Independent Submission                                        W. Simpson
Request for Comments: 6013                                    DayDreamer
Category: Experimental                                      January 2011
ISSN: 2070-1721


                   TCP Cookie Transactions (TCPCT)

Abstract

  TCP Cookie Transactions (TCPCT) deter spoofing of connections and
  prevent resource exhaustion, eliminating Responder (server) state
  during the initial handshake.  The Initiator (client) has sole
  responsibility for ensuring required delays between connections.  The
  cookie exchange may carry data, limited to inhibit amplification and
  reflection denial of service attacks.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for examination, experimental implementation, and
  evaluation.

  This document defines an Experimental Protocol for the Internet
  community.  This is a contribution to the RFC Series, independently
  of any other RFC stream.  The RFC Editor has chosen to publish this
  document at its discretion and makes no statement about its value for
  implementation or deployment.  Documents approved for publication by
  the RFC Editor are not a candidate for any level of Internet
  Standard; see Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc6013.

















Simpson                       Experimental                      [Page 1]

RFC 6013                 TCP Cookie Transactions            January 2011


Copyright Notice

  Copyright (c) 2011 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.

  This document may not be modified, and derivative works of it may not
  be created, except to format it for publication as an RFC or to
  translate it into languages other than English.




































Simpson                       Experimental                      [Page 2]

RFC 6013                 TCP Cookie Transactions            January 2011


Table of Contents

  1. Introduction ....................................................4
     1.1. Terminology ................................................4
  2. Protocol Overview ...............................................4
     2.1. Message Summary (Simplified) ...............................6
     2.2. Compatibility and Transparency .............................7
     2.3. Fully Loaded Cookies .......................................7
     2.4. TCP Header Extension .......................................8
     2.5. <SYN> Option Handling ......................................9
  3. Protocol Details ................................................9
     3.1. TCP Cookie Option .........................................10
     3.2. TCP Cookie-Pair Standard Option ...........................10
     3.3. TCP Cookie-less Option ....................................11
     3.4. TCP Timestamps Extended Option ............................11
     3.5. Cookie Generation .........................................13
  4. Cookie Exchange ................................................16
     4.1. Initiator <SYN> ...........................................16
     4.2. Responder <SYN,ACK(SYN)> ..................................17
     4.3. Initiator <ACK(SYN)> ......................................17
     4.4. Responder <ACK> ...........................................18
     4.5. Simultaneous Open .........................................18
  5. Accelerated Close ..............................................19
     5.1. Initiator Close ...........................................20
     5.2. Responder Close ...........................................20
  6. Accelerated Open ...............................................21
     6.1. Initiator <SYN> Data ......................................21
     6.2. Responder <SYN,ACK(SYN)> Data .............................22
     6.3. Initiator <ACK(SYN)> Data .................................23
     6.4. Responder <ACK> Data ......................................24
  7. Advisory Reset .................................................24
  8. Interactions with Other Options ................................24
     8.1. TCP Selective Acknowledgment ..............................25
     8.2. TCP Timestamps ............................................25
     8.3. TCP Extensions for Transactions ...........................25
     8.4. TCP MD5 Signature .........................................25
     8.5. TCP Authentication ........................................25
  9. History ........................................................26
  10. Acknowledgments ...............................................27
  11. IESG Considerations ...........................................27
  12. Operational Considerations ....................................28
  13. Security Considerations .......................................28
  Appendix A. Example Headers .......................................30
     A.1. Example <SYN> Options .....................................30
     A.2. Example <ACK(SYN)> with Sack ..............................31
     A.3. Example <ACK(SYN)> with 64-bit Timestamps .................32
  Normative References ..............................................33
  Informative References ............................................34



Simpson                       Experimental                      [Page 3]

RFC 6013                 TCP Cookie Transactions            January 2011


1.  Introduction

  TCP Cookie Transactions (TCPCT) provide a cryptologically secure
  mechanism to guard against simple flooding attacks sent with bogus IP
  [RFC791] Sources or TCP [RFC793] Ports.  The initial TCP <SYN>
  exchange is vulnerable to forged IP Addresses, predictable Ports, and
  discoverable Sequence Numbers [Morris1985] [Gont2009].  (See also
  [RFC2827], [RFC3704], and [RFC4953].)

  During connection establishment, the cookie (nonce) exchange
  negotiates elimination of Responder (server) state.  These cookies
  are later used to inhibit premature closing of connections, and
  reduce retention of state after the connection has terminated.

  The cookie pair is much too large to fit with the other recommended
  options in the maximal 60 byte TCP header (40 bytes of option space).
  A successful option exchange signals availability of the TCP header
  extension, adding space for additional options.

  Also, implementations may optionally exchange limited amounts of
  transaction data during the initial cookie exchange, reducing network
  latency and host task context switching.

  Finally, implementations may optionally rapidly recycle prior
  connections.  For otherwise stateless applications, this
  transparently facilitates persistent connections and pipelining of
  requests over each connection.

  Many of these ideas have been previously proposed in one form or
  another (see History and Acknowledgments sections).  This
  specification integrates these improvements into a coherent whole.
  Further motivation and rationale were detailed in [MSV2009].

1.1.  Terminology

  The key words "MAY", "MUST, "MUST NOT", "OPTIONAL", "RECOMMENDED",
  "REQUIRED", "SHOULD", and "SHOULD NOT" in this document are to be
  interpreted as described in [RFC2119].

  byte     An 8-bit quantity; also known as "octet" in standardese.

2.  Protocol Overview

  The TCPCT extensions consist of several simple phases:

  1. Each party passes a "cookie" to the other.  Due to limited space,
     only the most basic options are included.




Simpson                       Experimental                      [Page 4]

RFC 6013                 TCP Cookie Transactions            January 2011


     The Cookie option also indicates that optional <SYN> data is
     acceptable.  This data MAY be ignored by either party.

     A Responder that understands the Cookie option remains stateless.

  2. During the remainder of the standard TCP three-way handshake, the
     Timestamps and Cookie-Pair options guard the exchange.

     Other options present in the original <SYN> that were successfully
     returned in the <SYN,ACK(SYN)> MUST be included with the
     <ACK(SYN)>.  Additional options MAY also be included as desired.

     As there is no Responder state, it has no record of acknowledging
     previous data.  Any optional <SYN> data MUST be retransmitted.

     Upon verification of the Timestamps and Cookie-Pair, the Responder
     creates its Transport Control Block (TCB) [RFC793].

     Note that the Responder returns the Cookie-Pair with its initial
     data, but subsequent data segments need only the Timestamps.

  3. During close (or reset) of the TCP connection, the Timestamps and
     Cookie-Pair options guard the exchange.

     Upon verification of the Timestamps and Cookie-Pair, the Responder
     removes its TCB.

  The sequence of messages is summarized in the diagram below.























Simpson                       Experimental                      [Page 5]

RFC 6013                 TCP Cookie Transactions            January 2011


2.1.  Message Summary (Simplified)

  Initiator                            Responder
  =========                            =========
  <SYN>                          ->
  base options
  Timestamps
  Cookie
  [request data]
                                  <-   <SYN,ACK(SYN)>
                                       base options
                                       Timestamps
                                       Cookie
                                       [response data]
                                       (stateless)

  <ACK(SYN)>                     ->
  full options
  Timestamps
  Cookie-Pair
  [Sack(response)]
  data
                                  <-   <ACK>
                                       full options
                                       Timestamps
                                       Cookie-Pair
                                       data
                                       (TCB state created)
                                  <-   <ACK>
                                       Timestamps
                                       data

                                  <-   <FIN,ACK>
                                       Timestamps
                                       Cookie-Pair
  <FIN,ACK(FIN)>                 ->
  Timestamps
  Cookie-Pair
                                  <-   <ACK(FIN)>
                                       Timestamps
                                       Cookie-Pair
                                       (TCB state removed)
  TIME-WAIT








Simpson                       Experimental                      [Page 6]

RFC 6013                 TCP Cookie Transactions            January 2011


2.2.  Compatibility and Transparency

     It is usually better that data arrive slowly, than not at all.

