Internet Engineering Task Force (IETF)                      Q. Zhao, Ed.
Request for Comments: 6006                             Huawei Technology
Category: Standards Track                                   D. King, Ed.
ISSN: 2070-1721                                       Old Dog Consulting
                                                           F. Verhaeghe
                                            Thales Communication France
                                                              T. Takeda
                                                        NTT Corporation
                                                                 Z. Ali
                                                    Cisco Systems, Inc.
                                                              J. Meuric
                                                         France Telecom
                                                         September 2010


                            Extensions to
      the Path Computation Element Communication Protocol (PCEP)
   for Point-to-Multipoint Traffic Engineering Label Switched Paths

Abstract

  Point-to-point Multiprotocol Label Switching (MPLS) and Generalized
  MPLS (GMPLS) Traffic Engineering Label Switched Paths (TE LSPs) may
  be established using signaling techniques, but their paths may first
  need to be determined.  The Path Computation Element (PCE) has been
  identified as an appropriate technology for the determination of the
  paths of point-to-multipoint (P2MP) TE LSPs.

  This document describes extensions to the PCE communication Protocol
  (PCEP) to handle requests and responses for the computation of paths
  for P2MP TE LSPs.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc6006.






Zhao, et al.                 Standards Track                    [Page 1]

RFC 6006           Extensions to PCEP for P2MP TE LSPs    September 2010


Copyright Notice

  Copyright (c) 2010 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

  This document may contain material from IETF Documents or IETF
  Contributions published or made publicly available before November
  10, 2008.  The person(s) controlling the copyright in some of this
  material may not have granted the IETF Trust the right to allow
  modifications of such material outside the IETF Standards Process.
  Without obtaining an adequate license from the person(s) controlling
  the copyright in such materials, this document may not be modified
  outside the IETF Standards Process, and derivative works of it may
  not be created outside the IETF Standards Process, except to format
  it for publication as an RFC or to translate it into languages other
  than English.

Table of Contents

  1. Introduction ....................................................3
     1.1. Terminology ................................................4
     1.2. Requirements Language ......................................5
  2. PCC-PCE Communication Requirements ..............................5
  3. Protocol Procedures and Extensions ..............................6
     3.1. P2MP Capability Advertisement ..............................6
          3.1.1. P2MP Computation TLV in the Existing PCE
                 Discovery Protocol ..................................6
          3.1.2. Open Message Extension ..............................7
     3.2. Efficient Presentation of P2MP LSPs ........................7
     3.3. P2MP Path Computation Request/Reply Message Extensions .....8
          3.3.1. The Extension of the RP Object ......................8
          3.3.2. The New P2MP END-POINTS Object ......................9
     3.4. Request Message Format ....................................12
     3.5. Reply Message Format ......................................12
     3.6. P2MP Objective Functions and Metric Types .................13
          3.6.1. New Objective Functions ............................13
          3.6.2. New Metric Object Types ............................14
     3.7. Non-Support of P2MP Path Computation ......................14



Zhao, et al.                 Standards Track                    [Page 2]

RFC 6006           Extensions to PCEP for P2MP TE LSPs    September 2010


     3.8. Non-Support by Back-Level PCE Implementations .............15
     3.9. P2MP TE Path Reoptimization Request .......................15
     3.10. Adding and Pruning Leaves to/from the P2MP Tree ..........16
     3.11. Discovering Branch Nodes .................................19
          3.11.1. Branch Node Object ................................19
     3.12. Synchronization of P2MP TE Path Computation Requests .....19
     3.13. Request and Response Fragmentation .......................20
          3.13.1. Request Fragmentation Procedure ...................21
          3.13.2. Response Fragmentation Procedure ..................21
          3.13.3. Fragmentation Examples ............................21
     3.14. UNREACH-DESTINATION Object ...............................22
     3.15. P2MP PCEP-ERROR Objects and Types ........................23
     3.16. PCEP NO-PATH Indicator ...................................24
  4. Manageability Considerations ...................................25
     4.1. Control of Function and Policy ............................25
     4.2. Information and Data Models ...............................25
     4.3. Liveness Detection and Monitoring .........................25
     4.4. Verifying Correct Operation ...............................25
     4.5. Requirements for Other Protocols and Functional
          Components ................................................26
     4.6. Impact on Network Operation ...............................26
  5. Security Considerations ........................................26
  6. IANA Considerations ............................................27
     6.1. PCEP TLV Type Indicators ..................................27
     6.2. Request Parameter Bit Flags ...............................27
     6.3. Objective Functions .......................................27
     6.4. Metric Object Types .......................................27
     6.5. PCEP Objects ..............................................28
     6.6. PCEP-ERROR Objects and Types ..............................29
     6.7. PCEP NO-PATH Indicator ....................................30
     6.8. SVEC Object Flag ..........................................30
     6.9. OSPF PCE Capability Flag ..................................30
  7. Acknowledgements ...............................................30
  8. References .....................................................30
     8.1. Normative References ......................................30
     8.2. Informative References ....................................32

1.  Introduction

  The Path Computation Element (PCE) defined in [RFC4655] is an entity
  that is capable of computing a network path or route based on a
  network graph, and applying computational constraints.  A Path
  Computation Client (PCC) may make requests to a PCE for paths to be
  computed.

  [RFC4875] describes how to set up point-to-multipoint (P2MP) Traffic
  Engineering Label Switched Paths (TE LSPs) for use in Multiprotocol
  Label Switching (MPLS) and Generalized MPLS (GMPLS) networks.



Zhao, et al.                 Standards Track                    [Page 3]

RFC 6006           Extensions to PCEP for P2MP TE LSPs    September 2010


  The PCE has been identified as a suitable application for the
  computation of paths for P2MP TE LSPs [RFC5671].

  The PCE communication Protocol (PCEP) is designed as a communication
  protocol between PCCs and PCEs for point-to-point (P2P) path
  computations and is defined in [RFC5440].  However, that
  specification does not provide a mechanism to request path
  computation of P2MP TE LSPs.

  A P2MP LSP is comprised of multiple source-to-leaf (S2L) sub-LSPs.
  These S2L sub-LSPs are set up between ingress and egress Label
  Switching Routers (LSRs) and are appropriately overlaid to construct
  a P2MP TE LSP.  During path computation, the P2MP TE LSP may be
  determined as a set of S2L sub-LSPs that are computed separately and
  combined to give the path of the P2MP LSP, or the entire P2MP TE LSP
  may be determined as a P2MP tree in a single computation.

  This document relies on the mechanisms of PCEP to request path
  computation for P2MP TE LSPs.  One path computation request message
  from a PCC may request the computation of the whole P2MP TE LSP, or
  the request may be limited to a sub-set of the S2L sub-LSPs.  In the
  extreme case, the PCC may request the S2L sub-LSPs to be computed
  individually with it being the PCC's responsibility to decide whether
  to signal individual S2L sub-LSPs or combine the computation results
  to signal the entire P2MP TE LSP.  Hence the PCC may use one path
  computation request message or may split the request across multiple
  path computation messages.

