Independent Submission                                          C. Chung
Request for Comments: 6108                                   A. Kasyanov
Category: Informational                                     J. Livingood
ISSN: 2070-1721                                                  N. Mody
                                                                Comcast
                                                            B. Van Lieu
                                                           Unaffiliated
                                                          February 2011


               Comcast's Web Notification System Design

Abstract

  The objective of this document is to describe a method of providing
  critical end-user notifications to web browsers, which has been
  deployed by Comcast, an Internet Service Provider (ISP).  Such a
  notification system is being used to provide near-immediate
  notifications to customers, such as to warn them that their traffic
  exhibits patterns that are indicative of malware or virus infection.
  There are other proprietary systems that can perform such
  notifications, but those systems utilize Deep Packet Inspection (DPI)
  technology.  In contrast to DPI, this document describes a system
  that does not rely upon DPI, and is instead based in open IETF
  standards and open source applications.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This is a contribution to the RFC Series, independently of any other
  RFC stream.  The RFC Editor has chosen to publish this document at
  its discretion and makes no statement about its value for
  implementation or deployment.  Documents approved for publication by
  the RFC Editor are not a candidate for any level of Internet
  Standard; see Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc6108.










Chung, et al.                 Informational                     [Page 1]

RFC 6108            Comcast's Web Notification System      February 2011


Copyright Notice

  Copyright (c) 2011 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.

Table of Contents

  1. Introduction ....................................................3
  2. High-Level Design of the System .................................3
  3. Design Requirements .............................................3
     3.1. General Requirements .......................................4
     3.2. Web Proxy Requirements .....................................6
     3.3. ICAP Server Requirements ...................................7
     3.4. Messaging Service Requirements .............................8
  4. Implementation Details ..........................................8
     4.1. Functional Components Described, as Implemented ............9
     4.2. Functional Diagram, as Implemented ........................10
  5. High-Level Communication Flow, as Implemented ..................11
  6. Communication between Web Proxy and ICAP Server, as
     Implemented ....................................................12
  7. End-to-End Web Notification Flow, as Implemented ...............13
     7.1. Step-by-Step Description of the End-to-End Web
          Notification Flow .........................................14
     7.2. Diagram of the End-to-End Web Notification Flow ...........15
  8. Example HTTP Headers and JavaScript for a Web Notification .....16
  9. Deployment Considerations ......................................18
  10. Security Considerations .......................................19
  11. Debating the Necessity of Such a Critical Notification
      System ........................................................19
  12. Suggesting a Walled Garden as an Alternative ..................20
  13. Intended Next Steps ...........................................21
  14. Acknowledgements ..............................................21
  15. References ....................................................21
     15.1. Normative References .....................................21
     15.2. Informative References ...................................23









Chung, et al.                 Informational                     [Page 2]

RFC 6108            Comcast's Web Notification System      February 2011


1.  Introduction

  Internet Service Providers (ISPs) have a need for a system that is
  capable of communicating with customers in a nearly immediate manner,
  to convey critical service notices such as warnings concerning likely
  malware infection.  Given the prevalence of the web browser as the
  predominant client software in use by Internet users, the web browser
  is an ideal vehicle for providing these notifications.  This document
  describes a system that has been deployed by Comcast, a broadband
  ISP, to provide near-immediate notifications to web browsers.

  In the course of evaluating potential solutions, the authors
  discovered that the large majority of commercially available systems
  utilized Deep Packet Inspection (DPI) technology.  While a DPI-based
  system would certainly work, Comcast and other ISPs are trying to
  avoid widespread deployment and use of DPI, and are searching for
  alternatives.  Thus, Comcast desired to use a system that is based on
  open standards and non-proprietary software, and that did not require
  the use of DPI.  While the system described herein is specific to the
  Data-Over-Cable Service Interface Specifications (DOCSIS,
  [CableLabs_DOCSIS]) networks used by most cable-based broadband ISPs,
  concepts described in this document can generally be applied to many
  different types of networks should those ISPs be interested in
  alternatives to DPI.

2.  High-Level Design of the System

  The web notification system design is based on the use of the
  Internet Content Adaptation Protocol (ICAP) [RFC3507].  The design
  uses open source applications, which are the Squid web proxy,
  GreasySpoon ICAP server, and Apache Tomcat.  ICAP, an existing IETF
  protocol, allows for message transformation or adaptation.  An ICAP
  client passes a HyperText Transport Protocol (HTTP, [RFC2616])
  response to an ICAP server for content adaption.  The ICAP server in
  turn responds back to the client with the HTTP response containing
  the notification message by using the "respmod" method defined in
  Section 3.2 of [RFC3507].

3.  Design Requirements

  This section describes all of the key requirements taken into
  consideration by Comcast for the design of this system.  This
  information is provided in order to convey important design choices
  that were made in order to avoid the use of DPI, among other things.
  An "Additional Background" paragraph is included with each
  requirement to provide additional information, context, or other
  useful explanation.




Chung, et al.                 Informational                     [Page 3]

RFC 6108            Comcast's Web Notification System      February 2011


3.1.  General Requirements

  R3.1.1.   Must Only Be Used for Critical Service Notifications
            Additional Background: The system must only provide
            critical notifications, rather than trivial notifications.
            An example of a critical, non-trivial notification, which
            is also the primary motivation of this system, is to advise
            the user that their computer is infected with malware, that
            their security is at severe risk and/or has already been
            compromised, and that it is recommended that they take
            immediate, corrective action NOW.