  Many/most unmanaged middleboxes [RFC3234] (such as stateless
  firewalls, load balancers, intrusion detection systems, or network
  address translators [RFC3022]) cannot carry transport traffic other
  than TCP and UDP.

  Every TCP implementation MUST ignore without error any TCP option it
  does not implement ([RFC1122] section 4.2.2.5).  In a study of the
  effects of middleboxes on transport protocols [MAF2004], the vast
  majority of modern TCP stacks correctly handle unknown TCP options.
  But it is still prudent to follow the [RFC793] "general principle of
  robustness: be conservative in what you do, be liberal in what you
  accept from others."

  Therefore, for each of the extensions defined here, an extension
  option will be sent in a <SYN,ACK(SYN)> segment only after the
  corresponding option was received in the original <SYN> segment.

  Furthermore, TCP options will be sent on later segments only after an
  exchange of options has indicated that both parties understand the
  extension (see [RFC1323] [rfc1323bis] and its antecedents).

  Unfortunately, not all middleware adheres to these long-standing
  requirements.  Instead, unknown <SYN> options are copied to the
  <SYN,ACK(SYN)>.  This is indistinguishable from a Monkey in the
  Middle (MITM) reflection attack.

2.3.  Fully Loaded Cookies

            One Kind to aid them all, One Kind to find them,
         One Kind to hold them all and in the header bind them.

  The cookie exchange provides a singular opportunity to extend TCP
  with backward compatibility.  Semantics for the option have been
  "overloaded" with a baker's dozen of capabilities and facilities.

  A. First and foremost, the cookie exchange improves operational
     security for vulnerable servers against flooding attacks.  The
     cookie exchange indicates that the Responder (server) will discard
     its initial state.  All other semantics are subordinate.

  B. Together with Sequence and Timestamp values, Cookie values protect
     against insertion and reflection attacks.

  C. Cookie values allow applications to detect replay attacks.



Simpson                       Experimental                      [Page 7]

RFC 6013                 TCP Cookie Transactions            January 2011


  D. Cookie values MAY be used as an index or nonce for application
     security protocols.  This facility is beyond the scope of this
     specification.

  E. The <SYN> and <SYN,ACK(SYN)> MAY carry application data.  This
     feature is entirely optional, and data is not guaranteed to pass
     successfully through middleware.  Nor are the parties guaranteed
     to process this data without changes to the Application Program
     Interface (API).  Such changes are beyond the scope of this
     specification.

  F. The size of the cookies precludes most other options in the
     standard TCP header space.  The cookie exchange negotiates TCP
     header extension.

  G. The cookie exchange and resulting TCP header extension permit
     negotiation of larger 64-bit (or 128-bit) Timestamps for paths
     with large bandwidth-delay products.

  H. TCP header extension frees some space for additional options.

  I. Previously SYN-only options can be updated.

  J. The cookie exchange indicates agreement to use accelerated close.

  K. The cookie exchange indicates agreement that only the Initiator
     (client) handles TIME-WAIT state.

  L. The Timestamps and Cookie-Pair combination inhibits third parties
     from disrupting communications with <FIN> and <RST>.

  M. The Timestamps and Cookie-Pair combination facilitates rapid reuse
     of the TCP Source Port with a common destination.

2.4.  TCP Header Extension

  Once the Cookie option has been successfully exchanged, TCP header
  extension is permitted.  The Timestamps extended option (defined
  below) indicates the presence of the header extension.

  Validation of known timestamp values protects against data corruption
  by misbehaving middleboxes.









Simpson                       Experimental                      [Page 8]

RFC 6013                 TCP Cookie Transactions            January 2011


2.5.  <SYN> Option Handling

  As the Responder retains no TCB state after the initial TCP <SYN>
  exchange, all options present in the original <SYN> MUST be repeated.

  For example, an option defined in the [RFC793] original specification
  -- Maximum Segment Size (MSS) -- previously appeared only in a <SYN>
  bearing segment (including <SYN,ACK(SYN)>).  If present, MSS will be
  repeated in the Initiator <ACK(SYN)>, together with any additional
  options.

  Generally, the Initiator MAY propose SYN-only options -- such as MSS
  -- anytime both Timestamps and Cookie-Pair options are present.
  These options are treated the same as with an original <SYN>.  The
  Responder acknowledges using a subsequent <ACK> segment containing
  both Timestamps and Cookie-Pair options (similar to <SYN,ACK(SYN)>
  processing).

  This facility allows previously SYN-only options to be updated from
  time to time.  They take effect upon receipt.

  However, <ACK> segments without data will not be delivered reliably.
  Any otherwise SYN-only options sent without data MUST be
  retransmitted with successive segments until sent with data (or
  <FIN>), and an <ACK> is received.

3.  Protocol Details

  Another solution [RFC5452] describes use of an unpredictable Source
  Port.  That is RECOMMENDED by this specification.  See [RFC6056] for
  further information.

  An earlier solution [RFC1948] describes an unpredictable Initial
  Sequence Number (ISN).  That is REQUIRED by this specification.

  Support for the (32-bit) TCP Timestamps Option [RFC1323] is REQUIRED.
  A TSoffset SHOULD be generated per connection [GO2010].  The Don't
  Fragment (DF) bit MUST be set in the IP (v4) header.

  The TCP User Timeout Option [RFC5482] is RECOMMENDED.

  Only one instance is permitted of any of the Cookie, Cookie-less, or
  Cookie-Pair option(s).  Segments with duplicative or mutually
  exclusive options MUST be silently discarded.

  For examples, see Appendix A.





Simpson                       Experimental                      [Page 9]

RFC 6013                 TCP Cookie Transactions            January 2011


3.1.  TCP Cookie Option

                                  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                  |      Kind     |    Length     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                            Cookie                             ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Kind             1 byte: constant 253 (experimental).

  Length           1 byte: range 10 to 18 (bytes); limited by remaining
                   space in the options field.  The number MUST be
                   even; the cookie is a multiple of 16 bits.

  Cookie           8 to 16 bytes (Length - 2): an unpredictable value.

  Options with invalid Length values MUST be ignored.  The minimum
  Cookie size is 64 bits.  If there is not sufficient space for a
  64-bit cookie, this option MUST NOT be used.

  The Responder Cookie MUST be the same size as the Initiator Cookie.
  The cookie pair is a multiple of 32 bits.

  Although the diagram shows a cookie aligned on 32-bit boundaries,
  that is not required.

3.2.  TCP Cookie-Pair Standard Option

                                  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                  |      Kind     |    Length     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                       Initiator-Cookie                        ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                       Responder-Cookie                        ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Kind             1 byte: constant 253 (experimental).

  Length           1 byte: range 18 to 34 (bytes).  The number MUST be
                   even; the cookie pair is a multiple of 32 bits.

  Initiator-Cookie 8 to 16 bytes, from the original <SYN>.



Simpson                       Experimental                     [Page 10]

RFC 6013                 TCP Cookie Transactions            January 2011


  Responder-Cookie 8 to 16 bytes, from the <SYN,ACK(SYN)>.

  The Cookie-Pair standard option only appears after the Timestamps
  extended option (below).

  Options with invalid Length values MUST be ignored.  As the minimum
  Initiator-Cookie size is 64 bits, the minimum cookie pair is 128 bits
  (64 bits followed by 64 bits), while the maximum is 256 bits (128
  bits followed by 128 bits).