1.1.  Terminology

  Terminology used in this document:

     TE LSP: Traffic Engineering Label Switched Path.

     LSR: Label Switching Router.

     OF: Objective Function: A set of one or more optimization criteria
     used for the computation of a single path (e.g., path cost
     minimization), or for the synchronized computation of a set of
     paths (e.g., aggregate bandwidth consumption minimization).

     P2MP: Point-to-Multipoint.

     P2P: Point-to-Point.

  This document also uses the terminology defined in [RFC4655],
  [RFC4875], and [RFC5440].




Zhao, et al.                 Standards Track                    [Page 4]

RFC 6006           Extensions to PCEP for P2MP TE LSPs    September 2010


1.2.  Requirements Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [RFC2119].

2.  PCC-PCE Communication Requirements

  This section summarizes the PCC-PCE communication requirements for
  P2MP MPLS-TE LSPs described in [RFC5862].  The numbering system
  corresponds to the requirement numbers used in [RFC5862].

  1.  The PCC MUST be able to specify that the request is a P2MP path
      computation request.

  2.  The PCC MUST be able to specify that objective functions are to
      be applied to the P2MP path computation request.

  3.  The PCE MUST have the capability to reject a P2MP path request
      and indicate non-support of P2MP path computation.

  4.  The PCE MUST provide an indication of non-support of P2MP path
      computation by back-level PCE implementations.

  5.  A P2MP path computation request MUST be able to list multiple
      destinations.

  6.  A P2MP path computation response MUST be able to carry the path
      of a P2MP LSP.

  7.  By default, the path returned by the PCE SHOULD use the
      compressed format.

  8.  It MUST be possible for a single P2MP path computation request or
      response to be conveyed by a sequence of messages.

  9.  It MUST NOT be possible for a single P2MP path computation
      request to specify a set of different constraints, traffic
      parameters, or quality-of-service requirements for different
      destinations of a P2MP LSP.

  10. P2MP path modification and P2MP path diversity MUST be supported.

  11. It MUST be possible to reoptimize existing P2MP TE LSPs.

  12. It MUST be possible to add and remove P2MP destinations from
      existing paths.




Zhao, et al.                 Standards Track                    [Page 5]

RFC 6006           Extensions to PCEP for P2MP TE LSPs    September 2010


  13. It MUST be possible to specify a list of applicable branch nodes
      to use when computing the P2MP path.

  14. It MUST be possible for a PCC to discover P2MP path computation
      capability.

  15. The PCC MUST be able to request diverse paths when requesting a
      P2MP path.

3.  Protocol Procedures and Extensions

  The following section describes the protocol extensions required to
  satisfy the requirements specified in Section 2 ("PCC-PCE
  Communication Requirements") of this document.

3.1.  P2MP Capability Advertisement

3.1.1.  P2MP Computation TLV in the Existing PCE Discovery Protocol

  [RFC5088] defines a PCE Discovery (PCED) TLV carried in an OSPF
  Router Information Link State Advertisement (LSA) defined in
  [RFC4970] to facilitate PCE discovery using OSPF.  [RFC5088]
  specifies that no new sub-TLVs may be added to the PCED TLV.  This
  document defines a new flag in the OSPF PCE Capability Flags to
  indicate the capability of P2MP computation.

  Similarly, [RFC5089] defines the PCED sub-TLV for use in PCE
  Discovery using IS-IS.  This document will use the same flag
  requested for the OSPF PCE Capability Flags sub-TLV to allow IS-IS to
  indicate the capability of P2MP computation.

  The IANA assignment for a shared OSPF and IS-IS P2MP Capability Flag
  is documented in Section 6.9 ("OSPF PCE Capability Flag") of this
  document.

  PCEs wishing to advertise that they support P2MP path computation
  would set the bit (10) accordingly.  PCCs that do not understand this
  bit will ignore it (per [RFC5088] and [RFC5089]).  PCEs that do not
  support P2MP will leave the bit clear (per the default behavior
  defined in [RFC5088] and [RFC5089]).

  PCEs that set the bit to indicate support of P2MP path computation
  MUST follow the procedures in Section 3.3.2 ("The New P2MP END-POINTS
  Object") to further qualify the level of support.







Zhao, et al.                 Standards Track                    [Page 6]

RFC 6006           Extensions to PCEP for P2MP TE LSPs    September 2010


3.1.2.  Open Message Extension

  Based on the Capabilities Exchange requirement described in
  [RFC5862], if a PCE does not advertise its P2MP capability during
  discovery, PCEP should be used to allow a PCC to discover, during the
  Open Message Exchange, which PCEs are capable of supporting P2MP path
  computation.

  To satisfy this requirement, we extend the PCEP OPEN object by
  defining a new optional TLV to indicate the PCE's capability to
  perform P2MP path computations.

  IANA has allocated value 6 from the "PCEP TLV Type Indicators" sub-
  registry, as documented in Section 6.1 ("PCEP TLV Type Indicators").
  The description is "P2MP capable", and the length value is 2 bytes.
  The value field is set to default value 0.

  The inclusion of this TLV in an OPEN object indicates that the sender
  can perform P2MP path computations.

  The capability TLV is meaningful only for a PCE, so it will typically
  appear only in one of the two Open messages during PCE session
  establishment.  However, in case of PCE cooperation (e.g.,
  inter-domain), when a PCE behaving as a PCC initiates a PCE session
  it SHOULD also indicate its path computation capabilities.

3.2.  Efficient Presentation of P2MP LSPs

  When specifying additional leaves, or optimizing existing P2MP TE
  LSPs as specified in [RFC5862], it may be necessary to pass existing
  P2MP LSP route information between the PCC and PCE in the request and
  reply messages.  In each of these scenarios, we need new path objects
  for efficiently passing the existing P2MP LSP between the PCE and
  PCC.

  We specify the use of the Resource Reservation Protocol Traffic
  Engineering (RSVP-TE) extensions Explicit Route Object (ERO) to
  encode the explicit route of a TE LSP through the network.  PCEP ERO
  sub-object types correspond to RSVP-TE ERO sub-object types.  The
  format and content of the ERO object are defined in [RFC3209] and
  [RFC3473].

  The Secondary Explicit Route Object (SERO) is used to specify the
  explicit route of a S2L sub-LSP.  The path of each subsequent S2L
  sub-LSP is encoded in a P2MP_SECONDARY_EXPLICIT_ROUTE object SERO.
  The format of the SERO is the same as an ERO defined in [RFC3209] and
  [RFC3473].




Zhao, et al.                 Standards Track                    [Page 7]

RFC 6006           Extensions to PCEP for P2MP TE LSPs    September 2010


  The Secondary Record Route Object (SRRO) is used to record the
  explicit route of the S2L sub-LSP.  The class of the P2MP SRRO is the
  same as the SRRO defined in [RFC4873].

  The SERO and SRRO are used to report the route of an existing TE LSP
  for which a reoptimization is desired.  The format and content of the
  SERO and SRRO are defined in [RFC4875].

  A new PCEP object class and type are requested for SERO and SRRO.