  R3.1.2.   Must Use TCP Port 80
            Additional Background: The system must provide
            notifications via TCP port 80, the well-known port for HTTP
            traffic.  Since the large majority of customers use a web
            browser as their primary application, this was deemed the
            best method to provide them with an immediate, critical
            notification.

  R3.1.3.   Must Support Block Listing
            Additional Background: While unlikely, it is possible that
            the HyperText Markup Language (HTML, [RFC2854]) or
            JavaScript [RFC4329] used for notifications may cause
            problems while accessing a particular website.  Therefore,
            such a system must be capable of using a block list of
            website Uniform Resource Identifiers (URIs, [RFC3986]) or
            Fully Qualified Domain Names (FQDNs, Section 5.1 of
            [RFC1035]) that conflict with the system, so that the
            system does not provide notifications in these cases, in
            order to minimize any errors or unexpected results.  Also,
            while extensive development and testing has been performed
            to ensure that this system does not behave in unexpected
            ways, and standard ICAP (which has been in use for many
            years) is utilized, it is critical that if it does behave
            in such a way, there must be a method to rapidly exempt
            specific URIs or FQDNs.

  R3.1.4.   Must Not Cause Problems with Instant Messaging (IM) Clients
            Using TCP Port 80
            Additional Background: Some IM clients use TCP port 80 in
            their communications, often as an alternate port when
            standard, well-known ports do not work.  Other IM clients
            may in fact use TCP port 80 by default, in some cases even
            being based in a web browser.  Therefore, this system must
            not conflict with or cause unexpected results for IM
            clients (or any other client types) that use TCP port 80.




Chung, et al.                 Informational                     [Page 4]

RFC 6108            Comcast's Web Notification System      February 2011


  R3.1.5.   Must Handle Pre-Existing Active TCP Sessions Gracefully
            Additional Background: Since the web notification system
            may temporarily re-route TCP port 80 traffic in order to
            provide a critical notification, previously established TCP
            port 80 sessions must not be disrupted while being routed
            to the proxy layer.  Also, since the critical web
            notification occurs at a well-defined point in time, it is
            logical to conclude that an end user may well have an
            active TCP port 80 session in progress before the
            notification is sent, and which is still active at the time
            of the notification.  It is therefore important that any
            such connections must not be reset, and that they instead
            must be handled gracefully.

  R3.1.6.   Must Not Use TCP Resets
            Additional Background: The use of TCP resets has been
            widely criticized, both in the Internet community generally
            and in [RFC3360].  In Comcast's recent history, for
            example, the company was criticized for using TCP resets in
            the course of operating a DPI-based network management
            system.  As such, TCP resets as a function of the system
            must not be used.

  R3.1.7.   Must Be Non-Disruptive
            Additional Background: The web notification system must not
            disrupt the end-user experience, for example by causing
            significant client errors.

  R3.1.8.   User Notification Acknowledgement Must Stop Further
            Immediate Notifications
            Additional Background: Once a user acknowledges a critical
            notification, the notification should immediately stop.
            Otherwise, the user may believe the system is stuck in an
            error state and may not believe that the critical
            notification is valid.  In addition, it is quite possible
            that the user will be annoyed that the system did not react
            to his acknowledgement.

  R3.1.9.   Non-Modification of Content Should Be Maintained
            Additional Background: The system should not significantly
            alter the content of the HTTP response from any website the
            user is accessing.

  R3.1.10.  Must Handle Unexpected Content Gracefully
            Additional Background: Sometimes, developers and/or
            implementers of software systems assume that a narrow range
            of inputs to a system will occur, all of which have been
            thought of beforehand by the designers.  The authors



Chung, et al.                 Informational                     [Page 5]

RFC 6108            Comcast's Web Notification System      February 2011


            believe this is a poor assumption to make in the design and
            implementation of a system and, in contrast, that
            unexpected or even malformed inputs should be assumed.  As
            a result, the system must gracefully and transparently
            handle traffic that is unexpected, even though there will
            be cases when the system cannot provide a critical web
            notification as a result of this.  Thus, widely varying
            content should be expected, and all such unexpected traffic
            must be handled by the system without generating user-
            perceived errors or unexpected results.

  R3.1.11.  Web Content Must Not Be Cached
            Additional Background: Maintaining the privacy of users is
            important.  As such, content flowing through or
            incidentally observed by the system must not be cached.

  R3.1.12.  Advertising Replacement or Insertion Must Not Be Performed
            Under ANY Circumstances
            Additional Background: The system must not be used to
            replace any advertising provided by a website, or to insert
            advertising into websites.  This therefore includes cases
            where a web page already has space for advertising, as well
            as cases where a web page does not have any advertising.
            This is a critical area of concern for end users, privacy
            advocates, and other members of the Internet community.
            Therefore, it must be made abundantly clear that this
            system will not be used for such purposes.

