Internet Engineering Task Force (IETF)                       J. Mattsson
Request for Comments: 6043                                      Ericsson
Category: Informational                                          T. Tian
ISSN: 2070-1721                                                      ZTE
                                                             March 2011


         MIKEY-TICKET: Ticket-Based Modes of Key Distribution
                in Multimedia Internet KEYing (MIKEY)

Abstract

  The Multimedia Internet KEYing (MIKEY) specification describes a key
  management scheme for real-time applications.  In this document, we
  note that the currently defined MIKEY modes are insufficient to
  address deployment scenarios built around a centralized key
  management service.  Interest in such deployments is increasing.
  Therefore, a set of new MIKEY modes that work well in such scenarios
  are defined.  The new modes use a trusted key management service and
  a ticket concept, similar to that in Kerberos.  The new modes also
  support features used by many existing applications, where the exact
  identity of the other endpoint may not be known at the start of the
  communication session.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Not all documents
  approved by the IESG are a candidate for any level of Internet
  Standard; see Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc6043.












Mattsson & Tian               Informational                     [Page 1]

RFC 6043                      MIKEY-TICKET                    March 2011


Copyright Notice

  Copyright (c) 2011 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1. Introduction ....................................................4
  2. Terminology .....................................................4
     2.1. Definitions and Notation ...................................5
     2.2. Abbreviations ..............................................6
     2.3. Payloads ...................................................6
  3. Design Considerations ...........................................7
  4. MIKEY-TICKET ....................................................9
     4.1. Overview ...................................................9
          4.1.1. Modes ..............................................12
     4.2. Exchanges .................................................13
          4.2.1. Ticket Request .....................................13
          4.2.2. Ticket Transfer ....................................16
          4.2.3. Ticket Resolve .....................................19
  5. Key Management Functions .......................................23
     5.1. Key Derivation ............................................23
          5.1.1. Deriving Forked Keys ...............................25
          5.1.2. Deriving Keys from an Envelope Key/PSK/MPK .........26
          5.1.3. Deriving Keys from a TGK/GTGK ......................27
     5.2. CSB Updating ..............................................28
     5.3. Ticket Reuse ..............................................29
     5.4. Error Handling ............................................29
     5.5. MAC/Signature Coverage ....................................30
  6. Payload Encoding ...............................................31
     6.1. Common Header Payload (HDR) ...............................31
          6.1.1. The GENERIC-ID Map Type ............................33
     6.2. Key Data Transport Payload (KEMAC) ........................34
          6.2.1. Key Data Sub-Payload ...............................35
     6.3. Timestamp Payload (T) .....................................36
     6.4. Timestamp Payload with Role Indicator (TR) ................36
     6.5. ID Payload (ID) ...........................................37
     6.6. ID Payload with Role Indicator (IDR) ......................37



Mattsson & Tian               Informational                     [Page 2]

RFC 6043                      MIKEY-TICKET                    March 2011


     6.7. Cert Hash Payload (CHASH) .................................38
     6.8. RAND Payload with Role Indicator (RANDR) ..................38
     6.9. Error Payload (ERR) .......................................39
     6.10. Ticket Policy Payload (TP) / Ticket Payload (TICKET) .....39
  7. Transport Protocols ............................................43
  8. Pre-Encrypted Content ..........................................43
  9. Group Communication ............................................44
     9.1. Key Forking ...............................................45
  10. Signaling between Different KMSs ..............................45
  11. Adding New Ticket Types to MIKEY-TICKET .......................46
  12. Security Considerations .......................................47
     12.1. General ..................................................47
     12.2. Key Forking ..............................................48
     12.3. Denial of Service ........................................49
     12.4. Replay ...................................................49
     12.5. Group Key Management .....................................50
  13. Acknowledgements ..............................................50
  14. IANA Considerations ...........................................50
  15. References ....................................................53
     15.1. Normative References .....................................53
     15.2. Informative References ...................................53
  Appendix A.  MIKEY Base Ticket ....................................55
    A.1.  Components of the Ticket Data .............................55
    A.2.  Key Derivation ............................................56
      A.2.1.  Deriving Keys from a TPK ..............................56
      A.2.2.  Deriving MPKi and MPKr ................................57
    A.3.  Ticket Header Payload (THDR) ..............................57
  Appendix B.  Alternative Use Cases ................................58
    B.1.  Compatibility Mode ........................................58






















Mattsson & Tian               Informational                     [Page 3]

RFC 6043                      MIKEY-TICKET                    March 2011


1.  Introduction

  Key management systems are either based on negotiation and exchange
  directly between peers (e.g., Diffie-Hellman-based schemes), pre-
  distribution of user credentials (shared secrets/certificates), or
  availability of a trusted Key Management Service (KMS).  The modes
  described in the Multimedia Internet KEYing (MIKEY) specification
  [RFC3830] and its extensions [RFC4650] [RFC4738] are all variants of
  the first two alternatives.

  In security systems serving a large number of users, a solution based
  on a key management service is often preferred.  With such a service
  in place, there is no need to pre-distribute credentials that
  directly can be used to establish security associations between peers
  for protected communication, as users can request such credentials
  when needed.  Solutions based on a trusted key management service
  also scale well when the number of users grows.

  This document introduces a set of new MIKEY modes that go under the
  common name MIKEY-TICKET.  The new modes support a ticket concept,
  similar to that in Kerberos [RFC4120], which is used to identify and
  deliver keys.  A high-level outline of MIKEY-TICKET as defined herein
  is that the Initiator requests keys and a ticket from the KMS and
  sends the ticket to the Responder.  The ticket contains a reference
  to the keys, or the enveloped keys.  The Responder then sends the
  ticket to the KMS, which returns the appropriate keys.

  MIKEY-TICKET is primarily designed to be used for media plane
  security in the 3rd Generation Partnership Project (3GPP) IP
  Multimedia Subsystem (IMS) [3GPP.33.328].  This implies that some
  extensions to the basic Kerberos concept are needed.  For instance,
  the Initiator may not always know the exact identity of the Responder
  when the communication with the key management server is initiated.

  This document defines a signaling framework enabling peers to
  request, transfer, and resolve various Ticket Types using a key
  management service.  A default Ticket Type is also defined.  To allow
  the use of 256-bit keys for users with high security requirements,
  additional encryption, authentication, and pseudorandom functions are
  defined.  And to eliminate the limitations with the existing SRTP-ID
  map type, a new CS ID map type called GENERIC-ID is defined.

2.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].




Mattsson & Tian               Informational                     [Page 4]

RFC 6043                      MIKEY-TICKET                    March 2011


  Definitions of terms and notation will, unless otherwise stated, be
  as defined in [RFC3830].

2.1.  Definitions and Notation

  Forking: The delivery of a request to multiple endpoints (multiple
  devices owned by a single user or multiple users).

  Key forking: When used in conjunction with forking, key forking
  refers to the process of modifying keys, making them
  cryptographically unique for each responder targeted by the forking.

  (Media) session: The communication session intended to be secured by
  the MIKEY-TICKET provided key(s).

  Session information: Information related to the security protocols
  used to protect the media session: keys, salts, algorithms, etc.

  Ticket: A Kerberos-like object used to identify and deliver keys over
  an untrusted network.

  Ticket Data: Ticket part with information intended only for the party
  that resolves the ticket (e.g., keys).

  Ticket Request: Exchange used by the Initiator to request keys and a
  ticket from a trusted KMS.

  Ticket Transfer: Exchange used to transfer the ticket as well as
  session information from the Initiator to the Responder.

  Ticket Resolve: Exchange used by the Responder to request the KMS to
  return the keys encoded in a ticket.

  Ticket Policy: Policy for ticket generation and resolution,
  authorized applications, key derivation, etc.

  Ticket Type: Defines ticket format and processing.  May further have
  subtype and version.

  Solid arrows  (----->) indicate mandatory messages.
  Dashed arrows (- - ->) indicate optional messages.

  E(k, p)   Encryption of p with the key k
  PKx       Public Key of entity x
  k'        The forked key k
  [p]       p is optional
  {p}       Zero or more occurrences of p
  (p)       One or more occurrences of p



Mattsson & Tian               Informational                     [Page 5]

RFC 6043                      MIKEY-TICKET                    March 2011


  ||        Concatenation
  |         OR (selection operator)

2.2.  Abbreviations

  3GPP:     3rd Generation Partnership Project
  AAA:      Authentication, Authorization, and Accounting
  ACL:      Access Control List
  AES:      Advanced Encryption Standard
  CA:       Certification Authority
  CS:       Crypto Session
  CSB:      Crypto Session Bundle
  IMS:      IP Multimedia Subsystem
  GTGK:     Group TGK
  HMAC:     Hash-based Message Authentication Code
  KMS:      Key Management Service
  MAC:      Message Authentication Code
  MIKEY:    Multimedia Internet KEYing
  NSPS:     National Security and Public Safety
  MKI:      Master Key Identifier
  MPK:      MIKEY Protection Key
  NTP:      Network Time Protocol
  PET:      Privacy Enhancing Technologies
  PK:       Public Key
  PRF:      Pseudorandom Function
  PRNG:     Pseudorandom Number Generator
  PSK:      Pre-Shared Key
  RTSP:     Real Time Streaming Protocol
  SDP:      Session Description Protocol
  SHA:      Secure Hash Algorithm
  SIP:      Session Initiation Protocol
  SPI:      Security Parameters Index
  SRTP:     Secure Realtime Transport Protocol
  TEK:      Traffic Encryption Key
  TGK:      TEK Generation Key
  TPK:      Ticket Protection Key
  UTC:      Coordinated Universal Time

2.3.  Payloads

  CERTx:    Certificate of entity x
  CHASH:    Hash of the certificate used
  HDR:      Common Header payload
  ID:       Identity payload
  IDRx:     Identifier for entity x
  IDRpsk:   Identifier for pre-shared key
  IDRapp:   Identifier for application/service
  KEMAC:    Key data transport payload



Mattsson & Tian               Informational                     [Page 6]

RFC 6043                      MIKEY-TICKET                    March 2011


  PKE:      Encrypted envelope key
  RAND:     RAND payload
  RANDRx:   Random value generated by entity x
  SIGNx:    Signature created using entity x's private key
  SP:       Security Policy payload
  T:        Timestamp payload
  TRy:      Timestamp payload with role indicator y
  THDR:     Ticket Header payload
  TICKET:   Ticket payload
  TP:       Ticket Policy payload
  V:        Verification payload

  where
     x is in the set {i, r, kms} (Initiator, Responder, KMS) and
     y is in the set {i, s, e, r} (time of Issue, Start time, End time,
        Rekeying interval).

  The IDR, RANDR, TR, TICKET, and TP payloads are defined in Section 6.
  Note that in [RFC3830], there is defined both a V payload (carrying
  the authentication tag) and a V flag in the HDR payload (indicating
  whether or not a response message is expected).

3.  Design Considerations

  As mentioned in the introduction, none of the previously defined
  MIKEY modes are based on a KMS.  The pre-shared key method and the
  public-key encryption method defined in [RFC3830] are examples of
  systems based on pre-distribution of user credentials.  The Diffie-
  Hellman method [RFC3830] is an example of a system based on
  negotiation and exchange directly between peers.

  In some situations, a request may be delivered to multiple endpoints.
  The endpoints may be multiple devices owned by a single user (e.g.,
  mobile phone, fixed phone, and computer), or multiple users (e.g.,
  [email protected], a group of users where only one is supposed
  to answer).  In the following, the term "forking" will be used to
  describe all such cases.  One example of delivery to multiple
  endpoints is forking and retargeting in SIP [RFC3261].  To prevent
  any form of eavesdropping, only the endpoint that answers should get
  access to the session keys.  The naive application of [RFC3830] where
  all endpoints share the same pre-shared/private key is not secure
  when it comes to forking, as all endpoints get access to the session
  keys.  Conversely, having per-user unique pre-shared keys/
  certificates creates more fundamental problems with forking, as the
  initiator does not know which pre-shared key/certificate to use at
  session initiation.  SIP-signaled media protection is described in
  [RFC5479] and the applicability of different MIKEY modes is discussed
  in [RFC5197].



Mattsson & Tian               Informational                     [Page 7]

RFC 6043                      MIKEY-TICKET                    March 2011


  In security systems serving a large number of users, a solution based
  on a key management service is often preferred.  With such a service
  in place, there is no need to pre-distribute credentials that
  directly can be used to establish security associations between peers
  for protected communication, as users can request such credentials
  when needed.  In many applications, e.g., National Security and
  Public Safety (NSPS), the controlling organization wants to enforce
  policies on the use of keys.  A trusted KMS fits these applications
  well, as it makes it easier to enforce policies centrally.  Solutions
  based on a trusted KMS also scale well when the number of users
  grows.  A KMS based on symmetric keys has particular advantages, as
  symmetric key algorithms are generally much less computationally
  intensive than asymmetric key algorithms.

  Systems based on a KMS require a signaling mechanism that allows
  peers to retrieve other peers' credentials.  A convenient way to
  implement such a signaling scheme is to use a ticket concept, similar
  to that in Kerberos [RFC4120] to identify and deliver keys.  The
  ticket can be forwarded in the signaling associated with the session
  setup.  The initiator requests a ticket from the KMS and sends the
  ticket to the responder.  The responder forwards the ticket to the
  KMS, which returns the corresponding keys.

  It should be noted that Kerberos does not require that the responder
  also contact the KMS.  However, in order to support also the
  aforementioned forking scenarios, it becomes necessary that the
  ticket is not bound to the exact identity (or credentials) of the
  responder until the final responder becomes fully determined.  Group
  and forking communication scenarios can also be improved from access
  control point of view if authorization to access the keys can be
  enforced with higher granularity at the responder side.  The
  mechanism specified in this document is useful for any system where
  the initial message may be transferred to arbitrarily many potential
  responders and where the set of responders may change at any time.
  In addition to being able to meet the requirements just described,
  the mechanism specified in this document also supports group key
  management.

  The ticket can contain a reference to keys held by the key management
  system or it can hold the keys itself.  In the latter case, the
  ticket needs to be confidentiality and integrity protected
  (enveloped).  In the following, the term "encoded keys" will be used
  to describe both cases as well as keys derived from such keys.

  By using different Ticket Types and ticket policies, some allowing
  the initiator or responder to create or resolve the tickets without
  assistance from the KMS, a wide range of different security levels




Mattsson & Tian               Informational                     [Page 8]

RFC 6043                      MIKEY-TICKET                    March 2011


  and use cases can be supported.  This has a number of advantages, as
  it offers a framework that is flexible enough to satisfy users with a
  broad range of security and functional needs.