  Object-Class Value    29
  Name                  SERO
  Object-Type           1: SERO
                        2-15: Unassigned
  Reference             RFC 6006

  Object-Class Value    30
  Name                  SRRO
  Object-Type           1: SRRO
                        2-15: Unassigned
  Reference             RFC 6006

  The IANA assignment is documented in Section 6.5 ("PCEP Objects").

  Since the explicit path is available for immediate signaling by the
  MPLS or GMPLS control plane, the meanings of all of the sub-objects
  and fields in this object are identical to those defined for the ERO.

3.3.  P2MP Path Computation Request/Reply Message Extensions

  This document extends the existing P2P RP (Request Parameters) object
  so that a PCC can signal a P2MP path computation request to the PCE
  receiving the PCEP request.  The END-POINTS object is also extended
  to improve the efficiency of the message exchange between PCC and PCE
  in the case of P2MP path computation.

3.3.1.  The Extension of the RP Object

  The PCE path computation request and reply messages will need the
  following additional parameters to indicate to the receiving PCE that
  the request and reply messages have been fragmented across multiple
  messages, that they have been requested for a P2MP path, and whether
  the route is represented in the compressed or uncompressed format.

  This document adds the following flags to the RP Object:






Zhao, et al.                 Standards Track                    [Page 8]

RFC 6006           Extensions to PCEP for P2MP TE LSPs    September 2010


  The F-bit is added to the flag bits of the RP object to indicate to
  the receiver that the request is part of a fragmented request, or is
  not a fragmented request.

  o  F (RP fragmentation bit - 1 bit):

     0: This indicates that the RP is not fragmented or it is the last
        piece of the fragmented RP.

     1: This indicates that the RP is fragmented and this is not the
        last piece of the fragmented RP.  The receiver needs to wait
        for additional fragments until it receives an RP with the same
        RP-ID and with the F-bit set to 0.

  The N-bit is added in the flag bits field of the RP object to signal
  the receiver of the message that the request/reply is for P2MP or is
  not for P2MP.

  o  N (P2MP bit - 1 bit):

     0: This indicates that this is not a PCReq or PCRep message for
        P2MP.

     1: This indicates that this is a PCReq or PCRep message for P2MP.

  The E-bit is added in the flag bits field of the RP object to signal
  the receiver of the message that the route is in the compressed
  format or is not in the compressed format.  By default, the path
  returned by the PCE SHOULD use the compressed format.

  o  E (ERO-compression bit - 1 bit):

     0: This indicates that the route is not in the compressed format.

     1: This indicates that the route is in the compressed format.

  The IANA assignment is documented in Section 6.2 ("Request Parameter
  Bit Flags") of this document.

3.3.2.  The New P2MP END-POINTS Object

  The END-POINTS object is used in a PCReq message to specify the
  source IP address and the destination IP address of the path for
  which a path computation is requested.  To represent the end points
  for a P2MP path efficiently, we define two new types of END-POINTS
  objects for the P2MP path:





Zhao, et al.                 Standards Track                    [Page 9]

RFC 6006           Extensions to PCEP for P2MP TE LSPs    September 2010


  o  Old leaves whose path can be modified/reoptimized;

  o  Old leaves whose path must be left unchanged.

  With the new END-POINTS object, the PCE path computation request
  message is expanded in a way that allows a single request message to
  list multiple destinations.

  In total, there are now 4 possible types of leaves in a P2MP request:

  o  New leaves to add (leaf type = 1)

  o  Old leaves to remove (leaf type = 2)

  o  Old leaves whose path can be modified/reoptimized (leaf type = 3)

  o  Old leaves whose path must be left unchanged (leaf type = 4)

  A given END-POINTS object gathers the leaves of a given type.  The
  type of leaf in a given END-POINTS object is identified by the END-
  POINTS object leaf type field.

  Using the new END-POINTS object, the END-POINTS portion of a request
  message for the multiple destinations can be reduced by up to 50% for
  a P2MP path where a single source address has a very large number of
  destinations.

  Note that a P2MP path computation request can mix the different types
  of leaves by including several END-POINTS objects per RP object as
  shown in the PCReq Routing Backus-Naur Form (RBNF) [RFC5511] format
  in Section 3.4 ("Request Message Format").




















Zhao, et al.                 Standards Track                   [Page 10]

RFC 6006           Extensions to PCEP for P2MP TE LSPs    September 2010


  The format of the new END-POINTS object body for IPv4 (Object-Type 3)
  is as follows:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                          Leaf type                            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     Source IPv4 address                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                  Destination IPv4 address                     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ~                           ...                                 ~
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                  Destination IPv4 address                     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Figure 1.  The New P2MP END-POINTS Object Body Format for IPv4

  The format of the END-POINTS object body for IPv6 (Object-Type 4) is
  as follows:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                          Leaf type                            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   |                Source IPv6 address (16 bytes)                 |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   |              Destination IPv6 address (16 bytes)              |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ~                           ...                                 ~
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   |              Destination IPv6 address (16 bytes)              |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Figure 2.  The New P2MP END-POINTS Object Body Format for IPv6

  The END-POINTS object body has a variable length.  These are
  multiples of 4 bytes for IPv4, and multiples of 16 bytes, plus 4
  bytes, for IPv6.




Zhao, et al.                 Standards Track                   [Page 11]

RFC 6006           Extensions to PCEP for P2MP TE LSPs    September 2010


3.4.  Request Message Format

  The PCReq message is encoded as follows using RBNF as defined in
  [RFC5511].

  Below is the message format for the request message:

          <PCReq Message>::= <Common Header>
                                <request>
       where:
               <request>::= <RP>
                               <end-point-rro-pair-list>
                               [<OF>]
                               [<LSPA>]
                               [<BANDWIDTH>]
                               [<metric-list>]
                               [<IRO>]
                               [<LOAD-BALANCING>]

       where:

               <end-point-rro-pair-list>::=
                                  <END-POINTS>[<RRO-List>][<BANDWIDTH>]
                                  [<end-point-rro-pair-list>]

               <RRO-List>::=<RRO>[<BANDWIDTH>][<RRO-List>]
               <metric-list>::=<METRIC>[<metric-list>]

          Figure 3.  The Message Format for the Request Message

  Note that we preserve compatibility with the [RFC5440] definition of
  <request>.  At least one instance of <endpoints> MUST be present in
  this message.

  We have documented the IANA assignment of additional END-POINTS
  Object-Types in Section 6.5 ("PCEP Objects") of this document.

3.5.  Reply Message Format

  The PCRep message is encoded as follows using RBNF as defined in
  [RFC5511].










Zhao, et al.                 Standards Track                   [Page 12]

RFC 6006           Extensions to PCEP for P2MP TE LSPs    September 2010


  Below is the message format for the reply message:

         <PCRep Message>::= <Common Header>
                               <response>
         <response>::=<RP>
                         [<end-point-path-pair-list>]
                         [<NO-PATH>]
                         [<attribute-list>]

       where:

          <end-point-path-pair-list>::=
                  [<END-POINTS>]<path>[<end-point-path-pair-list>]

         <path> ::= (<ERO>|<SERO>) [<path>]

         <attribute-list>::=[<OF>]
                              [<LSPA>]
                              [<BANDWIDTH>]
                              [<metric-list>]
                              [<IRO>]

           Figure 4.  The Message Format for the Reply Message

  The optional END-POINTS object in the reply message is used to
  specify which paths are removed, changed, not changed, or added for
  the request.  The path is only needed for the end points that are
  added or changed.