3.2.  Web Proxy Requirements

  R3.2.1.  Open Source Software Must Be Used
           Additional Background: The system must use an open source
           web proxy server.  (As noted in Section 2 and Section 4.1,
           Squid has been chosen.)  While it is possible to use any web
           proxy, the use of open source enables others to easily
           access openly available documentation for the software,
           among the other benefits commonly attributed to the use of
           open source software.

  R3.2.2.  ICAP Client Should Be Integrated
           Additional Background: The web proxy server should have an
           integrated ICAP client, which simplifies the design and
           implementation of the system.








Chung, et al.                 Informational                     [Page 6]

RFC 6108            Comcast's Web Notification System      February 2011


  R3.2.3.  Access Control Must Be Implemented
           Additional Background: Access to the proxy must be limited
           exclusively to the IP addresses of users for which
           notifications are intended, and only for limited periods of
           time.  Furthermore, since a Session Management Broker (SMB)
           is utilized, as described in Section 4.1 below, then the
           proxy must restrict access only to the address of the SMB.

3.3.  ICAP Server Requirements

  R3.3.1.  Must Provide ICAP Response Support
           Additional Background: The system must support response
           adaptation, in accordance with [RFC3507].  An ICAP client
           passes a HyperText Transport Protocol (HTTP, [RFC2616])
           response to an ICAP server for content adaption.  The ICAP
           server in turn responds back to the client with the HTTP
           response containing the notification message by using the
           "respmod" method defined in Section 3.2 of [RFC3507].

  R3.3.2.  Must Provide Consistency of Critical Notifications
           Additional Background: The system must be able to
           consistently provide a specific notification.  For example,
           if a critical alert to notify a user that they are infected
           with malware is desired, then that notification should
           consistently look the same for all users and not vary.

  R3.3.3.  Must Support Multiple Notification Types
           Additional Background: While the initial and sole critical
           notification sent by the system is intended to alert users
           of a malware infection, malware is a rapidly and
           continuously evolving threat.  As a result of this reality,
           the system must be able to evolve to provide different types
           of critical notifications.  For example, if malware begins
           to diverge into several different categories with
           substantially different implications for end users, then it
           may become desirable to provide a notification that has been
           narrowly tailored to each category of malware.

  R3.3.4.  Must Support Notification to Multiple Users Simultaneously
           Additional Background: The system must be able to
           simultaneously serve notifications to different users.  For
           example, if 100 users have been infected with malware and
           critically need to be notified about this security problem,
           then the system must be capable of providing the
           notification to several users at a time, or all of the users
           at the same time, rather than to just one user at a time.





Chung, et al.                 Informational                     [Page 7]

RFC 6108            Comcast's Web Notification System      February 2011


3.4.  Messaging Service Requirements

  R3.4.1.  A Messaging Service Must Be Used
           Additional Background: The Messaging Service, as described
           in Section 4.1 below, caches the notifications for each
           specific user.  Thus, the notification messages are cached
           by the system and do not have to be retrieved each time a
           notification is needed.  As a result, the system can be more
           easily scaled to provide notification to multiple users
           simultaneously, as noted in an earlier requirement ("Must
           Support Notification to Multiple Users Simultaneously").

  R3.4.2.  Must Process Acknowledgements on a Timely Basis
           Additional Background: The Messaging Service must quickly
           process notification acknowledgements by end users, as noted
           in an earlier requirement ("User Notification
           Acknowledgement Must Stop Further Immediate Notifications").

  R3.4.3.  Must Ensure Notification Targeting Accuracy
           Additional Background: The Messaging Service must ensure
           that notifications are presented to the intended users.  For
           example, if the system intends to provide a critical
           notification to User A and User B, but not User C, then
           User C must not be sent a notification.

  R3.4.4.  Should Keep Notification Records for Customer Support
           Purposes
           Additional Background: The Messaging Service should maintain
           some type of record that a notification has been sent to a
           user, in case that user inquires with customer support
           personnel.  For example, when a user is presented with the
           critical notification advising them of a malware infection,
           that user may choose to call Comcast's Customer Security
           Assurance team, in the customer service organization.  As a
           result, a Customer Security Assurance representative should
           be able to confirm that the user did in fact receive a
           notification concerning malware infection in the course of
           providing assistance to the end user in remediating the
           malware infection.

4.  Implementation Details

  This section defines and documents the various core functional
  components of the system, as they are implemented.  These components
  are then shown in a diagram to describe how the various components
  are linked and relate to one another.





Chung, et al.                 Informational                     [Page 8]

RFC 6108            Comcast's Web Notification System      February 2011


4.1.  Functional Components Described, as Implemented

  This section accurately and transparently describes the software (S)
  packages used by the system described herein, as well as all of the
  details of how the system functions.  The authors acknowledge that
  there may be multiple alternative software choices for each
  component; the purpose of this section is to describe those
  selections that have been made and deployed.

  S4.1.1.  Web Proxy: The system uses Squid Proxy, an open source web
           proxy application in wide use, which supports an integrated
           ICAP client.

  S4.1.2.  ICAP Server: The system uses GreasySpoon, an open source
           application.  The ICAP server retrieves the notifications
           from the Messaging Service cache when content adaption is
           needed.

  S4.1.3.  Customer Database: The Customer Database holds the relevant
           information that the system needs to provide a critical
           notification to a given user.  The database may also hold
           the status of which users were notified and which users are
           pending notification.