3.3.  TCP Cookie-less Option

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |      Kind     |    Length     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Kind             1 byte: constant 253 (experimental).

  Length           1 byte: constant 2 (bytes).  This distinguishes the
                   option from other Cookie options.

  Although no cookie is attached, this indicates that other features of
  this specification are available, including TCP header extension,
  Accelerated Close, Accelerated Open, and Advisory Reset.  This is
  intended for use with TCP authentication options, beyond the scope of
  this specification.

3.4.  TCP Timestamps Extended Option

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |      Kind     |    Length     |    Extend     |    R    |  S  |
  +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
  |                                                               |
  ~                           TS Value                            ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                         TS Echo Reply                         ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Kind             1 byte: constant 254 (experimental).

  Length           1 byte: constant 4 (bytes).







Simpson                       Experimental                     [Page 11]

RFC 6013                 TCP Cookie Transactions            January 2011


  Extend           1 byte: range 9 to 255; the data offset (in 32-bit
                   words) following the standard TCP header.  Note this
                   value MUST include the timestamp pair indicated by
                   (S)ize.

  (R)eserved       5 bits: default zero.  Reserved for future use.

  (S)ize           3 bits:

                   1. 32-bit timestamps.

                   2. 64-bit timestamps.

                   4. 128-bit timestamps.

                   Other values are beyond the scope of this
                   specification.

  TS Value         4, 8, or 16 bytes.  The current value of the
                   timestamp for the sender.

  TS Echo Reply    4, 8, or 16 bytes.  A copy of the most recently
                   received TS Value.

  The full timestamp pair follows the TCP header (indicated by +=+
  delimiters) and maintains 32-bit alignment.

  This TCP header extension is ignored for sequence number
  computations.  The Sequence Number of the first byte of segment data
  will be the Initial Sequence Number (ISN) plus one (1) for the <SYN>.

  Every TCPCT implementation MUST recognize a Timestamps extended
  option.  The larger 64-bit (or 128-bit) timestamps only appear in an
  extended option.

  Segments with invalid Extend values MUST be silently discarded.

  Only one instance is permitted of either the (32-bit) Timestamps
  standard option or this Timestamps extended option.  Segments with
  duplicative or mutually exclusive options MUST be silently discarded.

  Implementation Notes:

     Serendipitous alignment allows simple loads and stores, instead of
     slower byte by byte iterations.






Simpson                       Experimental                     [Page 12]

RFC 6013                 TCP Cookie Transactions            January 2011


     When the TCP header is aligned on a 32-bit boundary and this is
     the only option, the timestamps in the extended header SHOULD be
     aligned on a 64-bit boundary.  For both 32-bit and 64-bit
     timestamps, any data following the extended header will be aligned
     on a 64-bit boundary.

     However, the 128-bit timestamps are not 128-bit aligned.

3.5.  Cookie Generation

  The technique by which a party generates a cookie is implementation
  dependent.  The method chosen must satisfy some basic requirements:

  1. The cookie MUST depend on the specific parties.  This prevents an
     attacker from obtaining a cookie using a real IP address and TCP
     port, and then using it to swamp the victim with requests from
     randomly chosen IP addresses or ports.

  2. It MUST NOT be possible for anyone other than the issuing entity
     to generate cookies that will be accepted by that entity.  This
     implies that the issuing entity will use local secret information
     in the generation and subsequent verification of a cookie.  It
     must not be possible to deduce this secret information from any
     particular cookie.

  3. The cookie generation and verification methods MUST be fast to
     thwart attacks intended to sabotage CPU resources.

  A recommended technique is to use a cryptographic hashing function.

  An incoming cookie can be verified at any time by regenerating it
  locally from values contained in the incoming datagram and the local
  secret random value.

3.5.1.  Initiator Cookie

  The Initiator secret value that affects its cookie SHOULD change for
  each new exchange, and is thereafter internally cached per TCB.  This
  provides improved synchronization and protection against replay
  attacks.

  An alternative is to cache the cookie instead of the secret value.
  Incoming cookies can be compared directly without the computational
  cost of regeneration.







Simpson                       Experimental                     [Page 13]

RFC 6013                 TCP Cookie Transactions            January 2011


  It is RECOMMENDED that the cookie be calculated over the secret
  value, the IP Source and Destination addresses, the TCP Source and
  Destination ports, and any (optional) Initiator <SYN> segment data.

  Implementation Notes:

     Although the recommendation includes the TCP Source Port, this is
     very implementation specific.  For example, it might not be
     included when the value is constant or unknown.

     Likewise, segment data might not be included directly.  For
     example, a pointer to the data could be included instead, with
     care taken to ensure the pointer changes anytime the data changes.

     However, it is important that the implementation protect mutually
     suspicious users of the same system from generating the same
     cookie.

3.5.2.  Responder Cookie

  The Responder secret value that affects its cookies remains the same
  for many different Initiators.  However, this secret SHOULD be
  changed periodically to limit the time for use of its cookies
  (typically each 600 seconds).

  The Responder-Cookie calculation MUST include its own TCP Sequence
  and Acknowledgment Numbers (after updating values), its own TCP
  Timestamps value, and the Initiator-Cookie value.  This provides
  improved synchronization and protection against replay attacks.

  It is RECOMMENDED that the cookie be calculated over the secret
  value, the IP Source and Destination addresses, its own TCP
  Destination Port (that is, the incoming Source Port), and the
  required values (above), followed by the secret value again.

  The cookie is not cached per Initiator to avoid saving state during
  the initial TCP <SYN> exchange.  On receipt of a TCP <ACK(SYN)>, the
  Responder regenerates its cookie for validation.

  Implementation Notes:

     Although the recommendation does not include the TCP Source Port,
     this is very implementation specific.  It might be successfully
     included in some variants.

     The Responder Cookie depends on the TCP Sequence and
     Acknowledgment Numbers as they will appear for future
     verification.  The Sequence Number will be the Initial Sequence



Simpson                       Experimental                     [Page 14]

RFC 6013                 TCP Cookie Transactions            January 2011


     Number (ISN) plus one (1) for its <SYN> that will be acknowledged.
     The Acknowledgment Number will be the Initial Sequence Number
     (ISN) plus one (1) for the <SYN> that it is now acknowledging.

     The (32-bit) TCP Timestamps standard option MAY change to the
     larger 64-bit (or 128-bit) extended form; only the least
     significant 32 bits are included.  The Initiator Timestamp field
     value MAY increment during the exchange; it MUST NOT be included.

     The secret value is included twice to better protect against pre-
     calculated attacks using substitutions for variable length data.
     Some examples using this technique are IP-MAC and H-MAC, and it is
     likely that existing code could be shared.

     The Responder SHOULD designate a (fixed or randomly selected) bit
     of its cookie to distinguish each changed secret value.  The bit
     is set to a (fixed or randomly selected) constant 0 or 1, and
     checked upon receipt before further verification.  This ensures
     that only one verification calculation is necessary (on average)
     during Denial of Service (DoS) attacks.

     If a Responder Cookie is identical to the Initiator Cookie, the
     Responder SHOULD change one or more bits of its cookie to prevent
     its accidental appearance as a reflection attack.

3.5.3.  Responder Secret Value

  Each Responder maintains up to two secret values concurrently for
  efficient secret rollover.  Each secret value has 4 states:

  Generating
     Generates new Responder-Cookies, but not yet used for primary
     verification.  This is a short-term state, typically lasting only
     one Round Trip Time (RTT).

  Primary
     Used both for generation and primary verification.

  Retiring
     Used for verification, until the first failure that can be
     verified by the newer Generating secret.  At that time, this
     cookie's state is changed to Secondary, and the Generating
     cookie's state is changed to Primary.  This is a short-term state,
     typically lasting only one RTT.