  The use of a ticket-based system may also help in the handling of
  keys for deferred delivery of end-to-end protected content to
  currently offline users.  Such scenarios exclude all key management
  schemes that are based on some type of direct online negotiation
  between peers (e.g., Diffie-Hellman-based schemes) as the responder
  cannot rely on contacting the initiator to get access to keys.

  At the same time, it is also important to be aware that (centralized)
  key management services may introduce a single point of (security)
  failure.  The security requirements on the implementation and
  protection of the KMS may therefore, in high-security applications,
  be more or less equivalent to the requirements of an AAA
  (Authentication, Authorization, and Accounting) server or a
  Certification Authority (CA).

4.  MIKEY-TICKET

4.1.  Overview

  All previously defined MIKEY modes consist of a single (or half)
  round trip between two peers.  MIKEY-TICKET differs from these modes
  as it consists of up to three different round trips (Ticket Request,
  Ticket Transfer, and Ticket Resolve) involving three parties
  (Initiator, Responder, and KMS).  Since the number of round trips and
  order of messages may vary, MIKEY-TICKET is actually the common name
  for a set of modes, all revolving around a ticket concept.  The third
  party, the KMS, is only involved in some of the MIKEY exchanges and
  not at all in the resulting secure media session.  The Ticket Request
  and Ticket Resolve exchanges are meant to be used in combination with
  the Ticket Transfer exchange and not on their own.  In Figure 1, the
  signaling for the full three round-trip MIKEY-TICKET mode is
  depicted.















Mattsson & Tian               Informational                     [Page 9]

RFC 6043                      MIKEY-TICKET                    March 2011


  +---+                          +-----+                          +---+
  | I |                          | KMS |                          | R |
  +---+                          +-----+                          +---+
              REQUEST_INIT
    -------------------------------->
              REQUEST_RESP
    <--------------------------------
                              TRANSFER_INIT
    ---------------------------------------------------------------->
                                               RESOLVE_INIT
                                    <--------------------------------
                                               RESOLVE_RESP
                                    -------------------------------->
                              TRANSFER_RESP
    <----------------------------------------------------------------

                Figure 1: Full three round-trip signaling

  The Initiator (I) wants to establish a secure media session with the
  Responder (R).  The Initiator and the Responder do not share any
  credentials; instead, they trust a third party, the KMS, with which
  they both have or can establish shared credentials.  These pre-
  established trust relations are used to establish a security
  association between I and R.  The assumed trust model is illustrated
  in Figure 2.

     Pre-established trust relation   Pre-established trust relation
    <------------------------------> <------------------------------>
  +---+                          +-----+                          +---+
  | I |                          | KMS |                          | R |
  +---+                          +-----+                          +---+
    <--------------------------------------------------------------->
                  Security association based on ticket

                          Figure 2: Trust model

  Note that rather than a single KMS, multiple KMSs may be involved,
  e.g., one for the Initiator and one for the Responder; this is
  discussed in Section 10.

  The Initiator requests keys and a ticket (encoding the same keys)
  from the KMS by sending a REQUEST_INIT message.  The REQUEST_INIT
  message includes session information (e.g., identities of the
  authorized responders) and is integrity protected by a MAC based on a
  pre-shared key or by a signature (similar to the pre-shared key and
  public-key encryption modes in [RFC3830]).  If the request is
  authorized, the KMS generates the requested keys, encodes them in a
  ticket, and returns the keys and the ticket in a REQUEST_RESP



Mattsson & Tian               Informational                    [Page 10]

RFC 6043                      MIKEY-TICKET                    March 2011


  message.  The Ticket Request exchange is OPTIONAL (depending on the
  Ticket Type), and MAY be omitted if the Initiator can create the
  ticket without assistance from the KMS (see mode 3 of Section 4.1.1).

  The Initiator next includes the ticket in a TRANSFER_INIT message,
  which is sent to the Responder.  The TRANSFER_INIT message is
  protected by a MAC based on an MPK (MIKEY Protection Key) encoded in
  the ticket.  If the Responder finds the Ticket Policy and session
  security policies acceptable, the Responder forwards the ticket to
  the KMS.  This is done with a RESOLVE_INIT message, which asks the
  KMS to return the keys encoded in the ticket.  The RESOLVE_INIT
  message is protected by a MAC based on a pre-shared key (between
  Responder and KMS) or by a signature.  The Ticket Resolve exchange is
  OPTIONAL (depending on the Ticket Policy), and SHOULD only be used
  when the Responder is unable to resolve the ticket without assistance
  from the KMS (see mode 2 of Section 4.1.1).

  The KMS resolves the ticket.  If the Responder is authorized to
  receive the keys encoded in the ticket, the KMS retrieves the keys
  and other information.  If key forking is used, the keys are modified
  (bound to the Responder) by the KMS, see Section 5.1.1.  The keys and
  additional information are then sent in a RESOLVE_RESP message to the
  Responder.  The Responder then sends a TRANSFER_RESP message to the
  Initiator as verification.  The TRANSFER_RESP message might include
  information used for further key derivation.

  The use case and signaling described above is the full three round-
  trip mode, but other modes are allowed, see Section 4.1.1.  Pre-
  encrypted content is discussed in Section 8, group communication is
  discussed in Section 9, and signaling between different KMSs is
  discussed in Section 10.  An alternative use case is discussed in
  Appendix B.

  The session keys are normally generated/supplied by the KMS (encoded
  in the ticket), but in certain use cases (see Section 8) the session
  key may be supplied by the Initiator or Responder (sent in a separate
  KEMAC protected with keys derived from the MPK).

  MIKEY-TICKET offers a framework that is flexible enough to satisfy
  users with a broad range of security and functional needs.  The
  framework consists of the three exchanges for which different Ticket
  Types can be defined.  The ticket consists of a Ticket Policy as well
  as Ticket Data.  The Ticket Policy contains information intended for
  all parties involved, whereas the Ticket Data is only intended for
  the party that resolves the ticket.  The Ticket Data could be a
  reference to information (keys, etc.) stored by the key management
  service, it could contain all the information itself, or it could be
  a combination of the two alternatives.  The format of the Ticket Data



Mattsson & Tian               Informational                    [Page 11]

RFC 6043                      MIKEY-TICKET                    March 2011


  depends on the Ticket Type signaled in the Ticket Policy.  The Ticket
  Data corresponding to the default Ticket Type, called MIKEY base
  ticket, is defined in Appendix A and requirements regarding new
  Ticket Types are given in Section 11.

  As MIKEY-TICKET is based on [RFC3830], the same terminology,
  processing, and considerations still apply unless otherwise stated.
  Just like in [RFC3830], the messages are integrity protected and
  encryption is only applied to the keys and not to the entire
  messages.

4.1.1.  Modes

  Depending on the Ticket Type and the Ticket Policy, some of the
  exchanges might be optional or not used at all, see Figure 3.  If the
  ticket protection is based on a key known only by the KMS, both the
  Initiator and the Responder have to contact the KMS to request/
  resolve tickets (mode 1).  If the key used to protect the ticket is
  shared between the KMS and the Responder, the Ticket Resolve exchange
  can be omitted (similar to Kerberos), as the Responder can resolve
  the ticket without assistance from the KMS (mode 2).

    +---+                         +-----+                         +---+
    | I |                         | KMS |                         | R |
    +---+                         +-----+                         +---+
               Ticket Request
  (1) <------------------------------>        Ticket Transfer
      <------------------------------------------------------------->
                                     <------------------------------>
                                              Ticket Resolve
               Ticket Request
  (2) <------------------------------>        Ticket Transfer
      <------------------------------------------------------------->

                              Ticket Transfer
  (3) <------------------------------------------------------------->
                                     <------------------------------>
                                              Ticket Resolve

                              Ticket Transfer
  (4) <------------------------------------------------------------->

                             Figure 3: Modes

  If the key protecting the ticket is shared between the Initiator and
  the KMS, the Ticket Request exchange can be omitted (similar to the
  Otway-Rees protocol [Otway-Rees]), as the Initiator can create the
  ticket without assistance from the KMS (mode 3).  If the key



Mattsson & Tian               Informational                    [Page 12]

RFC 6043                      MIKEY-TICKET                    March 2011


  protecting the ticket is shared between the Initiator and the
  Responder, both the Ticket Request and Ticket Resolve exchanges can
  be omitted (mode 4).  This can be seen as a variation of the pre-
  shared key method of [RFC3830] with a mutual key-freshness guarantee.

  In modes 1 and 2, the Ticket Request exchange can be omitted if the
  tickets and the corresponding keys are distributed from the KMS to
  the Initiator in some other way.  In addition, as tickets may be
  reused (see Section 5.3), a single Ticket Request exchange may be
  followed by several Ticket Transfer exchanges.

4.2.  Exchanges

4.2.1.  Ticket Request

  This exchange is used by the Initiator to request keys and a ticket
  from a trusted KMS with which the Initiator has pre-shared
  credentials.  The request contains information (e.g., participant
  identities, etc.) describing the session the ticket is intended to
  protect.  A full round trip is required for the Initiator to receive
  the ticket.  The initial message REQUEST_INIT comes in two variants.
  The first variant corresponds to the pre-shared key (PSK) method of
  [RFC3830].

  Initiator                               KMS

  REQUEST_INIT_PSK =              ---->
  HDR, T, RANDRi, [IDRi],
     [IDRkms], TP,                 <----  REQUEST_RESP =
     [IDRpsk], V                          HDR, T, [IDRkms],
                                             TICKET, KEMAC, V

  The second variant corresponds to the public-key (PK) method of
  [RFC3830].

  Initiator                               KMS

  REQUEST_INIT_PK =               ---->
  HDR, T, RANDRi, [IDRi],
     {CERTi}, [IDRkms], TP,        <----  REQUEST_RESP =
     [CHASH], PKE, SIGNi                  HDR, T, [IDRkms],
                                             TICKET, KEMAC, V

  As the REQUEST_INIT message MUST ensure the identity of the Initiator
  to the KMS, it SHALL be integrity protected by a MAC based on a pre-
  shared key or by a signature.  The response message REQUEST_RESP is
  the same for the two variants and SHALL be protected using the pre-
  shared/envelope key indicated in the REQUEST_INIT message.



Mattsson & Tian               Informational                    [Page 13]

RFC 6043                      MIKEY-TICKET                    March 2011


  In addition to the ticket, the Initiator receives keys, which it does
  not already know.  The ticket contains both session information and
  information needed to resolve the ticket later, see Section 6.10.

4.2.1.1.  Common Components of the REQUEST_INIT Messages

  The REQUEST_INIT message MUST always include the Header (HDR),
  Timestamp (T), and RANDRi payloads.

  In HDR, the CSB ID (Crypto Session Bundle ID) SHALL be assigned as in
  [RFC3830].  The V flag MUST be set to '1' but SHALL be ignored by the
  KMS as a response is MANDATORY.  As Crypto Sessions (CSs) SHALL NOT
  be handled, the #CS MUST be set to '0' and the CS ID map type SHALL
  be the "Empty map" as defined in [RFC4563].

  IDRi contains the identity of the Initiator.  This identity SHOULD be
  included in the granted Ticket Policy.

  IDRkms contains the identity of the KMS.  It SHOULD be included, but
  it MAY be left out when it can be expected that the KMS has a single
  identity.

  The Ticket Policy payload (TP) contains the desired Ticket Policy.
  It includes for instance, the ticket's validity period, the number of
  requested keys, and the identities of authorized responders (see
  Section 6.10).

4.2.1.2.  Components of the REQUEST_INIT_PSK Message

  The IDRi payload SHOULD be included but MAY be left out when it can
  be expected that the KMS can identify the Initiator by other means.

  The IDRpsk payload is used to indicate the pre-shared key used.  It
  MAY be omitted if the KMS can find the pre-shared key by other means.

  The last payload SHALL be a Verification payload (V) where the
  authentication key (auth_key) is derived from the pre-shared key
  shared by the Initiator and the KMS (see Section 5.1.2 for key
  derivation specification).  The MAC SHALL cover the entire
  REQUEST_INIT_PSK message as well as the identities of the involved
  parties (see Section 5.5 for the exact definition).

4.2.1.3.  Components of the REQUEST_INIT_PK Message

  The identity IDRi and certificate CERTi SHOULD be included, but they
  MAY be left out when it can be expected that the KMS can obtain the
  certificate in some other manner.  If a certificate chain is to be
  provided, each certificate in the chain SHOULD be included in a



Mattsson & Tian               Informational                    [Page 14]

RFC 6043                      MIKEY-TICKET                    March 2011


  separate CERT payload.  The Initiator's certificate MUST come first.
  Each following certificate MUST directly certify the one preceding
  it.

  PKE contains the encrypted envelope key: PKE = E(PKkms, env_key).  It
  is encrypted using the KMS's public key (PKkms).  If the KMS
  possesses several public keys, the Initiator can indicate the key
  used in the CHASH payload.

  SIGNi is a signature covering the entire REQUEST_INIT_PK message,
  using the Initiator's signature key (see Section 5.5 for the exact
  definition).

4.2.1.4.  Processing the REQUEST_INIT Message

  If the KMS can verify the integrity of the received message and the
  message can be correctly parsed, the KMS MUST check the Initiator's
  authorization.  If the Initiator is authorized to receive the
  requested ticket, possibly with a modified Ticket Policy, the KMS
  MUST send a REQUEST_RESP message.  Unexpected payloads in the
  REQUEST_INIT message SHOULD be ignored.  Errors are handled as
  described in Section 5.4.

4.2.1.5.  Components of the REQUEST_RESP Message

  The version, PRF func and CSB ID, #CS, and CS ID map type fields in
  the HDR payload SHALL be identical to the corresponding fields in the
  REQUEST_INIT message.  The V flag has no meaning in this context.  It
  SHALL be set to '0' by the KMS and ignored by the Initiator.

  If one of the NTP timestamp types is used, the KMS SHALL generate a
  fresh timestamp value (unlike [RFC3830]), which may be used for clock
  synchronization.  If the COUNTER timestamp type (see Section 6.6 of
  [RFC3830]) is used, the timestamp value MAY be equal to the one in
  the REQUEST_INIT message.

  The TICKET payload carries the granted Ticket Policy and the Ticket
  Data (see Section 6.10).  As the KMS decides which Ticket Policy to
  use, this may not be the same Ticket Policy as the Initiator
  requested.  The Ticket Type and the Ticket Data depend on the granted
  Ticket Policy.