  S4.1.4.  Messaging Service: The system uses Apache Tomcat, an open
           source application.  This is a process engine that retrieves
           specific web notification messages from a catalog of
           possible notifications.  While only one notification is
           currently used, concerning malware infection, as noted in
           Section 3.3 the system may eventually need to provide
           multiple notifications (the specific requirement is "Must
           Support Multiple Notification Types").  When a notification
           for a specific user is not in the cache, the process
           retrieves this information from the Customer Database and
           populates the cache for a specific period of time.

  S4.1.5.  Session Management Broker (SMB): A Load Balancer (LB) with a
           customized layer 7 inspection policy is used to
           differentiate between HTTP and non-HTTP traffic on TCP
           port 80, in order to meet the requirements documented in
           Section 3 above.  The system uses a LB from A10 Networks.
           The SMB functions as a full stateful TCP proxy with the
           ability to forward packets from existing TCP sessions that
           do not exist in the internal session table (to meet the
           specific requirement "Must Handle Pre-Existing Active TCP
           Sessions Gracefully").  New HTTP sessions are load balanced
           to the web proxy layer either transparently or using source
           Network Address Translation (NAT [RFC3022]) from the SMB.



Chung, et al.                 Informational                     [Page 9]

RFC 6108            Comcast's Web Notification System      February 2011


           Non-HTTP traffic for established TCP sessions not in the SMB
           session table is simply forwarded to the destination
           transparently via the TCP proxy layer (again, to meet the
           specific requirement "Must Handle Pre-Existing Active TCP
           Sessions Gracefully").

4.2.  Functional Diagram, as Implemented

  +--------+        +------------+        +----------+
  |  ICAP  | <----> | Messaging  | <----> | Customer |
  | Server |        |  Service   |        | Database |
  +--------+        +------------+        +----------+
    ^
    |                +----------+
    |                |          |
    |      +-------> | Internet | <-------+
    |      |         |          |         |
    |      |         +----------+         |
    |      |              ^               |
    v      v              |               |
  +----------+            v               v
  |+--------+|        +-------+       +--------+
  ||  ICAP  || <----> |  SMB  | <---> | Access |
  || Client ||        +-------+       | Router |
  |+--------+|                        +--------+
  || SQUID  ||                            ^
  || Proxy  ||                            |
  |+--------+|                            v
  +----------+                       +----------+
                                     |  CMTS*   |
                                     +----------+
                                         ^
                                         |
                                         v
                                      +------+
                                      |  PC  |
                                      +------+

   * A Cable Modem Termination System (CMTS)
     is an access network element.

        Figure 1: Web Notification System - Functional Components









Chung, et al.                 Informational                    [Page 10]

RFC 6108            Comcast's Web Notification System      February 2011


5.  High-Level Communication Flow, as Implemented

  In Section 4, the functional components of the system were described,
  and then shown in relation to one another in Figure 1 above.  This
  section describes the high-level communication (C) flow of a
  transaction in the system, in order to explain the general way that
  the functions work together in action.  This will be further
  explained in much more detail in later sections of this document.

  C5.1.   Setup of Differentiated Services (Diffserv): Using Diffserv
          [RFC2474] [RFC2475] [RFC2597] [RFC3140] [RFC3246] [RFC3260]
          [RFC4594], set a policy to direct TCP port 80 traffic to the
          web notification system's web proxy.

  C5.2.   Session Management: TCP port 80 packets are routed to a
          Session Management Broker (SMB) that distinguishes between
          HTTP or non-HTTP traffic and between new and existing
          sessions.  HTTP packets are forwarded to the web proxy by the
          SMB.  Non-HTTP packets such as instant messaging (IM) traffic
          are forwarded to a TCP proxy layer for routing to their
          destination, or the SMB operates as a full TCP proxy and
          forwards the non-HTTP packets to the destination.
          Pre-established TCP sessions on port 80 are identified by the
          SMB and forwarded with no impact.

  C5.3.   Web Proxy Forwards Request: The web proxy forwards the HTTP
          request on to the destination site, a web server, as a web
          proxy normally would do.

  C5.4.   On Response, Send Message to ICAP Server: When the HTTP
          response is received from the destination server, the web
          proxy sends a message to the ICAP server for the web
          notification.

  C5.5.   Messaging Service: The Messaging Service should respond with
          appropriate notification content or null response if no
          notification is cached.

  C5.6.   ICAP Server Responds: The ICAP server responds and furnishes
          the appropriate content for the web notification to the web
          proxy.

  C5.7.   Web Proxy Sends Response: The web proxy then forwards the
          HTTP response containing the web notification to the client
          web browser.






Chung, et al.                 Informational                    [Page 11]

RFC 6108            Comcast's Web Notification System      February 2011


  C5.8.   User Response: The user observes the critical web
          notification, and clicks an appropriate option, such as: OK/
          acknowledged, snooze/remind me later, etc.

  C5.9.   More Information: Depending upon the notification, the user
          may be provided with more information.  For example, as noted
          previously, the system was designed to provide critical
          notifications concerning malware infection.  Thus, in the
          case of malware infection, the user may be advised to go to a
          malware remediation web page that provides directions on how
          to attempt to remove the malware and attempt to secure hosts
          against future malware infection.