Simpson                       Experimental                     [Page 15]

RFC 6013                 TCP Cookie Transactions            January 2011


  Secondary
     Used for secondary verification, after primary verification
     failures.  This state lasts no more than twice the Maximum Segment
     Lifetime (2MSL).  Then, the secret is discarded.

  Implementation Notes:

     Care MUST be taken to ensure that any expired secrets are promptly
     wiped from memory, and secrets are never saved to external
     storage.

     The first secret after initialization begins in Primary state.
     The system might have shutdown and restarted rapidly during the
     previous first secret.  Thus, the first secret MUST be partially
     time dependent, to ensure that it differs from previous first
     secrets, usually by appending a time to lengthen the first secret.
     Those that are not the first secret SHOULD NOT include the time.

     At the same time, there is no TCP TIME-WAIT requirement before
     accepting connections, and there may be pent up demand for a busy
     service.  Also, there may be outstanding datagrams attempting to
     complete an earlier cookie exchange.  The first secret is likely
     to be the weakest, as no recent entropy has been included.

     Therefore, while terminating outstanding exchanges with the first
     secret, a new Generating secret SHOULD be created after no more
     than one Maximum Segment Lifetime (1MSL).  Subsequent secrets
     SHOULD be generated at the usual rate (typically 600 seconds).

     The implementation SHOULD continually gather additional entropy
     from checksums, cookies, timestamps, and packet arrival timing.

4.  Cookie Exchange

  A successful option exchange signals availability of additional
  features.

4.1.  Initiator <SYN>

  The Cookie exchange MAY be initiated at any time, limited only by the
  frequency of the timestamp clock.

  If the TCB exists from a prior (or ongoing) connection, the timestamp
  MUST be incremented in the option.

  The Initiator generates its unpredictable cookie value, and includes
  the Cookie option.




Simpson                       Experimental                     [Page 16]

RFC 6013                 TCP Cookie Transactions            January 2011


  During the initial exchange, the Initiator is solely responsible for
  retransmission.  Although the cookie and sequence have not changed,
  each retransmission appears to the Responder as another original
  <SYN>.

  Implementation Notes:

     Sending the <SYN> SHOULD NOT affect any existing TCB.  This allows
     an additional RTT for duplicate or out-of-sequence segments to
     drain.

     The new TCB information SHOULD be temporarily cached until a valid
     matching <SYN,ACK(SYN)> arrives.  Then, any old TCB values are
     replaced.

4.2.  Responder <SYN,ACK(SYN)>

  Upon receipt of the <SYN> with a Cookie option, the Responder
  determines whether there are sufficient resources to begin another
  connection.

  If the TCB exists from a prior (or ongoing) connection, the timestamp
  MUST be incremented in the option.

  Each Sequence Number MUST be randomized [RFC1948].

  The Responder generates its unpredictable cookie value, and includes
  the Cookie option.

  As the Responder retains no TCB state, retransmission timers are not
  available.  Arrival of an Initiator's retransmission appears to be an
  original <SYN> transmission.  There are no differences in processing.

  Implementation Notes:

     Sending the <SYN,ACK(SYN)> MUST NOT affect any existing TCB.  This
     allows an additional RTT for duplicate or out-of-sequence segments
     to drain.

     This also inhibits third parties from disrupting communications.

4.3.  Initiator <ACK(SYN)>

  Upon receipt of the <SYN,ACK(SYN)> with a Cookie option, the
  Initiator validates its cookie, timestamp, and corresponding
  Acknowledgment Number.  The existing TCB is updated as necessary.





Simpson                       Experimental                     [Page 17]

RFC 6013                 TCP Cookie Transactions            January 2011


  All Initiator <SYN> options are always retransmitted on this first
  <ACK(SYN)>, allowing the Responder to validate its cookie and
  establish its state.

  This segment contains both Timestamps and Cookie-Pair options.

  The Initiator sends the Timestamps extended option with an
  appropriate Size -- chosen by a configurable parameter, or
  automatically based on its analysis of the bandwidth-delay product
  discovered through the RTT of its <SYN> timestamp.  When the chosen
  Size is greater than 32 bits, the Initiator adds a random prefix to
  its own timestamp, and a random prefix to the Responder timestamp
  echo reply.

  Implementation Notes:

     A Responder Cookie identical to the Initiator Cookie MUST be
     discarded.  This is usually an indication of a Monkey in the
     Middle (MITM) reflection attack or a seriously misconfigured
     network, and SHOULD be logged.

4.4.  Responder <ACK>

  Upon receipt of the <ACK(SYN)> with a Cookie-Pair option, the
  Responder validates its cookie, timestamp, and corresponding
  Acknowledgment Number, and establishes state for the connection.  Any
  existing TCB is updated as necessary.

  This segment contains both Timestamps and Cookie-Pair options.

  However, the Responder MAY refuse to negotiate the larger 64-bit (or
  128-bit) Timestamps extended option by returning the least
  significant bits in a smaller Timestamps extended option.

  Implementation Notes:

     An <ACK(SYN)> that fails to validate MUST be discarded, and SHOULD
     be logged.

4.5.  Simultaneous Open

  TCP allows two parties to simultaneously initiate the connection.
  Both parties send and receive an original <SYN> without an
  intervening <SYN,ACK(SYN)> (see [RFC793] section 3.4 and Figure 8).
  Each party receives a Cookie for a <Source Address, Source Port,
  Destination Address, Destination Port> connection that has also
  issued a Cookie.




Simpson                       Experimental                     [Page 18]

RFC 6013                 TCP Cookie Transactions            January 2011


  This condition will be unusual.  The Source Port SHOULD be randomized
  [RFC5452], and SHOULD be chosen to differ from the Destination Port.
  In particular, the Source Port SHOULD be greater than 1024,
  preventing intervening network equipment from incorrectly classifying
  the return traffic.  The Destination Port is most likely to be a
  well-known port less than 1024 [RFC3232].

  In the event that these protections are insufficient, the conflict is
  resolved in an orderly fashion:

  a. The lesser TCP Port number becomes the Responder;

  b. The lesser IP Address becomes the Responder;

  c. The lesser Cookie becomes the Responder;

  d. All of the above being equal, there is an egregiously insufficient
     source of randomness, but both Initiators are probably present on
     the same host: the lesser TCB memory address becomes the
     Responder.

  The Initiator silently discards the simultaneous <SYN>.  The
  Responder revises its Cookie option, and sends the <SYN,ACK(SYN)> as
  usual, but without removing its existing TCB.

  Implementation Notes:

     This is usually an indication of a Monkey in the Middle (MITM)
     reflection attack or a seriously misconfigured network, and SHOULD
     be logged.

5.  Accelerated Close

  Support for accelerated close is REQUIRED.  Accelerated close relies
  on the presence of cookies and timestamps.  This provides improved
  synchronization and protection against replay attacks.

  Either party MAY close with <FIN> at any time.  This <FIN> SHOULD be
  sent with the final data segment.

  This segment contains both Timestamps and Cookie-Pair options.

  When all segments preceding the <FIN> have been processed and
  acknowledged, each party SHOULD acknowledge the <FIN>.

  In general, <FIN> is treated as advisory.  A persistent connection
  can be rapidly re-established.  This also inhibits third parties from
  disrupting communications.



Simpson                       Experimental                     [Page 19]

RFC 6013                 TCP Cookie Transactions            January 2011


  Rapidly closing the connection expedites removing Responder state.
  Any <FIN> bearing segment SHOULD terminate delayed <ACK> [RFC5681].
  Retransmit at the latest Timestamps estimated Smoothed Round Trip
  Time (SRTT).  Backoff SHOULD NOT be used for <FIN> bearing
  retransmissions [RFC2988].