  The KEMAC payload SHALL use the NULL authentication algorithm, as a
  MAC is included in the V payload.  Depending on the type of
  REQUEST_INIT message, either the pre-shared key or the envelope key
  SHALL be used to derive the encr_key (and salt_key).  Depending on
  the encryption algorithm, the salting key may go into the IV (see
  [RFC3830]).  If the TP payload in the REQUEST_INIT message does not



Mattsson & Tian               Informational                    [Page 15]

RFC 6043                      MIKEY-TICKET                    March 2011


  contain a KEMAC, it is RECOMMENDED that the KMS's default KEMAC
  include a single TGK.  The KEMAC SHALL include an MPK (MIKEY
  Protection Key), MPKi, used as a pre-shared key to protect the
  messages in the Ticket Transfer exchange.  If key forking (see
  Section 5.1.1) is used (determined by the Ticket Policy) a second
  MPK, MPKr, SHALL be included in the KEMAC.  Then, MPKi SHALL be used
  to protect the TRANSFER_INIT message and MPKr SHALL be used to verify
  the TRANSFER_RESP message.  The KEMAC is hence constructed as
  follows:

          KEMAC = E(encr_key, MPKi || [MPKr] || {TEK|TGK|GTGK})

  The last payload SHALL be a Verification payload (V).  Depending on
  the type of REQUEST_INIT message, either the pre-shared key or the
  envelope key SHALL be used to derive the auth_key.  The MAC SHALL
  cover the entire REQUEST_RESP message as well as the REQUEST_INIT
  message (see Section 5.5 for the exact definition).

4.2.1.6.  Processing the REQUEST_RESP Message

  If the Initiator can verify the integrity of the received message and
  the message can be correctly parsed, the ticket and the associated
  session information SHALL be stored.  Unexpected payloads in the
  REQUEST_RESP message SHOULD be ignored.  Errors are handled as
  described in Section 5.4.

  Before using the received ticket, the Initiator MUST check that the
  granted Ticket Policy is acceptable.  If not, the Initiator SHALL
  discard and MAY send a new REQUEST_INIT message suggesting a
  different Ticket Policy than before.

4.2.2.  Ticket Transfer

  This exchange is used to transfer a ticket as well as session
  information from the Initiator to a Responder.  The exchange is
  modeled after the pre-shared key mode [RFC3830], but instead of a
  pre-shared key, an MPK encoded in the ticket is used.  The session
  keys are also encoded in the TICKET payload, but in some use cases
  (see Section 8) they need to be sent in a separate KEMAC payload.
  The session information may be sent from the Initiator to the
  Responder (similar to [RFC3830]) or from the Responder to the
  Initiator (similar to [RFC4738]).  As the motive for this exchange is
  to setup a shared secret key between Initiator and Responder, the
  Responder cannot check the authenticity of the message before the
  ticket is resolved (by KMS or Responder).  A full round trip is
  required if Responder key confirmation and freshness guarantee are
  needed.




Mattsson & Tian               Informational                    [Page 16]

RFC 6043                      MIKEY-TICKET                    March 2011


  Initiator                               Responder

  TRANSFER_INIT =                 ---->
  HDR, T, RANDRi, [IDRi],
     [IDRr], {SP}, TICKET,         < - -  TRANSFER_RESP =
     [KEMAC], V                           HDR, T, [RANDRr],
                                             [IDRr], [RANDRkms],
                                             {SP}, [KEMAC], V

4.2.2.1.  Components of the TRANSFER_INIT Message

  The TRANSFER_INIT message MUST always include the Header (HDR),
  Timestamp (T), and RANDRi payloads.

  In HDR, the CSB ID (Crypto Session Bundle ID) SHALL be assigned as in
  [RFC3830].  The value of the V flag SHALL agree with the F flag in
  the Ticket Policy and it SHALL be ignored by the Responder.

  The IDRi and IDRr payloads SHOULD be included, but IDRi MAY be left
  out if the Responder can identify the Initiator by other means, and
  IDRr MAY be left out when it can be expected that the Responder has a
  single identity.

  Multiple SP payloads MAY be used both to indicate supported security
  policies for a specific crypto session (similar to [RFC4738]) and to
  specify security policies for different crypto sessions (similar to
  [RFC3830]).

  The ticket payload (see Section 6.10) contains the Ticket Policy (see
  Section 6.10), Ticket Data (the default ticket type is defined in
  Appendix A), and Initiator Data.  The Ticket Policy contains
  information intended for all parties involved, whereas the Ticket
  Data is only intended for the party that resolves the ticket.  The
  Ticket Type provided in the Ticket Data is indicated in the Ticket
  Policy.  The Initiator Data authenticates the Initiator when key
  forking (I flag) is used.

  The KEMAC payload is handled in the same way as if it were sent in a
  later CSB update (see Section 5.2), with the only difference that the
  encr_key is always derived from MPKi and therefore accessible by all
  responders authorized to resolve the ticket.  Initiator-specified
  keys MAY be used if the Initiator has pre-encrypted content and
  specific TEKs (Traffic Encryption Keys) need to be used (see
  Section 8).  If indicated by the Ticket Policy (L flag), a KEMAC
  payload SHALL NOT be included.






Mattsson & Tian               Informational                    [Page 17]

RFC 6043                      MIKEY-TICKET                    March 2011


  The last payload SHALL be a Verification payload (V) where the
  authentication key (auth_key) is derived from the MPKi (see
  Section 5.1.2 for key derivation specification).  The MAC SHALL cover
  the entire TRANSFER_INIT message as well as the identities of the
  involved parties (see Section 5.5 for the exact definition).

4.2.2.2.  Processing the TRANSFER_INIT Message

  As the Initiator and Responder do not have any pre-shared keys, the
  Responder cannot check the authenticity of the message before the
  ticket is resolved.  The Responder SHALL however check that both the
  Ticket Policy and the security policies are acceptable.  If they are
  not, the Responder SHALL reject without contacting the KMS.  This is
  an early reject mechanism to avoid unnecessary KMS signaling when the
  Responder can conclude from the information at hand that it will not
  accept the connection.  After the ticket has been resolved, the
  parsing of the TRANSFER_INIT message continues.  Unexpected payloads
  in the TRANSFER_INIT message SHOULD be ignored.  Errors are handled
  as described in Section 5.4.  If the F flag in the Ticket Policy is
  set, the Responder MUST send a TRANSFER_RESP message.

4.2.2.3.  Components of the TRANSFER_RESP Message

  The version, PRF func and CSB ID fields in the HDR payload SHALL be
  identical to the corresponding fields in the TRANSFER_INIT message.
  The V flag has no meaning in this context.  It SHALL be set to '0' by
  the Responder and ignored by the Initiator.  The Responder SHALL
  update the CS ID map info so that each crypto session has exactly one
  security policy indicated.  The Responder MUST provide Session Data
  (at least for SRTP) and SPI for each crypto session for which the
  Initiator has not supplied Session Data and SPI.  If needed, the
  Responder MAY update Session Data and SPI provided by the Initiator.
  If the Responder adds crypto sessions, the #CS SHALL be updated.

  If one of the NTP timestamp types is used, the Responder SHALL
  generate a fresh timestamp value (unlike [RFC3830]).  If the COUNTER
  timestamp type (see Section 6.6 of [RFC3830]) is used, the timestamp
  value MAY be equal to the one in the TRANSFER_INIT message.

  If indicated by the Ticket Policy (G flag), the Responder SHALL
  generate a fresh (pseudo-)random byte string RANDRr.  RANDRr is used
  to produce Responder freshness guarantee in key derivations.

  If the Responder receives an IDRr payload in the RESOLVE_RESP
  message, the same identity MUST be sent in an IDRr payload in the
  TRANSFER_RESP message.  The identity sent in the IDRr payload in the





Mattsson & Tian               Informational                    [Page 18]

RFC 6043                      MIKEY-TICKET                    March 2011


  TRANSFER_RESP message (e.g., [email protected]) MAY differ from the
  one sent in the IDRr payload in the TRANSFER_INIT message (e.g.,
  [email protected]).

  If the Responder receives a RANDRkms payload in the RESOLVE_RESP
  message, the same RAND MUST be sent in a RANDRkms payload in the
  TRANSFER_RESP message.

  The Responder MAY provide additional Security Policy payloads.  The
  Responder SHOULD NOT resend SP payloads, which the Initiator
  supplied.

  The KEMAC payload SHALL be handled exactly as if it was sent in a
  later CSB update, see Section 5.2.  Responder-specified keys MAY be
  used if Responder has pre-encrypted content and specific TEKs
  (Traffic Encryption Keys) need to be used (see Section 8).  If
  indicated by the Ticket Policy (M flag), a KEMAC payload SHALL NOT be
  included.

  The last payload SHALL be a Verification payload (V) where the
  authentication key (auth_key) is derived from MPKi or MPKr'
  (depending on if key forking is used).  The MAC SHALL cover the
  entire TRANSFER_RESP message as well as the TRANSFER_INIT message
  (see Section 5.5 for the exact definition).

4.2.2.4.  Processing the TRANSFER_RESP Message

  If the Initiator can verify the integrity of the received message and
  the message can be correctly parsed, the Initiator MUST check that
  any Responder-generated security policies are acceptable.  If not,
  the Initiator SHALL discard and MAY send a new TRANSFER_INIT message
  to indicate supported security policies.  Unexpected payloads in the
  TRANSFER_RESP message SHOULD be ignored.  Errors are handled as
  described in Section 5.4.

4.2.3.  Ticket Resolve

  This exchange is used by the Responder to request that the KMS return
  the keys encoded in a ticket.  The KMS does not need to be the same
  KMS that originally issued the ticket, see Section 10.  A full round
  trip is required for the Responder to receive the keys.  The Ticket
  Resolve exchange is OPTIONAL (depending on the Ticket Policy), and
  SHOULD only be used when the Responder is unable to resolve the
  ticket without assistance from the KMS.  The initial message
  RESOLVE_INIT comes in two variants (independent from the used
  REQUEST_INIT variant).  The first variant corresponds to the pre-
  shared key (PSK) method of [RFC3830].




Mattsson & Tian               Informational                    [Page 19]

RFC 6043                      MIKEY-TICKET                    March 2011


  Responder                               KMS

  RESOLVE_INIT_PSK =              ---->
  HDR, T, RANDRr, [IDRr],
     [IDRkms], TICKET,             <----  RESOLVE_RESP
     [IDRpsk], V                          HDR, T, [IDRkms], KEMAC,
                                             [IDRr], [RANDRkms], V

  The second variant corresponds to the public-key (PK) method of
  [RFC3830].

  Responder                               KMS

  RESOLVE_INIT_PK =               ---->
  HDR, T, RANDRr, [IDRr],
     {CERTr}, [IDRkms], TICKET,    <----  RESOLVE_RESP
     [CHASH], PKE, SIGNr                  HDR, T, [IDRkms], KEMAC,
                                             [IDRr], [RANDRkms], V

  As the RESOLVE_INIT message MUST ensure the identity of the Responder
  to the KMS, it SHALL be protected by a MAC based on a pre-shared key
  or by a signature.  The response message RESOLVE_RESP is the same for
  the two variants and SHALL be protected by using the pre-shared/
  envelope key indicated in the RESOLVE_INIT message.

  Upon receiving the RESOLVE_INIT message, the KMS verifies that the
  Responder is authorized to resolve the ticket based on ticket and KMS
  policies.  The KMS extracts the session information from the ticket
  and returns this to the Responder.  Since the KMS resolved the
  ticket, the Responder is assured of the integrity of the Ticket
  Policy, which contains the identity of the peer that requested or
  created the ticket.  If key forking is used (I flag), the Responder
  is also assured that the peer that requested or created the ticket
  also sent the TRANSFER_INIT message.  The Responder can complete the
  session information it got from the Initiator with the additional
  session information received from the KMS.

4.2.3.1.  Common Components of the RESOLVE_INIT Messages

  The RESOLVE_INIT message MUST always include the Header (HDR),
  Timestamp (T), and RANDRr payloads.

  The CSB ID (Crypto Session Bundle ID) SHALL be assigned as in
  [RFC3830].  The V flag MUST be set to '1' but SHALL be ignored by the
  KMS as a response is MANDATORY.  As crypto sessions SHALL NOT be
  handled, the #CS MUST be set to '0' and the CS ID map type SHALL be
  the "Empty map" as defined in [RFC4563].




Mattsson & Tian               Informational                    [Page 20]

RFC 6043                      MIKEY-TICKET                    March 2011


  IDRkms SHOULD be included, but it MAY be left out when it can be
  expected that the KMS has a single identity.

  The TICKET payload contains the Ticket Policy and Ticket Data that
  the Responder wants to have resolved.

4.2.3.2.  Components of the RESOLVE_INIT_PSK Message

  IDRr contains the identity of the Responder.  IDRr SHOULD be
  included, but it MAY be left out when it can be expected that the KMS
  can identify the Responder in some other manner.

  The IDRpsk payload is used to indicate the pre-shared key used.  It
  MAY be omitted if the KMS can find the pre-shared key by other means.

  The last payload SHALL be a Verification payload (V) where the
  authentication key (auth_key) is derived from the pre-shared key
  shared by the Responder and the KMS.  The MAC SHALL cover the entire
  RESOLVE_INIT_PSK message as well as the identities of the involved
  parties (see Section 5.5 for the exact definition).

4.2.3.3.  Components of the RESOLVE_INIT_PK Message

  The identity IDRr and certificate CERTr SHOULD be included, but they
  MAY be left out when it can be expected that the KMS can obtain the
  certificate in some other manner.  If a certificate chain is to be
  provided, each certificate in the chain SHOULD be included in a
  separate CERT payload.  The Responder's certificate MUST come first.
  Each following certificate MUST directly certify the one preceding
  it.

  PKE contains the encrypted envelope key: PKE = E(PKkms, env_key).  It
  is encrypted using PKkms.  If the KMS possesses several public keys,
  the Responder can indicate the key used in the CHASH payload.

  SIGNr is a signature covering the entire RESOLVE_INIT_PK message,
  using the Responder's signature key (see Section 5.5 for the exact
  definition).

4.2.3.4.  Processing the RESOLVE_INIT Message

  If the KMS can verify the integrity of the received message, the
  message can be correctly parsed, and the Responder is authorized to
  resolve the ticket, the KMS MUST send a RESOLVE_RESP message.  If key
  forking is used (I flag), the KMS SHALL also verify the integrity of
  the Initiator Data field in the TICKET payload.  Unexpected payloads
  in the RESOLVE_INIT message SHOULD be ignored.  Errors are handled as
  described in Section 5.4.



Mattsson & Tian               Informational                    [Page 21]

RFC 6043                      MIKEY-TICKET                    March 2011


4.2.3.5.  Components of the RESOLVE_RESP Message

  The version, PRF func and CSB ID, #CS, and CS ID map type fields in
  the HDR payload SHALL be identical to the corresponding fields in the
  RESOLVE_INIT message.  The V flag has no meaning in this context.  It
  SHALL be set to '0' by the KMS and ignored by the Responder.