  C5.10.  Turn Down Diffserv: Once the notification transaction has
          completed, remove any special Diffserv settings.

6.  Communication between Web Proxy and ICAP Server, as Implemented

  The web proxy and ICAP server are critical components of the system.
  This section shows the communication that occurs between these two
  components.






























Chung, et al.                 Informational                    [Page 12]

RFC 6108            Comcast's Web Notification System      February 2011


  +------------+
  |  www URI   |
  +------------+
     ^      |
  (2)|      |(3)
     |      v
    +--------+     (4)     +--------+     (4)     +--------+
    |        |------------>|        |------------>|        |
    |        |     (5)     |        |     (5)     |        |
    | Proxy  |<------------|  ICAP  |<------------|  ICAP  |
    | Module |     (6)     | Client |     (6)     | Server |
    |        |------------>|        |------------>|        |
    |        |     (7)     |        |     (7)     |        |
    |        |<------------|        |<------------|        |
    +--------+             +--------+             +--------+
     ^      |
  (1)|      |(8)
     |      v
  +------------+              (9)             +------------+
  |            |----------------------------->|            |
  |  Browser   |              (10)            | Web Server |
  |            |<-----------------------------|            |
  +------------+                              +------------+

  (1) - HTTP GET (TCP 80)
  (2) - Proxy HTTP GET (TCP 80)
  (3) - HTTP 200 OK w/ Response
  (4) - ICAP RESPMOD
  (5) - ICAP 200 OK
  (6) - TCP Stream - Encapsulate Header
  (7) - ICAP 200 OK Insert Message
  (8) - HTTP 200 OK w/ Response + Message Frame
  (9) - HTTP GET for Message
  (10) - HTTP 200 w/ Message Content

        Figure 2: Communication between Web Proxy and ICAP Server

7.  End-to-End Web Notification Flow, as Implemented

  This section describes the exact flow of an end-to-end notification,
  in order to show in detail how the system functions.










Chung, et al.                 Informational                    [Page 13]

RFC 6108            Comcast's Web Notification System      February 2011


7.1.  Step-by-Step Description of the End-to-End Web Notification Flow

  Policy-Based Routing

  1.  TCP port 80 packets from the user that needs to be notified are
      routed to the web proxy via policy-based routing.

  2.  Packets are forwarded to the Session Management Broker, which
      establishes a session with the web proxy and routes the packets
      to the web proxy.

  Web Proxy

  1.   The user's HTTP request is directed to the web proxy.

  2.   The web proxy receives HTTP traffic and retrieves content from
       the requested website.

  3.   The web proxy receives the response and forwards it to the ICAP
       server for response adaptation.

  4.   The ICAP server checks the HTTP content in order to determine
       whether the notification message can be inserted.

  5.   The ICAP server initiates a request to the Messaging Service
       cache process with the IP address of the user.

  6.   If a notification message for the user exists, then the
       appropriate notification is cached on the Messaging Service.
       The Messaging Service then returns the appropriate notification
       content to the ICAP server.

  7.   Once the notification message is retrieved from the Messaging
       Service cache, the ICAP server may insert the notification
       message in the HTTP response body without altering or modifying
       the original content of the HTTP response.

  8.   The ICAP server then sends the response back to the web proxy,
       which in turn forwards the HTTP response back to the browser.

  9.   If the user's IP address is not found or provisioned for a
       notification message, then the ICAP server should return a "204
       No modifications needed" response to the ICAP client as defined
       in Section 4.3.3 of [RFC3507].  As a result, the user will not
       receive any web notification message.






Chung, et al.                 Informational                    [Page 14]

RFC 6108            Comcast's Web Notification System      February 2011


  10.  The user observes the web notification, and clicks an
       appropriate option, such as: OK/acknowledged, snooze/remind me
       later, etc.

7.2.  Diagram of the End-to-End Web Notification Flow

  The two figures below show the communications flow from the web
  browser, through the web notification system.

  Figure 3 illustrates what occurs when a notification request cannot
  be inserted because the notification type for the user's IP address
  is not cached in the Messaging Service.

                           ICAP     ICAP    Message          Customer
        Browser   Proxy   Client   Server   Service  Internet    DB
          |  HTTP  |         |         |        |        |        |
          |  GET   | Proxy   |         |        |        |        |
          +------->| Request |         |        |        |        |
          |        +---------|---------|--------|------->|        |
          |        |         |         |        | 200 OK |        |
          |        |<--------|---------|--------|--------+        |
          |        | ICAP    |         |        |        |        |
          |        | RESPMOD | ICAP    |        |        |        |
          |        +-------->| RESPMOD | Check  |        |        |
          |        |         +-------->| Cache  |        |        |
          |        |         |         | for IP |        |        |
          |        |         |         | Match  |        |        |
          |        |         |         +------->|        |        |
          |        |         |         | Cache  |        |        |
          |        |         |         | Miss   |        |        |
          |        |         |         |<-------+ Request|        |
          |        |         | 204 No  |        | Type   |        |
          |        |         | Modif.  |        +--------|------->|
          |        |         | Needed  |        |        |        |
          |        | No      |<--------+        |        | Type   |
          |        | Insert  |         |        |        |Returned|
          | 200 OK |<--------+         |        |<-------|--------+
          | w/o    |         |         |        |        |        |
          | Insert |         |         |        |        |        |
          |<-------+         |         |        |        |        |
          |        |         |         |        |        |        |

      Figure 3: End-to-End Web Notification Flow - with Cache Miss








Chung, et al.                 Informational                    [Page 15]

RFC 6108            Comcast's Web Notification System      February 2011


  Figure 4 illustrates what occurs when a notification request for the
  user's IP address is cached in the Messaging Service.