  As the Responder retains no TCB state after closing, a successful
  option exchange signals the Initiator will be responsible for
  handling TIME-WAIT state.  (For previous proposal and rationale, see
  [FTY1999] section 3.)

  A new Cookie exchange MAY be initiated at any time.  This facilitates
  persistent connections through intervening network equipment.

5.1.  Initiator Close

  Upon receipt of the Initiator <FIN> (and verification of the
  Timestamps and Cookie-Pair options), the Responder sends its
  <FIN,ACK(FIN)> unless there is additional data pending.  In the
  latter case, the <FIN> is ignored until the data has been processed
  and acknowledged.

  Upon receipt of the Responder <FIN,ACK(FIN)> (and verification of the
  Timestamps and Cookie-Pair options), the Initiator sends its final
  <ACK(FIN)> unless there is additional data pending.  The Initiator
  enters TIME-WAIT state.

  This segment contains both Timestamps and Cookie-Pair options.

  Upon receipt of the Initiator <ACK(FIN)> (and verification of the
  Timestamps and Cookie-Pair options), the Responder removes its TCB.

  Upon arrival of more data prompting a new Cookie exchange, the
  Initiator SHOULD NOT send a final <ACK(FIN)> and/or SHOULD NOT wait
  the remaining TIME-WAIT interval.  Any existing TSoffset SHOULD be
  incremented.  TSoffset will be removed (with the TCB itself) at the
  conclusion of a future TIME-WAIT state.

5.2.  Responder Close

  Upon receipt of the Responder <FIN> (and verification of the
  Timestamps and Cookie-Pair options), the Initiator sends its
  <FIN,ACK(FIN)> unless there is additional data pending.  In the
  latter case, the <FIN> is ignored until the data has been processed
  and acknowledged.






Simpson                       Experimental                     [Page 20]

RFC 6013                 TCP Cookie Transactions            January 2011


  Upon receipt of the Initiator <FIN,ACK(FIN)> (and verification of the
  Timestamps and Cookie-Pair options), the Responder sends its final
  <ACK(FIN)> and removes its TCB.

  This segment contains both Timestamps and Cookie-Pair options.

  If the Responder's final <ACK(FIN)> is lost, the Responder is likely
  to send a <RST> (as the Responder retains no TCB state).  This
  distinguished <RST> SHOULD copy both Timestamps and Cookie-Pair
  options.

  Upon receipt of the Responder's final <ACK(FIN)> (and verification of
  the Timestamps and Cookie-Pair options), the Initiator enters TIME-
  WAIT state.

  Upon arrival of more data prompting a new Cookie exchange, the
  Initiator SHOULD NOT send a <FIN,ACK(FIN)> and/or SHOULD NOT wait the
  remaining TIME-WAIT interval.  Any existing TSoffset SHOULD be
  incremented.  TSoffset will be removed (with the TCB itself) at the
  conclusion of a future TIME-WAIT state.

6.  Accelerated Open

  Support for accelerated open is OPTIONAL.

  When an application is capable of idempotent transactions (such as a
  query that returns a consistent result or service response heading),
  the application sets the appropriate limit separately for each port
  or connection.  Applications are responsible for ensuring that
  retransmissions do not cause duplication of data.

  This facility allows single data segment transactions without
  establishing TCB state at the Responder (server).  For longer
  transactions, a short look-ahead of upcoming data allows the
  Initiator (client) to select alternatives for further processing.

6.1.  Initiator <SYN> Data

  By default, the Initiator <SYN> does not contain data.  The
  application sets the TCP_SYN_DATA_LIMIT to indicate that the <SYN>
  MAY be sent with data.

  The Responder Maximum Segment Size (MSS) is unknown, and the default
  MSS (536 bytes) MUST be used instead ([RFC1122] section 4.2.2.6).
  This is further reduced by the total length of the TCP options (in
  this case, commonly 496 bytes).  Applications MAY specify a shorter
  limit.




Simpson                       Experimental                     [Page 21]

RFC 6013                 TCP Cookie Transactions            January 2011


  If the data will not entirely fit within the initial segment, data
  MUST NOT be sent until after the Responder's <SYN,ACK(SYN)> is
  received.

  Unlike T/TCP [RFC1644], <FIN> SHOULD NOT be sent with <SYN> data.
  This facilitates persistent connections.

  Likewise, <PSH> SHOULD NOT be set.  Although the application might
  use push to indicate that its data is ready to send, the push is
  implied for <SYN> data segments.

  During the initial exchange, the Initiator is solely responsible for
  retransmission.  Although the cookie and sequence have not changed,
  each retransmission appears to the Responder as another original
  <SYN>.

  Implementation Notes:

     Initiator <SYN,FIN> with the Cookie option and no segment data is
     permitted in a test environment.  This combination SHOULD be
     silently discarded.

     Initiator <SYN,FIN> with both the Cookie option and segment data
     is similar to T/TCP [RFC1644].  However, whenever the Responder
     <SYN,ACK(SYN),FIN> has been sent with data (there is no further
     data expected), TCB state has not been saved at the Responder.
     There is no need to send <FIN> to close the connection.

6.2.  Responder <SYN,ACK(SYN)> Data

  By default, the Responder <SYN,ACK(SYN)> does not contain data.  The
  application sets the TCP_SYN_ACK_DATA_LIMIT to indicate that the
  <SYN,ACK(SYN)> MAY be sent with data.

  Segment data is limited to the Maximum Transmission Unit (MTU).
  Applications MAY specify a shorter limit to prevent spoofed
  amplification and reflection attacks [RFC5358].

  Upon receipt of the <SYN> with a Cookie option, the Responder MAY
  process any data present.  If the initial data is not accepted, the
  Acknowledgment Number will be the received Sequence Number plus one
  (1) for the <SYN>.

  If the segment data is the entire response (there is no further data
  expected), <FIN> MAY be set.






Simpson                       Experimental                     [Page 22]

RFC 6013                 TCP Cookie Transactions            January 2011


  However, <PSH> SHOULD NOT be set.  Although the application might use
  push to indicate that its data is ready to send, the push is implied
  for <FIN> data segments (see [RFC793] section 3.7, page 41).

  As the Responder retains no TCB state, retransmission timers are not
  available.  Arrival of an Initiator's retransmission appears to be an
  original <SYN> transmission.  There are no differences in processing.

  Implementation Notes:

     The Responder Cookie depends on the TCP Sequence and
     Acknowledgment Numbers after processing <SYN>.  Therefore, neither
     will include data.

6.3.  Initiator <ACK(SYN)> Data

  Upon receipt of the <SYN,ACK(SYN)> with a Cookie option, the
  Initiator MAY process any data present.  In this case, the internal
  RCV.NXT is advanced to provide at-most-once semantics.

  If the segment data is the entire response (there is no further data
  expected), the Initiator enters TIME-WAIT state.

  Otherwise, original <SYN> data is retransmitted in <ACK(SYN)>, as its
  processing is optional.  The Acknowledgment Number will be the
  received Sequence Number plus one (1) for the <SYN>.  The Sequence
  Number will be the Initial Sequence Number (ISN) plus one (1) for the
  <SYN>.

  Unlike T/TCP [RFC1644], there is no implicit acknowledgment.

  If the Selective Acknowledgment (Sack) option [RFC2018] has been
  successfully negotiated, a short Sack acknowledging the response data
  MAY be sent following the Cookie-Pair in the extended header.

  At this time, any second segment may be sent without awaiting an
  <ACK>, according to the usual [RFC5681] TCP congestion control
  process.

