8f9fafbfcfd0000

   Counter                            Keystream

   f0f1f2f3f4f5f6f7f8f9fafbfcfd0000   92bdd28a93c3f52511c677d08b5515a4
   f0f1f2f3f4f5f6f7f8f9fafbfcfd0001   9da71b2378a854f67050756ded165bac
   f0f1f2f3f4f5f6f7f8f9fafbfcfd0002   63c4868b7096d88421b563b8c94c9a31
   ...                                ...
   f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff   cea518c90fd91ced9cbb18c078a54711
   f0f1f2f3f4f5f6f7f8f9fafbfcfdff00   3dbc4814f4da5f00a08772b63c6a046d
   f0f1f2f3f4f5f6f7f8f9fafbfcfdff01   6eb246913062a16891433e97dd01a57f







McGrew                       Standards Track                   [Page 10]

RFC 6188                SRTP AES-192 and AES-256              March 2011


7.2.  AES_256_CM_PRF Test Cases

  This section provides test data for the AES_256_CM_PRF key derivation
  function, which uses AES-256 in counter mode.  In the following, we
  walk through the initial key derivation for the AES-256 counter mode
  cipher, which requires a 32-octet session encryption key and a 14-
  octet session salt, and the HMAC-SHA1 authentication function, which
  requires a 20-octet session authentication key.  These values are
  called the cipher key, the cipher salt, and the auth key in the
  following.  Since this is the initial key derivation and the key
  derivation rate is equal to zero, the value of (index DIV
  key_derivation_rate) is zero (actually, a six-octet string of zeros).
  In the following, we shorten key_derivation_rate to kdr.

  The inputs to the key derivation function are the 32-octet master key
  and the 14-octet master salt:

        master key:  f0f04914b513f2763a1b1fa130f10e29
                     98f6f6e43e4309d1e622a0e332b9f1b6
        master salt: 3b04803de51ee7c96423ab5b78d2

  We first show how the cipher key is generated.  The input block for
  AES-256-CM is generated by exclusive-oring the master salt with the
  concatenation of the encryption key label 0x00 with (index DIV kdr),
  then padding on the right with two null octets (which implements the
  multiply-by-2^16 operation, see Section 4.3.3 of RFC 3711).  The
  resulting value is then AES-256-CM-encrypted using the master key to
  get the cipher key.

     index DIV kdr:                 000000000000
     label:                       00
     master salt:   3b04803de51ee7c96423ab5b78d2
     -----------------------------------------------
     xor:           3b04803de51ee7c96423ab5b78d2     (x, PRF input)

     x*2^16:        3b04803de51ee7c96423ab5b78d20000 (AES-256-CM input)
     x*2^16 + 1:    3b04803de51ee7c96423ab5b78d20001 (2nd AES input)

     cipher key:    5ba1064e30ec51613cad926c5a28ef73 (1st AES output)
                    1ec7fb397f70a960653caf06554cd8c4 (2nd AES output)

  Next, we show how the cipher salt is generated.  The input block for
  AES-256-CM is generated by exclusive-oring the master salt with the
  concatenation of the encryption salt label.  That value is padded and
  encrypted as above.






McGrew                       Standards Track                   [Page 11]

RFC 6188                SRTP AES-192 and AES-256              March 2011


     index DIV kdr:                 000000000000
     label:                       02
     master salt:   3b04803de51ee7c96423ab5b78d2

     ----------------------------------------------
     xor:           3b04803de51ee7cb6423ab5b78d2     (x, PRF input)

     x*2^16:        3b04803de51ee7cb6423ab5b78d20000 (AES-256-CM input)

                    fa31791685ca444a9e07c6c64e93ae6b (AES-256 ouptut)

     cipher salt:   fa31791685ca444a9e07c6c64e93

  We now show how the auth key is generated.  The input block for AES-
  256-CM is generated as above, but using the authentication key label.

      index DIV kdr:                   000000000000
      label:                         01
      master salt:     3b04803de51ee7c96423ab5b78d2
      -----------------------------------------------
      xor:             3b04803de51ee7c86423ab5b78d2     (x, PRF input)

      x*2^16:          3b04803de51ee7c86423ab5b78d20000 (AES-256-CM in)

   Below, the AES-256 output blocks that form the auth key are shown
   on the left, while the corresponding AES-256 input blocks are shown
   on the right.  Note that the final AES-256 output is truncated to a
   4-byte length.  The final auth key is shown below.

   auth key blocks                    AES-256 input blocks
   fd9c32d39ed5fbb5a9dc96b30818454d   3b04803de51ee7c86423ab5b78d20000
   1313dc05                           3b04803de51ee7c86423ab5b78d20001

   auth key: fd9c32d39ed5fbb5a9dc96b30818454d1313dc05

















McGrew                       Standards Track                   [Page 12]

RFC 6188                SRTP AES-192 and AES-256              March 2011


7.3.  AES-192-CM Test Cases

   Keystream segment length: 1044512 octets (65282 AES blocks)
   Session Key:      eab234764e517b2d3d160d587d8c8621
                     9740f65f99b6bcf7
   Rollover Counter: 00000000
   Sequence Number:  0000
   SSRC:             00000000
   Session Salt:     f0f1f2f3f4f5f6f7f8f9fafbfcfd0000 (already shifted)
   Offset:           f0f1f2f3f4f5f6f7f8f9fafbfcfd0000

   Counter                            Keystream

   f0f1f2f3f4f5f6f7f8f9fafbfcfd0000   35096cba4610028dc1b57503804ce37c
   f0f1f2f3f4f5f6f7f8f9fafbfcfd0001   5de986291dcce161d5165ec4568f5c9a
   f0f1f2f3f4f5f6f7f8f9fafbfcfd0002   474a40c77894bc17180202272a4c264d
   ...                                ...
   f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff   d108d1a31a00bad6367ec23eb044b415
   f0f1f2f3f4f5f6f7f8f9fafbfcfdff00   c8f57129fdeb970b59f917b257662d4c
   f0f1f2f3f4f5f6f7f8f9fafbfcfdff01   a5dab625811034e8cebdfeb6dc158dd3