  If one of the NTP timestamp types is used, the KMS SHALL generate a
  fresh timestamp value (unlike [RFC3830]), which may be used for clock
  synchronization.  If the COUNTER timestamp type (see Section 6.6 of
  [RFC3830]) is used, the timestamp value MAY be equal to the one in
  the RESOLVE_INIT message.

  The KEMAC payload SHALL use the NULL authentication algorithm, as a
  MAC is included in the V payload.  Depending on the type of
  RESOLVE_INIT message, either the pre-shared key or the envelope key
  SHALL be used to derive the encr_key (and salt_key).  Depending on
  the encryption algorithm, the salting key may go into the IV (see
  [RFC3830]).  The KEMAC SHALL include an MPK (MPKi), used as a pre-
  shared key to protect the messages in the Ticket Transfer exchange.
  The KEMAC is hence constructed as follows:

          KEMAC = E(encr_key, MPKi || [MPKr'] || {TEK|TGK|GTGK})

  If key forking (see Section 5.1.1) is used (determined by the I flag
  in the Ticket Policy), a second MPK (MPKr') SHALL be included in the
  KEMAC.  Then, MPKi SHALL be used to verify the TRANSFER_INIT message
  and MPKr' SHALL be used to protect the TRANSFER_RESP message.  The
  KMS SHALL also fork the MPKr and the TGKs.  The modifier used to
  derive the forked keys SHALL be included in the IDRr and RANDRkms
  payloads, where IDRr is the identity of the endpoint that answered
  and RANDRkms is a fresh (pseudo-)random byte string generated by the
  KMS.  The reason that the KMS MAY adjust the Responder's identity is
  so that it matches an identity encoded in the ticket.

  The last payload SHALL be a Verification payload (V).  Depending on
  the type of RESOLVE_INIT message, either the pre-shared key or the
  envelope key SHALL be used to derive the auth_key.  The MAC SHALL
  cover the entire RESOLVE_RESP message as well as the RESOLVE_INIT
  message (see Section 5.5 for the exact definition).

4.2.3.6.  Processing the RESOLVE_RESP Message

  If the Responder can verify the integrity of the received message and
  the message can be correctly parsed, the Responder MUST verify the
  TRANSFER_INIT message with the MPKi received from the KMS.  If key
  forking is used, the Responder SHALL also verify that the MAC field
  in the V payload in the TRANSFER_INIT message is identical to the MAC



Mattsson & Tian               Informational                    [Page 22]

RFC 6043                      MIKEY-TICKET                    March 2011


  field in the Vi payload in the Initiator Data field in the TICKET
  payload.  Unexpected payloads in the RESOLVE_RESP message SHOULD be
  ignored.  Errors are handled as described in Section 5.4.

5.  Key Management Functions

5.1.  Key Derivation

  For all messages in the Ticket Request and Ticket Resolve exchanges,
  the keys used to protect the MIKEY messages are derived from a pre-
  shared key or an envelope key.  As crypto sessions SHALL NOT be
  handled, further keying material (i.e., TEKs) does not have to be
  derived.

  In the Ticket Transfer exchange, the keys used to protect the MIKEY
  messages are derived from an MPK.  If key forking is used, the KMS
  and the Initiator SHALL fork the MPKr and the TGKs (encoded in the
  ticket) based on a modifier, and different MPKs (MPKi and MPKr')
  SHALL be used to protect the TRANSFER_INIT and TRANSFER_RESP
  messages.  In addition, the Responder MAY generate a RAND used to
  give Responder key freshness guarantee.

  The key hierarchy and its dependencies on TRANSFER_INIT message
  contents for the case without key forking and RANDRr are illustrated
  in Figure 4.  The KEMAC shown is the KEMAC sent from the KMS to the
  Initiator and the Responder.  The illustrated key derivations are
  done by the Initiator and the Responder.
























Mattsson & Tian               Informational                    [Page 23]

RFC 6043                      MIKEY-TICKET                    March 2011


                               +------+------------------+-----+------+
  KEMAC                        | MPKi |..................| TGK | SALT |
                               +--+---+------------------+--+--+--+---+
                                  | MPKi                    |     |
                                  v                         |     |
                      CSB ID    -----   auth_key    ------  |     |
                   +---------->| PRF |------------>| AUTH | |     |
                   |            -----               ------  |     |
                   |              ^                MAC |    |     |
                   |              | RAND               v    |     |
                +--+--+------+----+---+--+--------+--+---+  |     |
  TRANSFER_INIT | HDR |......| RANDRi |..| TICKET |..| V |  |     |
                +--+--+------+----+---+--+--------+--+---+  |     |
                   |              | RAND                    |     |
                   |              v                         |     |
                   |   CS ID    -----           TGK         |     |
                   +---------->| PRF |<---------------------+     |
                                -----                             |
                                  | TEK                      SALT |
                                  v                               v
                               ---------------------------------------
                              |      Security Protocol, e.g., SRTP    |
                               ---------------------------------------

         Figure 4: Key hierarchy without key forking and RANDRr

  The key hierarchy and its dependencies on TRANSFER_RESP message
  contents for the case with key forking and RANDRr are illustrated in
  Figure 5.  The KEMAC shown is the KEMAC sent from the KMS to the
  Initiator.  MOD is the modifier (IDRr, RANDRkms).  The two key
  derivations that produce forked keys are done by the Initiator and
  the KMS, and the remaining two key derivations are done by the
  Initiator and the Responder.  The random value RANDRi from the
  TRANSFER_INIT message is used as input to the derivation of the
  auth_key and may be used as input to the derivation of the TEK, but
  this is omitted from the figure.  The protection of the TRANSFER_INIT
  message is done as in Figure 4.














Mattsson & Tian               Informational                    [Page 24]

RFC 6043                      MIKEY-TICKET                    March 2011


                       +------+--------------------------+-----+------+
KEMAC                   | MPKr |..........................| TGK | SALT |
                       +--+---+--------------------------+--+--+--+---+
                          | MPKr                            |     |
                          v                                 |     |
                        -----   MPKr'                       |     |
                       | PRF |-------+                  TGK |     |
                        -----        |                      |     |
                          ^          v                      |     |
                  CSB ID  |        -----  auth_key  ------  |     |
                +---------)------>| PRF |--------->| AUTH | |     |
                |         |        -----            ------  |     |
                |         | ID Data  ^             MAC |    |     |
                |         | RAND     | RAND            v    |     |
             +--+--+---+--+--+---+---+----+----------+---+  |     |
TRANSFER_RESP | HDR |...| MOD |...| RANDRr |..........| V |  |     |
             +--+--+---+--+--+---+---+----+----------+---+  |     |
                |         |          | RAND                 v     |
                |         |          |          ID Data   -----   |
                |         +----------)------------------>| PRF |  |
                |                    |            RAND    -----   |
                |                    v                      |     |
                |       CS ID      -----         TGK'       |     |
                +---------------->| PRF |<------------------+     |
                                   -----                          |
                                     | TEK                   SALT |
                                     v                            v
                               ---------------------------------------
                              |      Security Protocol, e.g., SRTP    |
                               ---------------------------------------

           Figure 5: Key hierarchy with key forking and RANDRr

  The labels in the key derivations SHALL NOT include entire RANDR
  payloads, only the fields RAND length and RAND from the corresponding
  payload.

5.1.1.  Deriving Forked Keys

  When key forking is used (determined by the I flag in the Ticket
  Policy), the MPKr and TGKs (encoded in the ticket) SHALL be forked.
  The TEKs and GTGKs (Group TGKs), however, SHALL NOT be forked.  This
  key forking is done by the KMS and the Initiator using the PRF
  (Pseudorandom Function) indicated in the Ticket Policy.  The
  parameters for the PRF are:






Mattsson & Tian               Informational                    [Page 25]

RFC 6043                      MIKEY-TICKET                    March 2011


  inkey:     : MPKr or TGK
  inkey_len  : bit length of the inkey
  label      : constant || 0xFF || 0xFFFFFFFF || 0x00 ||
               length ID Data || ID Data || length RANDRkms || RANDRkms
  outkey_len : desired bit length of the outkey (MPKr', TGK')
               SHALL be equal to inkey_len

  where the ID Data field is taken from the IDRr payload sent in the
  RESOLVE_RESP and TRANSFER_RESP messages.  Length ID Data is the
  length of the ID Data field in bytes as a 16-bit unsigned integer.
  Length RANDRkms is the length of RANDRkms in bytes as an 8-bit
  unsigned integer.  The constant depends on the derived key type as
  summarized below.

                         Derived key | Constant
                         ------------+-----------
                         MPKr'       | 0x2B288856
                         TGK'        | 0x1512B54A

             Table 5.1: Constants for forking key derivation

  The constants are taken from the decimal digits of e as described in
  [RFC3830].

5.1.2.  Deriving Keys from an Envelope Key/PSK/MPK

  This derivation is used to form the keys used to protect the MIKEY
  messages.  For the Ticket Request and Ticket Resolve exchanges, the
  keys used to protect the MIKEY messages are derived from a pre-shared
  key or an envelope key.  For the Ticket Transfer exchange, the keys
  are derived from an MPK.  If key forking is used, different MPKs
  (MPKi and MPKr') SHALL be used to protect the TRANSFER_INIT and
  TRANSFER_RESP messages.  The initial messages SHALL be protected with
  keys derived using the following parameters:

  inkey:     : pre-shared key, envelope key, or MPKi
  inkey_len  : bit length of the inkey
  label      : constant || 0xFF || CSB ID || 0x01 ||
               length RANDRi || [RANDRi] || length RANDRr || [RANDRr]
  outkey_len : desired bit length of the outkey (encr_key,
               auth_key, salt_key)

  The response messages SHALL be protected with keys derived using the
  following parameters:







Mattsson & Tian               Informational                    [Page 26]

RFC 6043                      MIKEY-TICKET                    March 2011


  inkey:     : pre-shared key, envelope key, MPKi, or MPKr'
  inkey_len  : bit length of the inkey
  label      : constant || 0xFF || CSB ID || 0x02 ||
               length RANDRi || [RANDRi] || length RANDRr || [RANDRr]
  outkey_len : desired bit length of the outkey (encr_key,
               auth_key, salt_key)

  The constant depends on the derived key type as defined in Section
  4.1.4 of [RFC3830].  The 32-bit CSB ID field is taken from the HDR
  payload.  RANDRi SHALL be included in the derivation of keys used to
  protect the Ticket Request and Ticket Transfer exchanges.  RANDRr
  SHALL be included in the derivation of keys used to protect the
  Ticket Resolve exchange and in the derivation of keys used to protect
  TRANSFER_RESP if the Ticket Policy determines that it shall be
  present in the TRANSFER_RESP message (G flag).  Length RANDRi is the
  length of RANDRi in bytes as an 8-bit unsigned integer, and Length
  RANDRr is the length of RANDRr in bytes as an 8-bit unsigned integer.
  If RANDRi is omitted, length RANDRi SHALL be 0 and if RANDRr is
  omitted, length RANDRr SHALL be 0.  Note that at least one of RANDRi
  and RANDRr is always used.

5.1.3.  Deriving Keys from a TGK/GTGK

  This only affects the Ticket Transfer exchange.  In the following, we
  describe how keying material is derived from a TGK/GTGK.  If key
  forking is used, any TGK encoded in the ticket SHALL be forked, and
  the forked key TGK' SHALL be used.  The key derivation method SHALL
  be executed using the PRF indicated in the HDR payload.  The
  parameters for the PRF are:

  inkey:     : TGK, TGK', or GTGK
  inkey_len  : bit length of the inkey
  label      : constant || CS ID || 0xFFFFFFFF || 0x03 ||
               length RANDRi || [RANDRi] || length RANDRr || [RANDRr]
  outkey_len : desired bit length of the outkey (TEK, encr_key,
               auth_key, salt_key)

  The constant depends on the derived key type as defined in Section
  4.1.3 of [RFC3830].  If a salting key is present in the key data sub-
  payload, a security protocol in need of a salting key SHALL use this
  salting key and a new salting key SHALL NOT be derived.  The 8-bit CS
  ID field is given by the CS ID map info field in the HDR payload.
  RANDRi SHALL be included if the Ticket Policy determines that it
  shall be used (H flag).  RANDRr SHALL be included if the Ticket
  Policy determines that it shall be present in the TRANSFER_RESP
  message (G flag).  Length RANDRi is the length of RANDRi in bytes as
  an 8-bit unsigned integer, and Length RANDRr is the length of RANDRr




Mattsson & Tian               Informational                    [Page 27]

RFC 6043                      MIKEY-TICKET                    March 2011


  in bytes as an 8-bit unsigned integer.  If RANDRi or RANDRr is
  omitted the corresponding length SHALL be 0.  Note that at least one
  of RANDRi and RANDRr MUST be used.

5.2.  CSB Updating

  Similar to [RFC3830], MIKEY-TICKET provides a means of updating the
  CSB (Crypto Session Bundle), e.g., transporting a new TEK/TGK/GTGK or
  adding new crypto sessions.  The CSB updating is done by executing
  the Ticket Transfer exchange again, e.g., before a TEK expires or
  when a new crypto session is needed.  The CSB updating can be started
  by the Initiator:

  Initiator                               Responder

  TRANSFER_INIT =                 ---->
  HDR, T, [IDRi], [IDRr],
     {SP}, [KEMAC], V              < - -  TRANSFER_RESP =
                                          HDR, T, [IDRr],
                                          {SP}, [KEMAC], V

  The CSB updating can also be started by the Responder:

  Responder                               Initiator

  TRANSFER_INIT =                 ---->
  HDR, T, [IDRr], [IDRi],
     {SP}, [KEMAC], V              < - -  TRANSFER_RESP =
                                          HDR, T, [IDRi],
                                          {SP}, [KEMAC], V

  The new message exchange MUST use the same CSB ID as the initial
  exchange but MUST use new timestamps.  The crypto sessions
  negotiation (#CS field, CS ID map info field, and SP payloads) are
  handled as in the initial exchange.  In the TRANSFER_INIT message the
  V flag SHALL be used to indicate whether or not a response message is
  expected.  Static payloads such as RANDRi, RANDRr, RANDRkms, and
  TICKET that were provided in the initial exchange SHOULD NOT be
  included unless they are needed by a specific use case.  New RANDs or
  TICKETs MUST NOT be included.  The reason that new RANDs SHALL NOT be
  used is that if several TGKs are used, the peers would need to keep
  track of which RANDs to use for each TGK.  This adds unnecessary
  complexity.  Both messages SHALL be protected with the same keys
  (derived from MPKi or MPKr') that protected the last message
  (TRANSFER_INIT or TRANSFER_RESP) in the initial exchange.