  Implementation Notes:

     Upon arrival of more data prompting a new Cookie exchange, there
     is no need to increment the previous timestamp; TCB state has not
     been saved at the Responder.  Instead, use the saved RCV.NXT, plus
     one (1) for the (actual or implied) <FIN>.






Simpson                       Experimental                     [Page 23]

RFC 6013                 TCP Cookie Transactions            January 2011


     Initiator <ACK(SYN),FIN> with the Cookie-Pair option and no
     segment data is never required; TCB state has not been saved at
     the Responder.  This combination MUST be silently discarded.

6.4.  Responder <ACK> Data

  Upon receipt of the <ACK(SYN)> with a Cookie-Pair option (and
  verification of the Timestamps and Cookie-Pair options), the
  Responder SHOULD process any data present.

  Since the TCP Sequence and Acknowledgment Numbers have not advanced,
  the Responder will process the same incoming data, and transmit the
  same response.

  If the Selective Acknowledgment (Sack) option [RFC2018] has been
  successfully negotiated, with a short Sack covering earlier response
  data, only additional unacknowledged response data is sent.

  At this time, any second segment may be sent without awaiting an
  <ACK>, according to the usual [RFC5681] TCP congestion control
  process.

7.  Advisory Reset

  When a TCB with matching Addresses and Ports is found, but the
  Cookie-Pair fails to verify, the datagram MUST be silently discarded.

  When no TCB with matching Addresses and Ports is found, a <RST> is
  sent as usual.  The Timestamps option SHOULD be copied [RFC1323].  A
  Cookie-Pair option MUST also be copied.  The Cookie option (or
  Cookie-less option) MUST NOT be copied.

  Any <RST> is always treated as advisory.  A <RST> without a matching
  Cookie-Pair option could be caused by antique duplicates.  Receipt
  has no effect on the operation of the protocol.  The implementation
  SHOULD continue until a USER TIMEOUT expires.  (See [RFC5482] for
  additional information.)

  This also inhibits third parties from disrupting communications.

8.  Interactions with Other Options

  A successful Cookie (or Cookie-less) option exchange signals
  availability of the TCP header extension.  Other options with large
  data portions MAY also use this feature.  The extended option data is
  processed in the order that the options appear.





Simpson                       Experimental                     [Page 24]

RFC 6013                 TCP Cookie Transactions            January 2011


8.1.  TCP Selective Acknowledgment

  (Kind 5 [RFC2018].)  The pairs of 32-bit fields are well suited to
  the header extension.  Because of its variable size, this is
  RECOMMENDED as the final extended option.

  During the cookie exchange, the <ACK(SYN)> MAY include this option to
  acknowledge any optional transaction response data.

8.2.  TCP Timestamps

  (Kind 8 [RFC1323].)  Support is REQUIRED.  See also section 3.

  When a segment needs no header extension, and 32-bit timestamps have
  been negotiated, this option MUST be sent.

8.3.  TCP Extensions for Transactions

  (Kinds 11-13 [RFC1644].)  Incompatible with this specification, and
  MUST be ignored on receipt.

8.4.  TCP MD5 Signature

  (Kind 19 [RFC2385].)  This option is beyond the scope of this
  specification.  Because specific configuration is required, sending
  is under the complete control of the operator.  Segments lacking this
  option will be silently discarded.

  The size of the option itself precludes use with the Cookie option in
  the <SYN>.  Regardless of the system default, the Cookie option MUST
  NOT be sent, and MUST be ignored on receipt.  Instead, the Cookie-
  less extension option indicates that other features of this
  specification are available.

8.5.  TCP Authentication

  (Kind 29 [RFC5925].)  This option is beyond the scope of this
  specification.  Because specific configuration is required, sending
  is under the complete control of the operator.  Segments lacking this
  option will be silently discarded.

  The size of the option itself precludes use with the Cookie option in
  the <SYN>.  Regardless of the system default, the Cookie option MUST
  NOT be sent, and MUST be ignored on receipt.  Instead, the Cookie-
  less extension option indicates that other features of this
  specification are available.





Simpson                       Experimental                     [Page 25]

RFC 6013                 TCP Cookie Transactions            January 2011


9.  History

  T/TCP [RFC1379] [RFC1644] permits lightweight TCP transactions for
  applications that traditionally have used UDP.  However, T/TCP has
  unacceptable security issues [Hannum1996] [Phrack1998].

  The initial specification [KS1995] of Photuris [RFC2522], now called
  version 1 (December 1994 to March 1995), was based on a short list of
  design requirements, and simple experimental code by Phil Karn.  A
  "Cookie" Exchange guards against simple flooding attacks sent with
  bogus IP Sources or UDP Ports.

  During 1995, the Photuris efficient secret rollover and many other
  extensions were specified.  Multiple interoperable implementations
  were produced.

  By September 1996, the long anticipated Denial of Service (DoS)
  attacks in the form of TCP SYN floods were devastating popular (and
  unpopular) servers and sites.  Phil Karn informally mentioned
  adapting anti-clogging cookies to TCP.  Perry Metzger proposed adding
  Karn's cookies as part of a "TCP++" effort [Metzger1996].

  Later in 1996, Daniel J. Bernstein implemented "SYN cookies", small
  cookies embedded in the TCP SYN Initial Sequence Number (ISN).  This
  technique was exceptionally clever, because it did not require
  cooperation of the remote party and could be deployed unilaterally.
  However, SYN cookies can only be used in emergencies; they are
  incompatible with most TCP options.  As there is insufficient space
  in the Sequence Number, the cookie is not considered cryptologically
  secure.  Therefore, the mechanism remains inactive until the system
  is under attack, and thus is not well tested in operation.  SYN
  cookies were not accepted for publication until recently [RFC4987].

  In 1998, Perry Metzger proposed adding Karn's cookies as part of a
  "TCPng" discussion [Metzger1998].

  In 1999, Faber, Touch, and Yue [FTY1999] proposed using an option to
  negotiate the party that would maintain TIME-WAIT state.  This
  permits a server to entirely eliminate state after closing a
  connection.

  In 2000, the Stream Control Transmission Protocol (SCTP) [RFC2960]
  was published with an inadequate partial cookie mechanism claiming to
  be based upon Photuris.  It featured a deficient checksum (replaced
  in 2002 by [RFC3309] without graceful transition), and has undergone
  subsequent revisions [RFC4960].





Simpson                       Experimental                     [Page 26]

RFC 6013                 TCP Cookie Transactions            January 2011


  In 2006, the Datagram Congestion Control Protocol (DCCP) [RFC4340]
  was published with a mechanism analogous to SYN cookies.

10.  Acknowledgments

  Andre Broido informally described utilizing cookies for Transport
  Layer Security (TLS) session identifiers, in place of the [RFC5077]
  ticket.  Rapid TLS session resumption would improve both latency and
  privacy, but is beyond the scope of this specification.  Also, he
  provided numerous helpful comments and additional references, such as
  [KBC2005].

  H. K. Jerry Chu and Arvind Jain informally described retaining
  existing cookies for accelerated open on subsequent connections.
  That feature was subsumed by this specification.

  Wesley M. Eddy and Adam Langley previously proposed another pair of
  options [EL2008] extending the TCP header option space.

  Adam Langley previously proposed another option [Langley2008]
  permitting <SYN,ACK(SYN)> constant payload data.  His (August 2008)
  code was a base for the initial TCPCT implementation.

  Joe Touch postulated a (hopefully hypothetical) failure mode: options
  re-ordered by middleware.  This caused a change in specifications,
  and has considerably complicated option interactions and processing.
  His helpful comments were appreciated.

  Many thanks to Fernando Gont for suggestions, and Rick Jones for
  performance testing.