                           ICAP     ICAP    Message          Customer
        Browser   Proxy   Client   Server   Service  Internet    DB
          |  HTTP  |         |         |        |        |        |
          |  GET   | Proxy   |         |        |        |        |
          +------->| Request |         |        |        |        |
          |        +---------|---------|--------|------->|        |
          |        |         |         |        | 200 OK |        |
          |        |<--------|---------|--------|--------+        |
          |        | ICAP    |         |        |        |        |
          |        | RESPMOD | ICAP    |        |        |        |
          |        +-------->| RESPMOD | Check  |        |        |
          |        |         +-------->| Cache  |        |        |
          |        |         |         | for IP |        |        |
          |        |         |         | Match  |        |        |
          |        |         |         +------->|        |        |
          |        |         |         | Cache  |        |        |
          |        |         |         | Hit    |        |        |
          |        |         | Insert  |<-------+        |        |
          |        | Return  | Type    |        |        |        |
          |        | 200 OK  |<--------+        |        |        |
          |        | with    |         |        |        |        |
          |        | Insert  |         |        |        |        |
          | 200 OK |<--------+         |        |        |        |
          | w/     |         |         |        |        |        |
          | Notify |         |         |        |        |        |
          |<-------+         |         |        |        |        |
          |        |         |         |        |        |        |

       Figure 4: End-to-End Web Notification Flow - with Cache Hit

8.  Example HTTP Headers and JavaScript for a Web Notification

  The figure below shows an example of a normal HTTP GET request from
  the user's web browser to www.example.com, a web server on the
  Internet.













Chung, et al.                 Informational                    [Page 16]

RFC 6108            Comcast's Web Notification System      February 2011


------------------------------------------------------------------------
1.  HTTP GET Request to www.example.com
------------------------------------------------------------------------
http://www.example.com/

GET / HTTP/1.1
Host: www.example.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.14)
       Gecko/20080404 Firefox/2.0.0.14
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Pragma: no-cache
------------------------------------------------------------------------

    Figure 5: Example HTTP Headers for a Web Notification - HTTP GET


  In the figure below, the traffic is routed via the web proxy, which
  communicates with the ICAP server and returns the response from
  www.example.com.  In this case, that response is a 200 OK, with the
  desired notification message inserted.

------------------------------------------------------------------------
2.  Response from www.example.com via PROXY
------------------------------------------------------------------------
HTTP/1.x 200 OK
Date: Thu, 08 May 2008 16:26:29 GMT
Server: Apache/2.2.3 (CentOS)
Last-Modified: Tue, 15 Nov 2005 13:24:10 GMT
Etag: "b80f4-1b6-80bfd280"
Accept-Ranges: bytes
Content-Length: 438
Connection: close
Content-Type: text/html; charset=UTF-8
Age: 18
X-Cache: HIT from localhost.localdomain
Via: 1.0 localhost.localdomain (squid/3.0.STABLE5)
Proxy-Connection: keep-alive
------------------------------------------------------------------------

  Figure 6: Example HTTP Headers for a Web Notification - HTTP Response






Chung, et al.                 Informational                    [Page 17]

RFC 6108            Comcast's Web Notification System      February 2011


  The figure below shows an example of the web notification content
  inserted in the 200 OK response, in this example JavaScript code.

------------------------------------------------------------------------
3.  Example of JavaScript containing Notification Insertion
------------------------------------------------------------------------
<!--all elements used in a notification should have cascading style
sheet (css) properties defined to avoid unwanted inheritance from
parent page-->

<style type="text/css">
#example {
 position: absolute; left: 100px; top: 50px;
 z-index: 9999999; height: auto; width: 550px;
 padding: 10px;
 border: solid 2px black;
 background-color:#FDD017;
 opacity: 0.8; filter: alpha(opacity = 80);
}
</style>

<script language="javascript" type="text/javascript">
// ensure that content is not part of an iframe
if (self.location == top.location) {
 // this is a floating div with 80% transparency
 document.write('<div id="example" name="example">');
 document.write('<h2>IMPORTANT MESSAGE</h2>');
 document.write('<p>Lorem ipsum dolor sit amet, consecteteur ');
 document.write('adipisicing elit, sed do eiusmod tempor ');
 document.write('incididunt ut labore et dolore magna aliqua. ');
 document.write('Ut enim ad minim veniam, quis nostrud ');
 document.write('exercitation ullamco laboris nisi ut aliquip ex ');
 document.write('ea commodo consequat.');
 document.write('</div>');
}</script>
------------------------------------------------------------------------

         Figure 7: Example JavaScript Used in a Web Notification

9.  Deployment Considerations

  The components of the web notification system should be distributed
  throughout the network and close to end users.  This ensures that the
  routing performance and the user's web browsing experience remain
  excellent.  In addition, a HTTP-aware load balancer should be used in
  each datacenter where servers are located, so that traffic can be
  spread across N+1 servers and the system can be easily scaled.