Mattsson & Tian               Informational                    [Page 28]

RFC 6043                      MIKEY-TICKET                    March 2011


  New keying material MAY be sent in a KEMAC payload.  If indicated by
  the Ticket Policy (L and M flags), KEMAC payloads SHALL NOT be
  included.  In the TRANSFER_RESP message, a session key MUST be
  provided for each crypto session.  The KEMAC SHALL use the NULL
  authentication algorithm, as a MAC is included in the V payload.  The
  encr_key (and salt_key) SHALL be derived from the MPK (MPKi or
  MPKr').  Depending on the encryption algorithm, the salting key may
  go into the IV (see [RFC3830]).  If a new TGK is exchanged, it SHALL
  NOT be forked.  The KEMAC is hence constructed as follows:

                   KEMAC = E(encr_key, (TEK|TGK|GTGK))

5.3.  Ticket Reuse

  MIKEY-TICKET includes features aiming to offload the KMS from
  receiving ticket requests.  One such feature is that tickets may be
  reused.  This means that a user may request a ticket for media
  sessions with another user and then under the ticket's validity
  period use this ticket to protect several media sessions with that
  user.

  When reusing a ticket that has been used in a previous Ticket
  Transfer exchange, a new Ticket Transfer exchange is executed.  The
  new exchange MUST use a new CSB ID, a new timestamp, and new RANDs
  (RANDRi, RANDRr).  If the Responder has resolved the ticket before,
  the Responder does not need to resolve the ticket again.  In that
  case, the same modifier (IDRr, RANDRkms) SHALL be used.  If the
  Ticket Policy forbids reuse (J flag), the ticket MUST NOT be reused.
  Note that such reuse cannot be detected by a stateless KMS.  When
  group keys are used, ticket reuse leaves the Initiator responsible to
  ensure that group membership has not changed since the ticket was
  last used.  (Otherwise, unauthorized responders may gain access to
  the group communication.)  Thus, if group dynamics are difficult to
  verify, the Initiator SHOULD NOT initiate ticket reuse.

  When key forking is used, only the user that requested the ticket has
  access to the encoded master keys (MPKr, TGKs).  Because of this, no
  one else can initiate a Ticket Transfer exchange using the ticket.

5.4.  Error Handling

  If a fatal error occurs during the parsing of a message, the message
  SHOULD be discarded, and an Error message SHOULD be sent to the other
  party (Initiator, Responder, KMS).  If a failure is due to the
  inability to authenticate the peer, the message SHALL be discarded,
  the Error message is OPTIONAL, and the caveats in Section 5.1.2 of
  [RFC3830] apply.  Error messages may be used to report errors in both
  initial and response messages, but not in Error messages.



Mattsson & Tian               Informational                    [Page 29]

RFC 6043                      MIKEY-TICKET                    March 2011


  In the Ticket Request and Ticket Resolve exchanges, the Error message
  MAY be authenticated with a MAC or a signature.  The Error message is
  hence constructed as follows:

                 Error message = HDR, T, (ERR), [V|SIGNx]

  where x is in the set {i, r, kms} (Initiator, Responder, KMS).
  Unexpected payloads in the Error message SHOULD be ignored.

  In the Ticket Transfer exchange, the Error message MAY be
  authenticated with a MAC.  If the suggested security policies are not
  supported, the Error message SHOULD include the supported parameters.
  The Error message is hence constructed as follows:

                 Error message = HDR, T, (ERR), {SP}, [V]

  In Error messages, the version, PRF func, and CSB ID fields in the
  HDR payload SHALL be identical to the corresponding fields in the
  message where the error occurred.  The V field SHALL be set to '0'
  and be ignored.

  If one of the NTP timestamp types is used, a fresh timestamp value
  SHALL be used.  If the COUNTER timestamp type (see Section 6.6 of
  [RFC3830]) is used, the timestamp value MAY be equal to the one in
  the message where the error occurred.

  The MAC/Signature in the V/SIGN payloads covers the entire Error
  message, except the MAC/Signature field itself.  The auth_key SHALL
  be the same as in the message where the error occurred.

5.5.  MAC/Signature Coverage

  The MAC/Signature in the V/SIGN payloads covers the entire MIKEY
  message, except the MAC/Signature field itself.  For initial
  messages, the identities (not whole payloads) of the parties involved
  MUST directly follow the MIKEY message in the Verification MAC/
  Signature calculation.  In the TRANSFER_INIT message, the MAC SHALL
  NOT cover the Initiator Data length and Initiator Data fields in the
  TICKET payload.  Note that in the Transfer Exchange, Identity_r in
  TRANSFER_RESP (e.g., [email protected]) MAY differ from that
  appearing in TRANSFER_INIT (e.g., [email protected]).  For
  response messages, the entire initial message (including the MAC/
  Signature field) MUST directly follow the MIKEY message in the
  Verification MAC/Signature calculation (the identities are implicitly
  covered as they are covered by the initial message's MAC/Signature).






Mattsson & Tian               Informational                    [Page 30]

RFC 6043                      MIKEY-TICKET                    March 2011


       Message type  | MAC/Signature coverage
       --------------+--------------------------------------------
       REQUEST_INIT  | REQUEST_INIT  || Identity_i || Identity_kms
       REQUEST_RESP  | REQUEST_RESP  || REQUEST_INIT
       TRANSFER_INIT | TRANSFER_INIT || Identity_i || Identity_r
       TRANSFER_RESP | TRANSFER_RESP || TRANSFER_INIT
       RESOLVE_INIT  | RESOLVE_INIT  || Identity_r || Identity_kms
       RESOLVE_RESP  | RESOLVE_RESP  || RESOLVE_INIT
       Error message | Error message

                    Table 5.2: MAC/Signature coverage

6.  Payload Encoding

  This section does not describe all the payloads that are used in the
  new message types.  It describes in detail the new TR, IDR, RANDR,
  TP, and TICKET payloads.  For the other payloads, only the additions
  and changes compared to [RFC3830] are described.  For a detailed
  description of the other MIKEY payloads, see [RFC3830].  Note that
  the fields with variable length are byte aligned and not 32-bit
  aligned.

6.1.  Common Header Payload (HDR)

  For the Common Header Payload, new values are added to the Data Type,
  Next Payload, PRF func, and CS ID map type name spaces.

  *  Data Type (8 bits): describes the type of message.

     Data Type        | Value | Comment
     -----------------+-------+-------------------------------------
     REQUEST_INIT_PSK |    11 | Ticket request initial message (PSK)
     REQUEST_INIT_PK  |    12 | Ticket request initial message (PK)
     REQUEST_RESP     |    13 | Ticket request response message
                      |       |
     TRANSFER_INIT    |    14 | Ticket transfer initial message
     TRANSFER_RESP    |    15 | Ticket transfer response message
                      |       |
     RESOLVE_INIT_PSK |    16 | Ticket resolve initial message (PSK)
     RESOLVE_INIT_PK  |    17 | Ticket resolve initial message (PK)
     RESOLVE_RESP     |    18 | Ticket resolve response message

                    Table 6.1: Data Type (Additions)








Mattsson & Tian               Informational                    [Page 31]

RFC 6043                      MIKEY-TICKET                    March 2011


  *  Next Payload (8 bits): identifies the payload that is added after
     this payload.

                      Next Payload | Value | Section
                      -------------+-------+--------
                      TR           |    13 | 6.4
                      IDR          |    14 | 6.6
                      RANDR        |    15 | 6.8
                      TP           |    16 | 6.10
                      TICKET       |    17 | 6.10

                   Table 6.2: Next Payload (Additions)

  *  V (1 bit): flag to indicate whether a response message is expected
     ('1') or not ('0').  It MUST be set to '0' and ignored in all
     messages except TRANSFER_INIT messages used for CSB updating (see
     Section 5.2).

  *  PRF func (7 bits): indicates the PRF function that has been/will
     be used for key derivation.  Besides the PRFs already defined in
     [RFC3830] the following additional PRF may be used.

                        PRF func         | Value
                        -----------------+------
                        PRF-HMAC-SHA-256 |     1

                     Table 6.3: PRF func (Additions)

  The new PRF SHALL be constructed as described in Section 4.1.2 of
  [RFC3830] with the differences that HMAC-SHA-256 (see Section 6.2)
  SHALL be used instead of HMAC-SHA-1 and the value 256 SHALL be used
  instead of 160.  This corresponds to the full output length of
  SHA-256.

  *  #CS (8 bits): indicates the number of crypto sessions in the CS ID
     map info.

  *  CS ID map type (8 bits): specifies the method of uniquely mapping
     crypto sessions to the security protocol sessions.  In the Ticket
     Transfer exchange the new GENERIC-ID map type, which is intended
     to eliminate the limitations with the existing SRTP-ID map type,
     SHOULD be used.  The map type SRTP-ID SHALL NOT be used.

                         CS ID map type | Value
                         ----------------------
                         GENERIC-ID     |     2

                  Table 6.4: CS ID map type (Additions)



Mattsson & Tian               Informational                    [Page 32]

RFC 6043                      MIKEY-TICKET                    March 2011


  *  CS ID map info (variable length): identifies and maps the crypto
     sessions to the security protocol sessions for which security
     associations should be created.

6.1.1.  The GENERIC-ID Map Type

  For the GENERIC-ID map type, the CS ID map info consists of #CS
  number of blocks, each mapping policies, session data (e.g., SSRC),
  and key to a specific crypto session.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  !     CS ID     !   Prot type   !S!     #P      ! Ps (OPTIONAL) ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  !      Session Data Length      !    Session Data (OPTIONAL)    ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  !  SPI Length   !                SPI (OPTIONAL)                 ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  *  CS ID (8 bits): defines the CS ID to be used for the crypto
     session.

  *  Prot type (8 bits): defines the security protocol to be used for
     the crypto session.  Allowed values are the ones defined for the
     Prot type field in the SP payload (see Section 6.10 of [RFC3830]).

  *  S (1 bit): flag that MAY be used by the Session Data.

  *  #P (7 bits): indicates the number of security policies provided
     for the crypto session.  In response messages, #P SHALL always be
     exactly 1.  So if #P = 0 in an initial message, a security profile
     MUST be provided in the response message.  If #P > 0, one of the
     suggested policies SHOULD be chosen in the response message.  If
     needed (e.g., in group communication, see Section 9), the
     suggested policies MAY be changed.

  *  Ps (variable length): lists the policies for the crypto session.
     It SHALL contain exactly #P policies, each having the specified
     Prot type.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     !  Policy_no_1  !  Policy_no_2  !      ...      ! Policy_no_#P  !
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+





Mattsson & Tian               Informational                    [Page 33]

RFC 6043                      MIKEY-TICKET                    March 2011


     *  Policy_no_i (8 bits): a policy_no that corresponds to the
        policy_no of a SP payload.  In response messages, the policy_no
        may refer to a SP payload in the initial message.

  *  Session Data Length (16 bits): the length of Session Data (in
     bytes).  For the Prot type SRTP, Session Data MAY be omitted in
     the initial message (length = 0), but it MUST be provided in the
     response message.

  *  Session Data (variable length): contains session data for the
     crypto session.  The type of Session Data depends on the specified
     Prot type.  The Session Data for the Prot type SRTP is defined
     below.  The S flag is used to indicate whether the ROC and SEQ
     fields are provided ('1') or if they are omitted ('0').

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     !                              SSRC                             !
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     !                        ROC (OPTIONAL)                         !
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     !         SEQ (OPTIONAL)          !
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     *  SSRC (32 bits): specifies the SSRC that MUST be used for the
        crypto session.  Note that unlike [RFC3830], an SSRC field set
        to '0' has no special meaning.

     *  ROC (32 bits): current/initial rollover counter.  If the
        session has not started, this field is set to '0'.

     *  SEQ (16 bits): current/initial sequence number.

  *  SPI Length (8 bits): the length of SPI (in bytes).  SPI MAY be
     omitted in the initial message (length = 0), but it MUST be
     provided in the response message.

  *  SPI (variable length): the SPI (or MKI) corresponding to the
     session key to (initially) be used for the crypto session.  This
     does not exclude other keys to be used.  All keys MUST belong to
     the crypto session bundle.

6.2.  Key Data Transport Payload (KEMAC)

  For the KEMAC payload, new encryption and authentication algorithms
  are defined.




Mattsson & Tian               Informational                    [Page 34]

RFC 6043                      MIKEY-TICKET                    March 2011


  *  Encr alg (8 bits): the encryption algorithm used to encrypt the
     Encr data field.  Besides the algorithms already defined in
     [RFC3830], the following additional encryption algorithm may be
     used.

             Encr alg   | Value | Comment
             -----------+-------+---------------------------
             AES-CM-256 |     3 | AES-CM using a 256-bit key

                     Table 6.5: Encr alg (Additions)

  The new encryption algorithm is defined as described in Section 4.2.3
  of [RFC3830] with the only difference being that a 256-bit key SHALL
  be used.

  *  MAC alg (8 bits): specifies the authentication algorithm used.
     Besides the algorithms already defined in [RFC3830], the following
     additional authentication algorithm may be used.

                   MAC alg          | Value | Length
                   -----------------+-------+---------
                   HMAC-SHA-256-256 |     2 | 256 bits

                      Table 6.6: MAC alg (Additions)

  The new authentication algorithm is Hash-based Message Authentication
  Code (HMAC) [RFC2104] in conjunction with SHA-256 [FIPS.180-3].  It
  SHALL be used with a 256-bit authentication key.

6.2.1.  Key Data Sub-Payload

  For the key data sub-payload, new types of keys are defined.  The
  Group TGK (GTGK) is used as a regular TGK, with the difference that
  it SHALL NOT be forked.  It is intended to enable the establishment
  of a group TGK when key forking is used.  The MIKEY Protection Key
  (MPK) is used to protect the MIKEY messages in the Ticket Transfer
  exchange.  The MPK is used as the pre-shared key in the pre-shared
  key method of [RFC3830]; however, it is not known by the Responder
  before the ticket has been resolved.

  An SPI (or MKI) MUST be specified for each key (see Section 6.13 of
  [RFC3830]).

  *  Type (4 bits): indicates the type of key included in the payload.







Mattsson & Tian               Informational                    [Page 35]

RFC 6043                      MIKEY-TICKET                    March 2011


                 Type      | Value | Comments
                 ----------+-------+---------------------
                 GTGK      |     4 | Group TGK
                 GTGK+SALT |     5 | Group TGK + SALT
                 MPK       |     6 | MIKEY Protection Key

                   Table 6.7: Key Data Type (Additions)

6.3.  Timestamp Payload (T)

  For the timestamp payload, a new type of timestamp is defined.  The
  new type is intended to be used when defining validity periods, where
  fractions of seconds seldom matter.  The NTP-UTC-32 string contains
  four bytes, in the same format as the first four bytes in the NTP
  timestamp format, defined in [RFC4330].  This represents the number
  of seconds since 0h on 1 January 1900 with respect to the Coordinated
  Universal Time (UTC).  On 7 February 2036, the time value will
  overflow.  [RFC4330] describes a procedure to extend the time to 2104
  and this procedure is MANDATORY to support.