  If the E-bit (ERO-Compress bit) was set to 1 in the request, then the
  path will be formed by an ERO followed by a list of SEROs.

  Note that we preserve compatibility with the [RFC5440] definition of
  <response> and the optional <end-point-path-pair-list> and <path>.

3.6.  P2MP Objective Functions and Metric Types

3.6.1.  New Objective Functions

  Six objective functions have been defined in [RFC5541] for P2P path
  computation.

  This document defines two additional objective functions -- namely,
  SPT (Shortest Path Tree) and MCT (Minimum Cost Tree) that apply to
  P2MP path computation.  Hence two new objective function codes have
  to be defined.

  The description of the two new objective functions is as follows.



Zhao, et al.                 Standards Track                   [Page 13]

RFC 6006           Extensions to PCEP for P2MP TE LSPs    September 2010


  Objective Function Code: 7

     Name: Shortest Path Tree (SPT)

     Description: Minimize the maximum source-to-leaf cost with respect
     to a specific metric or to the TE metric used as the default
     metric when the metric is not specified (e.g., TE or IGP metric).

  Objective Function Code: 8

     Name: Minimum Cost Tree (MCT)

     Description: Minimize the total cost of the tree, that is the sum
     of the costs of tree links, with respect to a specific metric or
     to the TE metric used as the default metric when the metric is not
     specified.

  Processing these two new objective functions is subject to the rules
  defined in [RFC5541].

3.6.2.  New Metric Object Types

  There are three types defined for the <METRIC> object in [RFC5440] --
  namely, the IGP metric, the TE metric, and the hop count metric.
  This document defines three additional types for the <METRIC> object:
  the P2MP IGP metric, the P2MP TE metric, and the P2MP hop count
  metric.  They encode the sum of the metrics of all links of the tree.
  We propose the following values for these new metric types:

  o  P2MP IGP metric: T=8

  o  P2MP TE metric: T=9

  o  P2MP hop count metric: T=10

3.7.  Non-Support of P2MP Path Computation

  o  If a PCE receives a P2MP path request and it understands the P2MP
     flag in the RP object, but the PCE is not capable of P2MP
     computation, the PCE MUST send a PCErr message with a PCEP-ERROR
     object and corresponding Error-Value.  The request MUST then be
     cancelled at the PCC.  New Error-Types and Error-Values are
     requested in Section 6 ("IANA Considerations") of this document.

  o  If the PCE does not understand the P2MP flag in the RP object,
     then the PCE MUST send a PCErr message with Error-value=2
     (capability not supported).




Zhao, et al.                 Standards Track                   [Page 14]

RFC 6006           Extensions to PCEP for P2MP TE LSPs    September 2010


3.8.  Non-Support by Back-Level PCE Implementations

  If a PCE receives a P2MP request and the PCE does not understand the
  P2MP flag in the RP object, and therefore the PCEP P2MP extensions,
  then the PCE SHOULD reject the request.

3.9.  P2MP TE Path Reoptimization Request

  A reoptimization request for a P2MP TE path is specified by the use
  of the R-bit within the RP object as defined in [RFC5440] and is
  similar to the reoptimization request for a P2P TE path.  The only
  difference is that the user MUST insert the list of RROs and SRROs
  after each type of END-POINTS in the PCReq message, as described in
  the "Request Message Format" section (Section 3.4) of this document.

  An example of a reoptimization request and subsequent PCReq message
  is described below:

          Common Header
          RP with P2MP flag/R-bit set
          END-POINTS for leaf type 3
            RRO list
          OF (optional)

           Figure 5.  PCReq Message Example 1 for Optimization

  In this example, we request reoptimization of the path to all leaves
  without adding or pruning leaves.  The reoptimization request would
  use an END-POINT type 3.  The RRO list would represent the P2MP LSP
  before the optimization, and the modifiable path leaves would be
  indicated in the END-POINTS object.

  It is also possible to specify distinct leaves whose path cannot be
  modified.  An example of the PCReq message in this scenario would be:

          Common Header
          RP with P2MP flag/R-bit set
          END-POINTS for leaf type 3
            RRO list
          END-POINTS for leaf type 4
            RRO list
          OF (optional)

           Figure 6.  PCReq Message Example 2 for Optimization







Zhao, et al.                 Standards Track                   [Page 15]

RFC 6006           Extensions to PCEP for P2MP TE LSPs    September 2010


3.10.  Adding and Pruning Leaves to/from the P2MP Tree

  When adding new leaves to or removing old leaves from the existing
  P2MP tree, by supplying a list of existing leaves, it SHOULD be
  possible to optimize the existing P2MP tree.  This section explains
  the methods for adding new leaves to or removing old leaves from the
  existing P2MP tree.

  To add new leaves, the user MUST build a P2MP request using END-
  POINTS with leaf type 1.

  To remove old leaves, the user must build a P2MP request using END-
  POINTS with leaf type 2.  If no type-2 END-POINTS exist, then the PCE
  MUST send an error type 17, value=1: The PCE is not capable of
  satisfying the request due to no END-POINTS with leaf type 2.

  When adding new leaves to or removing old leaves from the existing
  P2MP tree, the PCC must also provide the list of old leaves, if any,
  including END-POINTS with leaf type 3, leaf type 4, or both.  New
  PCEP-ERROR objects and types are necessary for reporting when certain
  conditions are not satisfied (i.e., when there are no END-POINTS with
  leaf type 3 or 4, or in the presence of END-POINTS with leaf type 1
  or 2).  A generic "Inconsistent END-POINT" error will be used if a
  PCC receives a request that has an inconsistent END-POINT (i.e., if a
  leaf specified as type 1 already exists).  These IANA assignments are
  documented in Section 6.6 ("PCEP-ERROR Objects and Types") of this
  document.

  For old leaves, the user MUST provide the old path as a list of RROs
  that immediately follows each END-POINTS object.  This document
  specifies error values when specific conditions are not satisfied.