11.  IESG Considerations

  Two TCP Option numbers are reserved for general experimental use
  under the rules laid out in [RFC4727] and [RFC3692] section 1.  Such
  values reserved for experimental use are never to be made permanent;
  permanent assignments should be obtained through standard processes.
  Experimental numbers are intended for experimentation and testing and
  are not intended for wide or general deployments.

  For further information, contact the author.










Simpson                       Experimental                     [Page 27]

RFC 6013                 TCP Cookie Transactions            January 2011


12.  Operational Considerations

  Any implementation of this specification SHOULD be configurable,
  separately for each port or connection.

  TCPCT_COOKIE_DESIRED
     Values: 0 (disabled), 8, 10, 12, 14, 16.  Default: 16.  Send the
     Cookie option with the <SYN>.

  TCPCT_EXTEND_TS[32|64|128]
     Default: off.  If defined, may designate 32-bit, 64-bit, or
     128-bit timestamps extension.

  TCPCT_IN_ALWAYS
     Default: off.  Silently discard any incoming <SYN> that is missing
     the Cookie option.

  TCPCT_OUT_NEVER
     Default: off.  Refuse to send (override) the Cookie option.

  TCP_SYN_DATA_LIMIT
     Default: 0.  Maximum: 496.  The maximum amount of data transmitted
     with the <SYN>.  Wait for data before sending.

  TCP_SYN_ACK_DATA_LIMIT
     Default: 0.  Maximum: 1220.  The maximum amount of data
     transmitted with the <SYN,ACK(SYN)>.  Wait for data before
     sending.

13.  Security Considerations

  TCPCT was based on currently available tools, by experienced network
  protocol designers with an interest in cryptography, rather than by
  cryptographers with an interest in network protocols.  This
  specification is intended to be readily implementable without
  requiring an extensive background in cryptology.

  Therefore, only minimal background cryptologic discussion and
  rationale is included in this document.  Although some review has
  been provided by the general cryptologic community, it is anticipated
  that design decisions and tradeoffs will be thoroughly analysed in
  subsequent dissertations and debated for many years to come.
  Cryptologic details are reserved for separate documents that may be
  more readily and timely updated with new analysis.







Simpson                       Experimental                     [Page 28]

RFC 6013                 TCP Cookie Transactions            January 2011


  The security depends on the quality of the random numbers generated
  by each party.  Generating cryptographic quality random numbers on a
  general purpose computer without hardware assistance is a very tricky
  problem (see [RFC4086] for discussion).

  TCPCT is not intended to prevent or recover from all possible
  security threats.  Rather, it is designed to inhibit inadvertent
  middlebox interference, while protecting against Denial of Service
  (DoS) attacks.  (See [RFC4732], and [RFC3552] section 4.6.3 et seq.)

  The cookie exchange does not protect against an interloper that can
  race to substitute another value, nor an interceptor that can modify
  and/or replace a value.  These attacks are considerably more
  difficult than passive vacuum-cleaner monitoring.

  Note that each incoming <SYN,ACK(SYN)> replaces the Responder cookie.
  The initial exchange is most fragile, as protection against spoofing
  relies entirely upon the sequence and timestamp.  This replacement
  strategy allows the correct pair to pass through, while any others
  will be filtered via Responder verification later.































Simpson                       Experimental                     [Page 29]

RFC 6013                 TCP Cookie Transactions            January 2011


Appendix A. Example Headers

A.1.  Example <SYN>

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Kind=MSS      | Length=4      |            (value)            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Kind=UTO      | Length=4      |           (timeout)           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Kind=SackOK   | Length=2      | Kind=TS       | Length=10     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                           TS Value                            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         TS Echo Reply                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Kind=Cookie   | Length=16     |                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
  |                                                               |
  +                            Cookie                             +
  |                                                               |
  +                                                               +
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Kind=wscale   | Length=3      |    (value)    | Kind=EOL      |
  +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+

  A 14 byte (112-bit) Cookie barely fits with the other recommended
  options in the maximal 60 byte TCP header (40 bytes of option space).

  Since the cookies are required to be the same size and meet a 32-bit
  alignment requirement, the implementor recognizes that this order
  provides optimal packing.

  The UserTimeOut (UTO) option can appear in other locations instead,
  such as following the Cookie option.  Because some middleboxes are
  sensitive to the order of options, UTO should not appear before MSS
  nor between the TS and Cookie.














Simpson                       Experimental                     [Page 30]

RFC 6013                 TCP Cookie Transactions            January 2011


A.2.  Example <ACK(SYN)> with Sack

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Kind=TSX      | Length=4      | Extend=16     |    0    | S=1 |
  +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
  |                           TS Value                            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         TS Echo Reply                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Kind=nop      | Kind=nop      | Kind=Cookie   | Length=30     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  +                                                               +
  |                                                               |
  +                       Initiator-Cookie                        +
  |                                                               |
  +                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                               |                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
  |                                                               |
  +                       Responder-Cookie                        +
  |                                                               |
  +                                                               +
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Kind=MSS      | Length=4      |            (value)            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Kind=UTO      | Length=4      |           (timeout)           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Kind=nop      | Kind=nop      | Kind=Sack     | Length=10     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                        Starting Value                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         Ending Value                          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Kind=wscale   | Length=3      |    (value)    | Kind=EOL      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Sack implies SackOK.












Simpson                       Experimental                     [Page 31]

RFC 6013                 TCP Cookie Transactions            January 2011


A.3.  Example <ACK(SYN)> with 64-bit Timestamps

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Kind=TSX      | Length=4      | Extend=15     |    0    | S=2 |
  +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
  |                                                               |
  +                           TS Value                            +
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  +                         TS Echo Reply                         +
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Kind=SackOK   | Length=2      | Kind=Cookie   | Length=30     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  +                                                               +
  |                                                               |
  +                       Initiator-Cookie                        +
  |                                                               |
  +                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                               |                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
  |                                                               |
  +                       Responder-Cookie                        +
  |                                                               |
  +                                                               +
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Kind=MSS      | Length=4      |            (value)            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Kind=UTO      | Length=4      |           (timeout)           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Kind=wscale   | Length=3      |    (value)    | Kind=EOL      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The larger 64-bit (or 128-bit) Timestamps extended option MUST be
  recognized, although the Responder MAY return a smaller Timestamps
  extended option.












Simpson                       Experimental                     [Page 32]

RFC 6013                 TCP Cookie Transactions            January 2011


Normative References

  [RFC791]   Postel, J., "Internet Protocol", STD 5, RFC 791, September
             1981.

  [RFC793]   Postel, J., "Transmission Control Protocol", STD 7, RFC
             793, September 1981.

  [RFC1122]  Braden, R., Ed., "Requirements for Internet Hosts -
             Communication Layers", STD 3, RFC 1122, October 1989.

  [RFC1323]  Jacobson, V., Braden, R., and D. Borman, "TCP Extensions
             for High Performance", RFC 1323, May 1992.

  [RFC1948]  Bellovin, S., "Defending Against Sequence Number Attacks",
             RFC 1948, May 1996.

  [RFC2018]  Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
             Selective Acknowledgment Options", RFC 2018, October 1996.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2988]  Paxson, V. and M. Allman, "Computing TCP's Retransmission
             Timer", RFC 2988, November 2000.

  [RFC3232]  Reynolds, J., Ed., "Assigned Numbers: RFC 1700 is Replaced
             by an On-line Database", RFC 3232, January 2002.

  [RFC5452]  Hubert, A. and R. van Mook, "Measures for Making DNS More
             Resilient against Forged Answers", RFC 5452, January 2009.

  [RFC5482]  Eggert, L. and F. Gont, "TCP User Timeout Option", RFC
             5482, March 2009.

  [RFC5681]  Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
             Control", RFC 5681, September 2009.