  *  TS Type (8 bits): specifies the timestamp type used.

                       TS Type    | Value | Length
                       -----------+-------+--------
                       NTP-UTC-32 |     3 | 32 bits

                      Table 6.8: TS Type (Additions)

  NTP-UTC-32 SHALL be padded to a 64-bit NTP-UTC timestamp (with zeroes
  in the fractional second part) when a 64-bit timestamp is required
  (e.g.  IV creation in AES-CM-128 and AES-CM-256).

6.4.  Timestamp Payload with Role Indicator (TR)

  The TR payload uses all the fields from the standard timestamp
  payload (T) but expands it with a new field describing the role of
  the timestamp.  Whereas the TS Type describes the type of the TS
  Value, the TS Role describes the meaning of the timestamp itself.
  The TR payload is intended to eliminate ambiguity when a MIKEY
  message contains several timestamp payloads (e.g., in the Ticket
  Policy).

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ! Next Payload  !    TS Role    !    TS Type    !    TS Value   ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+




Mattsson & Tian               Informational                    [Page 36]

RFC 6043                      MIKEY-TICKET                    March 2011


  *  TS Role (8 bits): specifies the sort of timestamp.

                  TS Role                        | Value
                  -------------------------------+------
                  Time of issue (TRi)            |     1
                  Start of validity period (TRs) |     2
                  End of validity period (TRe)   |     3
                  Rekeying interval (TRr)        |     4

                            Table 6.9: TS Role

6.5.  ID Payload (ID)

  For the ID payload, a new ID Type byte string is defined.  The byte
  string type is intended to be used when the ID payload is used to
  identify a pre-shared key.  Contrary to the previously defined ID
  Types (URI, Network Access Identifier), the byte string does not have
  any encoding rules.

  *  ID Type (8 bits): specifies the identifier type used.

                           ID Type     | Value
                           ------------+------
                           Byte string |     2

                     Table 6.10: ID Type (Additions)

6.6.  ID Payload with Role Indicator (IDR)

  The IDR payload uses all the fields from the standard identity
  payload (ID) but expands it with a new field describing the role of
  the ID payload.  Whereas the ID Type describes the type of the ID
  Data, the ID Role describes the meaning of the identity itself.  The
  IDR payload is intended to eliminate ambiguity when a MIKEY message
  contains several identity payloads.  The IDR payload MUST be used
  instead of the ID payload in all MIKEY-TICKET messages.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ! Next Payload  !    ID Role    !    ID Type    !     ID len
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ID len (cont) !                    ID Data                    ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+







Mattsson & Tian               Informational                    [Page 37]

RFC 6043                      MIKEY-TICKET                    March 2011


  *  ID Role (8 bits): specifies the sort of identity.

                     ID Role                 | Value
                     ------------------------+------
                     Initiator (IDRi)        |     1
                     Responder (IDRr)        |     2
                     KMS (IDRkms)            |     3
                     Pre-Shared Key (IDRpsk) |     4
                     Application (IDRapp)    |     5

                           Table 6.11: ID Role

  IDRapp is intended to specify the authorized Application IDs (see
  Sections 5.1.3 and 6.10)

6.7.  Cert Hash Payload (CHASH)

  *  Hash func (8 bits): indicates the hash function that is used.
     Besides the hash functions already defined in [RFC3830], the
     following hash function may be used.

                     Hash func | Value | Hash Length
                     ----------+-------+------------
                     SHA-256   |     2 |    256 bits

                    Table 6.12: Hash func (Additions)

  The SHA-256 hash function is defined in [FIPS.180-3].

6.8.  RAND Payload with Role Indicator (RANDR)

  The RANDR payload uses all the fields from the standard RAND payload
  (RAND) but expands it with a new field describing the role (the
  generating entity) of the RAND.  The RANDR payload is intended to
  eliminate ambiguity when a MIKEY message contains several RAND
  payloads.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ! Next Payload  !    RAND Role  !  RAND length  !     RAND      ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  *  RAND Role (8 bits): specifies the entity that generated the RAND.







Mattsson & Tian               Informational                    [Page 38]

RFC 6043                      MIKEY-TICKET                    March 2011


                        RAND Role          | Value
                        -------------------+------
                        Initiator (RANDRi) |     1
                        Responder (RANDRr) |     2
                        KMS (RANDRkms)     |     3

                          Table 6.13: RAND Role

6.9.  Error Payload (ERR)

  For the key data sub-payload, new types of errors are defined.

  *  Error no (8 bits): indicates the type of error that was
     encountered.

           Error no       | Value | Comments
           ---------------+-------+----------------------------
           Invalid TICKET |    14 | Ticket Type not supported
           Invalid TPpar  |    15 | TP parameters not supported

                     Table 6.14: Error no (Additions)

6.10.  Ticket Policy Payload (TP) / Ticket Payload (TICKET)

  Note that the Ticket Policy payload (TP) and the Ticket Payload
  (TICKET) are two different payloads (having different payload
  identifiers).  However, as they share much of the payload structure,
  they are described in the same section.

  The Ticket Policy payload contains a desired Ticket Policy and does
  not include the Ticket Data length, Ticket Data, Initiator Data
  length, or Initiator Data fields.  The ticket payload contains the
  granted Ticket Policy as well as Ticket Data (the default ticket type
  is defined in Appendix A).  The Ticket Policy contains information
  intended for all parties involved whereas the Ticket Data is only
  intended for the party that resolves the ticket.  The Ticket Type
  provided in the Ticket Data is indicated in the Ticket Policy.  When
  key forking is used (I flag), the Initiator Data authenticates the
  Initiator.

  Note that the flags are not independent: NOT D implies L, G implies
  F, NOT G implies H, NOT H implies G, I implies E, K implies D, and M
  implies F.  The F flag SHALL be set to '1' when the I flag (key
  forking) is set to '1' and a TGK is encoded in the ticket.







Mattsson & Tian               Informational                    [Page 39]

RFC 6043                      MIKEY-TICKET                    March 2011


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ! Next Payload  !          Ticket Type          !    Subtype    !
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  !    Version    !   PRF Func  !D!E!F!G!H!I!J!K!L!M!N!O!   Res   !
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  !        TP Data length         !            TP Data            ~
  +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
  !      Ticket Data length       !          Ticket Data          ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  !     Initiator Data length     !   Initiator Data (OPTIONAL)   ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  *  Next Payload (8 bits): identifies the payload that is added after
     this payload.

  *  Ticket Type (16 bits): specifies the Ticket Type used.

          Ticket Type       | Value | Comments
          ------------------+-------+---------------------------
          MIKEY Base Ticket |     1 | Defined in Appendix A
          3GPP Base Ticket  |     2 | Used and specified by 3GPP

                         Table 6.15: Ticket Type

  Subtype = 0x01 and Version = 0x01 refers to MIKEY Base Ticket as
  defined in this document.

  *  Subtype (8 bits): specifies the ticket subtype used.

  *  Version (8 bits): specifies the ticket subtype version used.

  *  PRF Func (7 bits): specifies the PRF that SHALL be used for key
     forking.

  *  D (1 bit): flag to indicate whether the ticket was generated by
     the KMS ('1') or by the Initiator ('0').

  *  E (1 bit): flag to indicate whether the Ticket Resolve exchange is
     MANDATORY ('1') or if the Responder MAY resolve the ticket ('0').

  *  F (1 bit): flag to indicate whether the TRANSFER_RESP message
     SHALL be sent ('1') or if it SHALL NOT be sent ('0').







Mattsson & Tian               Informational                    [Page 40]

RFC 6043                      MIKEY-TICKET                    March 2011


  *  G (1 bit): flag to indicate whether the Responder SHALL generate
     RANDRr ('1') or if the Responder SHALL NOT generate RANDRr ('0').

  *  H (1 bit): flag to indicate whether RANDRi SHALL be used when
     deriving keys from a TGK/GTGK ('1') or if RANDRi SHALL NOT be used
     ('0').

  *  I (1 bit): flag to indicate whether key forking SHALL be used
     ('1') or if key forking SHALL NOT be used ('0').

  *  J (1 bit): flag to indicate whether the ticket MAY be reused ('1')
     and therefore MAY be cached or if it SHALL NOT be reused ('0').

  *  K (1 bit): flag to indicate whether the KMS changed the desired
     Ticket Policy or the desired KEMAC ('1') or if it did not ('0').
     In the TP payload, it SHALL be set to '0' by the Initiator and
     ignored by the KMS.

  *  L (1 bit): flag to indicate whether the Initiator MAY supply
     session keys ('1') or if the Initiator SHALL NOT supply session
     keys ('0').

  *  M (1 bit): flag to indicate whether the Responder MAY supply
     session keys ('1') or if the Responder SHALL NOT supply session
     keys ('0').

  *  N (1 bit): flag to indicate whether an Initiator following this
     specification can initiate a TRANSFER_INIT message using the
     ticket ('1') or if additional processing is required ('0').  If
     the flag is set to '0', the Initiator SHOULD follow the processing
     in the specification of the received Ticket Type.

  *  O (1 bit): flag to indicate whether a Responder following this
     specification can process a TRANSFER_INIT message containing the
     ticket ('1') or if additional processing is required ('0').  If
     the flag is set to '0', the Responder SHOULD follow the processing
     in the specification of the received Ticket Type.

  *  Res (5 bits): reserved for future use.

  *  TP Data length (16 bits): length of TP Data (in bytes).

  *  TP Data (variable length): The first 8 bits identify the first
     payload.  The rest of TP Data SHALL be constructed of MIKEY
     payloads.  Unexpected payloads in the TP Data SHOULD be ignored.

            TP Data = First Payload, [IDRkms], [IDRi], [TRs],
                      [TRe], [TRr], [KEMAC], {IDRapp}, (IDRr)



Mattsson & Tian               Informational                    [Page 41]

RFC 6043                      MIKEY-TICKET                    March 2011


     IDRkms contains the identity of a KMS that can resolve the ticket.

     IDRi contains the identity of the peer that requested or created
     the ticket.

     TRs is the start of the validity period.  TRs SHALL be interpreted
     as being in the range 1968-2104 as described in [RFC4330].  An
     omitted TRs means that the validity period has no defined
     beginning.

     TRe is the end of the validity period.  TRe SHALL be interpreted
     as being in the range 1968-2104 as described in [RFC4330].  An
     omitted TRe means that the validity period has no defined end.

     TRr indicates how often rekeying MUST be done.  TS Type SHALL be
     NTP-UTC-32 and the time between two rekeyings SHALL NOT be longer
     than the number of seconds in the integer part of the timestamp.
     How the rekeying is done is implementation specific.

     The KEMAC payload may be used to indicate the number of requested
     keys and specify other key information (key type, key length, and
     KV (key validity) data).  The KEMAC payload SHALL use the NULL
     encryption algorithm and the NULL authentication algorithm, as a
     MAC is included in the V payload.  The KEMAC is hence constructed
     as follows:

                          KEMAC = {TEK|TGK|GTGK}

  The Key Data fields SHALL be set to '0' by the Initiator and ignored
  by the KMS.  The KEMAC SHALL NOT be present in the granted Ticket
  Policy.

     IDRapp is an identifier for an authorized application ID.  The
     application IDs are implementation specific.  If no IDRapp
     payloads are supplied, all application IDs are authorized.

     IDRr is the identity of a responder or a group of responders that
     are authorized to resolve the ticket.  If there is more than one
     responder identity, each responder identity SHALL be included in a
     separate IDR payload.

  *  Ticket Data length (16 bits): the length of the Ticket Data field
     (in bytes).  Not present in the TP payload.

  *  Ticket Data (variable length): contains the Ticket Data.  Not
     present in the TP payload.





Mattsson & Tian               Informational                    [Page 42]

RFC 6043                      MIKEY-TICKET                    March 2011


  *  Initiator Data length (16 bits): the length of the Initiator Data
     field (in bytes).  Not present in the TP payload.

  *  Initiator Data (variable length): Not present in the TP payload.
     SHALL be inserted by the Initiator if and only if key forking is
     used (I flag).  The first 8 bits identifies the first payload.
     The rest of Initiator Data SHALL be constructed of MIKEY payloads.
     Unexpected payloads in the Initiator Data SHOULD be ignored.

                  Initiator Data = First Payload, Vi, Vr

     The Vi payload SHALL be identical to the V payload in the
     TRANSFER_INIT message.

     The last payload (Vr) SHALL be a Verification payload where the
     MAC SHALL cover the entire Initiator Data field except the MAC
     field itself.  The authentication algorithm SHALL be the same as
     used for the Vi payload.  The authentication key (auth_key) SHALL
     be derived from MPKr (not forked) using the following parameters:

     inkey:     : MPKr
     inkey_len  : bit length of the inkey
     label      : constant || 0xFF || 0xFFFFFFFF || 0x04
     outkey_len : desired bit length of the outkey (encr_key,
                  auth_key, salt_key)

     The constant depends on the derived key type as defined in Section
     4.1.4 of [RFC3830].

7.  Transport Protocols

  MIKEY messages are not tied to any specific transport protocols.  In
  [RFC4567], extensions for SDP and RTSP to carry MIKEY messages (and
  therefore MIKEY-TICKET messages) are defined.  The messages in the
  Ticket Transfer exchange (TRANSFER_INIT, TRANSFER_RESP) are
  preferably included in the session setup signaling (e.g., SIP INVITE
  and 200 OK).  However, it may not be suitable for the MIKEY-TICKET
  exchanges that do not establish keying material for media sessions
  (Ticket Request and Ticket Resolve) to be carried in SDP or RTSP.  If
  SDP or RTSP is not used, the transport protocol needs to be defined.
  In [3GPP.33.328], it is defined how the Ticket Request and Ticket
  Resolve exchanges are carried over HTTP.

8.  Pre-Encrypted Content

  The default setting is that the KMS supplies the session keys
  (encoded in the ticket).  This is not possible if the content is pre-
  encrypted (e.g., Video on Demand).  In such use cases, the key



Mattsson & Tian               Informational                    [Page 43]

RFC 6043                      MIKEY-TICKET                    March 2011


  exchange is typically reversed and MAY be carried out as follows.
  The Initiator sends a ticket without encoded session keys to the
  Responder in a TRANSFER_INIT message.  The Responder has access to
  the TEKs used to protect the requested content, but may not be
  streaming the content.  The Responder includes the TEK in the
  TRANSFER_RESP message, which is sent to the Initiator.