7.4.  AES_192_CM_PRF Test Cases

  This section provides test data for the AES_192_CM_PRF key derivation
  function, which uses AES-192 in counter mode.  In the following, we
  walk through the initial key derivation for the AES-192 counter mode
  cipher, which requires a 24-octet session encryption key and a 14-
  octet session salt, and the HMAC-SHA1 authentication function, which
  requires a 20-octet session authentication key.  These values are
  called the cipher key, the cipher salt, and the auth key in the
  following.  Since this is the initial key derivation and the key
  derivation rate is equal to zero, the value of (index DIV
  key_derivation_rate) is zero (actually, a six-octet string of zeros).
  In the following, we shorten key_derivation_rate to kdr.

  The inputs to the key derivation function are the 24-octet master key
  and the 14-octet master salt:

        master key:  73edc66c4fa15776fb57f9505c171365
                     50ffda71f3e8e5f1
        master salt: c8522f3acd4ce86d5add78edbb11

  We first show how the cipher key is generated.  The input block for
  AES-192-CM is generated by exclusive-oring the master salt with the
  concatenation of the encryption key label 0x00 with (index DIV kdr),
  then padding on the right with two null octets (which implements the





McGrew                       Standards Track                   [Page 13]

RFC 6188                SRTP AES-192 and AES-256              March 2011


  multiply-by-2^16 operation, see Section 4.3.3 of RFC 3711).  The
  resulting value is then AES-192-CM encrypted using the master key to
  get the cipher key.

     index DIV kdr:                 000000000000
     label:                       00
     master salt:   c8522f3acd4ce86d5add78edbb11
     -----------------------------------------------
     xor:           c8522f3acd4ce86d5add78edbb11     (x, PRF input)

     x*2^16:        c8522f3acd4ce86d5add78edbb110000 (AES-192-CM input)
     x*2^16 + 1:    c8522f3acd4ce86d5add78edbb110001 (2nd AES input)

     cipher key:    31874736a8f1143870c26e4857d8a5b2 (1st AES output)
                    c4a354407faadabb                 (2nd AES output)

  Next, we show how the cipher salt is generated.  The input block for
  AES-192-CM is generated by exclusive-oring the master salt with the
  concatenation of the encryption salt label.  That value is padded and
  encrypted as above.

     index DIV kdr:                 000000000000
     label:                       02
     master salt:   c8522f3acd4ce86d5add78edbb11

     ----------------------------------------------
     xor:           c8522f3acd4ce86f5add78edbb11     (x, PRF input)

     x*2^16:        c8522f3acd4ce86f5add78edbb110000 (AES-192-CM input)

                    2372b82d639b6d8503a47adc0a6c2590 (AES-192 ouptut)

     cipher salt:   2372b82d639b6d8503a47adc0a6c

  We now show how the auth key is generated.  The input block for AES-
  192-CM is generated as above, but using the authentication key label.

      index DIV kdr:                   000000000000
      label:                         01
      master salt:     c8522f3acd4ce86d5add78edbb11
      -----------------------------------------------
      xor:             c8522f3acd4ce86c5add78edbb11     (x, PRF input)

      x*2^16:          c8522f3acd4ce86c5add78edbb110000 (AES-192-CM in)







McGrew                       Standards Track                   [Page 14]

RFC 6188                SRTP AES-192 and AES-256              March 2011


   Below, the AES-192 output blocks that form the auth key are shown
   on the left, while the corresponding AES-192 input blocks are shown
   on the right.  Note that the final AES-192 output is truncated to a
   four-byte length.  The final auth key is shown below.

   auth key blocks                    AES-192 input blocks
   355b10973cd95b9eacf4061c7e1a7151   c8522f3acd4ce86c5add78edbb110000
   e7cfbfcb                           c8522f3acd4ce86c5add78edbb110001

   auth key: 355b10973cd95b9eacf4061c7e1a7151e7cfbfcb

8.  Acknowledgements

  Thanks are due to John Mattsson for verifying the test cases in the
  document and providing comments, to Bob Bell for feedback and
  encouragement, and to Richard Barnes and Hilarie Orman for
  constructive review.

9.  References

9.1.  Normative References

  [FIPS197]  "The Advanced Encryption Standard (AES)", FIPS-197 Federal
             Information Processing Standard.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC3550]  Schulzrinne, H., Casner, S., Frederick, R., and V.
             Jacobson, "RTP: A Transport Protocol for Real-Time
             Applications", STD 64, RFC 3550, July 2003.

  [RFC3711]  Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
             Norrman, "The Secure Real-time Transport Protocol (SRTP)",
             RFC 3711, March 2004.

  [RFC4568]  Andreasen, F., Baugher, M., and D. Wing, "Session
             Description Protocol (SDP) Security Descriptions for Media
             Streams", RFC 4568, July 2006.

9.2.  Informative References

  [suiteB]   "Suite B Cryptography", http://www.nsa.gov/ia/programs/
             suiteb_cryptography/index.shtml.







McGrew                       Standards Track                   [Page 15]

RFC 6188                SRTP AES-192 and AES-256              March 2011


Author's Address

  David A. McGrew
  Cisco Systems, Inc.
  510 McCarthy Blvd.
  Milpitas, CA  95035
  US

  Phone: (408) 525 8651
  EMail: [email protected]
  URI:   http://www.mindspring.com/~dmcgrew/dam.htm








































McGrew                       Standards Track                   [Page 16]