Chung, et al.                 Informational                    [Page 18]

RFC 6108            Comcast's Web Notification System      February 2011


10.  Security Considerations

  This critical web notification system was conceived in order to
  provide an additional method of notifying end user customers that
  their computer has been infected with malware.  Depending upon the
  specific text of the notification, users could fear that it is some
  kind of phishing attack.  As a result, care has been taken with the
  text and any links contained in the web notification itself.  For
  example, should the notification text change over time, it may be
  best to provide a general URI or a telephone number.  In contrast to
  that, the notification must not ask for login credentials, and must
  not ask a user to follow a link in order to change their password,
  since these are common phishing techniques.  Finally, care should be
  taken to provide confidence that the web notification is valid and
  from a trusted party, and/or that the user has an alternate method of
  checking the validity of the web notification.  One alternate method
  of validating the notification may be to call customer support (in
  this example, Comcast's Customer Security Assurance team); this
  explains a key requirement (specifically, "Should Keep Notification
  Records for Customer Support Purposes") in Section 3.4.

11.  Debating the Necessity of Such a Critical Notification System

  Some members of the community may question whether it is ever, under
  any circumstances, acceptable to modify Internet content in order to
  provide critical service notification concerning malware infection -
  even in the smallest of ways, even if openly and transparently
  documented, even if thoroughly tested, and even if for the best of
  motivations.  It is important that anyone with such concerns
  recognize that this document is by no means the first to propose
  this, particularly as a tactic to combat a security problem, and in
  fact simply leverages previous work in the IETF, such as [RFC3507].
  Such concerned parties should also study the many organizations using
  ICAP and the many software systems that have implemented ICAP.

  In addition, concerned members of the community should review
  Section 1, which describes the fact that this is a common feature of
  DPI systems, made by DPI vendors and many, if not most, major
  networking equipment vendors.  As described herein, the authors of
  this document are motivated to AVOID the need for widespread,
  ubiquitous deployment of DPI, via the use of both open source
  software and open protocols, and are further motivated to
  transparently describe the details of how such a system functions,
  what it IS intended to do, what it IS NOT intended to do, and
  purposes for which it WILL NOT be used.






Chung, et al.                 Informational                    [Page 19]

RFC 6108            Comcast's Web Notification System      February 2011


  The authors also believe it is important for ISPs to transparently
  disclose network management techniques and systems, and to have a
  venue to do so, as has been done here.  In addition, the authors
  believe it is important for the IETF and other members of the
  Internet community to encourage and positively reinforce such
  disclosures.  In the publishing of such a document for reference and
  comment by the Internet community, this may serve to motivate other
  ISPs to be similarly open and to engage the IETF and other
  organizations that are part of the Internet community.  Not
  publishing such documents could motivate less disclosure on the part
  of ISPs and other members of the Internet community, increase the use
  of DPI, and decrease ISP participation in the critical technical
  bodies that make up parts of the Internet community.

  In addition, it is critical that members of the community recognize
  the good motivations of ISPs like Comcast to combat the massive and
  continuing proliferation of malware, which is a huge threat to the
  security of average Internet users and now represents a multi-
  billion-dollar underground economy engaged in identity theft,
  financial fraud, transmission of spam, and other criminal activity.
  Such a critical notification system in fact is only necessary due to
  the failure of host-based security at defending against and
  preventing malware infection.  As such, ISPs such as Comcast are
  being urged by their customers and by other parties such as security
  and/or privacy organizations, as well as governmental organizations,
  to take action to help solve this massive problem, since so many
  other tactics have been unsuccessful.  For example, as Howard
  Schmidt, the Special Advisory for Cyber Security to President Obama,
  of the United States of America, said in 2005: "As attacks on home-
  based and unsecured networks become as prevalent as those against
  large organizations, the need for ISPs to do everything they can to
  make security easier for their subscribers is critical for the
  preservation of our nation's information backbone.  Additionally,
  there is tremendous potential to grow further the use of broadband
  around the world; and making safety and security part of an ISP's
  core offering will enable the end user to fully experience the rich
  and robust benefits broadband provides".

12.  Suggesting a Walled Garden as an Alternative

  A "walled garden" refers to an environment that controls the
  information and services that a subscriber is allowed to utilize and
  what network access permissions are granted.  Placing a user in a
  walled garden is therefore another approach that ISPs may take to
  notify users, and this method is being explored as a possible
  alternative in other documents and community efforts.  As such, web
  notifications should be considered one of many possible notification
  methods that merit documentation.



Chung, et al.                 Informational                    [Page 20]

RFC 6108            Comcast's Web Notification System      February 2011


  However, a walled-garden approach can pose challenges and may in some
  cases be considered disruptive to end users.  For example, a user
  could be playing a game online, via the use of a dedicated, Internet-
  connected game console, which would likely stop working when the user
  was placed in the walled garden.  In another example, the user may be
  in the course of a telephone conversation, using a Voice Over IP
  (VoIP) device of some type, which would also likely stop working when
  the user was placed in the walled garden.  In both cases, the user is
  not using a web browser and would not have a way to determine the
  reason why their service seemingly stopped working.