  +---+                                                           +---+
  | I |                                                           | R |
  +---+                                                           +---+
                              TRANSFER_INIT
    ---------------------------------------------------------------->
                              TRANSFER_RESP {KEMAC}
    <----------------------------------------------------------------

             Figure 6: Distribution of pre-encrypted content

9.  Group Communication

  What has been discussed up to now can also be used for group
  communication.  The MIKEY signaling for multi-party sessions can be
  centralized as illustrated in Figure 7.

  +---+                           +---+                           +---+
  | A |                           | B |                           | C |
  +---+                           +---+                           +---+
             Ticket Transfer
    <------------------------------->        Ticket Transfer
    <--------------------------------------------------------------->

             Figure 7: Centralized signaling around party A

  or decentralized as illustrated in Figure 8.

  +---+                           +---+                           +---+
  | A |                           | B |                           | C |
  +---+                           +---+                           +---+
             Ticket Transfer
    <------------------------------->        Ticket Transfer
                                    <------------------------------->

                    Figure 8: Decentralized signaling

  In the decentralized scenario, the identities of B and C SHALL be
  used in the second Ticket Transfer exchange.  Independent of the how
  the MIKEY signaling is done, a group key may be used as session key.





Mattsson & Tian               Informational                    [Page 44]

RFC 6043                      MIKEY-TICKET                    March 2011


  If a group key is used, the group key and session information may be
  pushed to all group members (similar to [RFC3830]), or distributed
  when requested (similar to [RFC4738]).  If a TGK/GTGK is used as a
  group key, the same RANDs MUST be used to derive the session keys in
  all Ticket Transfer exchanges.  Also note caveats with ticket reuse
  in group communication settings as discussed in Section 5.3.

9.1.  Key Forking

  When key forking is used, only the user that requested the ticket can
  initiate a Ticket Transfer exchange using that ticket, see
  Section 5.3.  So if a group key is to be distributed, the MIKEY
  signaling MUST be centralized to the party that initially requested
  the ticket, or different tickets needs to be used in each Ticket
  Transfer exchange and the group key needs to be sent in a KEMAC.

  Another consideration is that different users get different session
  keys if TGKs (encoded in the ticket) are used.

10.  Signaling between Different KMSs

  A user can in general only be expected to have a trust relation with
  a single KMS.  Different users might therefore use tickets issued by
  different KMSs using only locally known keys.  Thus, if users with
  trust relations to different KMSs are to be able to establish a
  secure session with each other, the KMSs involved have to cooperate
  and there has to be a trust relation between them.  The KMSs SHALL be
  mutually authenticated and signaling between them SHALL be integrity
  and confidentiality protected.  The technical means for the inter-KMS
  security is however outside the scope of this specification.  Under
  these assumptions, the following approach MAY be used.

  +---+               +---+              +-------+            +-------+
  | I |               | R |              | KMS R |            | KMS I |
  +---+               +---+              +-------+            +-------+
        TRANSFER_INIT
    -------------------->    RESOLVE_INIT
                        - - - - - - - - - - ->    RESOLVE_INIT
                                             - - - - - - - - - - ->
                                                  RESOLVE_RESP
                             RESOLVE_RESP    <- - - - - - - - - - -
        TRANSFER_RESP   < - - - - - - -  - - -
    <--------------------

                  Figure 9: Routing of resolve messages






Mattsson & Tian               Informational                    [Page 45]

RFC 6043                      MIKEY-TICKET                    March 2011


  If the Responder cannot directly resolve a ticket, the ticket SHOULD
  be included in a RESOLVE_INIT message sent to a KMS.  If the
  Responder does not have a shared credential with the KMS that issued
  the ticket (KMS I) or if the Responder does not know which KMS issued
  the ticket, the Responder SHOULD send the RESOLVE_INIT message to one
  of the Responder's trusted KMSs (KMS R).  If KMS R did not issue the
  ticket, KMS R would normally be unable to directly resolve the ticket
  and must hence ask another KMS to resolve it (typically the issuing
  KMS).

  The signaling between different KMSs MAY be done with a Ticket
  Resolve exchange as illustrated in Figure 9.  The IDRr and TICKET
  payloads from the previous RESOLVE_INIT message SHOULD be reused.
  Note that IDRr cannot be used to look up the pre-shared key/
  certificate.

11.  Adding New Ticket Types to MIKEY-TICKET

  The Ticket Data (in the TICKET payload) could be a reference to
  information (keys, etc.) stored by the key management service, it
  could contain all the information itself, or it could be a
  combination of the two alternatives.  For systems serving many users,
  it is not ideal to use the reference-only ticket approach as this
  would force the key management service to keep state of all issued
  tickets that are still valid.  Tickets may carry many different types
  of information helping to enforce usage policies.  The policies may
  be group policies or per-user policies.

  Tickets may either be transparent, meaning they can be resolved
  without contacting the KMS that generated them, or opaque, meaning
  that the original KMS must be contacted.  The ticket information
  SHOULD typically be integrity protected and certain fields need
  confidentiality protection, in particular, the keys if explicitly
  included.  Other types of information may also require
  confidentiality protection due to privacy reasons.  In mode 2 (see
  Section 4.1.1), it may be preferable to include several encrypted
  ticket protection keys (similar to Secure/Multipurpose Internet Mail
  Extensions (S/MIME)) as this may allow multiple peers to resolve the
  ticket.

  The Ticket Data MUST include information so that the resolving party
  can retrieve an encoded KEMAC.  It MUST also be possible to verify
  the integrity of the TICKET payload.  It is RECOMMENDED that future
  specifications use the recommended payload order and do not add any
  additional payloads or processing.  New Ticket Types SHOULD NOT
  change the processing for the Responder.  If a new Ticket Type





Mattsson & Tian               Informational                    [Page 46]

RFC 6043                      MIKEY-TICKET                    March 2011


  requires additional processing, it MUST be indicated in the Ticket
  Policy (N and O flags).  New specifications MUST specify which modes
  are supported and if any additional security considerations apply.

12.  Security Considerations

  Unless otherwise stated, the security considerations in [RFC3830]
  still apply and contain notes on the security properties of the MIKEY
  protocol, key derivation functions, and other components.  As some
  security properties depend on the specific Ticket Type, only generic
  security considerations concerning the MIKEY-TICKET framework are
  discussed.

  This specification includes a large number of optional features,
  which adds complexity to the general case.  Protocol designers are
  strongly encouraged to establish strict profiles defining MIKEY-
  TICKET options (e.g., exchanges or message fields) that SHOULD or
  MUST be supported.  Such profiles should preclude unexpected
  consequences from compliant implementations with wildly differing
  option sets.

12.1.  General

  In addition to the Ticket Policy, the KMS MAY have its own set of
  policies (authorized key lengths, algorithms, etc.) that in some way
  are shared with the peers.  The KMS MAY also provide keying material
  to authorized intermediate nodes performing various network functions
  (e.g., transcoding services, recording services, conference bridges).
  The key management service can enforce end-to-end security by only
  distributing the keys to authorized end-users.  As in [RFC3830], the
  user identities are not confidentiality protected.  If user privacy
  is needed, some kind of Privacy Enhancing Technologies (PET) like
  anonymous or temporary credentials MAY be used.

  In the standard MIKEY modes [RFC3830], the keys are generated by the
  Initiator (or by both peers in the Diffie-Hellman scheme).  If a bad
  PRNG (Pseudorandom Number Generator) is used, this is likely to make
  any key management protocol sensitive to different kinds of attacks,
  and MIKEY is no exception.  As the choice of the PRNG is
  implementation specific, the easiest (and often bad) choice is to use
  the PRNG supplied by the operating system.  In MIKEY-TICKET's default
  mode of operation, the key generation is mostly done by the KMS,
  which can be assumed to be less likely to use a bad random number
  generator.  All keys (including keys used to protect the ticket) MUST
  have adequate strength/length, i.e., 128 bits or more.






Mattsson & Tian               Informational                    [Page 47]

RFC 6043                      MIKEY-TICKET                    March 2011


  The use of random nonces (RANDs) in the key derivation is of utmost
  importance to counter offline pre-computation attacks and other
  generic attacks.  A key of length n, using RANDs of length r, has
  effective key entropy of (n + r) / 2 against a birthday attack.
  Therefore, the sum of the lengths of RANDRi and RANDRr MUST at least
  be equal to the size of the longest pre-shared key/envelope key/MPK/
  TGK/GTGK, RANDRkms MUST at least be as long as the longest MPKr/TGK,
  and the RAND in the MIKEY base ticket MUST at least be as long as the
  longest of TPK and MPK.

  Note that the CSB Updating messages reuse the old RANDs.  This means
  that the total effective key entropy (relative to pre-computation
  attacks) for k consecutive key updates, assuming the TGKs are each n
  bits long, is still no more than n bits.  In other words, the time
  and memory needed by an attacker to get all k n-bit keys are
  proportional to 2^n.  While this might seem like a defect, this is in
  practice (for all reasonable values of k) not better than brute
  force, which on average requires k * 2^(n-1) work (even if different
  RANDs would be used).  A birthday attack would only require 2^(n/2)
  work, but would need access to 2^(n/2) sessions protected with
  equally many different keys using a single pair of RANDs.  This is,
  for typical values of n, clearly totally infeasible.  The success
  probability of such an attack can be controlled by limiting the
  number of updates correspondingly.  As stated in [RFC3830], the fact
  that more than one key can be compromised in a single attack is
  inherent to any solution using secret- or public-key algorithms.  An
  attacker always gets access to all the exchanged keys by doing an
  exhaustive search on the pre-shared key/envelope key/MPK.  This
  requires 2^m work, where m is the effective size of the key.

  As the Responder MAY generate a RAND, the Ticket Transfer exchange
  can provide mutual freshness guarantee for all derived keys.

  The new algorithms PRF-HMAC-SHA-256, AES-CM-256, and HMAC-SHA-256-256
  use 256-bit keys and offer a higher security level than the
  previously defined algorithms.  If one of the 256-bit algorithms are
  supported, the other two algorithms SHALL also be supported.  The
  256-bit algorithms SHOULD be used together, and they SHALL NOT be
  mixed with algorithms using key sizes less than 256 bits.  If session
  keys (TEK/TGK/GTGK) longer than 128 bits are used, 128-bit algorithms
  SHALL NOT be used.

12.2.  Key Forking

  In some situations, the TRANSFER_INIT message may be delivered to
  multiple endpoints.  For example, when a Responder is registered on
  several devices (e.g., mobile phone, fixed phone, and computer) or
  when an invite is being made to addresses of the type



Mattsson & Tian               Informational                    [Page 48]

RFC 6043                      MIKEY-TICKET                    March 2011


  [email protected], a group of users where only one is supposed
  to answer.  The Initiator may not even always know exactly who the
  authorized group members are.  To prevent all forms of eavesdropping,
  entities other than the endpoint that answers MUST NOT get access to
  the session keys.

  When key forking is not used, keys are accessible by everyone that
  can resolve the ticket.  When key forking is used, some keys (MPKr
  and TGKs encoded in the ticket) are modified, making them
  cryptographically unique for each responder targeted by the forking.
  As only the Initiator and the KMS have access to the master TGKs, it
  is infeasible for anyone else to derive the session keys.

  When key forking is used, some keys (MPKi and TEKs and GTGK encoded
  in the ticket) are still accessible by everyone that can resolve the
  ticket and should be used with this in mind.  This also concerns
  session keys transferred in a KEMAC in the first TRANSFER_INIT (as
  they are protected with MPKi).

12.3.  Denial of Service

  This protocol is resistant to denial-of-service attacks against the
  KMS in the sense that it does not construct any state (at the key
  management protocol level) before it has authenticated the Initiator
  or Responder.  Since the Responder, in general, cannot verify the
  validity of a TRANSFER_INIT message without first contacting the KMS,
  denial of service may be launched against the Responder and/or the
  KMS via the Responder.  Typical prevention methods such as rate-
  limiting and ACL (Access Control List) capability SHOULD therefore be
  implemented in the KMS as well as the clients.  If something in the
  signaling is suspicious, the Responder SHOULD abort before attempting
  a RESOLVE_INIT with the KMS.  The types and amount of prevention
  needed depends on how critical the system is and may vary depending
  on the Ticket Type.

12.4.  Replay

  In a replay attack, an attacker may intercept and later retransmit
  the whole or part of a MIKEY message, attempting to trick the
  receiver (Responder or KMS) into undesired operations, e.g., leading
  to a lack of key freshness.  MIKEY-TICKET implements several
  mechanisms to prevent and detect such attacks.  Timestamps together
  with a replay cache efficiently stop the replay of entire MIKEY
  messages.  Parts of the received messages (or their hashes) can be
  saved in the replay cache until their timestamp is outdated.  To
  prevent replay attacks, the sender's (Initiator or Responder) and the
  receiver's (Responder or KMS) identity is always (explicitly or
  implicitly) included in the MAC/Signature calculation.



Mattsson & Tian               Informational                    [Page 49]

RFC 6043                      MIKEY-TICKET                    March 2011


  An attacker may also attempt to replay a ticket by inserting it into
  a new MIKEY message.  A possible scenario is that Alice and Bob first
  communicate based on a ticket, which an attacker Mallory intercepts.
  Later, Mallory (acting as herself) invites Bob by inserting the
  ticket into her own TRANSFER_INIT message.  If key forking is used,
  such replays will always be detected when Bob has resolved the
  ticket.  If key forking is not used, such replays will be detected
  unless Mallory has knowledge of the MPKi.  And if Mallory has
  knowledge of the MPKi (i.e., she is authorized to resolve the ticket)
  and key forking is not used, there is no attack.  For the reasons
  explained above, it is RECOMMENDED to use key forking.

12.5.  Group Key Management

  In a group scenario, only authorized group members must have access
  to the keys.  In some situation, the communication may be initiated
  by the Initiator using a group identity and the Initiator may not
  even know exactly who the authorized group members are.  Moreover,
  group membership may change over time due to leaves/joins.  In such a
  situation, it is foremost the responsibility of the KMS to reject
  ticket resolution requests from unauthorized responders, implying
  that the KMS needs to be able to map an individual's identity
  (carried in the RESOLVE_INIT message) to group membership (where the
  group identity is carried in the ticket).

  As noted, reuse of tickets, which bypasses the KMS, is NOT
  RECOMMENDED when the Initiator is not fully ensured about group
  membership status.

13.  Acknowledgements

  The authors would like to thank Fredrik Ahlqvist, Rolf Blom, Yi
  Cheng, Lakshminath Dondeti, Vesa Lehtovirta, Fredrik Lindholm, Mats
  Naslund, Karl Norrman, Oscar Ohlsson, Brian Rosenberg, Bengt Sahlin,
  Wei Yinxing, and Zhu Yunwen for their support and valuable comments.