  The following examples demonstrate full and partial reoptimization of
  existing P2MP LSPs:

  Case 1: Adding leaves with full reoptimization of existing paths

          Common Header
          RP with P2MP flag/R-bit set
          END-POINTS for leaf type 1
            RRO list
          END-POINTS for leaf type 3
            RRO list
          OF (optional)







Zhao, et al.                 Standards Track                   [Page 16]

RFC 6006           Extensions to PCEP for P2MP TE LSPs    September 2010


  Case 2: Adding leaves with partial reoptimization of existing paths

          Common Header
          RP with P2MP flag/R-bit set
          END-POINTS for leaf type 1
          END-POINTS for leaf type 3
            RRO list
          END-POINTS for leaf type 4
            RRO list
          OF (optional)

  Case 3: Adding leaves without reoptimization of existing paths

          Common Header
          RP with P2MP flag/R-bit set
          END-POINTS for leaf type 1
            RRO list
          END-POINTS for leaf type 4
            RRO list
          OF (optional)

  Case 4: Pruning Leaves with full reoptimization of existing paths

          Common Header
          RP with P2MP flag/R-bit set
          END-POINTS for leaf type 2
            RRO list
          END-POINTS for leaf type 3
            RRO list
          OF (optional)

  Case 5: Pruning leaves with partial reoptimization of existing paths

          Common Header
          RP with P2MP flag/R-bit set
          END-POINTS for leaf type 2
            RRO list
          END-POINTS for leaf type 3
            RRO list
          END-POINTS for leaf type 4
            RRO list
          OF (optional)









Zhao, et al.                 Standards Track                   [Page 17]

RFC 6006           Extensions to PCEP for P2MP TE LSPs    September 2010


  Case 6: Pruning leaves without reoptimization of existing paths

          Common Header
          RP with P2MP flag/R-bit set
          END-POINTS for leaf type 2
            RRO list
          END-POINTS for leaf type 4
            RRO list
          OF (optional)

  Case 7: Adding and pruning leaves with full reoptimization of
  existing paths

          Common Header
          RP with P2MP flag/R-bit set
          END-POINTS for leaf type 1
          END-POINTS for leaf type 2
            RRO list
          END-POINTS for leaf type 3
            RRO list
          OF (optional)

  Case 8: Adding and pruning leaves with partial reoptimization of
  existing paths

          Common Header
          RP with P2MP flag/R-bit set
          END-POINTS for leaf type 1
          END-POINTS for leaf type 2
            RRO list
          END-POINTS for leaf type 3
            RRO list
          END-POINTS for leaf type 4
            RRO list
          OF (optional)

  Case 9: Adding and pruning leaves without reoptimization of existing
  paths

          Common Header
          RP with P2MP flag/R-bit set
          END-POINTS for leaf type 1
          END-POINTS for leaf type 2
            RRO list
          END-POINTS for leaf type 4
            RRO list
          OF (optional)




Zhao, et al.                 Standards Track                   [Page 18]

RFC 6006           Extensions to PCEP for P2MP TE LSPs    September 2010


3.11.  Discovering Branch Nodes

  Before computing the P2MP path, a PCE may need to be provided means
  to know which nodes in the network are capable of acting as branch
  LSRs.  A PCE can discover such capabilities by using the mechanisms
  defined in [RFC5073].

3.11.1.  Branch Node Object

  The PCC can specify a list of nodes that can be used as branch nodes
  or a list of nodes that cannot be used as branch nodes by using the
  Branch Node Capability (BNC) Object.  The BNC Object has the same
  format as the Include Route Object (IRO) defined in [RFC5440], except
  that it only supports IPv4 and IPv6 prefix sub-objects.  Two Object-
  types are also defined:

  o  Branch node list: List of nodes that can be used as branch nodes.

  o  Non-branch node list: List of nodes that cannot be used as branch
     nodes.

  The object can only be carried in a PCReq message.  A Path Request
  may carry at most one Branch Node Object.

  The Object-Class and Object-types have been allocated by IANA.  The
  IANA assignment is documented in Section 6.5 ("PCEP Objects").

3.12.  Synchronization of P2MP TE Path Computation Requests

  There are cases when multiple P2MP LSPs' computations need to be
  synchronized.  For example, one P2MP LSP is the designated backup of
  another P2MP LSP.  In this case, path diversity for these dependent
  LSPs may need to be considered during the path computation.

  The synchronization can be done by using the existing Synchronization
  VECtor (SVEC) functionality defined in [RFC5440].















Zhao, et al.                 Standards Track                   [Page 19]

RFC 6006           Extensions to PCEP for P2MP TE LSPs    September 2010


  An example of synchronizing two P2MP LSPs, each having two leaves for
  Path Computation Request Messages, is illustrated below:

          Common Header
          SVEC for sync of LSP1 and LSP2
          OF (optional)
          END-POINTS1 for P2MP
            RRO1 list
          END-POINTS2 for P2MP
            RRO2 list

          Figure 7.  PCReq Message Example for Synchronization

  This specification also defines two new flags to the SVEC Object Flag
  Field for P2MP path dependent computation requests.  The first new
  flag is to allow the PCC to request that the PCE should compute a
  secondary P2MP path tree with partial path diversity for specific
  leaves or a specific S2L sub-path to the primary P2MP path tree.  The
  second flag, would allow the PCC to request that partial paths should
  be link direction diverse.

  The following flags are added to the SVEC object body in this
  document:

  o  P (Partial Path Diverse bit - 1 bit):

     When set, this would indicate a request for path diversity for a
     specific leaf, a set of leaves, or all leaves.

  o  D (Link Direction Diverse bit - 1 bit):

     When set, this would indicate a request that a partial path or
     paths should be link direction diverse.

  The IANA assignment is referenced in Section 6.8 of this document.

3.13.  Request and Response Fragmentation

  The total PCEP message length, including the common header, is
  16 bytes.  In certain scenarios the P2MP computation request may not
  fit into a single request or response message.  For example, if a
  tree has many hundreds or thousands of leaves, then the request or
  response may need to be fragmented into multiple messages.








Zhao, et al.                 Standards Track                   [Page 20]

RFC 6006           Extensions to PCEP for P2MP TE LSPs    September 2010


  The F-bit has been outlined in "The Extension of the RP Object"
  (Section 3.3.1) of this document.  The F-bit is used in the RP object
  header to signal that the initial request or response was too large
  to fit into a single message and will be fragmented into multiple
  messages.  In order to identify the single request or response, each
  message will use the same request ID.

3.13.1.  Request Fragmentation Procedure

  If the initial request is too large to fit into a single request
  message, the PCC will split the request over multiple messages.  Each
  message sent to the PCE, except the last one, will have the F-bit set
  in the RP object to signify that the request has been fragmented into
  multiple messages.  In order to identify that a series of request
  messages represents a single request, each message will use the same
  request ID.

  The assumption is that request messages are reliably delivered and in
  sequence, since PCEP relies on TCP.

3.13.2.  Response Fragmentation Procedure

  Once the PCE computes a path based on the initial request, a response
  is sent back to the PCC.  If the response is too large to fit into a
  single response message, the PCE will split the response over
  multiple messages.  Each message sent to the PCE, except the last
  one, will have the F-bit set in the RP object to signify that the
  response has been fragmented into multiple messages.  In order to
  identify that a series of response messages represents a single
  response, each message will use the same response ID.

  Again, the assumption is that response messages are reliably
  delivered and in sequence, since PCEP relies on TCP.

3.13.3.  Fragmentation Examples

  The following example illustrates the PCC sending a request message
  with Req-ID1 to the PCE, in order to add one leaf to an existing tree
  with 1200 leaves.  The assumption used for this example is that one
  request message can hold up to 800 leaves.  In this scenario, the
  original single message needs to be fragmented and sent using two
  smaller messages, which have the Req-ID1 specified in the RP object,
  and with the F-bit set on the first message, and cleared on the
  second message.