13.  Intended Next Steps

  Unfortunately, at the time of this writing, no existing working group
  of the IETF is focused on issues of malware infection and related
  issues.  As a result, there was not a definite venue for this
  document, so it was submitted to the Independent Submissions Editor
  as an independent submission.  While documentation and disclosure of
  this system are beneficial for the Internet community in and of
  itself, there are other benefits to having this document published.
  One of those reasons is that members of the community, including
  members of the IETF, have a stable document to refer to in the case
  of any potential new work that the community may undertake in the
  area of malware, security, and critical notification to end users.
  It is also hoped that, in the tradition of a Request for Comment,
  other members of the community may be motivated to propose
  alternative systems or other improvements.

14.  Acknowledgements

  The authors wish to thank Alissa Cooper for her review of and
  comments on the document, and Nevil Brownlee for his excellent
  feedback, as well as others who reviewed the document.

15.  References

15.1.  Normative References

  [RFC1035]  Mockapetris, P., "Domain names - implementation and
             specification", STD 13, RFC 1035, November 1987.

  [RFC2474]  Nichols, K., Blake, S., Baker, F., and D. Black,
             "Definition of the Differentiated Services Field (DS
             Field) in the IPv4 and IPv6 Headers", RFC 2474,
             December 1998.






Chung, et al.                 Informational                    [Page 21]

RFC 6108            Comcast's Web Notification System      February 2011


  [RFC2475]  Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z.,
             and W. Weiss, "An Architecture for Differentiated
             Services", RFC 2475, December 1998.

  [RFC2597]  Heinanen, J., Baker, F., Weiss, W., and J. Wroclawski,
             "Assured Forwarding PHB Group", RFC 2597, June 1999.

  [RFC2616]  Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
             Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
             Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

  [RFC2854]  Connolly, D. and L. Masinter, "The 'text/html' Media
             Type", RFC 2854, June 2000.

  [RFC3022]  Srisuresh, P. and K. Egevang, "Traditional IP Network
             Address Translator (Traditional NAT)", RFC 3022,
             January 2001.

  [RFC3140]  Black, D., Brim, S., Carpenter, B., and F. Le Faucheur,
             "Per Hop Behavior Identification Codes", RFC 3140,
             June 2001.

  [RFC3246]  Davie, B., Charny, A., Bennet, J., Benson, K., Le Boudec,
             J., Courtney, W., Davari, S., Firoiu, V., and D.
             Stiliadis, "An Expedited Forwarding PHB (Per-Hop
             Behavior)", RFC 3246, March 2002.

  [RFC3260]  Grossman, D., "New Terminology and Clarifications for
             Diffserv", RFC 3260, April 2002.

  [RFC3507]  Elson, J. and A. Cerpa, "Internet Content Adaptation
             Protocol (ICAP)", RFC 3507, April 2003.

  [RFC3986]  Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
             Resource Identifier (URI): Generic Syntax", STD 66,
             RFC 3986, January 2005.

  [RFC4329]  Hoehrmann, B., "Scripting Media Types", RFC 4329,
             April 2006.

  [RFC4594]  Babiarz, J., Chan, K., and F. Baker, "Configuration
             Guidelines for DiffServ Service Classes", RFC 4594,
             August 2006.








Chung, et al.                 Informational                    [Page 22]

RFC 6108            Comcast's Web Notification System      February 2011


15.2.  Informative References

  [CableLabs_DOCSIS]
             CableLabs, "Data-Over-Cable Service Interface
             Specifications", CableLabs Specifications, Various DOCSIS
             Reference Documents, <http://www.cablelabs.com/
             specifications/archives/docsis.html>.

  [RFC3360]  Floyd, S., "Inappropriate TCP Resets Considered Harmful",
             BCP 60, RFC 3360, August 2002.









































Chung, et al.                 Informational                    [Page 23]

RFC 6108            Comcast's Web Notification System      February 2011


Authors' Addresses

  Chae Chung
  Comcast Cable Communications
  One Comcast Center
  1701 John F. Kennedy Boulevard
  Philadelphia, PA  19103
  US
  EMail: [email protected]
  URI:   http://www.comcast.com


  Alex Kasyanov
  Comcast Cable Communications
  One Comcast Center
  1701 John F. Kennedy Boulevard
  Philadelphia, PA  19103
  US
  EMail: [email protected]
  URI:   http://www.comcast.com


  Jason Livingood
  Comcast Cable Communications
  One Comcast Center
  1701 John F. Kennedy Boulevard
  Philadelphia, PA  19103
  US
  EMail: [email protected]
  URI:   http://www.comcast.com


  Nirmal Mody
  Comcast Cable Communications
  One Comcast Center
  1701 John F. Kennedy Boulevard
  Philadelphia, PA  19103
  US
  EMail: [email protected]
  URI:   http://www.comcast.com


  Brian Van Lieu
  Unaffiliated
  Bethlehem, PA  18018
  US
  EMail: [email protected]




Chung, et al.                 Informational                    [Page 24]