Simpson                       Experimental                     [Page 33]

RFC 6013                 TCP Cookie Transactions            January 2011


Informative References

  [EL2008]   Eddy, W. and A. Langley, "Extending the Space Available
             for TCP Options", Work in Progress, July 2008.

  [FTY1999]  Faber, T., Touch, J., and W. Yue, "The TIME-WAIT state in
             TCP and Its Effect on Busy Servers", IEEE INFOCOM 99, pp.
             1573-1584.

  [Gont2009] Gont, F., "Security assessment of the Transmission Control
             Protocol (TCP)", February 2009.
             https://www.cpni.gov.uk/Docs/tn-03-09-security-
             assessment-TCP.pdf

  [GO2010]   Gont, F. and A. Oppermann, "On the generation of TCP
             timestamps", Work in Progress, June 2010.

  [Hannum1996]
             Hannum, C., "Security Problems Associated With T/TCP",
             unpublished work in progress, September 1996.
             http://www.mid-way.org/doc/ttcp-sec.txt

  [KBC2005]  Kohno, T., Broido, A., and K. C. Claffy, "Remote physical
             device fingerprinting", IEEE Symposium on Security and
             Privacy, May 2005.  http://www.caida.org/
             outreach/papers/2005/fingerprinting/
             KohnoBroidoClaffy05-devicefingerprinting.pdf

  [KS1995]   Karn, P. and W. Simpson, "The Photuris Session Key
             Management Protocol", March 1995.

             Published as: "Photuris: Design Criteria", Proceedings of
             Sixth Annual Workshop on Selected Areas in Cryptography,
             LNCS 1758, Springer-Verlag.  August 1999.

  [Langley2008]
             Langley, A., "Faster application handshakes with SYN/ACK
             payloads", Work in Progress, August 2008.

  [MAF2004]  Medina, A., Allman, M., and S. Floyd, "Measuring
             Interactions Between Transport Protocols and Middleboxes",
             Proceedings 4th ACM SIGCOMM/USENIX Conference on Internet
             Measurement, October 2004.
             http://www.icsi.berkeley.edu/pubs/networking/tbit-
             Aug2004.pdf






Simpson                       Experimental                     [Page 34]

RFC 6013                 TCP Cookie Transactions            January 2011


  [Metzger1996]
             Metzger, P., "Re: SYN floods (was: does history repeat
             itself?)", September 9, 1996.
             http://www.merit.net/mail.archives/nanog/
             1996-09/msg00235.html

  [Metzger1998]
             Metzger, P., "Re: what a new TCP header might look like",
             May 12, 1998.  ftp://ftp.isi.edu/end2end/end2end-
             interest-1998.mail

  [Morris1985]
             Morris, R., "A Weakness in the 4.2BSD Unix TCP/IP
             Software", Technical Report CSTR-117, AT&T Bell
             Laboratories, February 1985.
             http://pdos.csail.mit.edu/~rtm/papers/117.pdf

  [MSV2009]  Metzger, P., Simpson, W., and P. Vixie, "Improving TCP
             Security With Robust Cookies", Usenix ;login:, December
             2009.  http://www.usenix.org/publications/login/
             2009-12/openpdfs/metzger.pdf

  [Phrack1998]
             route|daemon9, "T/TCP vulnerabilities", Phrack Magazine,
             Volume 8, Issue 53, July 8, 1998.
             http://www.phrack.org/issues.html?issue=53&id=6

  [RFC1379]  Braden, R., "Extending TCP for Transactions -- Concepts",
             RFC 1379, November 1992.

  [RFC1644]  Braden, R., "T/TCP -- TCP Extensions for Transactions
             Functional Specification", RFC 1644, July 1994.

  [RFC2385]  Heffernan, A., "Protection of BGP Sessions via the TCP MD5
             Signature Option", RFC 2385, August 1998.

  [RFC2522]  Karn, P. and W. Simpson, "Photuris: Session-Key Management
             Protocol", RFC 2522, March 1999.

  [RFC2827]  Ferguson, P. and D. Senie, "Network Ingress Filtering:
             Defeating Denial of Service Attacks which employ IP Source
             Address Spoofing", BCP 38, RFC 2827, May 2000.

  [RFC2960]  Stewart, R., Xie, Q., Morneault, K., Sharp, C.,
             Schwarzbauer, H., Taylor, T., Rytina, I., Kalla, M.,
             Zhang, L., and V. Paxson, "Stream Control Transmission
             Protocol", RFC 2960, October 2000.




Simpson                       Experimental                     [Page 35]

RFC 6013                 TCP Cookie Transactions            January 2011


  [RFC3022]  Srisuresh, P. and K. Egevang, "Traditional IP Network
             Address Translator (Traditional NAT)", RFC 3022, January
             2001.

  [RFC3234]  Carpenter, B. and S. Brim, "Middleboxes: Taxonomy and
             Issues", RFC 3234, February 2002.

  [RFC3309]  Stone, J., Stewart, R., and D. Otis, "Stream Control
             Transmission Protocol (SCTP) Checksum Change", RFC 3309,
             September 2002.

  [RFC3552]  Rescorla, E. and B. Korver, "Guidelines for Writing RFC
             Text on Security Considerations", BCP 72, RFC 3552, July
             2003.

  [RFC3692]  Narten, T., "Assigning Experimental and Testing Numbers
             Considered Useful", BCP 82, RFC 3692, January 2004.

  [RFC3704]  Baker, F. and P. Savola, "Ingress Filtering for Multihomed
             Networks", BCP 84, RFC 3704, March 2004.

  [RFC4086]  Eastlake 3rd, D., Schiller, J., and S. Crocker,
             "Randomness Requirements for Security", BCP 106, RFC 4086,
             June 2005.

  [RFC4340]  Kohler, E., Handley, M., and S. Floyd, "Datagram
             Congestion Control Protocol (DCCP)", RFC 4340, March 2006.

  [RFC4727]  Fenner, B., "Experimental Values In IPv4, IPv6, ICMPv4,
             ICMPv6, UDP, and TCP Headers", RFC 4727, November 2006.

  [RFC4732]  Handley, M., Ed., Rescorla, E., Ed., and Internet
             Architecture Board, "Internet Denial-of-Service
             Considerations", RFC 4732, November 2006.

  [RFC4953]  Touch, J., "Defending TCP Against Spoofing Attacks", RFC
             4953, July 2007.

  [RFC4960]  Stewart, R., Ed., "Stream Control Transmission Protocol",
             RFC 4960, September 2007.

  [RFC4987]  Eddy, W., "TCP SYN Flooding Attacks and Common
             Mitigations", RFC 4987, August 2007.

  [RFC5077]  Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
             "Transport Layer Security (TLS) Session Resumption without
             Server-Side State", RFC 5077, January 2008.




Simpson                       Experimental                     [Page 36]

RFC 6013                 TCP Cookie Transactions            January 2011


  [RFC5358]  Damas, J. and F. Neves, "Preventing Use of Recursive
             Nameservers in Reflector Attacks", BCP 140, RFC 5358,
             October 2008.

  [RFC5925]  Touch, J., Mankin, A., and R. Bonica, "The TCP
             Authentication Option", RFC 5925, June 2010.

  [RFC6056]  Larson, M. and F. Gont, "Recommendations for Transport-
             Protocol Port Randomization", BCP 156, RFC 6056, January
             2011.

  [rfc1323bis]
             Borman, D., Braden, R., and V. Jacobson., "TCP Extensions
             for High Performance", Work in Progress, March 2009.

Author's Address

  Questions about this document can be directed to:

  William Allen Simpson
  DayDreamer
  Computer Systems Consulting Services
  1384 Fontaine
  Madison Heights, Michigan 48071

  EMail: [email protected]

























Simpson                       Experimental                     [Page 37]