Zhao, et al.                 Standards Track                   [Page 21]

RFC 6006           Extensions to PCEP for P2MP TE LSPs    September 2010


          Common Header
          RP1 with Req-ID1 and P2MP=1 and F-bit=1
          OF (optional)
          END-POINTS1 for P2MP
            RRO1 list

          Common Header
          RP2 with Req-ID1 and P2MP=1 and F-bit=0
          OF (optional)
          END-POINTS1 for P2MP
            RRO1 list

             Figure 8.  PCReq Message Fragmentation Example

  To handle a scenario where the last fragmented message piece is lost,
  the receiver side of the fragmented message may start a timer once it
  receives the first piece of the fragmented message.  When the timer
  expires and it has not received the last piece of the fragmented
  message, it should send an error message to the sender to signal that
  it has received an incomplete message.  The relevant error message is
  documented in Section 3.15 ("P2MP PCEP-ERROR Objects and Types").

3.14.  UNREACH-DESTINATION Object

  The PCE path computation request may fail because all or a subset of
  the destinations are unreachable.

  In such a case, the UNREACH-DESTINATION object allows the PCE to
  optionally specify the list of unreachable destinations.

  This object can be present in PCRep messages.  There can be up to one
  such object per RP.

  The following UNREACH-DESTINATION objects will be required:

  UNREACH-DESTINATION Object-Class is 28.
  UNREACH-DESTINATION Object-Type for IPv4 is 1.
  UNREACH-DESTINATION Object-Type for IPv6 is 2.













Zhao, et al.                 Standards Track                   [Page 22]

RFC 6006           Extensions to PCEP for P2MP TE LSPs    September 2010


  The format of the UNREACH-DESTINATION object body for IPv4 (Object-
  Type=1) is as follows:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                  Destination IPv4 address                     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     ~                           ...                                 ~
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                  Destination IPv4 address                     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

           Figure 9.  UNREACH-DESTINATION Object Body for IPv4

  The format of the UNREACH-DESTINATION object body for IPv6 (Object-
  Type=2) is as follows:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     |            Destination IPv6 address (16 bytes)                |
     |                                                               |
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     ~                          ...                                  ~
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     |              Destination IPv6 address (16 bytes)              |
     |                                                               |
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

          Figure 10.  UNREACH-DESTINATION Object Body for IPv6

3.15.  P2MP PCEP-ERROR Objects and Types

  To indicate an error associated with policy violation, a new error
  value "P2MP Path computation not allowed" should be added to the
  existing error code for policy violation (Error-Type=5) as defined in
  [RFC5440]:









Zhao, et al.                 Standards Track                   [Page 23]

RFC 6006           Extensions to PCEP for P2MP TE LSPs    September 2010


  Error-Type=5; Error-Value=7: if a PCE receives a P2MP path
  computation request that is not compliant with administrative
  privileges (i.e., "The PCE policy does not support P2MP path
  computation"), the PCE MUST send a PCErr message with a PCEP-ERROR
  object (Error-Type=5) and an Error-Value (Error-Value=7).  The
  corresponding P2MP path computation request MUST also be cancelled.

  To indicate capability errors associated with the P2MP path request,
  a new Error-Type (16) and subsequent error-values are defined as
  follows for inclusion in the PCEP-ERROR object:

  Error-Type=16; Error-Value=1: if a PCE receives a P2MP path request
  and the PCE is not capable of satisfying the request due to
  insufficient memory, the PCE MUST send a PCErr message with a PCEP-
  ERROR object (Error-Type=16) and an Error-Value (Error-Value=1).  The
  corresponding P2MP path computation request MUST also be cancelled.

  Error-Type=16; Error-Value=2: if a PCE receives a P2MP path request
  and the PCE is not capable of P2MP computation, the PCE MUST send a
  PCErr message with a PCEP-ERROR object (Error-Type=16) and an Error-
  Value (Error-Value=2).  The corresponding P2MP path computation
  request MUST also be cancelled.

  To indicate P2MP message fragmentation errors associated with a P2MP
  path request, a new Error-Type (17) and subsequent error-values are
  defined as follows for inclusion in the PCEP-ERROR object:

  Error-Type=18; Error-Value=1: if a PCE has not received the last
  piece of the fragmented message, it should send an error message to
  the sender to signal that it has received an incomplete message
  (i.e., "Fragmented request failure").  The PCE MUST send a PCErr
  message with a PCEP-ERROR object (Error-Type=18) and an Error-Value
  (Error-Value=1).

3.16.  PCEP NO-PATH Indicator

  To communicate the reasons for not being able to find P2MP path
  computation, the NO-PATH object can be used in the PCRep message.

  One new bit is defined in the NO-PATH-VECTOR TLV carried in the
  NO-PATH Object:

  bit 24: when set, the PCE indicates that there is a reachability
  problem with all or a subset of the P2MP destinations.  Optionally,
  the PCE can specify the destination or list of destinations that are
  not reachable using the new UNREACH-DESTINATION object defined in
  Section 3.14.




Zhao, et al.                 Standards Track                   [Page 24]

RFC 6006           Extensions to PCEP for P2MP TE LSPs    September 2010


4.  Manageability Considerations

  [RFC5862] describes various manageability requirements in support of
  P2MP path computation when applying PCEP.  This section describes how
  manageability requirements mentioned in [RFC5862] are supported in
  the context of PCEP extensions specified in this document.

  Note that [RFC5440] describes various manageability considerations in
  PCEP, and most of the manageability requirements mentioned in
  [RFC5862] are already covered there.

4.1.  Control of Function and Policy

  In addition to PCE configuration parameters listed in [RFC5440], the
  following additional parameters might be required:

  o  The ability to enable or disable P2MP path computations on the
     PCE.

  o  The PCE may be configured to enable or disable the advertisement
     of its P2MP path computation capability.  A PCE can advertise its
     P2MP capability via the IGP discovery mechanism discussed in
     Section 3.1.1 ("P2MP Computation TLV in the Existing PCE Discovery
     Protocol"), or during the Open Message Exchange discussed in
     Section 3.1.2 ("Open Message Extension").

4.2.  Information and Data Models

  A number of MIB objects have been defined for general PCEP control
  and monitoring of P2P computations in [PCEP-MIB].  [RFC5862]
  specifies that MIB objects will be required to support the control
  and monitoring of the protocol extensions defined in this document.
  A new document will be required to define MIB objects for PCEP
  control and monitoring of P2MP computations.

4.3.  Liveness Detection and Monitoring

  There are no additional considerations beyond those expressed in
  [RFC5440], since [RFC5862] does not address any additional
  requirements.

4.4.  Verifying Correct Operation

  There are no additional requirements beyond those expressed in
  [RFC4657] for verifying the correct operation of the PCEP sessions.
  It is expected that future MIB objects will facilitate verification
  of correct operation and reporting of P2MP PCEP requests, responses,
  and errors.