14.  IANA Considerations

  This document defines several new values for the namespaces Data
  Type, Next Payload, PRF func, CS ID map type, Encr alg, MAC alg, TS
  Type, ID Type, Hash func, Error no, and Key Data Type defined in
  [RFC3830].  The following IANA assignments were added to the MIKEY
  Payload registry (in parentheses is a reference to the table
  containing the registered values):

  o  Data Type (see Table 6.1)

  o  Next Payload (see Table 6.2)



Mattsson & Tian               Informational                    [Page 50]

RFC 6043                      MIKEY-TICKET                    March 2011


  o  PRF func (see Table 6.3)

  o  CS ID map type (see Table 6.4)

  o  Encr alg (see Table 6.5)

  o  MAC alg (see Table 6.6)

  o  TS Type (see Table 6.7)

  o  ID Type (see Table 6.9)

  o  Hash func (see Table 6.11)

  o  Error no (see Table 6.13)

  o  Key Data Type (see Table 6.14)

  The TR payload defines an 8-bit TS Role field for which IANA has
  created and will maintain a new namespace in the MIKEY Payload
  registry.  Assignments consist of a TS Role name and its associated
  value.  Values in the range 1-239 SHOULD be approved by the process
  of Specification Required, values in the range 240-254 are Reserved
  for Private Use, and the values 0 and 255 are Reserved according to
  [RFC5226].  The initial contents of the registry are as follows:

                 Value    TS Role
                 -------  ------------------------------
                 0        Reserved
                 1        Time of issue (TRi)
                 2        Start of validity period (TRs)
                 3        End of validity period (TRe)
                 4        Rekeying interval (TRr)
                 5-239    Unassigned
                 240-254  Reserved for Private Use
                 255      Reserved

  The IDR payload defines an 8-bit ID Role field for which IANA has
  created and will maintain a new namespace in the MIKEY Payload
  registry.  Assignments consist of an ID Role name and its associated
  value.  Values in the range 1-239 SHOULD be approved by the process
  of Specification Required, values in the range 240-254 are Reserved
  for Private Use, and the values 0 and 255 are Reserved according to
  [RFC5226].  The initial contents of the registry are as follows:







Mattsson & Tian               Informational                    [Page 51]

RFC 6043                      MIKEY-TICKET                    March 2011


                    Value    ID Role
                    -------  -----------------------
                    0        Reserved
                    1        Initiator (IDRi)
                    2        Responder (IDRr)
                    3        KMS (IDRkms)
                    4        Pre-Shared Key (IDRpsk)
                    5        Application (IDRapp)
                    6-239    Unassigned
                    240-254  Reserved for Private Use
                    255      Reserved

  The RANDR payload defines an 8-bit RAND Role field for which IANA has
  created and will maintain a new namespace in the MIKEY Payload
  registry.  Assignments consist of a RAND Role name and its associated
  value.  Values in the range 1-239 SHOULD be approved by the process
  of Specification Required, values in the range 240-254 are Reserved
  for Private Use, and the values 0 and 255 are Reserved according to
  [RFC5226].  The initial contents of the registry are as follows:

                    Value    RAND Role
                    -------  ------------------
                    0        Reserved
                    1        Initiator (RANDRi)
                    2        Responder (RANDRr)
                    3        KMS (RANDRkms)
                    4-239    Unassigned
                    240-254  Reserved for Private Use
                    255      Reserved

  The TP/TICKET payload defines a 16-bit Ticket Type field for which
  IANA has created and will maintain a new namespace in the MIKEY
  Payload registry.  Assignments consist of a Ticket Type name and its
  associated value.  Values in the range 1-61439 SHOULD be approved by
  the process of Specification Required, values in the range 61440-
  65534 are Reserved for Private Use, and the values 0 and 65535 are
  Reserved according to [RFC5226].  The initial contents of the
  registry are as follows:

                  Value        Ticket Type
                  -----------  -----------------
                  0            Reserved
                  1            MIKEY base ticket
                  2            3GPP base ticket
                  3-61439      Unassigned
                  61440-65534  Reserved for Private Use
                  65535        Reserved




Mattsson & Tian               Informational                    [Page 52]

RFC 6043                      MIKEY-TICKET                    March 2011


15.  References

15.1.  Normative References

  [FIPS.180-3]   National Institute of Standards and Technology,
                 "Secure Hash Standard (SHS)", FIPS PUB 180-3,
                 October 2008, <http://csrc.nist.gov/publications/fips/
                 fips180-3/fips180-3_final.pdf>.

  [RFC2104]      Krawczyk, H., Bellare, M., and R. Canetti, "HMAC:
                 Keyed-Hashing for Message Authentication", RFC 2104,
                 February 1997.

  [RFC2119]      Bradner, S., "Key words for use in RFCs to Indicate
                 Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC3830]      Arkko, J., Carrara, E., Lindholm, F., Naslund, M., and
                 K. Norrman, "MIKEY: Multimedia Internet KEYing",
                 RFC 3830, August 2004.

  [RFC4330]      Mills, D., "Simple Network Time Protocol (SNTP)
                 Version 4 for IPv4, IPv6 and OSI", RFC 4330,
                 January 2006.

  [RFC4563]      Carrara, E., Lehtovirta, V., and K. Norrman, "The Key
                 ID Information Type for the General Extension Payload
                 in Multimedia Internet KEYing (MIKEY)", RFC 4563,
                 June 2006.

  [RFC4567]      Arkko, J., Lindholm, F., Naslund, M., Norrman, K., and
                 E. Carrara, "Key Management Extensions for Session
                 Description Protocol (SDP) and Real Time Streaming
                 Protocol (RTSP)", RFC 4567, July 2006.

  [RFC4738]      Ignjatic, D., Dondeti, L., Audet, F., and P. Lin,
                 "MIKEY-RSA-R: An Additional Mode of Key Distribution
                 in Multimedia Internet KEYing (MIKEY)", RFC 4738,
                 November 2006.

  [RFC5226]      Narten, T. and H. Alvestrand, "Guidelines for Writing
                 an IANA Considerations Section in RFCs", BCP 26,
                 RFC 5226, May 2008.

15.2.   Informative References

  [3GPP.33.328]  3GPP, "IP Multimedia Subsystem (IMS) media plane
                 security", 3GPP TS 33.328 9.3.0, December 2010.




Mattsson & Tian               Informational                    [Page 53]

RFC 6043                      MIKEY-TICKET                    March 2011


  [Otway-Rees]   Otway, D., and O. Rees, "Efficient and Timely Mutual
                 Authentication", ACM SIGOPS Operating Systems
                 Review v.21 n.1, p.8-10, January 1987.

  [RFC3261]      Rosenberg, J., Schulzrinne, H., Camarillo, G.,
                 Johnston, A., Peterson, J., Sparks, R., Handley, M.,
                 and E. Schooler, "SIP: Session Initiation Protocol",
                 RFC 3261, June 2002.

  [RFC4120]      Neuman, C., Yu, T., Hartman, S., and K. Raeburn, "The
                 Kerberos Network Authentication Service (V5)",
                 RFC 4120, July 2005.

  [RFC4650]      Euchner, M., "HMAC-Authenticated Diffie-Hellman for
                 Multimedia Internet KEYing (MIKEY)", RFC 4650,
                 September 2006.

  [RFC5197]      Fries, S. and D. Ignjatic, "On the Applicability of
                 Various Multimedia Internet KEYing (MIKEY) Modes and
                 Extensions", RFC 5197, June 2008.

  [RFC5479]      Wing, D., Fries, S., Tschofenig, H., and F. Audet,
                 "Requirements and Analysis of Media Security
                 Management Protocols", RFC 5479, April 2009.



























Mattsson & Tian               Informational                    [Page 54]

RFC 6043                      MIKEY-TICKET                    March 2011


Appendix A.  MIKEY Base Ticket

  The MIKEY base ticket MAY be used in any of the modes described in
  Section 4.1.1.  The Ticket Data SHALL be constructed of MIKEY
  payloads and SHALL be protected by a MAC based on a pre-shared Ticket
  Protection Key (TPK).  The parties that shares the TPK depends on the
  mode.  Unexpected payloads in the Ticket Data SHOULD be ignored.

             Ticket Data = THDR, T, RAND, KEMAC, [IDRpsk], V

A.1.  Components of the Ticket Data

  The Ticket Data MUST always begin with a Ticket Header payload
  (THDR).  The ticket header is a new payload type; for the definition,
  see Appendix A.3.

  T is a timestamp containing the time of issue or a counter.  It MAY
  be used in the IV (Initialization Vector) formation (e.g., Section
  4.2.3 of [RFC3830]).

  RAND is used as input to the key derivation function when keys are
  derived from the TPK and the MPK (see Appendices A.2.1 and A.2.2).

  The KEMAC payload SHALL use the NULL authentication algorithm, as a
  MAC is included in the V payload.  The encryption key (encr_key) and
  salting key (salt_key) SHALL be derived from the TPK (see
  Appendix A.2.1).  Depending on the encryption algorithm, the salting
  key be used in the IV creation (see Section 4.2.3 of [RFC3830]).  If
  CSB ID is needed in the IV creation it SHALL be set to '0xFFFFFFFF'.
  The KEMAC is hence constructed as follows:

                KEMAC = E(encr_key, MPK || {TEK|TGK|GTGK})

  MPKi and MPKr are derived from the MPK as defined in Appendix A.2.2.

  IDRpsk contains an identifier that enables the KMS/Responder to
  retrieve the TPK.  It MAY be omitted when the TPK can be retrieved
  anyhow.

  The last payload SHALL be a Verification payload (V) where the
  authentication key (auth_key) is derived from the TPK.  The MAC SHALL
  be calculated over the entire TICKET payload except the Next Payload
  field (in the TICKET payload), the Initiator Data length field, the
  Initiator Data field, and the MAC field itself.







Mattsson & Tian               Informational                    [Page 55]

RFC 6043                      MIKEY-TICKET                    March 2011


A.2.  Key Derivation

  The labels in the key derivations SHALL NOT include entire RAND
  payloads, only the fields RAND length and RAND from the corresponding
  payload.

A.2.1.  Deriving Keys from a TPK

  In the following, we describe how keying material is derived from a
  TPK.  The key derivation method SHALL be executed using the PRF
  indicated in the Ticket Policy.  The parameters for the PRF are:

  inkey:     : TPK
  inkey_len  : bit length of the inkey
  label      : constant || 0xFF || 0xFFFFFFFF || 0x05 ||
               length RAND || RAND
  outkey_len : desired bit length of the outkey (encr_key,
               auth_key, salt_key)

  Length RAND is the length of RAND in bytes as an 8-bit unsigned
  integer.  The constants are as defined in Section 4.1.4 of [RFC3830].
  The key derivation and its dependencies on Ticket Data contents when
  AES-CM is used are illustrated in Figure 10.  The key derivation is
  done by the party that creates the ticket (KMS or Initiator) and by
  the party that resolves the ticket (KMS or Responder).  The
  encryption key and the IV are used to encrypt the KEMAC.

                                -----          auth_key        ------
             -----     TPK     |     |----------------------->| AUTH |
            | TPK |----------->|     |       encr_key          ------
             -----             | PRF |--------------------+       |
               ^           +-->|     |     salt_key       |       |
               :           |   |     |----------------+   |       |
               :           |    -----                 |   |       |
               :           |                          v   |       |
      identify :      RAND |            TS value    ----  |       | MAC
               :           |         +------------>| IV | |       |
               :           |         |              ----  |       |
               :           |         |             IV |   |       |
               :           |         |                v   v       v
  Ticket   +---+----+---+--+---+---+-+-+------------+-------+---+---+
   Data    | IDRpsk |...| RAND |...| T |............| KEMAC |...| V |
           +--------+---+------+---+---+------------+-------+---+---+

                   Figure 10: Deriving keys from a TPK






Mattsson & Tian               Informational                    [Page 56]

RFC 6043                      MIKEY-TICKET                    March 2011


A.2.2.  Deriving MPKi and MPKr

  In the following, we describe how MPKi and MPKr are derived from the
  MPK in the KEMAC payload.  The key derivation method SHALL be
  executed using the PRF indicated in the Ticket Policy.  The
  parameters for the PRF are:

  inkey:     : MPK
  inkey_len  : bit length of the inkey
  label      : constant || 0xFF || 0xFFFFFFFF || 0x06 ||
               length RAND || RAND
  outkey_len : desired bit length of the outkey (MPKi, MPKr)
               SHALL be equal to inkey_len

  Length RAND is the length of RAND in bytes as an 8-bit unsigned
  integer.  The constant depends on the derived key type as summarized
  below.

                         Derived key | Constant
                         ------------+-----------
                         MPKi        | 0x220E99A2
                         MPKr        | 0x1F4D675B

               Table A.1: Constants for MPK key derivation

  The constants are taken from the decimal digits of e as described in
  [RFC3830].

A.3.  Ticket Header Payload (THDR)

  The ticket header payload contains an indicator of the next payload
  as well as implementation-specific data.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ! Next Payload  !        THDR Data length       !   THDR Data   ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  *  Next Payload (8 bits): identifies the payload that is added after
     this payload.

  *  THDR Data length (16 bits): the length of the THDR Data field (in
     bytes).

  *  THDR Data (variable length): implementation specific data that
     SHOULD be ignored if it is not expected.




Mattsson & Tian               Informational                    [Page 57]

RFC 6043                      MIKEY-TICKET                    March 2011


Appendix B.  Alternative Use Cases

B.1.  Compatibility Mode

  MIKEY-TICKET can be used to define a Ticket Type compatible with
  [RFC3830] or any other half-round-trip key management protocol.  The
  Initiator requests and gets a ticket from the KMS where the Ticket
  Data is a [RFC3830] message protected with a pre-shared key
  (KMS-Responder) or with the Responder's certificate.  The Ticket Data
  is then sent to the Responder according to [RFC3830].  In this way,
  the Initiator can communicate with a Responder that only supports
  [RFC3830] and with whom the Initiator do not have any shared
  credentials.

  +---+                          +-----+                          +---+
  | I |                          | KMS |                          | R |
  +---+                          +-----+                          +---+
              REQUEST_INIT
    -------------------------------->
              REQUEST_RESP
    <--------------------------------
                               3830 MIKEY
    ---------------------------------------------------------------->

                      Figure 11: Compatibility mode

Authors' Addresses

  John Mattsson
  Ericsson AB
  SE-164 80 Stockholm
  Sweden

  Phone: +46 10 71 43 501
  EMail: [email protected]


  Tian Tian
  ZTE Corporation
  4F, RD Building 2, Zijinghua Road
  Yuhuatai District, Nanjing 210012
  P.R. China

  Phone: +86-025-5287-7867
  EMail: [email protected]






Mattsson & Tian               Informational                    [Page 58]