Zhao, et al.                 Standards Track                   [Page 25]

RFC 6006           Extensions to PCEP for P2MP TE LSPs    September 2010


4.5.  Requirements for Other Protocols and Functional Components

  The method for the PCE to obtain information about a PCE capable of
  P2MP path computations via OSPF and IS-IS is discussed in
  Section 3.1.1 ("P2MP Computation TLV in the Existing PCE Discovery
  Protocol") of this document.

  The subsequent IANA assignments are documented in Section 6.9 ("OSPF
  PCE Capability Flag") of this document.

4.6.  Impact on Network Operation

  It is expected that the use of PCEP extensions specified in this
  document will not significantly increase the level of operational
  traffic.  However, computing a P2MP tree may require more PCE state
  compared to a P2P computation.  In the event of a major network
  failure and multiple recovery P2MP tree computation requests being
  sent to the PCE, the load on the PCE may also be significantly
  increased.

5.  Security Considerations

  As described in [RFC5862], P2MP path computation requests are more
  CPU-intensive and also utilize more link bandwidth.  In the event of
  an unauthorized P2MP path computation request, or a denial of service
  attack, the subsequent PCEP requests and processing may be disruptive
  to the network.  Consequently, it is important that implementations
  conform to the relevant security requirements of [RFC5440] that
  specifically help to minimize or negate unauthorized P2MP path
  computation requests and denial of service attacks.  These mechanisms
  include:

  o  Securing the PCEP session requests and responses using TCP
     security techniques (Section 10.2 of [RFC5440]).

  o  Authenticating the PCEP requests and responses to ensure the
     message is intact and sent from an authorized node (Section 10.3
     of [RFC5440]).

  o  Providing policy control by explicitly defining which PCCs, via IP
     access-lists, are allowed to send P2MP path requests to the PCE
     (Section 10.6 of [RFC5440]).

  PCEP operates over TCP, so it is also important to secure the PCE and
  PCC against TCP denial of service attacks.  Section 10.7.1 of
  [RFC5440] outlines a number of mechanisms for minimizing the risk of
  TCP based denial of service attacks against PCEs and PCCs.




Zhao, et al.                 Standards Track                   [Page 26]

RFC 6006           Extensions to PCEP for P2MP TE LSPs    September 2010


  PCEP implementations SHOULD consider the additional security provided
  by the TCP Authentication Option (TCP-AO) [RFC5925].

6.  IANA Considerations

  IANA maintains a registry of PCEP parameters.  A number of IANA
  considerations have been highlighted in previous sections of this
  document.  IANA has made the following allocations.

6.1.  PCEP TLV Type Indicators

  As described in Section 3.1.2., the newly defined P2MP capability TLV
  allows the PCE to advertise its P2MP path computation capability.
  IANA has made the following allocation from the "PCEP TLV Type
  Indicators" sub-registry.

     Value       Description          Reference
     6           P2MP capable         RFC 6006

6.2.  Request Parameter Bit Flags

  As described in Section 3.3.1, three new RP Object Flags have been
  defined.  IANA has made the following allocations from the PCEP "RP
  Object Flag Field" sub-registry:

     Bit      Description                         Reference

     18       Fragmentation (F-bit)               RFC 6006
     19       P2MP (N-bit)                        RFC 6006
     20       ERO-compression (E-bit)             RFC 6006

6.3.  Objective Functions

  As described in Section 3.6.1, two new Objective Functions have been
  defined.  IANA has made the following allocations from the PCEP
  "Objective Function" sub-registry:

     Code Point        Name        Reference

     7                 SPT         RFC 6006
     8                 MCT         RFC 6006

6.4.  Metric Object Types

  As described in Section 3.6.2, three new metric object T fields have
  been defined.  IANA has made the following allocations from the PCEP
  "METRIC Object T Field" sub-registry:




Zhao, et al.                 Standards Track                   [Page 27]

RFC 6006           Extensions to PCEP for P2MP TE LSPs    September 2010


     Value           Description               Reference

     8               P2MP IGP metric           RFC 6006
     9               P2MP TE metric            RFC 6006
     10              P2MP hop count metric     RFC 6006

6.5.  PCEP Objects

  As discussed in Section 3.3.2, two new END-POINTS Object-Types are
  defined.  IANA has made the following Object-Type allocations from
  the "PCEP Objects" sub-registry:

     Object-Class Value    4
     Name                  END-POINTS
     Object-Type           3: IPv4
                           4: IPv6
                           5-15: Unassigned
     Reference             RFC 6006

  As described in Section 3.2, Section 3.11.1, and Section 3.14, four
  PCEP Object-Classes and six PCEP Object-Types have been defined.
  IANA has made the following allocations from the "PCEP Objects" sub-
  registry:

     Object-Class Value    28
     Name                  UNREACH-DESTINATION
     Object-Type           1: IPv4
                           2: IPv6
                           3-15: Unassigned
     Reference             RFC 6006

     Object-Class Value    29
     Name                  SERO
     Object-Type           1: SERO
                           2-15: Unassigned
     Reference             RFC 6006

     Object-Class Value    30
     Name                  SRRO
     Object-Type           1: SRRO
                           2-15: Unassigned
     Reference             RFC 6006









Zhao, et al.                 Standards Track                   [Page 28]

RFC 6006           Extensions to PCEP for P2MP TE LSPs    September 2010


     Object-Class Value    31
     Name                  Branch Node Capability Object
     Object-Type           1: Branch node list
                           2: Non-branch node list
                           3-15: Unassigned
     Reference             RFC 6006

6.6.  PCEP-ERROR Objects and Types

  As described in Section 3.15, a number of new PCEP-ERROR Object Error
  Types and Values have been defined.  IANA has made the following
  allocations from the PCEP "PCEP-ERROR Object Error Types and Values"
  sub-registry:

     Error
     Type  Meaning                                            Reference

     5     Policy violation
             Error-value=7:                                   RFC 6006
               P2MP Path computation is not allowed

     16    P2MP Capability Error
             Error-Value=0: Unassigned                        RFC 6006
             Error-Value=1:                                   RFC 6006
               The PCE is not capable to satisfy the request
               due to insufficient memory
             Error-Value=2:                                   RFC 6006
               The PCE is not capable of P2MP computation

     17    P2MP END-POINTS Error
             Error-Value=0: Unassigned                        RFC 6006
             Error-Value=1:                                   RFC 6006
               The PCE is not capable to satisfy the request
               due to no END-POINTS with leaf type 2
             Error-Value=2:                                   RFC 6006
               The PCE is not capable to satisfy the request
               due to no END-POINTS with leaf type 3
             Error-Value=3:                                   RFC 6006
               The PCE is not capable to satisfy the request
               due to no END-POINTS with leaf type 4
             Error-Value=4:                                   RFC 6006
               The PCE is not capable to satisfy the request
               due to inconsistent END-POINTS

     18    P2MP Fragmentation Error
             Error-Value=0: Unassigned                        RFC 6006
             Error-Value=1:                                   RFC 6006
               Fragmented request failure



Zhao, et al.                 Standards Track                   [Page 29]

RFC 6006           Extensions to PCEP for P2MP TE LSPs    September 2010


6.7.  PCEP NO-PATH Indicator

  As discussed in Section 3.16, a new NO-PATH-VECTOR TLV Flag Field has
  been defined.  IANA has made the following allocation from the PCEP
  "NO-PATH-VECTOR TLV Flag Field" sub-registry:

     Bit    Description                               Reference

     24     P2MP Reachability Problem                 RFC 6006

6.8.  SVEC Object Flag

  As discussed in Section 3.12, two new SVEC Object Flags are defined.
  IANA has made the following allocation from the PCEP "SVEC Object
  Flag Field" sub-registry:

     Bit      Description                              Reference

     19       Partial Path Diverse                     RFC 6006
     20       Link Direction Diverse                   RFC 6006

6.9.  OSPF PCE Capability Flag

  As discussed in Section 3.1.1, a new OSPF Capability Flag is defined
  to indicate P2MP path computation capability.  IANA has made the
  following assignment from the OSPF Parameters "Path Computation
  Element (PCE) Capability Flags" registry:

     Bit      Description                              Reference

     10       P2MP path computation                    RFC 6006

7.  Acknowledgements

  The authors would like to thank Adrian Farrel, Young Lee, Dan Tappan,
  Autumn Liu, Huaimo Chen, Eiji Okim, Nick Neate, Suresh Babu K, Dhruv
  Dhody, Udayasree Palle, Gaurav Agrawal, Vishwas Manral, Dan
  Romascanu, Tim Polk, Stewart Bryant, David Harrington, and Sean
  Turner for their valuable comments and input on this document.

8.  References

8.1.  Normative References

  [RFC2119]   Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.





Zhao, et al.                 Standards Track                   [Page 30]

RFC 6006           Extensions to PCEP for P2MP TE LSPs    September 2010


  [RFC3209]   Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
              and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
              Tunnels", RFC 3209, December 2001.

  [RFC3473]   Berger, L., Ed., "Generalized Multi-Protocol Label
              Switching (GMPLS) Signaling Resource ReserVation
              Protocol-Traffic Engineering (RSVP-TE) Extensions",
              RFC 3473, January 2003.

  [RFC4873]   Berger, L., Bryskin, I., Papadimitriou, D., and A.
              Farrel, "GMPLS Segment Recovery", RFC 4873, May 2007.

  [RFC4875]   Aggarwal, R., Ed., Papadimitriou, D., Ed., and S.
              Yasukawa, Ed., "Extensions to Resource Reservation
              Protocol - Traffic Engineering (RSVP-TE) for Point-to-
              Multipoint TE Label Switched Paths (LSPs)", RFC 4875, May
              2007.

  [RFC4970]   Lindem, A., Ed., Shen, N., Vasseur, JP., Aggarwal, R.,
              and S. Shaffer, "Extensions to OSPF for Advertising
              Optional Router Capabilities", RFC 4970, July 2007.

  [RFC5073]   Vasseur, J., Ed., and J. Le Roux, Ed., "IGP Routing
              Protocol Extensions for Discovery of Traffic Engineering
              Node Capabilities", RFC 5073, December 2007.

  [RFC5088]   Le Roux, JL., Ed., Vasseur, JP., Ed., Ikejiri, Y., and R.
              Zhang, "OSPF Protocol Extensions for Path Computation
              Element (PCE) Discovery", RFC 5088, January 2008.

  [RFC5089]   Le Roux, JL., Ed., Vasseur, JP., Ed., Ikejiri, Y., and R.
              Zhang, "IS-IS Protocol Extensions for Path Computation
              Element (PCE) Discovery", RFC 5089, January 2008.

  [RFC5511]   Farrel, A., "Routing Backus-Naur Form (RBNF): A Syntax
              Used to Form Encoding Rules in Various Routing Protocol
              Specifications", RFC 5511, April 2009.

  [RFC5440]   Vasseur, JP., Ed., and JL. Le Roux, Ed., "Path
              Computation Element (PCE) Communication Protocol (PCEP)",
              RFC 5440, March 2009.

  [RFC5541]   Le Roux, JL., Vasseur, JP., and Y. Lee, "Encoding of
              Objective Functions in the Path Computation Element
              Communication Protocol (PCEP)", RFC 5541, June 2009.






Zhao, et al.                 Standards Track                   [Page 31]

RFC 6006           Extensions to PCEP for P2MP TE LSPs    September 2010


8.2.  Informative References

  [RFC4655]   Farrel, A., Vasseur, J.-P., and J. Ash, "A Path
              Computation Element (PCE)-Based Architecture", RFC 4655,
              August 2006.

  [RFC4657]   Ash, J., Ed., and J. Le Roux, Ed., "Path Computation
              Element (PCE) Communication Protocol Generic
              Requirements", RFC 4657, September 2006.

  [RFC5671]   Yasukawa, S. and A. Farrel, Ed., "Applicability of the
              Path Computation Element (PCE) to Point-to-Multipoint
              (P2MP) MPLS and GMPLS Traffic Engineering (TE)",
              RFC 5671, October 2009.

  [RFC5862]   Yasukawa, S. and A. Farrel, "Path Computation Clients
              (PCC) - Path Computation Element (PCE) Requirements for
              Point-to-Multipoint MPLS-TE", RFC 5862, June 2010.

  [RFC5925]   Touch, J., Mankin, A., and R. Bonica, "The TCP
              Authentication Option", RFC 5925, June 2010.

  [PCEP-MIB]  Koushik, K., Stephan, E., Zhao, Q., and D. King, "PCE
              communication protocol (PCEP) Management Information
              Base", Work in Progress, July 2010.

Contributors

  Jean-Louis Le Roux
  France Telecom
  2, Avenue Pierre-Marzin
  22307 Lannion Cedex
  France
  EMail: [email protected]


  Mohamad Chaitou
  France
  EMail: [email protected]












Zhao, et al.                 Standards Track                   [Page 32]

RFC 6006           Extensions to PCEP for P2MP TE LSPs    September 2010


Authors' Addresses

  Quintin Zhao (editor)
  Huawei Technology
  125 Nagog Technology Park
  Acton, MA  01719
  US
  EMail: [email protected]


  Daniel King (editor)
  Old Dog Consulting
  UK
  EMail: [email protected]


  Fabien Verhaeghe
  Thales Communication France
  160 Bd Valmy 92700 Colombes
  France
  EMail: [email protected]


  Tomonori Takeda
  NTT Corporation
  3-9-11, Midori-Cho
  Musashino-Shi, Tokyo 180-8585
  Japan
  EMail: [email protected]


  Zafar Ali
  Cisco Systems, Inc.
  2000 Innovation Drive
  Kanata, Ontario  K2K 3E8
  Canada
  EMail: [email protected]


  Julien Meuric
  France Telecom
  2, Avenue Pierre-Marzin
  22307 Lannion Cedex
  France
  EMail: [email protected]






Zhao, et al.                 Standards Track                   [Page 33]